1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/export.h> 29 #include <linux/syscalls.h> 30 #include <linux/uio.h> 31 #include <linux/security.h> 32 #include <linux/gfp.h> 33 #include <linux/socket.h> 34 35 /* 36 * Attempt to steal a page from a pipe buffer. This should perhaps go into 37 * a vm helper function, it's already simplified quite a bit by the 38 * addition of remove_mapping(). If success is returned, the caller may 39 * attempt to reuse this page for another destination. 40 */ 41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 42 struct pipe_buffer *buf) 43 { 44 struct page *page = buf->page; 45 struct address_space *mapping; 46 47 lock_page(page); 48 49 mapping = page_mapping(page); 50 if (mapping) { 51 WARN_ON(!PageUptodate(page)); 52 53 /* 54 * At least for ext2 with nobh option, we need to wait on 55 * writeback completing on this page, since we'll remove it 56 * from the pagecache. Otherwise truncate wont wait on the 57 * page, allowing the disk blocks to be reused by someone else 58 * before we actually wrote our data to them. fs corruption 59 * ensues. 60 */ 61 wait_on_page_writeback(page); 62 63 if (page_has_private(page) && 64 !try_to_release_page(page, GFP_KERNEL)) 65 goto out_unlock; 66 67 /* 68 * If we succeeded in removing the mapping, set LRU flag 69 * and return good. 70 */ 71 if (remove_mapping(mapping, page)) { 72 buf->flags |= PIPE_BUF_FLAG_LRU; 73 return 0; 74 } 75 } 76 77 /* 78 * Raced with truncate or failed to remove page from current 79 * address space, unlock and return failure. 80 */ 81 out_unlock: 82 unlock_page(page); 83 return 1; 84 } 85 86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 87 struct pipe_buffer *buf) 88 { 89 page_cache_release(buf->page); 90 buf->flags &= ~PIPE_BUF_FLAG_LRU; 91 } 92 93 /* 94 * Check whether the contents of buf is OK to access. Since the content 95 * is a page cache page, IO may be in flight. 96 */ 97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 98 struct pipe_buffer *buf) 99 { 100 struct page *page = buf->page; 101 int err; 102 103 if (!PageUptodate(page)) { 104 lock_page(page); 105 106 /* 107 * Page got truncated/unhashed. This will cause a 0-byte 108 * splice, if this is the first page. 109 */ 110 if (!page->mapping) { 111 err = -ENODATA; 112 goto error; 113 } 114 115 /* 116 * Uh oh, read-error from disk. 117 */ 118 if (!PageUptodate(page)) { 119 err = -EIO; 120 goto error; 121 } 122 123 /* 124 * Page is ok afterall, we are done. 125 */ 126 unlock_page(page); 127 } 128 129 return 0; 130 error: 131 unlock_page(page); 132 return err; 133 } 134 135 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 136 .can_merge = 0, 137 .map = generic_pipe_buf_map, 138 .unmap = generic_pipe_buf_unmap, 139 .confirm = page_cache_pipe_buf_confirm, 140 .release = page_cache_pipe_buf_release, 141 .steal = page_cache_pipe_buf_steal, 142 .get = generic_pipe_buf_get, 143 }; 144 145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 146 struct pipe_buffer *buf) 147 { 148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 149 return 1; 150 151 buf->flags |= PIPE_BUF_FLAG_LRU; 152 return generic_pipe_buf_steal(pipe, buf); 153 } 154 155 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 156 .can_merge = 0, 157 .map = generic_pipe_buf_map, 158 .unmap = generic_pipe_buf_unmap, 159 .confirm = generic_pipe_buf_confirm, 160 .release = page_cache_pipe_buf_release, 161 .steal = user_page_pipe_buf_steal, 162 .get = generic_pipe_buf_get, 163 }; 164 165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 166 { 167 smp_mb(); 168 if (waitqueue_active(&pipe->wait)) 169 wake_up_interruptible(&pipe->wait); 170 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 171 } 172 173 /** 174 * splice_to_pipe - fill passed data into a pipe 175 * @pipe: pipe to fill 176 * @spd: data to fill 177 * 178 * Description: 179 * @spd contains a map of pages and len/offset tuples, along with 180 * the struct pipe_buf_operations associated with these pages. This 181 * function will link that data to the pipe. 182 * 183 */ 184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 185 struct splice_pipe_desc *spd) 186 { 187 unsigned int spd_pages = spd->nr_pages; 188 int ret, do_wakeup, page_nr; 189 190 ret = 0; 191 do_wakeup = 0; 192 page_nr = 0; 193 194 pipe_lock(pipe); 195 196 for (;;) { 197 if (!pipe->readers) { 198 send_sig(SIGPIPE, current, 0); 199 if (!ret) 200 ret = -EPIPE; 201 break; 202 } 203 204 if (pipe->nrbufs < pipe->buffers) { 205 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 206 struct pipe_buffer *buf = pipe->bufs + newbuf; 207 208 buf->page = spd->pages[page_nr]; 209 buf->offset = spd->partial[page_nr].offset; 210 buf->len = spd->partial[page_nr].len; 211 buf->private = spd->partial[page_nr].private; 212 buf->ops = spd->ops; 213 if (spd->flags & SPLICE_F_GIFT) 214 buf->flags |= PIPE_BUF_FLAG_GIFT; 215 216 pipe->nrbufs++; 217 page_nr++; 218 ret += buf->len; 219 220 if (pipe->inode) 221 do_wakeup = 1; 222 223 if (!--spd->nr_pages) 224 break; 225 if (pipe->nrbufs < pipe->buffers) 226 continue; 227 228 break; 229 } 230 231 if (spd->flags & SPLICE_F_NONBLOCK) { 232 if (!ret) 233 ret = -EAGAIN; 234 break; 235 } 236 237 if (signal_pending(current)) { 238 if (!ret) 239 ret = -ERESTARTSYS; 240 break; 241 } 242 243 if (do_wakeup) { 244 smp_mb(); 245 if (waitqueue_active(&pipe->wait)) 246 wake_up_interruptible_sync(&pipe->wait); 247 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 248 do_wakeup = 0; 249 } 250 251 pipe->waiting_writers++; 252 pipe_wait(pipe); 253 pipe->waiting_writers--; 254 } 255 256 pipe_unlock(pipe); 257 258 if (do_wakeup) 259 wakeup_pipe_readers(pipe); 260 261 while (page_nr < spd_pages) 262 spd->spd_release(spd, page_nr++); 263 264 return ret; 265 } 266 267 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 268 { 269 page_cache_release(spd->pages[i]); 270 } 271 272 /* 273 * Check if we need to grow the arrays holding pages and partial page 274 * descriptions. 275 */ 276 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 277 { 278 unsigned int buffers = ACCESS_ONCE(pipe->buffers); 279 280 spd->nr_pages_max = buffers; 281 if (buffers <= PIPE_DEF_BUFFERS) 282 return 0; 283 284 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL); 285 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL); 286 287 if (spd->pages && spd->partial) 288 return 0; 289 290 kfree(spd->pages); 291 kfree(spd->partial); 292 return -ENOMEM; 293 } 294 295 void splice_shrink_spd(struct splice_pipe_desc *spd) 296 { 297 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 298 return; 299 300 kfree(spd->pages); 301 kfree(spd->partial); 302 } 303 304 static int 305 __generic_file_splice_read(struct file *in, loff_t *ppos, 306 struct pipe_inode_info *pipe, size_t len, 307 unsigned int flags) 308 { 309 struct address_space *mapping = in->f_mapping; 310 unsigned int loff, nr_pages, req_pages; 311 struct page *pages[PIPE_DEF_BUFFERS]; 312 struct partial_page partial[PIPE_DEF_BUFFERS]; 313 struct page *page; 314 pgoff_t index, end_index; 315 loff_t isize; 316 int error, page_nr; 317 struct splice_pipe_desc spd = { 318 .pages = pages, 319 .partial = partial, 320 .nr_pages_max = PIPE_DEF_BUFFERS, 321 .flags = flags, 322 .ops = &page_cache_pipe_buf_ops, 323 .spd_release = spd_release_page, 324 }; 325 326 if (splice_grow_spd(pipe, &spd)) 327 return -ENOMEM; 328 329 index = *ppos >> PAGE_CACHE_SHIFT; 330 loff = *ppos & ~PAGE_CACHE_MASK; 331 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 332 nr_pages = min(req_pages, spd.nr_pages_max); 333 334 /* 335 * Lookup the (hopefully) full range of pages we need. 336 */ 337 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages); 338 index += spd.nr_pages; 339 340 /* 341 * If find_get_pages_contig() returned fewer pages than we needed, 342 * readahead/allocate the rest and fill in the holes. 343 */ 344 if (spd.nr_pages < nr_pages) 345 page_cache_sync_readahead(mapping, &in->f_ra, in, 346 index, req_pages - spd.nr_pages); 347 348 error = 0; 349 while (spd.nr_pages < nr_pages) { 350 /* 351 * Page could be there, find_get_pages_contig() breaks on 352 * the first hole. 353 */ 354 page = find_get_page(mapping, index); 355 if (!page) { 356 /* 357 * page didn't exist, allocate one. 358 */ 359 page = page_cache_alloc_cold(mapping); 360 if (!page) 361 break; 362 363 error = add_to_page_cache_lru(page, mapping, index, 364 GFP_KERNEL); 365 if (unlikely(error)) { 366 page_cache_release(page); 367 if (error == -EEXIST) 368 continue; 369 break; 370 } 371 /* 372 * add_to_page_cache() locks the page, unlock it 373 * to avoid convoluting the logic below even more. 374 */ 375 unlock_page(page); 376 } 377 378 spd.pages[spd.nr_pages++] = page; 379 index++; 380 } 381 382 /* 383 * Now loop over the map and see if we need to start IO on any 384 * pages, fill in the partial map, etc. 385 */ 386 index = *ppos >> PAGE_CACHE_SHIFT; 387 nr_pages = spd.nr_pages; 388 spd.nr_pages = 0; 389 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 390 unsigned int this_len; 391 392 if (!len) 393 break; 394 395 /* 396 * this_len is the max we'll use from this page 397 */ 398 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 399 page = spd.pages[page_nr]; 400 401 if (PageReadahead(page)) 402 page_cache_async_readahead(mapping, &in->f_ra, in, 403 page, index, req_pages - page_nr); 404 405 /* 406 * If the page isn't uptodate, we may need to start io on it 407 */ 408 if (!PageUptodate(page)) { 409 lock_page(page); 410 411 /* 412 * Page was truncated, or invalidated by the 413 * filesystem. Redo the find/create, but this time the 414 * page is kept locked, so there's no chance of another 415 * race with truncate/invalidate. 416 */ 417 if (!page->mapping) { 418 unlock_page(page); 419 page = find_or_create_page(mapping, index, 420 mapping_gfp_mask(mapping)); 421 422 if (!page) { 423 error = -ENOMEM; 424 break; 425 } 426 page_cache_release(spd.pages[page_nr]); 427 spd.pages[page_nr] = page; 428 } 429 /* 430 * page was already under io and is now done, great 431 */ 432 if (PageUptodate(page)) { 433 unlock_page(page); 434 goto fill_it; 435 } 436 437 /* 438 * need to read in the page 439 */ 440 error = mapping->a_ops->readpage(in, page); 441 if (unlikely(error)) { 442 /* 443 * We really should re-lookup the page here, 444 * but it complicates things a lot. Instead 445 * lets just do what we already stored, and 446 * we'll get it the next time we are called. 447 */ 448 if (error == AOP_TRUNCATED_PAGE) 449 error = 0; 450 451 break; 452 } 453 } 454 fill_it: 455 /* 456 * i_size must be checked after PageUptodate. 457 */ 458 isize = i_size_read(mapping->host); 459 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 460 if (unlikely(!isize || index > end_index)) 461 break; 462 463 /* 464 * if this is the last page, see if we need to shrink 465 * the length and stop 466 */ 467 if (end_index == index) { 468 unsigned int plen; 469 470 /* 471 * max good bytes in this page 472 */ 473 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 474 if (plen <= loff) 475 break; 476 477 /* 478 * force quit after adding this page 479 */ 480 this_len = min(this_len, plen - loff); 481 len = this_len; 482 } 483 484 spd.partial[page_nr].offset = loff; 485 spd.partial[page_nr].len = this_len; 486 len -= this_len; 487 loff = 0; 488 spd.nr_pages++; 489 index++; 490 } 491 492 /* 493 * Release any pages at the end, if we quit early. 'page_nr' is how far 494 * we got, 'nr_pages' is how many pages are in the map. 495 */ 496 while (page_nr < nr_pages) 497 page_cache_release(spd.pages[page_nr++]); 498 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 499 500 if (spd.nr_pages) 501 error = splice_to_pipe(pipe, &spd); 502 503 splice_shrink_spd(&spd); 504 return error; 505 } 506 507 /** 508 * generic_file_splice_read - splice data from file to a pipe 509 * @in: file to splice from 510 * @ppos: position in @in 511 * @pipe: pipe to splice to 512 * @len: number of bytes to splice 513 * @flags: splice modifier flags 514 * 515 * Description: 516 * Will read pages from given file and fill them into a pipe. Can be 517 * used as long as the address_space operations for the source implements 518 * a readpage() hook. 519 * 520 */ 521 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 522 struct pipe_inode_info *pipe, size_t len, 523 unsigned int flags) 524 { 525 loff_t isize, left; 526 int ret; 527 528 isize = i_size_read(in->f_mapping->host); 529 if (unlikely(*ppos >= isize)) 530 return 0; 531 532 left = isize - *ppos; 533 if (unlikely(left < len)) 534 len = left; 535 536 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 537 if (ret > 0) { 538 *ppos += ret; 539 file_accessed(in); 540 } 541 542 return ret; 543 } 544 EXPORT_SYMBOL(generic_file_splice_read); 545 546 static const struct pipe_buf_operations default_pipe_buf_ops = { 547 .can_merge = 0, 548 .map = generic_pipe_buf_map, 549 .unmap = generic_pipe_buf_unmap, 550 .confirm = generic_pipe_buf_confirm, 551 .release = generic_pipe_buf_release, 552 .steal = generic_pipe_buf_steal, 553 .get = generic_pipe_buf_get, 554 }; 555 556 static ssize_t kernel_readv(struct file *file, const struct iovec *vec, 557 unsigned long vlen, loff_t offset) 558 { 559 mm_segment_t old_fs; 560 loff_t pos = offset; 561 ssize_t res; 562 563 old_fs = get_fs(); 564 set_fs(get_ds()); 565 /* The cast to a user pointer is valid due to the set_fs() */ 566 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos); 567 set_fs(old_fs); 568 569 return res; 570 } 571 572 static ssize_t kernel_write(struct file *file, const char *buf, size_t count, 573 loff_t pos) 574 { 575 mm_segment_t old_fs; 576 ssize_t res; 577 578 old_fs = get_fs(); 579 set_fs(get_ds()); 580 /* The cast to a user pointer is valid due to the set_fs() */ 581 res = vfs_write(file, (const char __user *)buf, count, &pos); 582 set_fs(old_fs); 583 584 return res; 585 } 586 587 ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 588 struct pipe_inode_info *pipe, size_t len, 589 unsigned int flags) 590 { 591 unsigned int nr_pages; 592 unsigned int nr_freed; 593 size_t offset; 594 struct page *pages[PIPE_DEF_BUFFERS]; 595 struct partial_page partial[PIPE_DEF_BUFFERS]; 596 struct iovec *vec, __vec[PIPE_DEF_BUFFERS]; 597 ssize_t res; 598 size_t this_len; 599 int error; 600 int i; 601 struct splice_pipe_desc spd = { 602 .pages = pages, 603 .partial = partial, 604 .nr_pages_max = PIPE_DEF_BUFFERS, 605 .flags = flags, 606 .ops = &default_pipe_buf_ops, 607 .spd_release = spd_release_page, 608 }; 609 610 if (splice_grow_spd(pipe, &spd)) 611 return -ENOMEM; 612 613 res = -ENOMEM; 614 vec = __vec; 615 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) { 616 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL); 617 if (!vec) 618 goto shrink_ret; 619 } 620 621 offset = *ppos & ~PAGE_CACHE_MASK; 622 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 623 624 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) { 625 struct page *page; 626 627 page = alloc_page(GFP_USER); 628 error = -ENOMEM; 629 if (!page) 630 goto err; 631 632 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset); 633 vec[i].iov_base = (void __user *) page_address(page); 634 vec[i].iov_len = this_len; 635 spd.pages[i] = page; 636 spd.nr_pages++; 637 len -= this_len; 638 offset = 0; 639 } 640 641 res = kernel_readv(in, vec, spd.nr_pages, *ppos); 642 if (res < 0) { 643 error = res; 644 goto err; 645 } 646 647 error = 0; 648 if (!res) 649 goto err; 650 651 nr_freed = 0; 652 for (i = 0; i < spd.nr_pages; i++) { 653 this_len = min_t(size_t, vec[i].iov_len, res); 654 spd.partial[i].offset = 0; 655 spd.partial[i].len = this_len; 656 if (!this_len) { 657 __free_page(spd.pages[i]); 658 spd.pages[i] = NULL; 659 nr_freed++; 660 } 661 res -= this_len; 662 } 663 spd.nr_pages -= nr_freed; 664 665 res = splice_to_pipe(pipe, &spd); 666 if (res > 0) 667 *ppos += res; 668 669 shrink_ret: 670 if (vec != __vec) 671 kfree(vec); 672 splice_shrink_spd(&spd); 673 return res; 674 675 err: 676 for (i = 0; i < spd.nr_pages; i++) 677 __free_page(spd.pages[i]); 678 679 res = error; 680 goto shrink_ret; 681 } 682 EXPORT_SYMBOL(default_file_splice_read); 683 684 /* 685 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 686 * using sendpage(). Return the number of bytes sent. 687 */ 688 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 689 struct pipe_buffer *buf, struct splice_desc *sd) 690 { 691 struct file *file = sd->u.file; 692 loff_t pos = sd->pos; 693 int more; 694 695 if (!likely(file->f_op && file->f_op->sendpage)) 696 return -EINVAL; 697 698 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0; 699 700 if (sd->len < sd->total_len && pipe->nrbufs > 1) 701 more |= MSG_SENDPAGE_NOTLAST; 702 703 return file->f_op->sendpage(file, buf->page, buf->offset, 704 sd->len, &pos, more); 705 } 706 707 /* 708 * This is a little more tricky than the file -> pipe splicing. There are 709 * basically three cases: 710 * 711 * - Destination page already exists in the address space and there 712 * are users of it. For that case we have no other option that 713 * copying the data. Tough luck. 714 * - Destination page already exists in the address space, but there 715 * are no users of it. Make sure it's uptodate, then drop it. Fall 716 * through to last case. 717 * - Destination page does not exist, we can add the pipe page to 718 * the page cache and avoid the copy. 719 * 720 * If asked to move pages to the output file (SPLICE_F_MOVE is set in 721 * sd->flags), we attempt to migrate pages from the pipe to the output 722 * file address space page cache. This is possible if no one else has 723 * the pipe page referenced outside of the pipe and page cache. If 724 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create 725 * a new page in the output file page cache and fill/dirty that. 726 */ 727 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 728 struct splice_desc *sd) 729 { 730 struct file *file = sd->u.file; 731 struct address_space *mapping = file->f_mapping; 732 unsigned int offset, this_len; 733 struct page *page; 734 void *fsdata; 735 int ret; 736 737 offset = sd->pos & ~PAGE_CACHE_MASK; 738 739 this_len = sd->len; 740 if (this_len + offset > PAGE_CACHE_SIZE) 741 this_len = PAGE_CACHE_SIZE - offset; 742 743 ret = pagecache_write_begin(file, mapping, sd->pos, this_len, 744 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 745 if (unlikely(ret)) 746 goto out; 747 748 if (buf->page != page) { 749 char *src = buf->ops->map(pipe, buf, 1); 750 char *dst = kmap_atomic(page); 751 752 memcpy(dst + offset, src + buf->offset, this_len); 753 flush_dcache_page(page); 754 kunmap_atomic(dst); 755 buf->ops->unmap(pipe, buf, src); 756 } 757 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len, 758 page, fsdata); 759 out: 760 return ret; 761 } 762 EXPORT_SYMBOL(pipe_to_file); 763 764 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 765 { 766 smp_mb(); 767 if (waitqueue_active(&pipe->wait)) 768 wake_up_interruptible(&pipe->wait); 769 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 770 } 771 772 /** 773 * splice_from_pipe_feed - feed available data from a pipe to a file 774 * @pipe: pipe to splice from 775 * @sd: information to @actor 776 * @actor: handler that splices the data 777 * 778 * Description: 779 * This function loops over the pipe and calls @actor to do the 780 * actual moving of a single struct pipe_buffer to the desired 781 * destination. It returns when there's no more buffers left in 782 * the pipe or if the requested number of bytes (@sd->total_len) 783 * have been copied. It returns a positive number (one) if the 784 * pipe needs to be filled with more data, zero if the required 785 * number of bytes have been copied and -errno on error. 786 * 787 * This, together with splice_from_pipe_{begin,end,next}, may be 788 * used to implement the functionality of __splice_from_pipe() when 789 * locking is required around copying the pipe buffers to the 790 * destination. 791 */ 792 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 793 splice_actor *actor) 794 { 795 int ret; 796 797 while (pipe->nrbufs) { 798 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 799 const struct pipe_buf_operations *ops = buf->ops; 800 801 sd->len = buf->len; 802 if (sd->len > sd->total_len) 803 sd->len = sd->total_len; 804 805 ret = buf->ops->confirm(pipe, buf); 806 if (unlikely(ret)) { 807 if (ret == -ENODATA) 808 ret = 0; 809 return ret; 810 } 811 812 ret = actor(pipe, buf, sd); 813 if (ret <= 0) 814 return ret; 815 816 buf->offset += ret; 817 buf->len -= ret; 818 819 sd->num_spliced += ret; 820 sd->len -= ret; 821 sd->pos += ret; 822 sd->total_len -= ret; 823 824 if (!buf->len) { 825 buf->ops = NULL; 826 ops->release(pipe, buf); 827 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 828 pipe->nrbufs--; 829 if (pipe->inode) 830 sd->need_wakeup = true; 831 } 832 833 if (!sd->total_len) 834 return 0; 835 } 836 837 return 1; 838 } 839 EXPORT_SYMBOL(splice_from_pipe_feed); 840 841 /** 842 * splice_from_pipe_next - wait for some data to splice from 843 * @pipe: pipe to splice from 844 * @sd: information about the splice operation 845 * 846 * Description: 847 * This function will wait for some data and return a positive 848 * value (one) if pipe buffers are available. It will return zero 849 * or -errno if no more data needs to be spliced. 850 */ 851 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 852 { 853 while (!pipe->nrbufs) { 854 if (!pipe->writers) 855 return 0; 856 857 if (!pipe->waiting_writers && sd->num_spliced) 858 return 0; 859 860 if (sd->flags & SPLICE_F_NONBLOCK) 861 return -EAGAIN; 862 863 if (signal_pending(current)) 864 return -ERESTARTSYS; 865 866 if (sd->need_wakeup) { 867 wakeup_pipe_writers(pipe); 868 sd->need_wakeup = false; 869 } 870 871 pipe_wait(pipe); 872 } 873 874 return 1; 875 } 876 EXPORT_SYMBOL(splice_from_pipe_next); 877 878 /** 879 * splice_from_pipe_begin - start splicing from pipe 880 * @sd: information about the splice operation 881 * 882 * Description: 883 * This function should be called before a loop containing 884 * splice_from_pipe_next() and splice_from_pipe_feed() to 885 * initialize the necessary fields of @sd. 886 */ 887 void splice_from_pipe_begin(struct splice_desc *sd) 888 { 889 sd->num_spliced = 0; 890 sd->need_wakeup = false; 891 } 892 EXPORT_SYMBOL(splice_from_pipe_begin); 893 894 /** 895 * splice_from_pipe_end - finish splicing from pipe 896 * @pipe: pipe to splice from 897 * @sd: information about the splice operation 898 * 899 * Description: 900 * This function will wake up pipe writers if necessary. It should 901 * be called after a loop containing splice_from_pipe_next() and 902 * splice_from_pipe_feed(). 903 */ 904 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 905 { 906 if (sd->need_wakeup) 907 wakeup_pipe_writers(pipe); 908 } 909 EXPORT_SYMBOL(splice_from_pipe_end); 910 911 /** 912 * __splice_from_pipe - splice data from a pipe to given actor 913 * @pipe: pipe to splice from 914 * @sd: information to @actor 915 * @actor: handler that splices the data 916 * 917 * Description: 918 * This function does little more than loop over the pipe and call 919 * @actor to do the actual moving of a single struct pipe_buffer to 920 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 921 * pipe_to_user. 922 * 923 */ 924 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 925 splice_actor *actor) 926 { 927 int ret; 928 929 splice_from_pipe_begin(sd); 930 do { 931 ret = splice_from_pipe_next(pipe, sd); 932 if (ret > 0) 933 ret = splice_from_pipe_feed(pipe, sd, actor); 934 } while (ret > 0); 935 splice_from_pipe_end(pipe, sd); 936 937 return sd->num_spliced ? sd->num_spliced : ret; 938 } 939 EXPORT_SYMBOL(__splice_from_pipe); 940 941 /** 942 * splice_from_pipe - splice data from a pipe to a file 943 * @pipe: pipe to splice from 944 * @out: file to splice to 945 * @ppos: position in @out 946 * @len: how many bytes to splice 947 * @flags: splice modifier flags 948 * @actor: handler that splices the data 949 * 950 * Description: 951 * See __splice_from_pipe. This function locks the pipe inode, 952 * otherwise it's identical to __splice_from_pipe(). 953 * 954 */ 955 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 956 loff_t *ppos, size_t len, unsigned int flags, 957 splice_actor *actor) 958 { 959 ssize_t ret; 960 struct splice_desc sd = { 961 .total_len = len, 962 .flags = flags, 963 .pos = *ppos, 964 .u.file = out, 965 }; 966 967 pipe_lock(pipe); 968 ret = __splice_from_pipe(pipe, &sd, actor); 969 pipe_unlock(pipe); 970 971 return ret; 972 } 973 974 /** 975 * generic_file_splice_write - splice data from a pipe to a file 976 * @pipe: pipe info 977 * @out: file to write to 978 * @ppos: position in @out 979 * @len: number of bytes to splice 980 * @flags: splice modifier flags 981 * 982 * Description: 983 * Will either move or copy pages (determined by @flags options) from 984 * the given pipe inode to the given file. 985 * 986 */ 987 ssize_t 988 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 989 loff_t *ppos, size_t len, unsigned int flags) 990 { 991 struct address_space *mapping = out->f_mapping; 992 struct inode *inode = mapping->host; 993 struct splice_desc sd = { 994 .total_len = len, 995 .flags = flags, 996 .pos = *ppos, 997 .u.file = out, 998 }; 999 ssize_t ret; 1000 1001 sb_start_write(inode->i_sb); 1002 1003 pipe_lock(pipe); 1004 1005 splice_from_pipe_begin(&sd); 1006 do { 1007 ret = splice_from_pipe_next(pipe, &sd); 1008 if (ret <= 0) 1009 break; 1010 1011 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 1012 ret = file_remove_suid(out); 1013 if (!ret) { 1014 ret = file_update_time(out); 1015 if (!ret) 1016 ret = splice_from_pipe_feed(pipe, &sd, 1017 pipe_to_file); 1018 } 1019 mutex_unlock(&inode->i_mutex); 1020 } while (ret > 0); 1021 splice_from_pipe_end(pipe, &sd); 1022 1023 pipe_unlock(pipe); 1024 1025 if (sd.num_spliced) 1026 ret = sd.num_spliced; 1027 1028 if (ret > 0) { 1029 int err; 1030 1031 err = generic_write_sync(out, *ppos, ret); 1032 if (err) 1033 ret = err; 1034 else 1035 *ppos += ret; 1036 balance_dirty_pages_ratelimited(mapping); 1037 } 1038 sb_end_write(inode->i_sb); 1039 1040 return ret; 1041 } 1042 1043 EXPORT_SYMBOL(generic_file_splice_write); 1044 1045 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1046 struct splice_desc *sd) 1047 { 1048 int ret; 1049 void *data; 1050 1051 data = buf->ops->map(pipe, buf, 0); 1052 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos); 1053 buf->ops->unmap(pipe, buf, data); 1054 1055 return ret; 1056 } 1057 1058 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 1059 struct file *out, loff_t *ppos, 1060 size_t len, unsigned int flags) 1061 { 1062 ssize_t ret; 1063 1064 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 1065 if (ret > 0) 1066 *ppos += ret; 1067 1068 return ret; 1069 } 1070 1071 /** 1072 * generic_splice_sendpage - splice data from a pipe to a socket 1073 * @pipe: pipe to splice from 1074 * @out: socket to write to 1075 * @ppos: position in @out 1076 * @len: number of bytes to splice 1077 * @flags: splice modifier flags 1078 * 1079 * Description: 1080 * Will send @len bytes from the pipe to a network socket. No data copying 1081 * is involved. 1082 * 1083 */ 1084 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 1085 loff_t *ppos, size_t len, unsigned int flags) 1086 { 1087 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 1088 } 1089 1090 EXPORT_SYMBOL(generic_splice_sendpage); 1091 1092 /* 1093 * Attempt to initiate a splice from pipe to file. 1094 */ 1095 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 1096 loff_t *ppos, size_t len, unsigned int flags) 1097 { 1098 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 1099 loff_t *, size_t, unsigned int); 1100 int ret; 1101 1102 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1103 return -EBADF; 1104 1105 if (unlikely(out->f_flags & O_APPEND)) 1106 return -EINVAL; 1107 1108 ret = rw_verify_area(WRITE, out, ppos, len); 1109 if (unlikely(ret < 0)) 1110 return ret; 1111 1112 if (out->f_op && out->f_op->splice_write) 1113 splice_write = out->f_op->splice_write; 1114 else 1115 splice_write = default_file_splice_write; 1116 1117 return splice_write(pipe, out, ppos, len, flags); 1118 } 1119 1120 /* 1121 * Attempt to initiate a splice from a file to a pipe. 1122 */ 1123 static long do_splice_to(struct file *in, loff_t *ppos, 1124 struct pipe_inode_info *pipe, size_t len, 1125 unsigned int flags) 1126 { 1127 ssize_t (*splice_read)(struct file *, loff_t *, 1128 struct pipe_inode_info *, size_t, unsigned int); 1129 int ret; 1130 1131 if (unlikely(!(in->f_mode & FMODE_READ))) 1132 return -EBADF; 1133 1134 ret = rw_verify_area(READ, in, ppos, len); 1135 if (unlikely(ret < 0)) 1136 return ret; 1137 1138 if (in->f_op && in->f_op->splice_read) 1139 splice_read = in->f_op->splice_read; 1140 else 1141 splice_read = default_file_splice_read; 1142 1143 return splice_read(in, ppos, pipe, len, flags); 1144 } 1145 1146 /** 1147 * splice_direct_to_actor - splices data directly between two non-pipes 1148 * @in: file to splice from 1149 * @sd: actor information on where to splice to 1150 * @actor: handles the data splicing 1151 * 1152 * Description: 1153 * This is a special case helper to splice directly between two 1154 * points, without requiring an explicit pipe. Internally an allocated 1155 * pipe is cached in the process, and reused during the lifetime of 1156 * that process. 1157 * 1158 */ 1159 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1160 splice_direct_actor *actor) 1161 { 1162 struct pipe_inode_info *pipe; 1163 long ret, bytes; 1164 umode_t i_mode; 1165 size_t len; 1166 int i, flags; 1167 1168 /* 1169 * We require the input being a regular file, as we don't want to 1170 * randomly drop data for eg socket -> socket splicing. Use the 1171 * piped splicing for that! 1172 */ 1173 i_mode = in->f_path.dentry->d_inode->i_mode; 1174 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 1175 return -EINVAL; 1176 1177 /* 1178 * neither in nor out is a pipe, setup an internal pipe attached to 1179 * 'out' and transfer the wanted data from 'in' to 'out' through that 1180 */ 1181 pipe = current->splice_pipe; 1182 if (unlikely(!pipe)) { 1183 pipe = alloc_pipe_info(NULL); 1184 if (!pipe) 1185 return -ENOMEM; 1186 1187 /* 1188 * We don't have an immediate reader, but we'll read the stuff 1189 * out of the pipe right after the splice_to_pipe(). So set 1190 * PIPE_READERS appropriately. 1191 */ 1192 pipe->readers = 1; 1193 1194 current->splice_pipe = pipe; 1195 } 1196 1197 /* 1198 * Do the splice. 1199 */ 1200 ret = 0; 1201 bytes = 0; 1202 len = sd->total_len; 1203 flags = sd->flags; 1204 1205 /* 1206 * Don't block on output, we have to drain the direct pipe. 1207 */ 1208 sd->flags &= ~SPLICE_F_NONBLOCK; 1209 1210 while (len) { 1211 size_t read_len; 1212 loff_t pos = sd->pos, prev_pos = pos; 1213 1214 ret = do_splice_to(in, &pos, pipe, len, flags); 1215 if (unlikely(ret <= 0)) 1216 goto out_release; 1217 1218 read_len = ret; 1219 sd->total_len = read_len; 1220 1221 /* 1222 * NOTE: nonblocking mode only applies to the input. We 1223 * must not do the output in nonblocking mode as then we 1224 * could get stuck data in the internal pipe: 1225 */ 1226 ret = actor(pipe, sd); 1227 if (unlikely(ret <= 0)) { 1228 sd->pos = prev_pos; 1229 goto out_release; 1230 } 1231 1232 bytes += ret; 1233 len -= ret; 1234 sd->pos = pos; 1235 1236 if (ret < read_len) { 1237 sd->pos = prev_pos + ret; 1238 goto out_release; 1239 } 1240 } 1241 1242 done: 1243 pipe->nrbufs = pipe->curbuf = 0; 1244 file_accessed(in); 1245 return bytes; 1246 1247 out_release: 1248 /* 1249 * If we did an incomplete transfer we must release 1250 * the pipe buffers in question: 1251 */ 1252 for (i = 0; i < pipe->buffers; i++) { 1253 struct pipe_buffer *buf = pipe->bufs + i; 1254 1255 if (buf->ops) { 1256 buf->ops->release(pipe, buf); 1257 buf->ops = NULL; 1258 } 1259 } 1260 1261 if (!bytes) 1262 bytes = ret; 1263 1264 goto done; 1265 } 1266 EXPORT_SYMBOL(splice_direct_to_actor); 1267 1268 static int direct_splice_actor(struct pipe_inode_info *pipe, 1269 struct splice_desc *sd) 1270 { 1271 struct file *file = sd->u.file; 1272 1273 return do_splice_from(pipe, file, &file->f_pos, sd->total_len, 1274 sd->flags); 1275 } 1276 1277 /** 1278 * do_splice_direct - splices data directly between two files 1279 * @in: file to splice from 1280 * @ppos: input file offset 1281 * @out: file to splice to 1282 * @len: number of bytes to splice 1283 * @flags: splice modifier flags 1284 * 1285 * Description: 1286 * For use by do_sendfile(). splice can easily emulate sendfile, but 1287 * doing it in the application would incur an extra system call 1288 * (splice in + splice out, as compared to just sendfile()). So this helper 1289 * can splice directly through a process-private pipe. 1290 * 1291 */ 1292 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1293 size_t len, unsigned int flags) 1294 { 1295 struct splice_desc sd = { 1296 .len = len, 1297 .total_len = len, 1298 .flags = flags, 1299 .pos = *ppos, 1300 .u.file = out, 1301 }; 1302 long ret; 1303 1304 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1305 if (ret > 0) 1306 *ppos = sd.pos; 1307 1308 return ret; 1309 } 1310 1311 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1312 struct pipe_inode_info *opipe, 1313 size_t len, unsigned int flags); 1314 1315 /* 1316 * Determine where to splice to/from. 1317 */ 1318 static long do_splice(struct file *in, loff_t __user *off_in, 1319 struct file *out, loff_t __user *off_out, 1320 size_t len, unsigned int flags) 1321 { 1322 struct pipe_inode_info *ipipe; 1323 struct pipe_inode_info *opipe; 1324 loff_t offset, *off; 1325 long ret; 1326 1327 ipipe = get_pipe_info(in); 1328 opipe = get_pipe_info(out); 1329 1330 if (ipipe && opipe) { 1331 if (off_in || off_out) 1332 return -ESPIPE; 1333 1334 if (!(in->f_mode & FMODE_READ)) 1335 return -EBADF; 1336 1337 if (!(out->f_mode & FMODE_WRITE)) 1338 return -EBADF; 1339 1340 /* Splicing to self would be fun, but... */ 1341 if (ipipe == opipe) 1342 return -EINVAL; 1343 1344 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1345 } 1346 1347 if (ipipe) { 1348 if (off_in) 1349 return -ESPIPE; 1350 if (off_out) { 1351 if (!(out->f_mode & FMODE_PWRITE)) 1352 return -EINVAL; 1353 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1354 return -EFAULT; 1355 off = &offset; 1356 } else 1357 off = &out->f_pos; 1358 1359 ret = do_splice_from(ipipe, out, off, len, flags); 1360 1361 if (off_out && copy_to_user(off_out, off, sizeof(loff_t))) 1362 ret = -EFAULT; 1363 1364 return ret; 1365 } 1366 1367 if (opipe) { 1368 if (off_out) 1369 return -ESPIPE; 1370 if (off_in) { 1371 if (!(in->f_mode & FMODE_PREAD)) 1372 return -EINVAL; 1373 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1374 return -EFAULT; 1375 off = &offset; 1376 } else 1377 off = &in->f_pos; 1378 1379 ret = do_splice_to(in, off, opipe, len, flags); 1380 1381 if (off_in && copy_to_user(off_in, off, sizeof(loff_t))) 1382 ret = -EFAULT; 1383 1384 return ret; 1385 } 1386 1387 return -EINVAL; 1388 } 1389 1390 /* 1391 * Map an iov into an array of pages and offset/length tupples. With the 1392 * partial_page structure, we can map several non-contiguous ranges into 1393 * our ones pages[] map instead of splitting that operation into pieces. 1394 * Could easily be exported as a generic helper for other users, in which 1395 * case one would probably want to add a 'max_nr_pages' parameter as well. 1396 */ 1397 static int get_iovec_page_array(const struct iovec __user *iov, 1398 unsigned int nr_vecs, struct page **pages, 1399 struct partial_page *partial, bool aligned, 1400 unsigned int pipe_buffers) 1401 { 1402 int buffers = 0, error = 0; 1403 1404 while (nr_vecs) { 1405 unsigned long off, npages; 1406 struct iovec entry; 1407 void __user *base; 1408 size_t len; 1409 int i; 1410 1411 error = -EFAULT; 1412 if (copy_from_user(&entry, iov, sizeof(entry))) 1413 break; 1414 1415 base = entry.iov_base; 1416 len = entry.iov_len; 1417 1418 /* 1419 * Sanity check this iovec. 0 read succeeds. 1420 */ 1421 error = 0; 1422 if (unlikely(!len)) 1423 break; 1424 error = -EFAULT; 1425 if (!access_ok(VERIFY_READ, base, len)) 1426 break; 1427 1428 /* 1429 * Get this base offset and number of pages, then map 1430 * in the user pages. 1431 */ 1432 off = (unsigned long) base & ~PAGE_MASK; 1433 1434 /* 1435 * If asked for alignment, the offset must be zero and the 1436 * length a multiple of the PAGE_SIZE. 1437 */ 1438 error = -EINVAL; 1439 if (aligned && (off || len & ~PAGE_MASK)) 1440 break; 1441 1442 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1443 if (npages > pipe_buffers - buffers) 1444 npages = pipe_buffers - buffers; 1445 1446 error = get_user_pages_fast((unsigned long)base, npages, 1447 0, &pages[buffers]); 1448 1449 if (unlikely(error <= 0)) 1450 break; 1451 1452 /* 1453 * Fill this contiguous range into the partial page map. 1454 */ 1455 for (i = 0; i < error; i++) { 1456 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1457 1458 partial[buffers].offset = off; 1459 partial[buffers].len = plen; 1460 1461 off = 0; 1462 len -= plen; 1463 buffers++; 1464 } 1465 1466 /* 1467 * We didn't complete this iov, stop here since it probably 1468 * means we have to move some of this into a pipe to 1469 * be able to continue. 1470 */ 1471 if (len) 1472 break; 1473 1474 /* 1475 * Don't continue if we mapped fewer pages than we asked for, 1476 * or if we mapped the max number of pages that we have 1477 * room for. 1478 */ 1479 if (error < npages || buffers == pipe_buffers) 1480 break; 1481 1482 nr_vecs--; 1483 iov++; 1484 } 1485 1486 if (buffers) 1487 return buffers; 1488 1489 return error; 1490 } 1491 1492 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1493 struct splice_desc *sd) 1494 { 1495 char *src; 1496 int ret; 1497 1498 /* 1499 * See if we can use the atomic maps, by prefaulting in the 1500 * pages and doing an atomic copy 1501 */ 1502 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) { 1503 src = buf->ops->map(pipe, buf, 1); 1504 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset, 1505 sd->len); 1506 buf->ops->unmap(pipe, buf, src); 1507 if (!ret) { 1508 ret = sd->len; 1509 goto out; 1510 } 1511 } 1512 1513 /* 1514 * No dice, use slow non-atomic map and copy 1515 */ 1516 src = buf->ops->map(pipe, buf, 0); 1517 1518 ret = sd->len; 1519 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len)) 1520 ret = -EFAULT; 1521 1522 buf->ops->unmap(pipe, buf, src); 1523 out: 1524 if (ret > 0) 1525 sd->u.userptr += ret; 1526 return ret; 1527 } 1528 1529 /* 1530 * For lack of a better implementation, implement vmsplice() to userspace 1531 * as a simple copy of the pipes pages to the user iov. 1532 */ 1533 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov, 1534 unsigned long nr_segs, unsigned int flags) 1535 { 1536 struct pipe_inode_info *pipe; 1537 struct splice_desc sd; 1538 ssize_t size; 1539 int error; 1540 long ret; 1541 1542 pipe = get_pipe_info(file); 1543 if (!pipe) 1544 return -EBADF; 1545 1546 pipe_lock(pipe); 1547 1548 error = ret = 0; 1549 while (nr_segs) { 1550 void __user *base; 1551 size_t len; 1552 1553 /* 1554 * Get user address base and length for this iovec. 1555 */ 1556 error = get_user(base, &iov->iov_base); 1557 if (unlikely(error)) 1558 break; 1559 error = get_user(len, &iov->iov_len); 1560 if (unlikely(error)) 1561 break; 1562 1563 /* 1564 * Sanity check this iovec. 0 read succeeds. 1565 */ 1566 if (unlikely(!len)) 1567 break; 1568 if (unlikely(!base)) { 1569 error = -EFAULT; 1570 break; 1571 } 1572 1573 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) { 1574 error = -EFAULT; 1575 break; 1576 } 1577 1578 sd.len = 0; 1579 sd.total_len = len; 1580 sd.flags = flags; 1581 sd.u.userptr = base; 1582 sd.pos = 0; 1583 1584 size = __splice_from_pipe(pipe, &sd, pipe_to_user); 1585 if (size < 0) { 1586 if (!ret) 1587 ret = size; 1588 1589 break; 1590 } 1591 1592 ret += size; 1593 1594 if (size < len) 1595 break; 1596 1597 nr_segs--; 1598 iov++; 1599 } 1600 1601 pipe_unlock(pipe); 1602 1603 if (!ret) 1604 ret = error; 1605 1606 return ret; 1607 } 1608 1609 /* 1610 * vmsplice splices a user address range into a pipe. It can be thought of 1611 * as splice-from-memory, where the regular splice is splice-from-file (or 1612 * to file). In both cases the output is a pipe, naturally. 1613 */ 1614 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1615 unsigned long nr_segs, unsigned int flags) 1616 { 1617 struct pipe_inode_info *pipe; 1618 struct page *pages[PIPE_DEF_BUFFERS]; 1619 struct partial_page partial[PIPE_DEF_BUFFERS]; 1620 struct splice_pipe_desc spd = { 1621 .pages = pages, 1622 .partial = partial, 1623 .nr_pages_max = PIPE_DEF_BUFFERS, 1624 .flags = flags, 1625 .ops = &user_page_pipe_buf_ops, 1626 .spd_release = spd_release_page, 1627 }; 1628 long ret; 1629 1630 pipe = get_pipe_info(file); 1631 if (!pipe) 1632 return -EBADF; 1633 1634 if (splice_grow_spd(pipe, &spd)) 1635 return -ENOMEM; 1636 1637 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages, 1638 spd.partial, false, 1639 spd.nr_pages_max); 1640 if (spd.nr_pages <= 0) 1641 ret = spd.nr_pages; 1642 else 1643 ret = splice_to_pipe(pipe, &spd); 1644 1645 splice_shrink_spd(&spd); 1646 return ret; 1647 } 1648 1649 /* 1650 * Note that vmsplice only really supports true splicing _from_ user memory 1651 * to a pipe, not the other way around. Splicing from user memory is a simple 1652 * operation that can be supported without any funky alignment restrictions 1653 * or nasty vm tricks. We simply map in the user memory and fill them into 1654 * a pipe. The reverse isn't quite as easy, though. There are two possible 1655 * solutions for that: 1656 * 1657 * - memcpy() the data internally, at which point we might as well just 1658 * do a regular read() on the buffer anyway. 1659 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1660 * has restriction limitations on both ends of the pipe). 1661 * 1662 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1663 * 1664 */ 1665 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1666 unsigned long, nr_segs, unsigned int, flags) 1667 { 1668 struct fd f; 1669 long error; 1670 1671 if (unlikely(nr_segs > UIO_MAXIOV)) 1672 return -EINVAL; 1673 else if (unlikely(!nr_segs)) 1674 return 0; 1675 1676 error = -EBADF; 1677 f = fdget(fd); 1678 if (f.file) { 1679 if (f.file->f_mode & FMODE_WRITE) 1680 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags); 1681 else if (f.file->f_mode & FMODE_READ) 1682 error = vmsplice_to_user(f.file, iov, nr_segs, flags); 1683 1684 fdput(f); 1685 } 1686 1687 return error; 1688 } 1689 1690 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1691 int, fd_out, loff_t __user *, off_out, 1692 size_t, len, unsigned int, flags) 1693 { 1694 struct fd in, out; 1695 long error; 1696 1697 if (unlikely(!len)) 1698 return 0; 1699 1700 error = -EBADF; 1701 in = fdget(fd_in); 1702 if (in.file) { 1703 if (in.file->f_mode & FMODE_READ) { 1704 out = fdget(fd_out); 1705 if (out.file) { 1706 if (out.file->f_mode & FMODE_WRITE) 1707 error = do_splice(in.file, off_in, 1708 out.file, off_out, 1709 len, flags); 1710 fdput(out); 1711 } 1712 } 1713 fdput(in); 1714 } 1715 return error; 1716 } 1717 1718 /* 1719 * Make sure there's data to read. Wait for input if we can, otherwise 1720 * return an appropriate error. 1721 */ 1722 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1723 { 1724 int ret; 1725 1726 /* 1727 * Check ->nrbufs without the inode lock first. This function 1728 * is speculative anyways, so missing one is ok. 1729 */ 1730 if (pipe->nrbufs) 1731 return 0; 1732 1733 ret = 0; 1734 pipe_lock(pipe); 1735 1736 while (!pipe->nrbufs) { 1737 if (signal_pending(current)) { 1738 ret = -ERESTARTSYS; 1739 break; 1740 } 1741 if (!pipe->writers) 1742 break; 1743 if (!pipe->waiting_writers) { 1744 if (flags & SPLICE_F_NONBLOCK) { 1745 ret = -EAGAIN; 1746 break; 1747 } 1748 } 1749 pipe_wait(pipe); 1750 } 1751 1752 pipe_unlock(pipe); 1753 return ret; 1754 } 1755 1756 /* 1757 * Make sure there's writeable room. Wait for room if we can, otherwise 1758 * return an appropriate error. 1759 */ 1760 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1761 { 1762 int ret; 1763 1764 /* 1765 * Check ->nrbufs without the inode lock first. This function 1766 * is speculative anyways, so missing one is ok. 1767 */ 1768 if (pipe->nrbufs < pipe->buffers) 1769 return 0; 1770 1771 ret = 0; 1772 pipe_lock(pipe); 1773 1774 while (pipe->nrbufs >= pipe->buffers) { 1775 if (!pipe->readers) { 1776 send_sig(SIGPIPE, current, 0); 1777 ret = -EPIPE; 1778 break; 1779 } 1780 if (flags & SPLICE_F_NONBLOCK) { 1781 ret = -EAGAIN; 1782 break; 1783 } 1784 if (signal_pending(current)) { 1785 ret = -ERESTARTSYS; 1786 break; 1787 } 1788 pipe->waiting_writers++; 1789 pipe_wait(pipe); 1790 pipe->waiting_writers--; 1791 } 1792 1793 pipe_unlock(pipe); 1794 return ret; 1795 } 1796 1797 /* 1798 * Splice contents of ipipe to opipe. 1799 */ 1800 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1801 struct pipe_inode_info *opipe, 1802 size_t len, unsigned int flags) 1803 { 1804 struct pipe_buffer *ibuf, *obuf; 1805 int ret = 0, nbuf; 1806 bool input_wakeup = false; 1807 1808 1809 retry: 1810 ret = ipipe_prep(ipipe, flags); 1811 if (ret) 1812 return ret; 1813 1814 ret = opipe_prep(opipe, flags); 1815 if (ret) 1816 return ret; 1817 1818 /* 1819 * Potential ABBA deadlock, work around it by ordering lock 1820 * grabbing by pipe info address. Otherwise two different processes 1821 * could deadlock (one doing tee from A -> B, the other from B -> A). 1822 */ 1823 pipe_double_lock(ipipe, opipe); 1824 1825 do { 1826 if (!opipe->readers) { 1827 send_sig(SIGPIPE, current, 0); 1828 if (!ret) 1829 ret = -EPIPE; 1830 break; 1831 } 1832 1833 if (!ipipe->nrbufs && !ipipe->writers) 1834 break; 1835 1836 /* 1837 * Cannot make any progress, because either the input 1838 * pipe is empty or the output pipe is full. 1839 */ 1840 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) { 1841 /* Already processed some buffers, break */ 1842 if (ret) 1843 break; 1844 1845 if (flags & SPLICE_F_NONBLOCK) { 1846 ret = -EAGAIN; 1847 break; 1848 } 1849 1850 /* 1851 * We raced with another reader/writer and haven't 1852 * managed to process any buffers. A zero return 1853 * value means EOF, so retry instead. 1854 */ 1855 pipe_unlock(ipipe); 1856 pipe_unlock(opipe); 1857 goto retry; 1858 } 1859 1860 ibuf = ipipe->bufs + ipipe->curbuf; 1861 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1862 obuf = opipe->bufs + nbuf; 1863 1864 if (len >= ibuf->len) { 1865 /* 1866 * Simply move the whole buffer from ipipe to opipe 1867 */ 1868 *obuf = *ibuf; 1869 ibuf->ops = NULL; 1870 opipe->nrbufs++; 1871 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1); 1872 ipipe->nrbufs--; 1873 input_wakeup = true; 1874 } else { 1875 /* 1876 * Get a reference to this pipe buffer, 1877 * so we can copy the contents over. 1878 */ 1879 ibuf->ops->get(ipipe, ibuf); 1880 *obuf = *ibuf; 1881 1882 /* 1883 * Don't inherit the gift flag, we need to 1884 * prevent multiple steals of this page. 1885 */ 1886 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1887 1888 obuf->len = len; 1889 opipe->nrbufs++; 1890 ibuf->offset += obuf->len; 1891 ibuf->len -= obuf->len; 1892 } 1893 ret += obuf->len; 1894 len -= obuf->len; 1895 } while (len); 1896 1897 pipe_unlock(ipipe); 1898 pipe_unlock(opipe); 1899 1900 /* 1901 * If we put data in the output pipe, wakeup any potential readers. 1902 */ 1903 if (ret > 0) 1904 wakeup_pipe_readers(opipe); 1905 1906 if (input_wakeup) 1907 wakeup_pipe_writers(ipipe); 1908 1909 return ret; 1910 } 1911 1912 /* 1913 * Link contents of ipipe to opipe. 1914 */ 1915 static int link_pipe(struct pipe_inode_info *ipipe, 1916 struct pipe_inode_info *opipe, 1917 size_t len, unsigned int flags) 1918 { 1919 struct pipe_buffer *ibuf, *obuf; 1920 int ret = 0, i = 0, nbuf; 1921 1922 /* 1923 * Potential ABBA deadlock, work around it by ordering lock 1924 * grabbing by pipe info address. Otherwise two different processes 1925 * could deadlock (one doing tee from A -> B, the other from B -> A). 1926 */ 1927 pipe_double_lock(ipipe, opipe); 1928 1929 do { 1930 if (!opipe->readers) { 1931 send_sig(SIGPIPE, current, 0); 1932 if (!ret) 1933 ret = -EPIPE; 1934 break; 1935 } 1936 1937 /* 1938 * If we have iterated all input buffers or ran out of 1939 * output room, break. 1940 */ 1941 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) 1942 break; 1943 1944 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1)); 1945 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1946 1947 /* 1948 * Get a reference to this pipe buffer, 1949 * so we can copy the contents over. 1950 */ 1951 ibuf->ops->get(ipipe, ibuf); 1952 1953 obuf = opipe->bufs + nbuf; 1954 *obuf = *ibuf; 1955 1956 /* 1957 * Don't inherit the gift flag, we need to 1958 * prevent multiple steals of this page. 1959 */ 1960 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1961 1962 if (obuf->len > len) 1963 obuf->len = len; 1964 1965 opipe->nrbufs++; 1966 ret += obuf->len; 1967 len -= obuf->len; 1968 i++; 1969 } while (len); 1970 1971 /* 1972 * return EAGAIN if we have the potential of some data in the 1973 * future, otherwise just return 0 1974 */ 1975 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1976 ret = -EAGAIN; 1977 1978 pipe_unlock(ipipe); 1979 pipe_unlock(opipe); 1980 1981 /* 1982 * If we put data in the output pipe, wakeup any potential readers. 1983 */ 1984 if (ret > 0) 1985 wakeup_pipe_readers(opipe); 1986 1987 return ret; 1988 } 1989 1990 /* 1991 * This is a tee(1) implementation that works on pipes. It doesn't copy 1992 * any data, it simply references the 'in' pages on the 'out' pipe. 1993 * The 'flags' used are the SPLICE_F_* variants, currently the only 1994 * applicable one is SPLICE_F_NONBLOCK. 1995 */ 1996 static long do_tee(struct file *in, struct file *out, size_t len, 1997 unsigned int flags) 1998 { 1999 struct pipe_inode_info *ipipe = get_pipe_info(in); 2000 struct pipe_inode_info *opipe = get_pipe_info(out); 2001 int ret = -EINVAL; 2002 2003 /* 2004 * Duplicate the contents of ipipe to opipe without actually 2005 * copying the data. 2006 */ 2007 if (ipipe && opipe && ipipe != opipe) { 2008 /* 2009 * Keep going, unless we encounter an error. The ipipe/opipe 2010 * ordering doesn't really matter. 2011 */ 2012 ret = ipipe_prep(ipipe, flags); 2013 if (!ret) { 2014 ret = opipe_prep(opipe, flags); 2015 if (!ret) 2016 ret = link_pipe(ipipe, opipe, len, flags); 2017 } 2018 } 2019 2020 return ret; 2021 } 2022 2023 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 2024 { 2025 struct fd in; 2026 int error; 2027 2028 if (unlikely(!len)) 2029 return 0; 2030 2031 error = -EBADF; 2032 in = fdget(fdin); 2033 if (in.file) { 2034 if (in.file->f_mode & FMODE_READ) { 2035 struct fd out = fdget(fdout); 2036 if (out.file) { 2037 if (out.file->f_mode & FMODE_WRITE) 2038 error = do_tee(in.file, out.file, 2039 len, flags); 2040 fdput(out); 2041 } 2042 } 2043 fdput(in); 2044 } 2045 2046 return error; 2047 } 2048