xref: /openbmc/linux/fs/splice.c (revision c0e297dc)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36 
37 /*
38  * Attempt to steal a page from a pipe buffer. This should perhaps go into
39  * a vm helper function, it's already simplified quite a bit by the
40  * addition of remove_mapping(). If success is returned, the caller may
41  * attempt to reuse this page for another destination.
42  */
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 				     struct pipe_buffer *buf)
45 {
46 	struct page *page = buf->page;
47 	struct address_space *mapping;
48 
49 	lock_page(page);
50 
51 	mapping = page_mapping(page);
52 	if (mapping) {
53 		WARN_ON(!PageUptodate(page));
54 
55 		/*
56 		 * At least for ext2 with nobh option, we need to wait on
57 		 * writeback completing on this page, since we'll remove it
58 		 * from the pagecache.  Otherwise truncate wont wait on the
59 		 * page, allowing the disk blocks to be reused by someone else
60 		 * before we actually wrote our data to them. fs corruption
61 		 * ensues.
62 		 */
63 		wait_on_page_writeback(page);
64 
65 		if (page_has_private(page) &&
66 		    !try_to_release_page(page, GFP_KERNEL))
67 			goto out_unlock;
68 
69 		/*
70 		 * If we succeeded in removing the mapping, set LRU flag
71 		 * and return good.
72 		 */
73 		if (remove_mapping(mapping, page)) {
74 			buf->flags |= PIPE_BUF_FLAG_LRU;
75 			return 0;
76 		}
77 	}
78 
79 	/*
80 	 * Raced with truncate or failed to remove page from current
81 	 * address space, unlock and return failure.
82 	 */
83 out_unlock:
84 	unlock_page(page);
85 	return 1;
86 }
87 
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 					struct pipe_buffer *buf)
90 {
91 	page_cache_release(buf->page);
92 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94 
95 /*
96  * Check whether the contents of buf is OK to access. Since the content
97  * is a page cache page, IO may be in flight.
98  */
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 				       struct pipe_buffer *buf)
101 {
102 	struct page *page = buf->page;
103 	int err;
104 
105 	if (!PageUptodate(page)) {
106 		lock_page(page);
107 
108 		/*
109 		 * Page got truncated/unhashed. This will cause a 0-byte
110 		 * splice, if this is the first page.
111 		 */
112 		if (!page->mapping) {
113 			err = -ENODATA;
114 			goto error;
115 		}
116 
117 		/*
118 		 * Uh oh, read-error from disk.
119 		 */
120 		if (!PageUptodate(page)) {
121 			err = -EIO;
122 			goto error;
123 		}
124 
125 		/*
126 		 * Page is ok afterall, we are done.
127 		 */
128 		unlock_page(page);
129 	}
130 
131 	return 0;
132 error:
133 	unlock_page(page);
134 	return err;
135 }
136 
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 	.can_merge = 0,
139 	.confirm = page_cache_pipe_buf_confirm,
140 	.release = page_cache_pipe_buf_release,
141 	.steal = page_cache_pipe_buf_steal,
142 	.get = generic_pipe_buf_get,
143 };
144 
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 				    struct pipe_buffer *buf)
147 {
148 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 		return 1;
150 
151 	buf->flags |= PIPE_BUF_FLAG_LRU;
152 	return generic_pipe_buf_steal(pipe, buf);
153 }
154 
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 	.can_merge = 0,
157 	.confirm = generic_pipe_buf_confirm,
158 	.release = page_cache_pipe_buf_release,
159 	.steal = user_page_pipe_buf_steal,
160 	.get = generic_pipe_buf_get,
161 };
162 
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165 	smp_mb();
166 	if (waitqueue_active(&pipe->wait))
167 		wake_up_interruptible(&pipe->wait);
168 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170 
171 /**
172  * splice_to_pipe - fill passed data into a pipe
173  * @pipe:	pipe to fill
174  * @spd:	data to fill
175  *
176  * Description:
177  *    @spd contains a map of pages and len/offset tuples, along with
178  *    the struct pipe_buf_operations associated with these pages. This
179  *    function will link that data to the pipe.
180  *
181  */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 		       struct splice_pipe_desc *spd)
184 {
185 	unsigned int spd_pages = spd->nr_pages;
186 	int ret, do_wakeup, page_nr;
187 
188 	ret = 0;
189 	do_wakeup = 0;
190 	page_nr = 0;
191 
192 	pipe_lock(pipe);
193 
194 	for (;;) {
195 		if (!pipe->readers) {
196 			send_sig(SIGPIPE, current, 0);
197 			if (!ret)
198 				ret = -EPIPE;
199 			break;
200 		}
201 
202 		if (pipe->nrbufs < pipe->buffers) {
203 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
204 			struct pipe_buffer *buf = pipe->bufs + newbuf;
205 
206 			buf->page = spd->pages[page_nr];
207 			buf->offset = spd->partial[page_nr].offset;
208 			buf->len = spd->partial[page_nr].len;
209 			buf->private = spd->partial[page_nr].private;
210 			buf->ops = spd->ops;
211 			if (spd->flags & SPLICE_F_GIFT)
212 				buf->flags |= PIPE_BUF_FLAG_GIFT;
213 
214 			pipe->nrbufs++;
215 			page_nr++;
216 			ret += buf->len;
217 
218 			if (pipe->files)
219 				do_wakeup = 1;
220 
221 			if (!--spd->nr_pages)
222 				break;
223 			if (pipe->nrbufs < pipe->buffers)
224 				continue;
225 
226 			break;
227 		}
228 
229 		if (spd->flags & SPLICE_F_NONBLOCK) {
230 			if (!ret)
231 				ret = -EAGAIN;
232 			break;
233 		}
234 
235 		if (signal_pending(current)) {
236 			if (!ret)
237 				ret = -ERESTARTSYS;
238 			break;
239 		}
240 
241 		if (do_wakeup) {
242 			smp_mb();
243 			if (waitqueue_active(&pipe->wait))
244 				wake_up_interruptible_sync(&pipe->wait);
245 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
246 			do_wakeup = 0;
247 		}
248 
249 		pipe->waiting_writers++;
250 		pipe_wait(pipe);
251 		pipe->waiting_writers--;
252 	}
253 
254 	pipe_unlock(pipe);
255 
256 	if (do_wakeup)
257 		wakeup_pipe_readers(pipe);
258 
259 	while (page_nr < spd_pages)
260 		spd->spd_release(spd, page_nr++);
261 
262 	return ret;
263 }
264 EXPORT_SYMBOL_GPL(splice_to_pipe);
265 
266 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
267 {
268 	page_cache_release(spd->pages[i]);
269 }
270 
271 /*
272  * Check if we need to grow the arrays holding pages and partial page
273  * descriptions.
274  */
275 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
276 {
277 	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
278 
279 	spd->nr_pages_max = buffers;
280 	if (buffers <= PIPE_DEF_BUFFERS)
281 		return 0;
282 
283 	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
284 	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
285 
286 	if (spd->pages && spd->partial)
287 		return 0;
288 
289 	kfree(spd->pages);
290 	kfree(spd->partial);
291 	return -ENOMEM;
292 }
293 
294 void splice_shrink_spd(struct splice_pipe_desc *spd)
295 {
296 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
297 		return;
298 
299 	kfree(spd->pages);
300 	kfree(spd->partial);
301 }
302 
303 static int
304 __generic_file_splice_read(struct file *in, loff_t *ppos,
305 			   struct pipe_inode_info *pipe, size_t len,
306 			   unsigned int flags)
307 {
308 	struct address_space *mapping = in->f_mapping;
309 	unsigned int loff, nr_pages, req_pages;
310 	struct page *pages[PIPE_DEF_BUFFERS];
311 	struct partial_page partial[PIPE_DEF_BUFFERS];
312 	struct page *page;
313 	pgoff_t index, end_index;
314 	loff_t isize;
315 	int error, page_nr;
316 	struct splice_pipe_desc spd = {
317 		.pages = pages,
318 		.partial = partial,
319 		.nr_pages_max = PIPE_DEF_BUFFERS,
320 		.flags = flags,
321 		.ops = &page_cache_pipe_buf_ops,
322 		.spd_release = spd_release_page,
323 	};
324 
325 	if (splice_grow_spd(pipe, &spd))
326 		return -ENOMEM;
327 
328 	index = *ppos >> PAGE_CACHE_SHIFT;
329 	loff = *ppos & ~PAGE_CACHE_MASK;
330 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
331 	nr_pages = min(req_pages, spd.nr_pages_max);
332 
333 	/*
334 	 * Lookup the (hopefully) full range of pages we need.
335 	 */
336 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
337 	index += spd.nr_pages;
338 
339 	/*
340 	 * If find_get_pages_contig() returned fewer pages than we needed,
341 	 * readahead/allocate the rest and fill in the holes.
342 	 */
343 	if (spd.nr_pages < nr_pages)
344 		page_cache_sync_readahead(mapping, &in->f_ra, in,
345 				index, req_pages - spd.nr_pages);
346 
347 	error = 0;
348 	while (spd.nr_pages < nr_pages) {
349 		/*
350 		 * Page could be there, find_get_pages_contig() breaks on
351 		 * the first hole.
352 		 */
353 		page = find_get_page(mapping, index);
354 		if (!page) {
355 			/*
356 			 * page didn't exist, allocate one.
357 			 */
358 			page = page_cache_alloc_cold(mapping);
359 			if (!page)
360 				break;
361 
362 			error = add_to_page_cache_lru(page, mapping, index,
363 					GFP_KERNEL & mapping_gfp_mask(mapping));
364 			if (unlikely(error)) {
365 				page_cache_release(page);
366 				if (error == -EEXIST)
367 					continue;
368 				break;
369 			}
370 			/*
371 			 * add_to_page_cache() locks the page, unlock it
372 			 * to avoid convoluting the logic below even more.
373 			 */
374 			unlock_page(page);
375 		}
376 
377 		spd.pages[spd.nr_pages++] = page;
378 		index++;
379 	}
380 
381 	/*
382 	 * Now loop over the map and see if we need to start IO on any
383 	 * pages, fill in the partial map, etc.
384 	 */
385 	index = *ppos >> PAGE_CACHE_SHIFT;
386 	nr_pages = spd.nr_pages;
387 	spd.nr_pages = 0;
388 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
389 		unsigned int this_len;
390 
391 		if (!len)
392 			break;
393 
394 		/*
395 		 * this_len is the max we'll use from this page
396 		 */
397 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
398 		page = spd.pages[page_nr];
399 
400 		if (PageReadahead(page))
401 			page_cache_async_readahead(mapping, &in->f_ra, in,
402 					page, index, req_pages - page_nr);
403 
404 		/*
405 		 * If the page isn't uptodate, we may need to start io on it
406 		 */
407 		if (!PageUptodate(page)) {
408 			lock_page(page);
409 
410 			/*
411 			 * Page was truncated, or invalidated by the
412 			 * filesystem.  Redo the find/create, but this time the
413 			 * page is kept locked, so there's no chance of another
414 			 * race with truncate/invalidate.
415 			 */
416 			if (!page->mapping) {
417 				unlock_page(page);
418 				page = find_or_create_page(mapping, index,
419 						mapping_gfp_mask(mapping));
420 
421 				if (!page) {
422 					error = -ENOMEM;
423 					break;
424 				}
425 				page_cache_release(spd.pages[page_nr]);
426 				spd.pages[page_nr] = page;
427 			}
428 			/*
429 			 * page was already under io and is now done, great
430 			 */
431 			if (PageUptodate(page)) {
432 				unlock_page(page);
433 				goto fill_it;
434 			}
435 
436 			/*
437 			 * need to read in the page
438 			 */
439 			error = mapping->a_ops->readpage(in, page);
440 			if (unlikely(error)) {
441 				/*
442 				 * We really should re-lookup the page here,
443 				 * but it complicates things a lot. Instead
444 				 * lets just do what we already stored, and
445 				 * we'll get it the next time we are called.
446 				 */
447 				if (error == AOP_TRUNCATED_PAGE)
448 					error = 0;
449 
450 				break;
451 			}
452 		}
453 fill_it:
454 		/*
455 		 * i_size must be checked after PageUptodate.
456 		 */
457 		isize = i_size_read(mapping->host);
458 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
459 		if (unlikely(!isize || index > end_index))
460 			break;
461 
462 		/*
463 		 * if this is the last page, see if we need to shrink
464 		 * the length and stop
465 		 */
466 		if (end_index == index) {
467 			unsigned int plen;
468 
469 			/*
470 			 * max good bytes in this page
471 			 */
472 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
473 			if (plen <= loff)
474 				break;
475 
476 			/*
477 			 * force quit after adding this page
478 			 */
479 			this_len = min(this_len, plen - loff);
480 			len = this_len;
481 		}
482 
483 		spd.partial[page_nr].offset = loff;
484 		spd.partial[page_nr].len = this_len;
485 		len -= this_len;
486 		loff = 0;
487 		spd.nr_pages++;
488 		index++;
489 	}
490 
491 	/*
492 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
493 	 * we got, 'nr_pages' is how many pages are in the map.
494 	 */
495 	while (page_nr < nr_pages)
496 		page_cache_release(spd.pages[page_nr++]);
497 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
498 
499 	if (spd.nr_pages)
500 		error = splice_to_pipe(pipe, &spd);
501 
502 	splice_shrink_spd(&spd);
503 	return error;
504 }
505 
506 /**
507  * generic_file_splice_read - splice data from file to a pipe
508  * @in:		file to splice from
509  * @ppos:	position in @in
510  * @pipe:	pipe to splice to
511  * @len:	number of bytes to splice
512  * @flags:	splice modifier flags
513  *
514  * Description:
515  *    Will read pages from given file and fill them into a pipe. Can be
516  *    used as long as the address_space operations for the source implements
517  *    a readpage() hook.
518  *
519  */
520 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
521 				 struct pipe_inode_info *pipe, size_t len,
522 				 unsigned int flags)
523 {
524 	loff_t isize, left;
525 	int ret;
526 
527 	if (IS_DAX(in->f_mapping->host))
528 		return default_file_splice_read(in, ppos, pipe, len, flags);
529 
530 	isize = i_size_read(in->f_mapping->host);
531 	if (unlikely(*ppos >= isize))
532 		return 0;
533 
534 	left = isize - *ppos;
535 	if (unlikely(left < len))
536 		len = left;
537 
538 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
539 	if (ret > 0) {
540 		*ppos += ret;
541 		file_accessed(in);
542 	}
543 
544 	return ret;
545 }
546 EXPORT_SYMBOL(generic_file_splice_read);
547 
548 static const struct pipe_buf_operations default_pipe_buf_ops = {
549 	.can_merge = 0,
550 	.confirm = generic_pipe_buf_confirm,
551 	.release = generic_pipe_buf_release,
552 	.steal = generic_pipe_buf_steal,
553 	.get = generic_pipe_buf_get,
554 };
555 
556 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
557 				    struct pipe_buffer *buf)
558 {
559 	return 1;
560 }
561 
562 /* Pipe buffer operations for a socket and similar. */
563 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
564 	.can_merge = 0,
565 	.confirm = generic_pipe_buf_confirm,
566 	.release = generic_pipe_buf_release,
567 	.steal = generic_pipe_buf_nosteal,
568 	.get = generic_pipe_buf_get,
569 };
570 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
571 
572 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
573 			    unsigned long vlen, loff_t offset)
574 {
575 	mm_segment_t old_fs;
576 	loff_t pos = offset;
577 	ssize_t res;
578 
579 	old_fs = get_fs();
580 	set_fs(get_ds());
581 	/* The cast to a user pointer is valid due to the set_fs() */
582 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
583 	set_fs(old_fs);
584 
585 	return res;
586 }
587 
588 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
589 			    loff_t pos)
590 {
591 	mm_segment_t old_fs;
592 	ssize_t res;
593 
594 	old_fs = get_fs();
595 	set_fs(get_ds());
596 	/* The cast to a user pointer is valid due to the set_fs() */
597 	res = vfs_write(file, (__force const char __user *)buf, count, &pos);
598 	set_fs(old_fs);
599 
600 	return res;
601 }
602 EXPORT_SYMBOL(kernel_write);
603 
604 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
605 				 struct pipe_inode_info *pipe, size_t len,
606 				 unsigned int flags)
607 {
608 	unsigned int nr_pages;
609 	unsigned int nr_freed;
610 	size_t offset;
611 	struct page *pages[PIPE_DEF_BUFFERS];
612 	struct partial_page partial[PIPE_DEF_BUFFERS];
613 	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
614 	ssize_t res;
615 	size_t this_len;
616 	int error;
617 	int i;
618 	struct splice_pipe_desc spd = {
619 		.pages = pages,
620 		.partial = partial,
621 		.nr_pages_max = PIPE_DEF_BUFFERS,
622 		.flags = flags,
623 		.ops = &default_pipe_buf_ops,
624 		.spd_release = spd_release_page,
625 	};
626 
627 	if (splice_grow_spd(pipe, &spd))
628 		return -ENOMEM;
629 
630 	res = -ENOMEM;
631 	vec = __vec;
632 	if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
633 		vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
634 		if (!vec)
635 			goto shrink_ret;
636 	}
637 
638 	offset = *ppos & ~PAGE_CACHE_MASK;
639 	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
640 
641 	for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
642 		struct page *page;
643 
644 		page = alloc_page(GFP_USER);
645 		error = -ENOMEM;
646 		if (!page)
647 			goto err;
648 
649 		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
650 		vec[i].iov_base = (void __user *) page_address(page);
651 		vec[i].iov_len = this_len;
652 		spd.pages[i] = page;
653 		spd.nr_pages++;
654 		len -= this_len;
655 		offset = 0;
656 	}
657 
658 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
659 	if (res < 0) {
660 		error = res;
661 		goto err;
662 	}
663 
664 	error = 0;
665 	if (!res)
666 		goto err;
667 
668 	nr_freed = 0;
669 	for (i = 0; i < spd.nr_pages; i++) {
670 		this_len = min_t(size_t, vec[i].iov_len, res);
671 		spd.partial[i].offset = 0;
672 		spd.partial[i].len = this_len;
673 		if (!this_len) {
674 			__free_page(spd.pages[i]);
675 			spd.pages[i] = NULL;
676 			nr_freed++;
677 		}
678 		res -= this_len;
679 	}
680 	spd.nr_pages -= nr_freed;
681 
682 	res = splice_to_pipe(pipe, &spd);
683 	if (res > 0)
684 		*ppos += res;
685 
686 shrink_ret:
687 	if (vec != __vec)
688 		kfree(vec);
689 	splice_shrink_spd(&spd);
690 	return res;
691 
692 err:
693 	for (i = 0; i < spd.nr_pages; i++)
694 		__free_page(spd.pages[i]);
695 
696 	res = error;
697 	goto shrink_ret;
698 }
699 EXPORT_SYMBOL(default_file_splice_read);
700 
701 /*
702  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
703  * using sendpage(). Return the number of bytes sent.
704  */
705 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
706 			    struct pipe_buffer *buf, struct splice_desc *sd)
707 {
708 	struct file *file = sd->u.file;
709 	loff_t pos = sd->pos;
710 	int more;
711 
712 	if (!likely(file->f_op->sendpage))
713 		return -EINVAL;
714 
715 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
716 
717 	if (sd->len < sd->total_len && pipe->nrbufs > 1)
718 		more |= MSG_SENDPAGE_NOTLAST;
719 
720 	return file->f_op->sendpage(file, buf->page, buf->offset,
721 				    sd->len, &pos, more);
722 }
723 
724 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
725 {
726 	smp_mb();
727 	if (waitqueue_active(&pipe->wait))
728 		wake_up_interruptible(&pipe->wait);
729 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
730 }
731 
732 /**
733  * splice_from_pipe_feed - feed available data from a pipe to a file
734  * @pipe:	pipe to splice from
735  * @sd:		information to @actor
736  * @actor:	handler that splices the data
737  *
738  * Description:
739  *    This function loops over the pipe and calls @actor to do the
740  *    actual moving of a single struct pipe_buffer to the desired
741  *    destination.  It returns when there's no more buffers left in
742  *    the pipe or if the requested number of bytes (@sd->total_len)
743  *    have been copied.  It returns a positive number (one) if the
744  *    pipe needs to be filled with more data, zero if the required
745  *    number of bytes have been copied and -errno on error.
746  *
747  *    This, together with splice_from_pipe_{begin,end,next}, may be
748  *    used to implement the functionality of __splice_from_pipe() when
749  *    locking is required around copying the pipe buffers to the
750  *    destination.
751  */
752 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
753 			  splice_actor *actor)
754 {
755 	int ret;
756 
757 	while (pipe->nrbufs) {
758 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
759 		const struct pipe_buf_operations *ops = buf->ops;
760 
761 		sd->len = buf->len;
762 		if (sd->len > sd->total_len)
763 			sd->len = sd->total_len;
764 
765 		ret = buf->ops->confirm(pipe, buf);
766 		if (unlikely(ret)) {
767 			if (ret == -ENODATA)
768 				ret = 0;
769 			return ret;
770 		}
771 
772 		ret = actor(pipe, buf, sd);
773 		if (ret <= 0)
774 			return ret;
775 
776 		buf->offset += ret;
777 		buf->len -= ret;
778 
779 		sd->num_spliced += ret;
780 		sd->len -= ret;
781 		sd->pos += ret;
782 		sd->total_len -= ret;
783 
784 		if (!buf->len) {
785 			buf->ops = NULL;
786 			ops->release(pipe, buf);
787 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
788 			pipe->nrbufs--;
789 			if (pipe->files)
790 				sd->need_wakeup = true;
791 		}
792 
793 		if (!sd->total_len)
794 			return 0;
795 	}
796 
797 	return 1;
798 }
799 
800 /**
801  * splice_from_pipe_next - wait for some data to splice from
802  * @pipe:	pipe to splice from
803  * @sd:		information about the splice operation
804  *
805  * Description:
806  *    This function will wait for some data and return a positive
807  *    value (one) if pipe buffers are available.  It will return zero
808  *    or -errno if no more data needs to be spliced.
809  */
810 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
811 {
812 	while (!pipe->nrbufs) {
813 		if (!pipe->writers)
814 			return 0;
815 
816 		if (!pipe->waiting_writers && sd->num_spliced)
817 			return 0;
818 
819 		if (sd->flags & SPLICE_F_NONBLOCK)
820 			return -EAGAIN;
821 
822 		if (signal_pending(current))
823 			return -ERESTARTSYS;
824 
825 		if (sd->need_wakeup) {
826 			wakeup_pipe_writers(pipe);
827 			sd->need_wakeup = false;
828 		}
829 
830 		pipe_wait(pipe);
831 	}
832 
833 	return 1;
834 }
835 
836 /**
837  * splice_from_pipe_begin - start splicing from pipe
838  * @sd:		information about the splice operation
839  *
840  * Description:
841  *    This function should be called before a loop containing
842  *    splice_from_pipe_next() and splice_from_pipe_feed() to
843  *    initialize the necessary fields of @sd.
844  */
845 static void splice_from_pipe_begin(struct splice_desc *sd)
846 {
847 	sd->num_spliced = 0;
848 	sd->need_wakeup = false;
849 }
850 
851 /**
852  * splice_from_pipe_end - finish splicing from pipe
853  * @pipe:	pipe to splice from
854  * @sd:		information about the splice operation
855  *
856  * Description:
857  *    This function will wake up pipe writers if necessary.  It should
858  *    be called after a loop containing splice_from_pipe_next() and
859  *    splice_from_pipe_feed().
860  */
861 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
862 {
863 	if (sd->need_wakeup)
864 		wakeup_pipe_writers(pipe);
865 }
866 
867 /**
868  * __splice_from_pipe - splice data from a pipe to given actor
869  * @pipe:	pipe to splice from
870  * @sd:		information to @actor
871  * @actor:	handler that splices the data
872  *
873  * Description:
874  *    This function does little more than loop over the pipe and call
875  *    @actor to do the actual moving of a single struct pipe_buffer to
876  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
877  *    pipe_to_user.
878  *
879  */
880 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
881 			   splice_actor *actor)
882 {
883 	int ret;
884 
885 	splice_from_pipe_begin(sd);
886 	do {
887 		ret = splice_from_pipe_next(pipe, sd);
888 		if (ret > 0)
889 			ret = splice_from_pipe_feed(pipe, sd, actor);
890 	} while (ret > 0);
891 	splice_from_pipe_end(pipe, sd);
892 
893 	return sd->num_spliced ? sd->num_spliced : ret;
894 }
895 EXPORT_SYMBOL(__splice_from_pipe);
896 
897 /**
898  * splice_from_pipe - splice data from a pipe to a file
899  * @pipe:	pipe to splice from
900  * @out:	file to splice to
901  * @ppos:	position in @out
902  * @len:	how many bytes to splice
903  * @flags:	splice modifier flags
904  * @actor:	handler that splices the data
905  *
906  * Description:
907  *    See __splice_from_pipe. This function locks the pipe inode,
908  *    otherwise it's identical to __splice_from_pipe().
909  *
910  */
911 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
912 			 loff_t *ppos, size_t len, unsigned int flags,
913 			 splice_actor *actor)
914 {
915 	ssize_t ret;
916 	struct splice_desc sd = {
917 		.total_len = len,
918 		.flags = flags,
919 		.pos = *ppos,
920 		.u.file = out,
921 	};
922 
923 	pipe_lock(pipe);
924 	ret = __splice_from_pipe(pipe, &sd, actor);
925 	pipe_unlock(pipe);
926 
927 	return ret;
928 }
929 
930 /**
931  * iter_file_splice_write - splice data from a pipe to a file
932  * @pipe:	pipe info
933  * @out:	file to write to
934  * @ppos:	position in @out
935  * @len:	number of bytes to splice
936  * @flags:	splice modifier flags
937  *
938  * Description:
939  *    Will either move or copy pages (determined by @flags options) from
940  *    the given pipe inode to the given file.
941  *    This one is ->write_iter-based.
942  *
943  */
944 ssize_t
945 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
946 			  loff_t *ppos, size_t len, unsigned int flags)
947 {
948 	struct splice_desc sd = {
949 		.total_len = len,
950 		.flags = flags,
951 		.pos = *ppos,
952 		.u.file = out,
953 	};
954 	int nbufs = pipe->buffers;
955 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
956 					GFP_KERNEL);
957 	ssize_t ret;
958 
959 	if (unlikely(!array))
960 		return -ENOMEM;
961 
962 	pipe_lock(pipe);
963 
964 	splice_from_pipe_begin(&sd);
965 	while (sd.total_len) {
966 		struct iov_iter from;
967 		size_t left;
968 		int n, idx;
969 
970 		ret = splice_from_pipe_next(pipe, &sd);
971 		if (ret <= 0)
972 			break;
973 
974 		if (unlikely(nbufs < pipe->buffers)) {
975 			kfree(array);
976 			nbufs = pipe->buffers;
977 			array = kcalloc(nbufs, sizeof(struct bio_vec),
978 					GFP_KERNEL);
979 			if (!array) {
980 				ret = -ENOMEM;
981 				break;
982 			}
983 		}
984 
985 		/* build the vector */
986 		left = sd.total_len;
987 		for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
988 			struct pipe_buffer *buf = pipe->bufs + idx;
989 			size_t this_len = buf->len;
990 
991 			if (this_len > left)
992 				this_len = left;
993 
994 			if (idx == pipe->buffers - 1)
995 				idx = -1;
996 
997 			ret = buf->ops->confirm(pipe, buf);
998 			if (unlikely(ret)) {
999 				if (ret == -ENODATA)
1000 					ret = 0;
1001 				goto done;
1002 			}
1003 
1004 			array[n].bv_page = buf->page;
1005 			array[n].bv_len = this_len;
1006 			array[n].bv_offset = buf->offset;
1007 			left -= this_len;
1008 		}
1009 
1010 		iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1011 			      sd.total_len - left);
1012 		ret = vfs_iter_write(out, &from, &sd.pos);
1013 		if (ret <= 0)
1014 			break;
1015 
1016 		sd.num_spliced += ret;
1017 		sd.total_len -= ret;
1018 		*ppos = sd.pos;
1019 
1020 		/* dismiss the fully eaten buffers, adjust the partial one */
1021 		while (ret) {
1022 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1023 			if (ret >= buf->len) {
1024 				const struct pipe_buf_operations *ops = buf->ops;
1025 				ret -= buf->len;
1026 				buf->len = 0;
1027 				buf->ops = NULL;
1028 				ops->release(pipe, buf);
1029 				pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1030 				pipe->nrbufs--;
1031 				if (pipe->files)
1032 					sd.need_wakeup = true;
1033 			} else {
1034 				buf->offset += ret;
1035 				buf->len -= ret;
1036 				ret = 0;
1037 			}
1038 		}
1039 	}
1040 done:
1041 	kfree(array);
1042 	splice_from_pipe_end(pipe, &sd);
1043 
1044 	pipe_unlock(pipe);
1045 
1046 	if (sd.num_spliced)
1047 		ret = sd.num_spliced;
1048 
1049 	return ret;
1050 }
1051 
1052 EXPORT_SYMBOL(iter_file_splice_write);
1053 
1054 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1055 			  struct splice_desc *sd)
1056 {
1057 	int ret;
1058 	void *data;
1059 	loff_t tmp = sd->pos;
1060 
1061 	data = kmap(buf->page);
1062 	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1063 	kunmap(buf->page);
1064 
1065 	return ret;
1066 }
1067 
1068 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1069 					 struct file *out, loff_t *ppos,
1070 					 size_t len, unsigned int flags)
1071 {
1072 	ssize_t ret;
1073 
1074 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1075 	if (ret > 0)
1076 		*ppos += ret;
1077 
1078 	return ret;
1079 }
1080 
1081 /**
1082  * generic_splice_sendpage - splice data from a pipe to a socket
1083  * @pipe:	pipe to splice from
1084  * @out:	socket to write to
1085  * @ppos:	position in @out
1086  * @len:	number of bytes to splice
1087  * @flags:	splice modifier flags
1088  *
1089  * Description:
1090  *    Will send @len bytes from the pipe to a network socket. No data copying
1091  *    is involved.
1092  *
1093  */
1094 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1095 				loff_t *ppos, size_t len, unsigned int flags)
1096 {
1097 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1098 }
1099 
1100 EXPORT_SYMBOL(generic_splice_sendpage);
1101 
1102 /*
1103  * Attempt to initiate a splice from pipe to file.
1104  */
1105 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1106 			   loff_t *ppos, size_t len, unsigned int flags)
1107 {
1108 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1109 				loff_t *, size_t, unsigned int);
1110 
1111 	if (out->f_op->splice_write)
1112 		splice_write = out->f_op->splice_write;
1113 	else
1114 		splice_write = default_file_splice_write;
1115 
1116 	return splice_write(pipe, out, ppos, len, flags);
1117 }
1118 
1119 /*
1120  * Attempt to initiate a splice from a file to a pipe.
1121  */
1122 static long do_splice_to(struct file *in, loff_t *ppos,
1123 			 struct pipe_inode_info *pipe, size_t len,
1124 			 unsigned int flags)
1125 {
1126 	ssize_t (*splice_read)(struct file *, loff_t *,
1127 			       struct pipe_inode_info *, size_t, unsigned int);
1128 	int ret;
1129 
1130 	if (unlikely(!(in->f_mode & FMODE_READ)))
1131 		return -EBADF;
1132 
1133 	ret = rw_verify_area(READ, in, ppos, len);
1134 	if (unlikely(ret < 0))
1135 		return ret;
1136 
1137 	if (in->f_op->splice_read)
1138 		splice_read = in->f_op->splice_read;
1139 	else
1140 		splice_read = default_file_splice_read;
1141 
1142 	return splice_read(in, ppos, pipe, len, flags);
1143 }
1144 
1145 /**
1146  * splice_direct_to_actor - splices data directly between two non-pipes
1147  * @in:		file to splice from
1148  * @sd:		actor information on where to splice to
1149  * @actor:	handles the data splicing
1150  *
1151  * Description:
1152  *    This is a special case helper to splice directly between two
1153  *    points, without requiring an explicit pipe. Internally an allocated
1154  *    pipe is cached in the process, and reused during the lifetime of
1155  *    that process.
1156  *
1157  */
1158 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1159 			       splice_direct_actor *actor)
1160 {
1161 	struct pipe_inode_info *pipe;
1162 	long ret, bytes;
1163 	umode_t i_mode;
1164 	size_t len;
1165 	int i, flags, more;
1166 
1167 	/*
1168 	 * We require the input being a regular file, as we don't want to
1169 	 * randomly drop data for eg socket -> socket splicing. Use the
1170 	 * piped splicing for that!
1171 	 */
1172 	i_mode = file_inode(in)->i_mode;
1173 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1174 		return -EINVAL;
1175 
1176 	/*
1177 	 * neither in nor out is a pipe, setup an internal pipe attached to
1178 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1179 	 */
1180 	pipe = current->splice_pipe;
1181 	if (unlikely(!pipe)) {
1182 		pipe = alloc_pipe_info();
1183 		if (!pipe)
1184 			return -ENOMEM;
1185 
1186 		/*
1187 		 * We don't have an immediate reader, but we'll read the stuff
1188 		 * out of the pipe right after the splice_to_pipe(). So set
1189 		 * PIPE_READERS appropriately.
1190 		 */
1191 		pipe->readers = 1;
1192 
1193 		current->splice_pipe = pipe;
1194 	}
1195 
1196 	/*
1197 	 * Do the splice.
1198 	 */
1199 	ret = 0;
1200 	bytes = 0;
1201 	len = sd->total_len;
1202 	flags = sd->flags;
1203 
1204 	/*
1205 	 * Don't block on output, we have to drain the direct pipe.
1206 	 */
1207 	sd->flags &= ~SPLICE_F_NONBLOCK;
1208 	more = sd->flags & SPLICE_F_MORE;
1209 
1210 	while (len) {
1211 		size_t read_len;
1212 		loff_t pos = sd->pos, prev_pos = pos;
1213 
1214 		ret = do_splice_to(in, &pos, pipe, len, flags);
1215 		if (unlikely(ret <= 0))
1216 			goto out_release;
1217 
1218 		read_len = ret;
1219 		sd->total_len = read_len;
1220 
1221 		/*
1222 		 * If more data is pending, set SPLICE_F_MORE
1223 		 * If this is the last data and SPLICE_F_MORE was not set
1224 		 * initially, clears it.
1225 		 */
1226 		if (read_len < len)
1227 			sd->flags |= SPLICE_F_MORE;
1228 		else if (!more)
1229 			sd->flags &= ~SPLICE_F_MORE;
1230 		/*
1231 		 * NOTE: nonblocking mode only applies to the input. We
1232 		 * must not do the output in nonblocking mode as then we
1233 		 * could get stuck data in the internal pipe:
1234 		 */
1235 		ret = actor(pipe, sd);
1236 		if (unlikely(ret <= 0)) {
1237 			sd->pos = prev_pos;
1238 			goto out_release;
1239 		}
1240 
1241 		bytes += ret;
1242 		len -= ret;
1243 		sd->pos = pos;
1244 
1245 		if (ret < read_len) {
1246 			sd->pos = prev_pos + ret;
1247 			goto out_release;
1248 		}
1249 	}
1250 
1251 done:
1252 	pipe->nrbufs = pipe->curbuf = 0;
1253 	file_accessed(in);
1254 	return bytes;
1255 
1256 out_release:
1257 	/*
1258 	 * If we did an incomplete transfer we must release
1259 	 * the pipe buffers in question:
1260 	 */
1261 	for (i = 0; i < pipe->buffers; i++) {
1262 		struct pipe_buffer *buf = pipe->bufs + i;
1263 
1264 		if (buf->ops) {
1265 			buf->ops->release(pipe, buf);
1266 			buf->ops = NULL;
1267 		}
1268 	}
1269 
1270 	if (!bytes)
1271 		bytes = ret;
1272 
1273 	goto done;
1274 }
1275 EXPORT_SYMBOL(splice_direct_to_actor);
1276 
1277 static int direct_splice_actor(struct pipe_inode_info *pipe,
1278 			       struct splice_desc *sd)
1279 {
1280 	struct file *file = sd->u.file;
1281 
1282 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1283 			      sd->flags);
1284 }
1285 
1286 /**
1287  * do_splice_direct - splices data directly between two files
1288  * @in:		file to splice from
1289  * @ppos:	input file offset
1290  * @out:	file to splice to
1291  * @opos:	output file offset
1292  * @len:	number of bytes to splice
1293  * @flags:	splice modifier flags
1294  *
1295  * Description:
1296  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1297  *    doing it in the application would incur an extra system call
1298  *    (splice in + splice out, as compared to just sendfile()). So this helper
1299  *    can splice directly through a process-private pipe.
1300  *
1301  */
1302 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1303 		      loff_t *opos, size_t len, unsigned int flags)
1304 {
1305 	struct splice_desc sd = {
1306 		.len		= len,
1307 		.total_len	= len,
1308 		.flags		= flags,
1309 		.pos		= *ppos,
1310 		.u.file		= out,
1311 		.opos		= opos,
1312 	};
1313 	long ret;
1314 
1315 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1316 		return -EBADF;
1317 
1318 	if (unlikely(out->f_flags & O_APPEND))
1319 		return -EINVAL;
1320 
1321 	ret = rw_verify_area(WRITE, out, opos, len);
1322 	if (unlikely(ret < 0))
1323 		return ret;
1324 
1325 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1326 	if (ret > 0)
1327 		*ppos = sd.pos;
1328 
1329 	return ret;
1330 }
1331 EXPORT_SYMBOL(do_splice_direct);
1332 
1333 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1334 			       struct pipe_inode_info *opipe,
1335 			       size_t len, unsigned int flags);
1336 
1337 /*
1338  * Determine where to splice to/from.
1339  */
1340 static long do_splice(struct file *in, loff_t __user *off_in,
1341 		      struct file *out, loff_t __user *off_out,
1342 		      size_t len, unsigned int flags)
1343 {
1344 	struct pipe_inode_info *ipipe;
1345 	struct pipe_inode_info *opipe;
1346 	loff_t offset;
1347 	long ret;
1348 
1349 	ipipe = get_pipe_info(in);
1350 	opipe = get_pipe_info(out);
1351 
1352 	if (ipipe && opipe) {
1353 		if (off_in || off_out)
1354 			return -ESPIPE;
1355 
1356 		if (!(in->f_mode & FMODE_READ))
1357 			return -EBADF;
1358 
1359 		if (!(out->f_mode & FMODE_WRITE))
1360 			return -EBADF;
1361 
1362 		/* Splicing to self would be fun, but... */
1363 		if (ipipe == opipe)
1364 			return -EINVAL;
1365 
1366 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1367 	}
1368 
1369 	if (ipipe) {
1370 		if (off_in)
1371 			return -ESPIPE;
1372 		if (off_out) {
1373 			if (!(out->f_mode & FMODE_PWRITE))
1374 				return -EINVAL;
1375 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1376 				return -EFAULT;
1377 		} else {
1378 			offset = out->f_pos;
1379 		}
1380 
1381 		if (unlikely(!(out->f_mode & FMODE_WRITE)))
1382 			return -EBADF;
1383 
1384 		if (unlikely(out->f_flags & O_APPEND))
1385 			return -EINVAL;
1386 
1387 		ret = rw_verify_area(WRITE, out, &offset, len);
1388 		if (unlikely(ret < 0))
1389 			return ret;
1390 
1391 		file_start_write(out);
1392 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1393 		file_end_write(out);
1394 
1395 		if (!off_out)
1396 			out->f_pos = offset;
1397 		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1398 			ret = -EFAULT;
1399 
1400 		return ret;
1401 	}
1402 
1403 	if (opipe) {
1404 		if (off_out)
1405 			return -ESPIPE;
1406 		if (off_in) {
1407 			if (!(in->f_mode & FMODE_PREAD))
1408 				return -EINVAL;
1409 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1410 				return -EFAULT;
1411 		} else {
1412 			offset = in->f_pos;
1413 		}
1414 
1415 		ret = do_splice_to(in, &offset, opipe, len, flags);
1416 
1417 		if (!off_in)
1418 			in->f_pos = offset;
1419 		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1420 			ret = -EFAULT;
1421 
1422 		return ret;
1423 	}
1424 
1425 	return -EINVAL;
1426 }
1427 
1428 /*
1429  * Map an iov into an array of pages and offset/length tupples. With the
1430  * partial_page structure, we can map several non-contiguous ranges into
1431  * our ones pages[] map instead of splitting that operation into pieces.
1432  * Could easily be exported as a generic helper for other users, in which
1433  * case one would probably want to add a 'max_nr_pages' parameter as well.
1434  */
1435 static int get_iovec_page_array(const struct iovec __user *iov,
1436 				unsigned int nr_vecs, struct page **pages,
1437 				struct partial_page *partial, bool aligned,
1438 				unsigned int pipe_buffers)
1439 {
1440 	int buffers = 0, error = 0;
1441 
1442 	while (nr_vecs) {
1443 		unsigned long off, npages;
1444 		struct iovec entry;
1445 		void __user *base;
1446 		size_t len;
1447 		int i;
1448 
1449 		error = -EFAULT;
1450 		if (copy_from_user(&entry, iov, sizeof(entry)))
1451 			break;
1452 
1453 		base = entry.iov_base;
1454 		len = entry.iov_len;
1455 
1456 		/*
1457 		 * Sanity check this iovec. 0 read succeeds.
1458 		 */
1459 		error = 0;
1460 		if (unlikely(!len))
1461 			break;
1462 		error = -EFAULT;
1463 		if (!access_ok(VERIFY_READ, base, len))
1464 			break;
1465 
1466 		/*
1467 		 * Get this base offset and number of pages, then map
1468 		 * in the user pages.
1469 		 */
1470 		off = (unsigned long) base & ~PAGE_MASK;
1471 
1472 		/*
1473 		 * If asked for alignment, the offset must be zero and the
1474 		 * length a multiple of the PAGE_SIZE.
1475 		 */
1476 		error = -EINVAL;
1477 		if (aligned && (off || len & ~PAGE_MASK))
1478 			break;
1479 
1480 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1481 		if (npages > pipe_buffers - buffers)
1482 			npages = pipe_buffers - buffers;
1483 
1484 		error = get_user_pages_fast((unsigned long)base, npages,
1485 					0, &pages[buffers]);
1486 
1487 		if (unlikely(error <= 0))
1488 			break;
1489 
1490 		/*
1491 		 * Fill this contiguous range into the partial page map.
1492 		 */
1493 		for (i = 0; i < error; i++) {
1494 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1495 
1496 			partial[buffers].offset = off;
1497 			partial[buffers].len = plen;
1498 
1499 			off = 0;
1500 			len -= plen;
1501 			buffers++;
1502 		}
1503 
1504 		/*
1505 		 * We didn't complete this iov, stop here since it probably
1506 		 * means we have to move some of this into a pipe to
1507 		 * be able to continue.
1508 		 */
1509 		if (len)
1510 			break;
1511 
1512 		/*
1513 		 * Don't continue if we mapped fewer pages than we asked for,
1514 		 * or if we mapped the max number of pages that we have
1515 		 * room for.
1516 		 */
1517 		if (error < npages || buffers == pipe_buffers)
1518 			break;
1519 
1520 		nr_vecs--;
1521 		iov++;
1522 	}
1523 
1524 	if (buffers)
1525 		return buffers;
1526 
1527 	return error;
1528 }
1529 
1530 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1531 			struct splice_desc *sd)
1532 {
1533 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1534 	return n == sd->len ? n : -EFAULT;
1535 }
1536 
1537 /*
1538  * For lack of a better implementation, implement vmsplice() to userspace
1539  * as a simple copy of the pipes pages to the user iov.
1540  */
1541 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1542 			     unsigned long nr_segs, unsigned int flags)
1543 {
1544 	struct pipe_inode_info *pipe;
1545 	struct splice_desc sd;
1546 	long ret;
1547 	struct iovec iovstack[UIO_FASTIOV];
1548 	struct iovec *iov = iovstack;
1549 	struct iov_iter iter;
1550 
1551 	pipe = get_pipe_info(file);
1552 	if (!pipe)
1553 		return -EBADF;
1554 
1555 	ret = import_iovec(READ, uiov, nr_segs,
1556 			   ARRAY_SIZE(iovstack), &iov, &iter);
1557 	if (ret < 0)
1558 		return ret;
1559 
1560 	sd.total_len = iov_iter_count(&iter);
1561 	sd.len = 0;
1562 	sd.flags = flags;
1563 	sd.u.data = &iter;
1564 	sd.pos = 0;
1565 
1566 	if (sd.total_len) {
1567 		pipe_lock(pipe);
1568 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1569 		pipe_unlock(pipe);
1570 	}
1571 
1572 	kfree(iov);
1573 	return ret;
1574 }
1575 
1576 /*
1577  * vmsplice splices a user address range into a pipe. It can be thought of
1578  * as splice-from-memory, where the regular splice is splice-from-file (or
1579  * to file). In both cases the output is a pipe, naturally.
1580  */
1581 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1582 			     unsigned long nr_segs, unsigned int flags)
1583 {
1584 	struct pipe_inode_info *pipe;
1585 	struct page *pages[PIPE_DEF_BUFFERS];
1586 	struct partial_page partial[PIPE_DEF_BUFFERS];
1587 	struct splice_pipe_desc spd = {
1588 		.pages = pages,
1589 		.partial = partial,
1590 		.nr_pages_max = PIPE_DEF_BUFFERS,
1591 		.flags = flags,
1592 		.ops = &user_page_pipe_buf_ops,
1593 		.spd_release = spd_release_page,
1594 	};
1595 	long ret;
1596 
1597 	pipe = get_pipe_info(file);
1598 	if (!pipe)
1599 		return -EBADF;
1600 
1601 	if (splice_grow_spd(pipe, &spd))
1602 		return -ENOMEM;
1603 
1604 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1605 					    spd.partial, false,
1606 					    spd.nr_pages_max);
1607 	if (spd.nr_pages <= 0)
1608 		ret = spd.nr_pages;
1609 	else
1610 		ret = splice_to_pipe(pipe, &spd);
1611 
1612 	splice_shrink_spd(&spd);
1613 	return ret;
1614 }
1615 
1616 /*
1617  * Note that vmsplice only really supports true splicing _from_ user memory
1618  * to a pipe, not the other way around. Splicing from user memory is a simple
1619  * operation that can be supported without any funky alignment restrictions
1620  * or nasty vm tricks. We simply map in the user memory and fill them into
1621  * a pipe. The reverse isn't quite as easy, though. There are two possible
1622  * solutions for that:
1623  *
1624  *	- memcpy() the data internally, at which point we might as well just
1625  *	  do a regular read() on the buffer anyway.
1626  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1627  *	  has restriction limitations on both ends of the pipe).
1628  *
1629  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1630  *
1631  */
1632 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1633 		unsigned long, nr_segs, unsigned int, flags)
1634 {
1635 	struct fd f;
1636 	long error;
1637 
1638 	if (unlikely(nr_segs > UIO_MAXIOV))
1639 		return -EINVAL;
1640 	else if (unlikely(!nr_segs))
1641 		return 0;
1642 
1643 	error = -EBADF;
1644 	f = fdget(fd);
1645 	if (f.file) {
1646 		if (f.file->f_mode & FMODE_WRITE)
1647 			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1648 		else if (f.file->f_mode & FMODE_READ)
1649 			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1650 
1651 		fdput(f);
1652 	}
1653 
1654 	return error;
1655 }
1656 
1657 #ifdef CONFIG_COMPAT
1658 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1659 		    unsigned int, nr_segs, unsigned int, flags)
1660 {
1661 	unsigned i;
1662 	struct iovec __user *iov;
1663 	if (nr_segs > UIO_MAXIOV)
1664 		return -EINVAL;
1665 	iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1666 	for (i = 0; i < nr_segs; i++) {
1667 		struct compat_iovec v;
1668 		if (get_user(v.iov_base, &iov32[i].iov_base) ||
1669 		    get_user(v.iov_len, &iov32[i].iov_len) ||
1670 		    put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1671 		    put_user(v.iov_len, &iov[i].iov_len))
1672 			return -EFAULT;
1673 	}
1674 	return sys_vmsplice(fd, iov, nr_segs, flags);
1675 }
1676 #endif
1677 
1678 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1679 		int, fd_out, loff_t __user *, off_out,
1680 		size_t, len, unsigned int, flags)
1681 {
1682 	struct fd in, out;
1683 	long error;
1684 
1685 	if (unlikely(!len))
1686 		return 0;
1687 
1688 	error = -EBADF;
1689 	in = fdget(fd_in);
1690 	if (in.file) {
1691 		if (in.file->f_mode & FMODE_READ) {
1692 			out = fdget(fd_out);
1693 			if (out.file) {
1694 				if (out.file->f_mode & FMODE_WRITE)
1695 					error = do_splice(in.file, off_in,
1696 							  out.file, off_out,
1697 							  len, flags);
1698 				fdput(out);
1699 			}
1700 		}
1701 		fdput(in);
1702 	}
1703 	return error;
1704 }
1705 
1706 /*
1707  * Make sure there's data to read. Wait for input if we can, otherwise
1708  * return an appropriate error.
1709  */
1710 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1711 {
1712 	int ret;
1713 
1714 	/*
1715 	 * Check ->nrbufs without the inode lock first. This function
1716 	 * is speculative anyways, so missing one is ok.
1717 	 */
1718 	if (pipe->nrbufs)
1719 		return 0;
1720 
1721 	ret = 0;
1722 	pipe_lock(pipe);
1723 
1724 	while (!pipe->nrbufs) {
1725 		if (signal_pending(current)) {
1726 			ret = -ERESTARTSYS;
1727 			break;
1728 		}
1729 		if (!pipe->writers)
1730 			break;
1731 		if (!pipe->waiting_writers) {
1732 			if (flags & SPLICE_F_NONBLOCK) {
1733 				ret = -EAGAIN;
1734 				break;
1735 			}
1736 		}
1737 		pipe_wait(pipe);
1738 	}
1739 
1740 	pipe_unlock(pipe);
1741 	return ret;
1742 }
1743 
1744 /*
1745  * Make sure there's writeable room. Wait for room if we can, otherwise
1746  * return an appropriate error.
1747  */
1748 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1749 {
1750 	int ret;
1751 
1752 	/*
1753 	 * Check ->nrbufs without the inode lock first. This function
1754 	 * is speculative anyways, so missing one is ok.
1755 	 */
1756 	if (pipe->nrbufs < pipe->buffers)
1757 		return 0;
1758 
1759 	ret = 0;
1760 	pipe_lock(pipe);
1761 
1762 	while (pipe->nrbufs >= pipe->buffers) {
1763 		if (!pipe->readers) {
1764 			send_sig(SIGPIPE, current, 0);
1765 			ret = -EPIPE;
1766 			break;
1767 		}
1768 		if (flags & SPLICE_F_NONBLOCK) {
1769 			ret = -EAGAIN;
1770 			break;
1771 		}
1772 		if (signal_pending(current)) {
1773 			ret = -ERESTARTSYS;
1774 			break;
1775 		}
1776 		pipe->waiting_writers++;
1777 		pipe_wait(pipe);
1778 		pipe->waiting_writers--;
1779 	}
1780 
1781 	pipe_unlock(pipe);
1782 	return ret;
1783 }
1784 
1785 /*
1786  * Splice contents of ipipe to opipe.
1787  */
1788 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1789 			       struct pipe_inode_info *opipe,
1790 			       size_t len, unsigned int flags)
1791 {
1792 	struct pipe_buffer *ibuf, *obuf;
1793 	int ret = 0, nbuf;
1794 	bool input_wakeup = false;
1795 
1796 
1797 retry:
1798 	ret = ipipe_prep(ipipe, flags);
1799 	if (ret)
1800 		return ret;
1801 
1802 	ret = opipe_prep(opipe, flags);
1803 	if (ret)
1804 		return ret;
1805 
1806 	/*
1807 	 * Potential ABBA deadlock, work around it by ordering lock
1808 	 * grabbing by pipe info address. Otherwise two different processes
1809 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1810 	 */
1811 	pipe_double_lock(ipipe, opipe);
1812 
1813 	do {
1814 		if (!opipe->readers) {
1815 			send_sig(SIGPIPE, current, 0);
1816 			if (!ret)
1817 				ret = -EPIPE;
1818 			break;
1819 		}
1820 
1821 		if (!ipipe->nrbufs && !ipipe->writers)
1822 			break;
1823 
1824 		/*
1825 		 * Cannot make any progress, because either the input
1826 		 * pipe is empty or the output pipe is full.
1827 		 */
1828 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1829 			/* Already processed some buffers, break */
1830 			if (ret)
1831 				break;
1832 
1833 			if (flags & SPLICE_F_NONBLOCK) {
1834 				ret = -EAGAIN;
1835 				break;
1836 			}
1837 
1838 			/*
1839 			 * We raced with another reader/writer and haven't
1840 			 * managed to process any buffers.  A zero return
1841 			 * value means EOF, so retry instead.
1842 			 */
1843 			pipe_unlock(ipipe);
1844 			pipe_unlock(opipe);
1845 			goto retry;
1846 		}
1847 
1848 		ibuf = ipipe->bufs + ipipe->curbuf;
1849 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1850 		obuf = opipe->bufs + nbuf;
1851 
1852 		if (len >= ibuf->len) {
1853 			/*
1854 			 * Simply move the whole buffer from ipipe to opipe
1855 			 */
1856 			*obuf = *ibuf;
1857 			ibuf->ops = NULL;
1858 			opipe->nrbufs++;
1859 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1860 			ipipe->nrbufs--;
1861 			input_wakeup = true;
1862 		} else {
1863 			/*
1864 			 * Get a reference to this pipe buffer,
1865 			 * so we can copy the contents over.
1866 			 */
1867 			ibuf->ops->get(ipipe, ibuf);
1868 			*obuf = *ibuf;
1869 
1870 			/*
1871 			 * Don't inherit the gift flag, we need to
1872 			 * prevent multiple steals of this page.
1873 			 */
1874 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1875 
1876 			obuf->len = len;
1877 			opipe->nrbufs++;
1878 			ibuf->offset += obuf->len;
1879 			ibuf->len -= obuf->len;
1880 		}
1881 		ret += obuf->len;
1882 		len -= obuf->len;
1883 	} while (len);
1884 
1885 	pipe_unlock(ipipe);
1886 	pipe_unlock(opipe);
1887 
1888 	/*
1889 	 * If we put data in the output pipe, wakeup any potential readers.
1890 	 */
1891 	if (ret > 0)
1892 		wakeup_pipe_readers(opipe);
1893 
1894 	if (input_wakeup)
1895 		wakeup_pipe_writers(ipipe);
1896 
1897 	return ret;
1898 }
1899 
1900 /*
1901  * Link contents of ipipe to opipe.
1902  */
1903 static int link_pipe(struct pipe_inode_info *ipipe,
1904 		     struct pipe_inode_info *opipe,
1905 		     size_t len, unsigned int flags)
1906 {
1907 	struct pipe_buffer *ibuf, *obuf;
1908 	int ret = 0, i = 0, nbuf;
1909 
1910 	/*
1911 	 * Potential ABBA deadlock, work around it by ordering lock
1912 	 * grabbing by pipe info address. Otherwise two different processes
1913 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1914 	 */
1915 	pipe_double_lock(ipipe, opipe);
1916 
1917 	do {
1918 		if (!opipe->readers) {
1919 			send_sig(SIGPIPE, current, 0);
1920 			if (!ret)
1921 				ret = -EPIPE;
1922 			break;
1923 		}
1924 
1925 		/*
1926 		 * If we have iterated all input buffers or ran out of
1927 		 * output room, break.
1928 		 */
1929 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1930 			break;
1931 
1932 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1933 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1934 
1935 		/*
1936 		 * Get a reference to this pipe buffer,
1937 		 * so we can copy the contents over.
1938 		 */
1939 		ibuf->ops->get(ipipe, ibuf);
1940 
1941 		obuf = opipe->bufs + nbuf;
1942 		*obuf = *ibuf;
1943 
1944 		/*
1945 		 * Don't inherit the gift flag, we need to
1946 		 * prevent multiple steals of this page.
1947 		 */
1948 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1949 
1950 		if (obuf->len > len)
1951 			obuf->len = len;
1952 
1953 		opipe->nrbufs++;
1954 		ret += obuf->len;
1955 		len -= obuf->len;
1956 		i++;
1957 	} while (len);
1958 
1959 	/*
1960 	 * return EAGAIN if we have the potential of some data in the
1961 	 * future, otherwise just return 0
1962 	 */
1963 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1964 		ret = -EAGAIN;
1965 
1966 	pipe_unlock(ipipe);
1967 	pipe_unlock(opipe);
1968 
1969 	/*
1970 	 * If we put data in the output pipe, wakeup any potential readers.
1971 	 */
1972 	if (ret > 0)
1973 		wakeup_pipe_readers(opipe);
1974 
1975 	return ret;
1976 }
1977 
1978 /*
1979  * This is a tee(1) implementation that works on pipes. It doesn't copy
1980  * any data, it simply references the 'in' pages on the 'out' pipe.
1981  * The 'flags' used are the SPLICE_F_* variants, currently the only
1982  * applicable one is SPLICE_F_NONBLOCK.
1983  */
1984 static long do_tee(struct file *in, struct file *out, size_t len,
1985 		   unsigned int flags)
1986 {
1987 	struct pipe_inode_info *ipipe = get_pipe_info(in);
1988 	struct pipe_inode_info *opipe = get_pipe_info(out);
1989 	int ret = -EINVAL;
1990 
1991 	/*
1992 	 * Duplicate the contents of ipipe to opipe without actually
1993 	 * copying the data.
1994 	 */
1995 	if (ipipe && opipe && ipipe != opipe) {
1996 		/*
1997 		 * Keep going, unless we encounter an error. The ipipe/opipe
1998 		 * ordering doesn't really matter.
1999 		 */
2000 		ret = ipipe_prep(ipipe, flags);
2001 		if (!ret) {
2002 			ret = opipe_prep(opipe, flags);
2003 			if (!ret)
2004 				ret = link_pipe(ipipe, opipe, len, flags);
2005 		}
2006 	}
2007 
2008 	return ret;
2009 }
2010 
2011 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2012 {
2013 	struct fd in;
2014 	int error;
2015 
2016 	if (unlikely(!len))
2017 		return 0;
2018 
2019 	error = -EBADF;
2020 	in = fdget(fdin);
2021 	if (in.file) {
2022 		if (in.file->f_mode & FMODE_READ) {
2023 			struct fd out = fdget(fdout);
2024 			if (out.file) {
2025 				if (out.file->f_mode & FMODE_WRITE)
2026 					error = do_tee(in.file, out.file,
2027 							len, flags);
2028 				fdput(out);
2029 			}
2030 		}
2031  		fdput(in);
2032  	}
2033 
2034 	return error;
2035 }
2036