1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/buffer_head.h> 29 #include <linux/module.h> 30 #include <linux/syscalls.h> 31 #include <linux/uio.h> 32 #include <linux/security.h> 33 34 /* 35 * Attempt to steal a page from a pipe buffer. This should perhaps go into 36 * a vm helper function, it's already simplified quite a bit by the 37 * addition of remove_mapping(). If success is returned, the caller may 38 * attempt to reuse this page for another destination. 39 */ 40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 41 struct pipe_buffer *buf) 42 { 43 struct page *page = buf->page; 44 struct address_space *mapping; 45 46 lock_page(page); 47 48 mapping = page_mapping(page); 49 if (mapping) { 50 WARN_ON(!PageUptodate(page)); 51 52 /* 53 * At least for ext2 with nobh option, we need to wait on 54 * writeback completing on this page, since we'll remove it 55 * from the pagecache. Otherwise truncate wont wait on the 56 * page, allowing the disk blocks to be reused by someone else 57 * before we actually wrote our data to them. fs corruption 58 * ensues. 59 */ 60 wait_on_page_writeback(page); 61 62 if (page_has_private(page) && 63 !try_to_release_page(page, GFP_KERNEL)) 64 goto out_unlock; 65 66 /* 67 * If we succeeded in removing the mapping, set LRU flag 68 * and return good. 69 */ 70 if (remove_mapping(mapping, page)) { 71 buf->flags |= PIPE_BUF_FLAG_LRU; 72 return 0; 73 } 74 } 75 76 /* 77 * Raced with truncate or failed to remove page from current 78 * address space, unlock and return failure. 79 */ 80 out_unlock: 81 unlock_page(page); 82 return 1; 83 } 84 85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 86 struct pipe_buffer *buf) 87 { 88 page_cache_release(buf->page); 89 buf->flags &= ~PIPE_BUF_FLAG_LRU; 90 } 91 92 /* 93 * Check whether the contents of buf is OK to access. Since the content 94 * is a page cache page, IO may be in flight. 95 */ 96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 97 struct pipe_buffer *buf) 98 { 99 struct page *page = buf->page; 100 int err; 101 102 if (!PageUptodate(page)) { 103 lock_page(page); 104 105 /* 106 * Page got truncated/unhashed. This will cause a 0-byte 107 * splice, if this is the first page. 108 */ 109 if (!page->mapping) { 110 err = -ENODATA; 111 goto error; 112 } 113 114 /* 115 * Uh oh, read-error from disk. 116 */ 117 if (!PageUptodate(page)) { 118 err = -EIO; 119 goto error; 120 } 121 122 /* 123 * Page is ok afterall, we are done. 124 */ 125 unlock_page(page); 126 } 127 128 return 0; 129 error: 130 unlock_page(page); 131 return err; 132 } 133 134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = { 135 .can_merge = 0, 136 .map = generic_pipe_buf_map, 137 .unmap = generic_pipe_buf_unmap, 138 .confirm = page_cache_pipe_buf_confirm, 139 .release = page_cache_pipe_buf_release, 140 .steal = page_cache_pipe_buf_steal, 141 .get = generic_pipe_buf_get, 142 }; 143 144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 145 struct pipe_buffer *buf) 146 { 147 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 148 return 1; 149 150 buf->flags |= PIPE_BUF_FLAG_LRU; 151 return generic_pipe_buf_steal(pipe, buf); 152 } 153 154 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 155 .can_merge = 0, 156 .map = generic_pipe_buf_map, 157 .unmap = generic_pipe_buf_unmap, 158 .confirm = generic_pipe_buf_confirm, 159 .release = page_cache_pipe_buf_release, 160 .steal = user_page_pipe_buf_steal, 161 .get = generic_pipe_buf_get, 162 }; 163 164 /** 165 * splice_to_pipe - fill passed data into a pipe 166 * @pipe: pipe to fill 167 * @spd: data to fill 168 * 169 * Description: 170 * @spd contains a map of pages and len/offset tuples, along with 171 * the struct pipe_buf_operations associated with these pages. This 172 * function will link that data to the pipe. 173 * 174 */ 175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 176 struct splice_pipe_desc *spd) 177 { 178 unsigned int spd_pages = spd->nr_pages; 179 int ret, do_wakeup, page_nr; 180 181 ret = 0; 182 do_wakeup = 0; 183 page_nr = 0; 184 185 pipe_lock(pipe); 186 187 for (;;) { 188 if (!pipe->readers) { 189 send_sig(SIGPIPE, current, 0); 190 if (!ret) 191 ret = -EPIPE; 192 break; 193 } 194 195 if (pipe->nrbufs < PIPE_BUFFERS) { 196 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1); 197 struct pipe_buffer *buf = pipe->bufs + newbuf; 198 199 buf->page = spd->pages[page_nr]; 200 buf->offset = spd->partial[page_nr].offset; 201 buf->len = spd->partial[page_nr].len; 202 buf->private = spd->partial[page_nr].private; 203 buf->ops = spd->ops; 204 if (spd->flags & SPLICE_F_GIFT) 205 buf->flags |= PIPE_BUF_FLAG_GIFT; 206 207 pipe->nrbufs++; 208 page_nr++; 209 ret += buf->len; 210 211 if (pipe->inode) 212 do_wakeup = 1; 213 214 if (!--spd->nr_pages) 215 break; 216 if (pipe->nrbufs < PIPE_BUFFERS) 217 continue; 218 219 break; 220 } 221 222 if (spd->flags & SPLICE_F_NONBLOCK) { 223 if (!ret) 224 ret = -EAGAIN; 225 break; 226 } 227 228 if (signal_pending(current)) { 229 if (!ret) 230 ret = -ERESTARTSYS; 231 break; 232 } 233 234 if (do_wakeup) { 235 smp_mb(); 236 if (waitqueue_active(&pipe->wait)) 237 wake_up_interruptible_sync(&pipe->wait); 238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 239 do_wakeup = 0; 240 } 241 242 pipe->waiting_writers++; 243 pipe_wait(pipe); 244 pipe->waiting_writers--; 245 } 246 247 pipe_unlock(pipe); 248 249 if (do_wakeup) { 250 smp_mb(); 251 if (waitqueue_active(&pipe->wait)) 252 wake_up_interruptible(&pipe->wait); 253 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 254 } 255 256 while (page_nr < spd_pages) 257 spd->spd_release(spd, page_nr++); 258 259 return ret; 260 } 261 262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 263 { 264 page_cache_release(spd->pages[i]); 265 } 266 267 static int 268 __generic_file_splice_read(struct file *in, loff_t *ppos, 269 struct pipe_inode_info *pipe, size_t len, 270 unsigned int flags) 271 { 272 struct address_space *mapping = in->f_mapping; 273 unsigned int loff, nr_pages, req_pages; 274 struct page *pages[PIPE_BUFFERS]; 275 struct partial_page partial[PIPE_BUFFERS]; 276 struct page *page; 277 pgoff_t index, end_index; 278 loff_t isize; 279 int error, page_nr; 280 struct splice_pipe_desc spd = { 281 .pages = pages, 282 .partial = partial, 283 .flags = flags, 284 .ops = &page_cache_pipe_buf_ops, 285 .spd_release = spd_release_page, 286 }; 287 288 index = *ppos >> PAGE_CACHE_SHIFT; 289 loff = *ppos & ~PAGE_CACHE_MASK; 290 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 291 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS); 292 293 /* 294 * Lookup the (hopefully) full range of pages we need. 295 */ 296 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages); 297 index += spd.nr_pages; 298 299 /* 300 * If find_get_pages_contig() returned fewer pages than we needed, 301 * readahead/allocate the rest and fill in the holes. 302 */ 303 if (spd.nr_pages < nr_pages) 304 page_cache_sync_readahead(mapping, &in->f_ra, in, 305 index, req_pages - spd.nr_pages); 306 307 error = 0; 308 while (spd.nr_pages < nr_pages) { 309 /* 310 * Page could be there, find_get_pages_contig() breaks on 311 * the first hole. 312 */ 313 page = find_get_page(mapping, index); 314 if (!page) { 315 /* 316 * page didn't exist, allocate one. 317 */ 318 page = page_cache_alloc_cold(mapping); 319 if (!page) 320 break; 321 322 error = add_to_page_cache_lru(page, mapping, index, 323 mapping_gfp_mask(mapping)); 324 if (unlikely(error)) { 325 page_cache_release(page); 326 if (error == -EEXIST) 327 continue; 328 break; 329 } 330 /* 331 * add_to_page_cache() locks the page, unlock it 332 * to avoid convoluting the logic below even more. 333 */ 334 unlock_page(page); 335 } 336 337 pages[spd.nr_pages++] = page; 338 index++; 339 } 340 341 /* 342 * Now loop over the map and see if we need to start IO on any 343 * pages, fill in the partial map, etc. 344 */ 345 index = *ppos >> PAGE_CACHE_SHIFT; 346 nr_pages = spd.nr_pages; 347 spd.nr_pages = 0; 348 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 349 unsigned int this_len; 350 351 if (!len) 352 break; 353 354 /* 355 * this_len is the max we'll use from this page 356 */ 357 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 358 page = pages[page_nr]; 359 360 if (PageReadahead(page)) 361 page_cache_async_readahead(mapping, &in->f_ra, in, 362 page, index, req_pages - page_nr); 363 364 /* 365 * If the page isn't uptodate, we may need to start io on it 366 */ 367 if (!PageUptodate(page)) { 368 /* 369 * If in nonblock mode then dont block on waiting 370 * for an in-flight io page 371 */ 372 if (flags & SPLICE_F_NONBLOCK) { 373 if (!trylock_page(page)) { 374 error = -EAGAIN; 375 break; 376 } 377 } else 378 lock_page(page); 379 380 /* 381 * Page was truncated, or invalidated by the 382 * filesystem. Redo the find/create, but this time the 383 * page is kept locked, so there's no chance of another 384 * race with truncate/invalidate. 385 */ 386 if (!page->mapping) { 387 unlock_page(page); 388 page = find_or_create_page(mapping, index, 389 mapping_gfp_mask(mapping)); 390 391 if (!page) { 392 error = -ENOMEM; 393 break; 394 } 395 page_cache_release(pages[page_nr]); 396 pages[page_nr] = page; 397 } 398 /* 399 * page was already under io and is now done, great 400 */ 401 if (PageUptodate(page)) { 402 unlock_page(page); 403 goto fill_it; 404 } 405 406 /* 407 * need to read in the page 408 */ 409 error = mapping->a_ops->readpage(in, page); 410 if (unlikely(error)) { 411 /* 412 * We really should re-lookup the page here, 413 * but it complicates things a lot. Instead 414 * lets just do what we already stored, and 415 * we'll get it the next time we are called. 416 */ 417 if (error == AOP_TRUNCATED_PAGE) 418 error = 0; 419 420 break; 421 } 422 } 423 fill_it: 424 /* 425 * i_size must be checked after PageUptodate. 426 */ 427 isize = i_size_read(mapping->host); 428 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 429 if (unlikely(!isize || index > end_index)) 430 break; 431 432 /* 433 * if this is the last page, see if we need to shrink 434 * the length and stop 435 */ 436 if (end_index == index) { 437 unsigned int plen; 438 439 /* 440 * max good bytes in this page 441 */ 442 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 443 if (plen <= loff) 444 break; 445 446 /* 447 * force quit after adding this page 448 */ 449 this_len = min(this_len, plen - loff); 450 len = this_len; 451 } 452 453 partial[page_nr].offset = loff; 454 partial[page_nr].len = this_len; 455 len -= this_len; 456 loff = 0; 457 spd.nr_pages++; 458 index++; 459 } 460 461 /* 462 * Release any pages at the end, if we quit early. 'page_nr' is how far 463 * we got, 'nr_pages' is how many pages are in the map. 464 */ 465 while (page_nr < nr_pages) 466 page_cache_release(pages[page_nr++]); 467 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 468 469 if (spd.nr_pages) 470 return splice_to_pipe(pipe, &spd); 471 472 return error; 473 } 474 475 /** 476 * generic_file_splice_read - splice data from file to a pipe 477 * @in: file to splice from 478 * @ppos: position in @in 479 * @pipe: pipe to splice to 480 * @len: number of bytes to splice 481 * @flags: splice modifier flags 482 * 483 * Description: 484 * Will read pages from given file and fill them into a pipe. Can be 485 * used as long as the address_space operations for the source implements 486 * a readpage() hook. 487 * 488 */ 489 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 490 struct pipe_inode_info *pipe, size_t len, 491 unsigned int flags) 492 { 493 loff_t isize, left; 494 int ret; 495 496 isize = i_size_read(in->f_mapping->host); 497 if (unlikely(*ppos >= isize)) 498 return 0; 499 500 left = isize - *ppos; 501 if (unlikely(left < len)) 502 len = left; 503 504 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 505 if (ret > 0) 506 *ppos += ret; 507 508 return ret; 509 } 510 511 EXPORT_SYMBOL(generic_file_splice_read); 512 513 /* 514 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 515 * using sendpage(). Return the number of bytes sent. 516 */ 517 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 518 struct pipe_buffer *buf, struct splice_desc *sd) 519 { 520 struct file *file = sd->u.file; 521 loff_t pos = sd->pos; 522 int ret, more; 523 524 ret = buf->ops->confirm(pipe, buf); 525 if (!ret) { 526 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len; 527 528 ret = file->f_op->sendpage(file, buf->page, buf->offset, 529 sd->len, &pos, more); 530 } 531 532 return ret; 533 } 534 535 /* 536 * This is a little more tricky than the file -> pipe splicing. There are 537 * basically three cases: 538 * 539 * - Destination page already exists in the address space and there 540 * are users of it. For that case we have no other option that 541 * copying the data. Tough luck. 542 * - Destination page already exists in the address space, but there 543 * are no users of it. Make sure it's uptodate, then drop it. Fall 544 * through to last case. 545 * - Destination page does not exist, we can add the pipe page to 546 * the page cache and avoid the copy. 547 * 548 * If asked to move pages to the output file (SPLICE_F_MOVE is set in 549 * sd->flags), we attempt to migrate pages from the pipe to the output 550 * file address space page cache. This is possible if no one else has 551 * the pipe page referenced outside of the pipe and page cache. If 552 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create 553 * a new page in the output file page cache and fill/dirty that. 554 */ 555 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 556 struct splice_desc *sd) 557 { 558 struct file *file = sd->u.file; 559 struct address_space *mapping = file->f_mapping; 560 unsigned int offset, this_len; 561 struct page *page; 562 void *fsdata; 563 int ret; 564 565 /* 566 * make sure the data in this buffer is uptodate 567 */ 568 ret = buf->ops->confirm(pipe, buf); 569 if (unlikely(ret)) 570 return ret; 571 572 offset = sd->pos & ~PAGE_CACHE_MASK; 573 574 this_len = sd->len; 575 if (this_len + offset > PAGE_CACHE_SIZE) 576 this_len = PAGE_CACHE_SIZE - offset; 577 578 ret = pagecache_write_begin(file, mapping, sd->pos, this_len, 579 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 580 if (unlikely(ret)) 581 goto out; 582 583 if (buf->page != page) { 584 /* 585 * Careful, ->map() uses KM_USER0! 586 */ 587 char *src = buf->ops->map(pipe, buf, 1); 588 char *dst = kmap_atomic(page, KM_USER1); 589 590 memcpy(dst + offset, src + buf->offset, this_len); 591 flush_dcache_page(page); 592 kunmap_atomic(dst, KM_USER1); 593 buf->ops->unmap(pipe, buf, src); 594 } 595 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len, 596 page, fsdata); 597 out: 598 return ret; 599 } 600 EXPORT_SYMBOL(pipe_to_file); 601 602 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 603 { 604 smp_mb(); 605 if (waitqueue_active(&pipe->wait)) 606 wake_up_interruptible(&pipe->wait); 607 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 608 } 609 610 /** 611 * splice_from_pipe_feed - feed available data from a pipe to a file 612 * @pipe: pipe to splice from 613 * @sd: information to @actor 614 * @actor: handler that splices the data 615 * 616 * Description: 617 618 * This function loops over the pipe and calls @actor to do the 619 * actual moving of a single struct pipe_buffer to the desired 620 * destination. It returns when there's no more buffers left in 621 * the pipe or if the requested number of bytes (@sd->total_len) 622 * have been copied. It returns a positive number (one) if the 623 * pipe needs to be filled with more data, zero if the required 624 * number of bytes have been copied and -errno on error. 625 * 626 * This, together with splice_from_pipe_{begin,end,next}, may be 627 * used to implement the functionality of __splice_from_pipe() when 628 * locking is required around copying the pipe buffers to the 629 * destination. 630 */ 631 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 632 splice_actor *actor) 633 { 634 int ret; 635 636 while (pipe->nrbufs) { 637 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 638 const struct pipe_buf_operations *ops = buf->ops; 639 640 sd->len = buf->len; 641 if (sd->len > sd->total_len) 642 sd->len = sd->total_len; 643 644 ret = actor(pipe, buf, sd); 645 if (ret <= 0) { 646 if (ret == -ENODATA) 647 ret = 0; 648 return ret; 649 } 650 buf->offset += ret; 651 buf->len -= ret; 652 653 sd->num_spliced += ret; 654 sd->len -= ret; 655 sd->pos += ret; 656 sd->total_len -= ret; 657 658 if (!buf->len) { 659 buf->ops = NULL; 660 ops->release(pipe, buf); 661 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1); 662 pipe->nrbufs--; 663 if (pipe->inode) 664 sd->need_wakeup = true; 665 } 666 667 if (!sd->total_len) 668 return 0; 669 } 670 671 return 1; 672 } 673 EXPORT_SYMBOL(splice_from_pipe_feed); 674 675 /** 676 * splice_from_pipe_next - wait for some data to splice from 677 * @pipe: pipe to splice from 678 * @sd: information about the splice operation 679 * 680 * Description: 681 * This function will wait for some data and return a positive 682 * value (one) if pipe buffers are available. It will return zero 683 * or -errno if no more data needs to be spliced. 684 */ 685 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 686 { 687 while (!pipe->nrbufs) { 688 if (!pipe->writers) 689 return 0; 690 691 if (!pipe->waiting_writers && sd->num_spliced) 692 return 0; 693 694 if (sd->flags & SPLICE_F_NONBLOCK) 695 return -EAGAIN; 696 697 if (signal_pending(current)) 698 return -ERESTARTSYS; 699 700 if (sd->need_wakeup) { 701 wakeup_pipe_writers(pipe); 702 sd->need_wakeup = false; 703 } 704 705 pipe_wait(pipe); 706 } 707 708 return 1; 709 } 710 EXPORT_SYMBOL(splice_from_pipe_next); 711 712 /** 713 * splice_from_pipe_begin - start splicing from pipe 714 * @pipe: pipe to splice from 715 * 716 * Description: 717 * This function should be called before a loop containing 718 * splice_from_pipe_next() and splice_from_pipe_feed() to 719 * initialize the necessary fields of @sd. 720 */ 721 void splice_from_pipe_begin(struct splice_desc *sd) 722 { 723 sd->num_spliced = 0; 724 sd->need_wakeup = false; 725 } 726 EXPORT_SYMBOL(splice_from_pipe_begin); 727 728 /** 729 * splice_from_pipe_end - finish splicing from pipe 730 * @pipe: pipe to splice from 731 * @sd: information about the splice operation 732 * 733 * Description: 734 * This function will wake up pipe writers if necessary. It should 735 * be called after a loop containing splice_from_pipe_next() and 736 * splice_from_pipe_feed(). 737 */ 738 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 739 { 740 if (sd->need_wakeup) 741 wakeup_pipe_writers(pipe); 742 } 743 EXPORT_SYMBOL(splice_from_pipe_end); 744 745 /** 746 * __splice_from_pipe - splice data from a pipe to given actor 747 * @pipe: pipe to splice from 748 * @sd: information to @actor 749 * @actor: handler that splices the data 750 * 751 * Description: 752 * This function does little more than loop over the pipe and call 753 * @actor to do the actual moving of a single struct pipe_buffer to 754 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 755 * pipe_to_user. 756 * 757 */ 758 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 759 splice_actor *actor) 760 { 761 int ret; 762 763 splice_from_pipe_begin(sd); 764 do { 765 ret = splice_from_pipe_next(pipe, sd); 766 if (ret > 0) 767 ret = splice_from_pipe_feed(pipe, sd, actor); 768 } while (ret > 0); 769 splice_from_pipe_end(pipe, sd); 770 771 return sd->num_spliced ? sd->num_spliced : ret; 772 } 773 EXPORT_SYMBOL(__splice_from_pipe); 774 775 /** 776 * splice_from_pipe - splice data from a pipe to a file 777 * @pipe: pipe to splice from 778 * @out: file to splice to 779 * @ppos: position in @out 780 * @len: how many bytes to splice 781 * @flags: splice modifier flags 782 * @actor: handler that splices the data 783 * 784 * Description: 785 * See __splice_from_pipe. This function locks the pipe inode, 786 * otherwise it's identical to __splice_from_pipe(). 787 * 788 */ 789 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 790 loff_t *ppos, size_t len, unsigned int flags, 791 splice_actor *actor) 792 { 793 ssize_t ret; 794 struct splice_desc sd = { 795 .total_len = len, 796 .flags = flags, 797 .pos = *ppos, 798 .u.file = out, 799 }; 800 801 pipe_lock(pipe); 802 ret = __splice_from_pipe(pipe, &sd, actor); 803 pipe_unlock(pipe); 804 805 return ret; 806 } 807 808 /** 809 * generic_file_splice_write - splice data from a pipe to a file 810 * @pipe: pipe info 811 * @out: file to write to 812 * @ppos: position in @out 813 * @len: number of bytes to splice 814 * @flags: splice modifier flags 815 * 816 * Description: 817 * Will either move or copy pages (determined by @flags options) from 818 * the given pipe inode to the given file. 819 * 820 */ 821 ssize_t 822 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 823 loff_t *ppos, size_t len, unsigned int flags) 824 { 825 struct address_space *mapping = out->f_mapping; 826 struct inode *inode = mapping->host; 827 struct splice_desc sd = { 828 .total_len = len, 829 .flags = flags, 830 .pos = *ppos, 831 .u.file = out, 832 }; 833 ssize_t ret; 834 835 pipe_lock(pipe); 836 837 splice_from_pipe_begin(&sd); 838 do { 839 ret = splice_from_pipe_next(pipe, &sd); 840 if (ret <= 0) 841 break; 842 843 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 844 ret = file_remove_suid(out); 845 if (!ret) 846 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file); 847 mutex_unlock(&inode->i_mutex); 848 } while (ret > 0); 849 splice_from_pipe_end(pipe, &sd); 850 851 pipe_unlock(pipe); 852 853 if (sd.num_spliced) 854 ret = sd.num_spliced; 855 856 if (ret > 0) { 857 unsigned long nr_pages; 858 859 *ppos += ret; 860 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 861 862 /* 863 * If file or inode is SYNC and we actually wrote some data, 864 * sync it. 865 */ 866 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) { 867 int err; 868 869 mutex_lock(&inode->i_mutex); 870 err = generic_osync_inode(inode, mapping, 871 OSYNC_METADATA|OSYNC_DATA); 872 mutex_unlock(&inode->i_mutex); 873 874 if (err) 875 ret = err; 876 } 877 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 878 } 879 880 return ret; 881 } 882 883 EXPORT_SYMBOL(generic_file_splice_write); 884 885 /** 886 * generic_splice_sendpage - splice data from a pipe to a socket 887 * @pipe: pipe to splice from 888 * @out: socket to write to 889 * @ppos: position in @out 890 * @len: number of bytes to splice 891 * @flags: splice modifier flags 892 * 893 * Description: 894 * Will send @len bytes from the pipe to a network socket. No data copying 895 * is involved. 896 * 897 */ 898 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 899 loff_t *ppos, size_t len, unsigned int flags) 900 { 901 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 902 } 903 904 EXPORT_SYMBOL(generic_splice_sendpage); 905 906 /* 907 * Attempt to initiate a splice from pipe to file. 908 */ 909 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 910 loff_t *ppos, size_t len, unsigned int flags) 911 { 912 int ret; 913 914 if (unlikely(!out->f_op || !out->f_op->splice_write)) 915 return -EINVAL; 916 917 if (unlikely(!(out->f_mode & FMODE_WRITE))) 918 return -EBADF; 919 920 if (unlikely(out->f_flags & O_APPEND)) 921 return -EINVAL; 922 923 ret = rw_verify_area(WRITE, out, ppos, len); 924 if (unlikely(ret < 0)) 925 return ret; 926 927 return out->f_op->splice_write(pipe, out, ppos, len, flags); 928 } 929 930 /* 931 * Attempt to initiate a splice from a file to a pipe. 932 */ 933 static long do_splice_to(struct file *in, loff_t *ppos, 934 struct pipe_inode_info *pipe, size_t len, 935 unsigned int flags) 936 { 937 int ret; 938 939 if (unlikely(!in->f_op || !in->f_op->splice_read)) 940 return -EINVAL; 941 942 if (unlikely(!(in->f_mode & FMODE_READ))) 943 return -EBADF; 944 945 ret = rw_verify_area(READ, in, ppos, len); 946 if (unlikely(ret < 0)) 947 return ret; 948 949 return in->f_op->splice_read(in, ppos, pipe, len, flags); 950 } 951 952 /** 953 * splice_direct_to_actor - splices data directly between two non-pipes 954 * @in: file to splice from 955 * @sd: actor information on where to splice to 956 * @actor: handles the data splicing 957 * 958 * Description: 959 * This is a special case helper to splice directly between two 960 * points, without requiring an explicit pipe. Internally an allocated 961 * pipe is cached in the process, and reused during the lifetime of 962 * that process. 963 * 964 */ 965 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 966 splice_direct_actor *actor) 967 { 968 struct pipe_inode_info *pipe; 969 long ret, bytes; 970 umode_t i_mode; 971 size_t len; 972 int i, flags; 973 974 /* 975 * We require the input being a regular file, as we don't want to 976 * randomly drop data for eg socket -> socket splicing. Use the 977 * piped splicing for that! 978 */ 979 i_mode = in->f_path.dentry->d_inode->i_mode; 980 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 981 return -EINVAL; 982 983 /* 984 * neither in nor out is a pipe, setup an internal pipe attached to 985 * 'out' and transfer the wanted data from 'in' to 'out' through that 986 */ 987 pipe = current->splice_pipe; 988 if (unlikely(!pipe)) { 989 pipe = alloc_pipe_info(NULL); 990 if (!pipe) 991 return -ENOMEM; 992 993 /* 994 * We don't have an immediate reader, but we'll read the stuff 995 * out of the pipe right after the splice_to_pipe(). So set 996 * PIPE_READERS appropriately. 997 */ 998 pipe->readers = 1; 999 1000 current->splice_pipe = pipe; 1001 } 1002 1003 /* 1004 * Do the splice. 1005 */ 1006 ret = 0; 1007 bytes = 0; 1008 len = sd->total_len; 1009 flags = sd->flags; 1010 1011 /* 1012 * Don't block on output, we have to drain the direct pipe. 1013 */ 1014 sd->flags &= ~SPLICE_F_NONBLOCK; 1015 1016 while (len) { 1017 size_t read_len; 1018 loff_t pos = sd->pos, prev_pos = pos; 1019 1020 ret = do_splice_to(in, &pos, pipe, len, flags); 1021 if (unlikely(ret <= 0)) 1022 goto out_release; 1023 1024 read_len = ret; 1025 sd->total_len = read_len; 1026 1027 /* 1028 * NOTE: nonblocking mode only applies to the input. We 1029 * must not do the output in nonblocking mode as then we 1030 * could get stuck data in the internal pipe: 1031 */ 1032 ret = actor(pipe, sd); 1033 if (unlikely(ret <= 0)) { 1034 sd->pos = prev_pos; 1035 goto out_release; 1036 } 1037 1038 bytes += ret; 1039 len -= ret; 1040 sd->pos = pos; 1041 1042 if (ret < read_len) { 1043 sd->pos = prev_pos + ret; 1044 goto out_release; 1045 } 1046 } 1047 1048 done: 1049 pipe->nrbufs = pipe->curbuf = 0; 1050 file_accessed(in); 1051 return bytes; 1052 1053 out_release: 1054 /* 1055 * If we did an incomplete transfer we must release 1056 * the pipe buffers in question: 1057 */ 1058 for (i = 0; i < PIPE_BUFFERS; i++) { 1059 struct pipe_buffer *buf = pipe->bufs + i; 1060 1061 if (buf->ops) { 1062 buf->ops->release(pipe, buf); 1063 buf->ops = NULL; 1064 } 1065 } 1066 1067 if (!bytes) 1068 bytes = ret; 1069 1070 goto done; 1071 } 1072 EXPORT_SYMBOL(splice_direct_to_actor); 1073 1074 static int direct_splice_actor(struct pipe_inode_info *pipe, 1075 struct splice_desc *sd) 1076 { 1077 struct file *file = sd->u.file; 1078 1079 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags); 1080 } 1081 1082 /** 1083 * do_splice_direct - splices data directly between two files 1084 * @in: file to splice from 1085 * @ppos: input file offset 1086 * @out: file to splice to 1087 * @len: number of bytes to splice 1088 * @flags: splice modifier flags 1089 * 1090 * Description: 1091 * For use by do_sendfile(). splice can easily emulate sendfile, but 1092 * doing it in the application would incur an extra system call 1093 * (splice in + splice out, as compared to just sendfile()). So this helper 1094 * can splice directly through a process-private pipe. 1095 * 1096 */ 1097 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1098 size_t len, unsigned int flags) 1099 { 1100 struct splice_desc sd = { 1101 .len = len, 1102 .total_len = len, 1103 .flags = flags, 1104 .pos = *ppos, 1105 .u.file = out, 1106 }; 1107 long ret; 1108 1109 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1110 if (ret > 0) 1111 *ppos = sd.pos; 1112 1113 return ret; 1114 } 1115 1116 /* 1117 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same 1118 * location, so checking ->i_pipe is not enough to verify that this is a 1119 * pipe. 1120 */ 1121 static inline struct pipe_inode_info *pipe_info(struct inode *inode) 1122 { 1123 if (S_ISFIFO(inode->i_mode)) 1124 return inode->i_pipe; 1125 1126 return NULL; 1127 } 1128 1129 /* 1130 * Determine where to splice to/from. 1131 */ 1132 static long do_splice(struct file *in, loff_t __user *off_in, 1133 struct file *out, loff_t __user *off_out, 1134 size_t len, unsigned int flags) 1135 { 1136 struct pipe_inode_info *pipe; 1137 loff_t offset, *off; 1138 long ret; 1139 1140 pipe = pipe_info(in->f_path.dentry->d_inode); 1141 if (pipe) { 1142 if (off_in) 1143 return -ESPIPE; 1144 if (off_out) { 1145 if (out->f_op->llseek == no_llseek) 1146 return -EINVAL; 1147 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1148 return -EFAULT; 1149 off = &offset; 1150 } else 1151 off = &out->f_pos; 1152 1153 ret = do_splice_from(pipe, out, off, len, flags); 1154 1155 if (off_out && copy_to_user(off_out, off, sizeof(loff_t))) 1156 ret = -EFAULT; 1157 1158 return ret; 1159 } 1160 1161 pipe = pipe_info(out->f_path.dentry->d_inode); 1162 if (pipe) { 1163 if (off_out) 1164 return -ESPIPE; 1165 if (off_in) { 1166 if (in->f_op->llseek == no_llseek) 1167 return -EINVAL; 1168 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1169 return -EFAULT; 1170 off = &offset; 1171 } else 1172 off = &in->f_pos; 1173 1174 ret = do_splice_to(in, off, pipe, len, flags); 1175 1176 if (off_in && copy_to_user(off_in, off, sizeof(loff_t))) 1177 ret = -EFAULT; 1178 1179 return ret; 1180 } 1181 1182 return -EINVAL; 1183 } 1184 1185 /* 1186 * Map an iov into an array of pages and offset/length tupples. With the 1187 * partial_page structure, we can map several non-contiguous ranges into 1188 * our ones pages[] map instead of splitting that operation into pieces. 1189 * Could easily be exported as a generic helper for other users, in which 1190 * case one would probably want to add a 'max_nr_pages' parameter as well. 1191 */ 1192 static int get_iovec_page_array(const struct iovec __user *iov, 1193 unsigned int nr_vecs, struct page **pages, 1194 struct partial_page *partial, int aligned) 1195 { 1196 int buffers = 0, error = 0; 1197 1198 while (nr_vecs) { 1199 unsigned long off, npages; 1200 struct iovec entry; 1201 void __user *base; 1202 size_t len; 1203 int i; 1204 1205 error = -EFAULT; 1206 if (copy_from_user(&entry, iov, sizeof(entry))) 1207 break; 1208 1209 base = entry.iov_base; 1210 len = entry.iov_len; 1211 1212 /* 1213 * Sanity check this iovec. 0 read succeeds. 1214 */ 1215 error = 0; 1216 if (unlikely(!len)) 1217 break; 1218 error = -EFAULT; 1219 if (!access_ok(VERIFY_READ, base, len)) 1220 break; 1221 1222 /* 1223 * Get this base offset and number of pages, then map 1224 * in the user pages. 1225 */ 1226 off = (unsigned long) base & ~PAGE_MASK; 1227 1228 /* 1229 * If asked for alignment, the offset must be zero and the 1230 * length a multiple of the PAGE_SIZE. 1231 */ 1232 error = -EINVAL; 1233 if (aligned && (off || len & ~PAGE_MASK)) 1234 break; 1235 1236 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1237 if (npages > PIPE_BUFFERS - buffers) 1238 npages = PIPE_BUFFERS - buffers; 1239 1240 error = get_user_pages_fast((unsigned long)base, npages, 1241 0, &pages[buffers]); 1242 1243 if (unlikely(error <= 0)) 1244 break; 1245 1246 /* 1247 * Fill this contiguous range into the partial page map. 1248 */ 1249 for (i = 0; i < error; i++) { 1250 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1251 1252 partial[buffers].offset = off; 1253 partial[buffers].len = plen; 1254 1255 off = 0; 1256 len -= plen; 1257 buffers++; 1258 } 1259 1260 /* 1261 * We didn't complete this iov, stop here since it probably 1262 * means we have to move some of this into a pipe to 1263 * be able to continue. 1264 */ 1265 if (len) 1266 break; 1267 1268 /* 1269 * Don't continue if we mapped fewer pages than we asked for, 1270 * or if we mapped the max number of pages that we have 1271 * room for. 1272 */ 1273 if (error < npages || buffers == PIPE_BUFFERS) 1274 break; 1275 1276 nr_vecs--; 1277 iov++; 1278 } 1279 1280 if (buffers) 1281 return buffers; 1282 1283 return error; 1284 } 1285 1286 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1287 struct splice_desc *sd) 1288 { 1289 char *src; 1290 int ret; 1291 1292 ret = buf->ops->confirm(pipe, buf); 1293 if (unlikely(ret)) 1294 return ret; 1295 1296 /* 1297 * See if we can use the atomic maps, by prefaulting in the 1298 * pages and doing an atomic copy 1299 */ 1300 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) { 1301 src = buf->ops->map(pipe, buf, 1); 1302 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset, 1303 sd->len); 1304 buf->ops->unmap(pipe, buf, src); 1305 if (!ret) { 1306 ret = sd->len; 1307 goto out; 1308 } 1309 } 1310 1311 /* 1312 * No dice, use slow non-atomic map and copy 1313 */ 1314 src = buf->ops->map(pipe, buf, 0); 1315 1316 ret = sd->len; 1317 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len)) 1318 ret = -EFAULT; 1319 1320 buf->ops->unmap(pipe, buf, src); 1321 out: 1322 if (ret > 0) 1323 sd->u.userptr += ret; 1324 return ret; 1325 } 1326 1327 /* 1328 * For lack of a better implementation, implement vmsplice() to userspace 1329 * as a simple copy of the pipes pages to the user iov. 1330 */ 1331 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov, 1332 unsigned long nr_segs, unsigned int flags) 1333 { 1334 struct pipe_inode_info *pipe; 1335 struct splice_desc sd; 1336 ssize_t size; 1337 int error; 1338 long ret; 1339 1340 pipe = pipe_info(file->f_path.dentry->d_inode); 1341 if (!pipe) 1342 return -EBADF; 1343 1344 pipe_lock(pipe); 1345 1346 error = ret = 0; 1347 while (nr_segs) { 1348 void __user *base; 1349 size_t len; 1350 1351 /* 1352 * Get user address base and length for this iovec. 1353 */ 1354 error = get_user(base, &iov->iov_base); 1355 if (unlikely(error)) 1356 break; 1357 error = get_user(len, &iov->iov_len); 1358 if (unlikely(error)) 1359 break; 1360 1361 /* 1362 * Sanity check this iovec. 0 read succeeds. 1363 */ 1364 if (unlikely(!len)) 1365 break; 1366 if (unlikely(!base)) { 1367 error = -EFAULT; 1368 break; 1369 } 1370 1371 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) { 1372 error = -EFAULT; 1373 break; 1374 } 1375 1376 sd.len = 0; 1377 sd.total_len = len; 1378 sd.flags = flags; 1379 sd.u.userptr = base; 1380 sd.pos = 0; 1381 1382 size = __splice_from_pipe(pipe, &sd, pipe_to_user); 1383 if (size < 0) { 1384 if (!ret) 1385 ret = size; 1386 1387 break; 1388 } 1389 1390 ret += size; 1391 1392 if (size < len) 1393 break; 1394 1395 nr_segs--; 1396 iov++; 1397 } 1398 1399 pipe_unlock(pipe); 1400 1401 if (!ret) 1402 ret = error; 1403 1404 return ret; 1405 } 1406 1407 /* 1408 * vmsplice splices a user address range into a pipe. It can be thought of 1409 * as splice-from-memory, where the regular splice is splice-from-file (or 1410 * to file). In both cases the output is a pipe, naturally. 1411 */ 1412 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1413 unsigned long nr_segs, unsigned int flags) 1414 { 1415 struct pipe_inode_info *pipe; 1416 struct page *pages[PIPE_BUFFERS]; 1417 struct partial_page partial[PIPE_BUFFERS]; 1418 struct splice_pipe_desc spd = { 1419 .pages = pages, 1420 .partial = partial, 1421 .flags = flags, 1422 .ops = &user_page_pipe_buf_ops, 1423 .spd_release = spd_release_page, 1424 }; 1425 1426 pipe = pipe_info(file->f_path.dentry->d_inode); 1427 if (!pipe) 1428 return -EBADF; 1429 1430 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial, 1431 flags & SPLICE_F_GIFT); 1432 if (spd.nr_pages <= 0) 1433 return spd.nr_pages; 1434 1435 return splice_to_pipe(pipe, &spd); 1436 } 1437 1438 /* 1439 * Note that vmsplice only really supports true splicing _from_ user memory 1440 * to a pipe, not the other way around. Splicing from user memory is a simple 1441 * operation that can be supported without any funky alignment restrictions 1442 * or nasty vm tricks. We simply map in the user memory and fill them into 1443 * a pipe. The reverse isn't quite as easy, though. There are two possible 1444 * solutions for that: 1445 * 1446 * - memcpy() the data internally, at which point we might as well just 1447 * do a regular read() on the buffer anyway. 1448 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1449 * has restriction limitations on both ends of the pipe). 1450 * 1451 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1452 * 1453 */ 1454 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1455 unsigned long, nr_segs, unsigned int, flags) 1456 { 1457 struct file *file; 1458 long error; 1459 int fput; 1460 1461 if (unlikely(nr_segs > UIO_MAXIOV)) 1462 return -EINVAL; 1463 else if (unlikely(!nr_segs)) 1464 return 0; 1465 1466 error = -EBADF; 1467 file = fget_light(fd, &fput); 1468 if (file) { 1469 if (file->f_mode & FMODE_WRITE) 1470 error = vmsplice_to_pipe(file, iov, nr_segs, flags); 1471 else if (file->f_mode & FMODE_READ) 1472 error = vmsplice_to_user(file, iov, nr_segs, flags); 1473 1474 fput_light(file, fput); 1475 } 1476 1477 return error; 1478 } 1479 1480 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1481 int, fd_out, loff_t __user *, off_out, 1482 size_t, len, unsigned int, flags) 1483 { 1484 long error; 1485 struct file *in, *out; 1486 int fput_in, fput_out; 1487 1488 if (unlikely(!len)) 1489 return 0; 1490 1491 error = -EBADF; 1492 in = fget_light(fd_in, &fput_in); 1493 if (in) { 1494 if (in->f_mode & FMODE_READ) { 1495 out = fget_light(fd_out, &fput_out); 1496 if (out) { 1497 if (out->f_mode & FMODE_WRITE) 1498 error = do_splice(in, off_in, 1499 out, off_out, 1500 len, flags); 1501 fput_light(out, fput_out); 1502 } 1503 } 1504 1505 fput_light(in, fput_in); 1506 } 1507 1508 return error; 1509 } 1510 1511 /* 1512 * Make sure there's data to read. Wait for input if we can, otherwise 1513 * return an appropriate error. 1514 */ 1515 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1516 { 1517 int ret; 1518 1519 /* 1520 * Check ->nrbufs without the inode lock first. This function 1521 * is speculative anyways, so missing one is ok. 1522 */ 1523 if (pipe->nrbufs) 1524 return 0; 1525 1526 ret = 0; 1527 pipe_lock(pipe); 1528 1529 while (!pipe->nrbufs) { 1530 if (signal_pending(current)) { 1531 ret = -ERESTARTSYS; 1532 break; 1533 } 1534 if (!pipe->writers) 1535 break; 1536 if (!pipe->waiting_writers) { 1537 if (flags & SPLICE_F_NONBLOCK) { 1538 ret = -EAGAIN; 1539 break; 1540 } 1541 } 1542 pipe_wait(pipe); 1543 } 1544 1545 pipe_unlock(pipe); 1546 return ret; 1547 } 1548 1549 /* 1550 * Make sure there's writeable room. Wait for room if we can, otherwise 1551 * return an appropriate error. 1552 */ 1553 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1554 { 1555 int ret; 1556 1557 /* 1558 * Check ->nrbufs without the inode lock first. This function 1559 * is speculative anyways, so missing one is ok. 1560 */ 1561 if (pipe->nrbufs < PIPE_BUFFERS) 1562 return 0; 1563 1564 ret = 0; 1565 pipe_lock(pipe); 1566 1567 while (pipe->nrbufs >= PIPE_BUFFERS) { 1568 if (!pipe->readers) { 1569 send_sig(SIGPIPE, current, 0); 1570 ret = -EPIPE; 1571 break; 1572 } 1573 if (flags & SPLICE_F_NONBLOCK) { 1574 ret = -EAGAIN; 1575 break; 1576 } 1577 if (signal_pending(current)) { 1578 ret = -ERESTARTSYS; 1579 break; 1580 } 1581 pipe->waiting_writers++; 1582 pipe_wait(pipe); 1583 pipe->waiting_writers--; 1584 } 1585 1586 pipe_unlock(pipe); 1587 return ret; 1588 } 1589 1590 /* 1591 * Link contents of ipipe to opipe. 1592 */ 1593 static int link_pipe(struct pipe_inode_info *ipipe, 1594 struct pipe_inode_info *opipe, 1595 size_t len, unsigned int flags) 1596 { 1597 struct pipe_buffer *ibuf, *obuf; 1598 int ret = 0, i = 0, nbuf; 1599 1600 /* 1601 * Potential ABBA deadlock, work around it by ordering lock 1602 * grabbing by pipe info address. Otherwise two different processes 1603 * could deadlock (one doing tee from A -> B, the other from B -> A). 1604 */ 1605 pipe_double_lock(ipipe, opipe); 1606 1607 do { 1608 if (!opipe->readers) { 1609 send_sig(SIGPIPE, current, 0); 1610 if (!ret) 1611 ret = -EPIPE; 1612 break; 1613 } 1614 1615 /* 1616 * If we have iterated all input buffers or ran out of 1617 * output room, break. 1618 */ 1619 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) 1620 break; 1621 1622 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1)); 1623 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1); 1624 1625 /* 1626 * Get a reference to this pipe buffer, 1627 * so we can copy the contents over. 1628 */ 1629 ibuf->ops->get(ipipe, ibuf); 1630 1631 obuf = opipe->bufs + nbuf; 1632 *obuf = *ibuf; 1633 1634 /* 1635 * Don't inherit the gift flag, we need to 1636 * prevent multiple steals of this page. 1637 */ 1638 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1639 1640 if (obuf->len > len) 1641 obuf->len = len; 1642 1643 opipe->nrbufs++; 1644 ret += obuf->len; 1645 len -= obuf->len; 1646 i++; 1647 } while (len); 1648 1649 /* 1650 * return EAGAIN if we have the potential of some data in the 1651 * future, otherwise just return 0 1652 */ 1653 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1654 ret = -EAGAIN; 1655 1656 pipe_unlock(ipipe); 1657 pipe_unlock(opipe); 1658 1659 /* 1660 * If we put data in the output pipe, wakeup any potential readers. 1661 */ 1662 if (ret > 0) { 1663 smp_mb(); 1664 if (waitqueue_active(&opipe->wait)) 1665 wake_up_interruptible(&opipe->wait); 1666 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); 1667 } 1668 1669 return ret; 1670 } 1671 1672 /* 1673 * This is a tee(1) implementation that works on pipes. It doesn't copy 1674 * any data, it simply references the 'in' pages on the 'out' pipe. 1675 * The 'flags' used are the SPLICE_F_* variants, currently the only 1676 * applicable one is SPLICE_F_NONBLOCK. 1677 */ 1678 static long do_tee(struct file *in, struct file *out, size_t len, 1679 unsigned int flags) 1680 { 1681 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode); 1682 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode); 1683 int ret = -EINVAL; 1684 1685 /* 1686 * Duplicate the contents of ipipe to opipe without actually 1687 * copying the data. 1688 */ 1689 if (ipipe && opipe && ipipe != opipe) { 1690 /* 1691 * Keep going, unless we encounter an error. The ipipe/opipe 1692 * ordering doesn't really matter. 1693 */ 1694 ret = link_ipipe_prep(ipipe, flags); 1695 if (!ret) { 1696 ret = link_opipe_prep(opipe, flags); 1697 if (!ret) 1698 ret = link_pipe(ipipe, opipe, len, flags); 1699 } 1700 } 1701 1702 return ret; 1703 } 1704 1705 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1706 { 1707 struct file *in; 1708 int error, fput_in; 1709 1710 if (unlikely(!len)) 1711 return 0; 1712 1713 error = -EBADF; 1714 in = fget_light(fdin, &fput_in); 1715 if (in) { 1716 if (in->f_mode & FMODE_READ) { 1717 int fput_out; 1718 struct file *out = fget_light(fdout, &fput_out); 1719 1720 if (out) { 1721 if (out->f_mode & FMODE_WRITE) 1722 error = do_tee(in, out, len, flags); 1723 fput_light(out, fput_out); 1724 } 1725 } 1726 fput_light(in, fput_in); 1727 } 1728 1729 return error; 1730 } 1731