xref: /openbmc/linux/fs/splice.c (revision b627b4ed)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 
34 /*
35  * Attempt to steal a page from a pipe buffer. This should perhaps go into
36  * a vm helper function, it's already simplified quite a bit by the
37  * addition of remove_mapping(). If success is returned, the caller may
38  * attempt to reuse this page for another destination.
39  */
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 				     struct pipe_buffer *buf)
42 {
43 	struct page *page = buf->page;
44 	struct address_space *mapping;
45 
46 	lock_page(page);
47 
48 	mapping = page_mapping(page);
49 	if (mapping) {
50 		WARN_ON(!PageUptodate(page));
51 
52 		/*
53 		 * At least for ext2 with nobh option, we need to wait on
54 		 * writeback completing on this page, since we'll remove it
55 		 * from the pagecache.  Otherwise truncate wont wait on the
56 		 * page, allowing the disk blocks to be reused by someone else
57 		 * before we actually wrote our data to them. fs corruption
58 		 * ensues.
59 		 */
60 		wait_on_page_writeback(page);
61 
62 		if (page_has_private(page) &&
63 		    !try_to_release_page(page, GFP_KERNEL))
64 			goto out_unlock;
65 
66 		/*
67 		 * If we succeeded in removing the mapping, set LRU flag
68 		 * and return good.
69 		 */
70 		if (remove_mapping(mapping, page)) {
71 			buf->flags |= PIPE_BUF_FLAG_LRU;
72 			return 0;
73 		}
74 	}
75 
76 	/*
77 	 * Raced with truncate or failed to remove page from current
78 	 * address space, unlock and return failure.
79 	 */
80 out_unlock:
81 	unlock_page(page);
82 	return 1;
83 }
84 
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86 					struct pipe_buffer *buf)
87 {
88 	page_cache_release(buf->page);
89 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
90 }
91 
92 /*
93  * Check whether the contents of buf is OK to access. Since the content
94  * is a page cache page, IO may be in flight.
95  */
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97 				       struct pipe_buffer *buf)
98 {
99 	struct page *page = buf->page;
100 	int err;
101 
102 	if (!PageUptodate(page)) {
103 		lock_page(page);
104 
105 		/*
106 		 * Page got truncated/unhashed. This will cause a 0-byte
107 		 * splice, if this is the first page.
108 		 */
109 		if (!page->mapping) {
110 			err = -ENODATA;
111 			goto error;
112 		}
113 
114 		/*
115 		 * Uh oh, read-error from disk.
116 		 */
117 		if (!PageUptodate(page)) {
118 			err = -EIO;
119 			goto error;
120 		}
121 
122 		/*
123 		 * Page is ok afterall, we are done.
124 		 */
125 		unlock_page(page);
126 	}
127 
128 	return 0;
129 error:
130 	unlock_page(page);
131 	return err;
132 }
133 
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135 	.can_merge = 0,
136 	.map = generic_pipe_buf_map,
137 	.unmap = generic_pipe_buf_unmap,
138 	.confirm = page_cache_pipe_buf_confirm,
139 	.release = page_cache_pipe_buf_release,
140 	.steal = page_cache_pipe_buf_steal,
141 	.get = generic_pipe_buf_get,
142 };
143 
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145 				    struct pipe_buffer *buf)
146 {
147 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148 		return 1;
149 
150 	buf->flags |= PIPE_BUF_FLAG_LRU;
151 	return generic_pipe_buf_steal(pipe, buf);
152 }
153 
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155 	.can_merge = 0,
156 	.map = generic_pipe_buf_map,
157 	.unmap = generic_pipe_buf_unmap,
158 	.confirm = generic_pipe_buf_confirm,
159 	.release = page_cache_pipe_buf_release,
160 	.steal = user_page_pipe_buf_steal,
161 	.get = generic_pipe_buf_get,
162 };
163 
164 /**
165  * splice_to_pipe - fill passed data into a pipe
166  * @pipe:	pipe to fill
167  * @spd:	data to fill
168  *
169  * Description:
170  *    @spd contains a map of pages and len/offset tuples, along with
171  *    the struct pipe_buf_operations associated with these pages. This
172  *    function will link that data to the pipe.
173  *
174  */
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176 		       struct splice_pipe_desc *spd)
177 {
178 	unsigned int spd_pages = spd->nr_pages;
179 	int ret, do_wakeup, page_nr;
180 
181 	ret = 0;
182 	do_wakeup = 0;
183 	page_nr = 0;
184 
185 	pipe_lock(pipe);
186 
187 	for (;;) {
188 		if (!pipe->readers) {
189 			send_sig(SIGPIPE, current, 0);
190 			if (!ret)
191 				ret = -EPIPE;
192 			break;
193 		}
194 
195 		if (pipe->nrbufs < PIPE_BUFFERS) {
196 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
197 			struct pipe_buffer *buf = pipe->bufs + newbuf;
198 
199 			buf->page = spd->pages[page_nr];
200 			buf->offset = spd->partial[page_nr].offset;
201 			buf->len = spd->partial[page_nr].len;
202 			buf->private = spd->partial[page_nr].private;
203 			buf->ops = spd->ops;
204 			if (spd->flags & SPLICE_F_GIFT)
205 				buf->flags |= PIPE_BUF_FLAG_GIFT;
206 
207 			pipe->nrbufs++;
208 			page_nr++;
209 			ret += buf->len;
210 
211 			if (pipe->inode)
212 				do_wakeup = 1;
213 
214 			if (!--spd->nr_pages)
215 				break;
216 			if (pipe->nrbufs < PIPE_BUFFERS)
217 				continue;
218 
219 			break;
220 		}
221 
222 		if (spd->flags & SPLICE_F_NONBLOCK) {
223 			if (!ret)
224 				ret = -EAGAIN;
225 			break;
226 		}
227 
228 		if (signal_pending(current)) {
229 			if (!ret)
230 				ret = -ERESTARTSYS;
231 			break;
232 		}
233 
234 		if (do_wakeup) {
235 			smp_mb();
236 			if (waitqueue_active(&pipe->wait))
237 				wake_up_interruptible_sync(&pipe->wait);
238 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 			do_wakeup = 0;
240 		}
241 
242 		pipe->waiting_writers++;
243 		pipe_wait(pipe);
244 		pipe->waiting_writers--;
245 	}
246 
247 	pipe_unlock(pipe);
248 
249 	if (do_wakeup) {
250 		smp_mb();
251 		if (waitqueue_active(&pipe->wait))
252 			wake_up_interruptible(&pipe->wait);
253 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
254 	}
255 
256 	while (page_nr < spd_pages)
257 		spd->spd_release(spd, page_nr++);
258 
259 	return ret;
260 }
261 
262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
263 {
264 	page_cache_release(spd->pages[i]);
265 }
266 
267 static int
268 __generic_file_splice_read(struct file *in, loff_t *ppos,
269 			   struct pipe_inode_info *pipe, size_t len,
270 			   unsigned int flags)
271 {
272 	struct address_space *mapping = in->f_mapping;
273 	unsigned int loff, nr_pages, req_pages;
274 	struct page *pages[PIPE_BUFFERS];
275 	struct partial_page partial[PIPE_BUFFERS];
276 	struct page *page;
277 	pgoff_t index, end_index;
278 	loff_t isize;
279 	int error, page_nr;
280 	struct splice_pipe_desc spd = {
281 		.pages = pages,
282 		.partial = partial,
283 		.flags = flags,
284 		.ops = &page_cache_pipe_buf_ops,
285 		.spd_release = spd_release_page,
286 	};
287 
288 	index = *ppos >> PAGE_CACHE_SHIFT;
289 	loff = *ppos & ~PAGE_CACHE_MASK;
290 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
291 	nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
292 
293 	/*
294 	 * Lookup the (hopefully) full range of pages we need.
295 	 */
296 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
297 	index += spd.nr_pages;
298 
299 	/*
300 	 * If find_get_pages_contig() returned fewer pages than we needed,
301 	 * readahead/allocate the rest and fill in the holes.
302 	 */
303 	if (spd.nr_pages < nr_pages)
304 		page_cache_sync_readahead(mapping, &in->f_ra, in,
305 				index, req_pages - spd.nr_pages);
306 
307 	error = 0;
308 	while (spd.nr_pages < nr_pages) {
309 		/*
310 		 * Page could be there, find_get_pages_contig() breaks on
311 		 * the first hole.
312 		 */
313 		page = find_get_page(mapping, index);
314 		if (!page) {
315 			/*
316 			 * page didn't exist, allocate one.
317 			 */
318 			page = page_cache_alloc_cold(mapping);
319 			if (!page)
320 				break;
321 
322 			error = add_to_page_cache_lru(page, mapping, index,
323 						mapping_gfp_mask(mapping));
324 			if (unlikely(error)) {
325 				page_cache_release(page);
326 				if (error == -EEXIST)
327 					continue;
328 				break;
329 			}
330 			/*
331 			 * add_to_page_cache() locks the page, unlock it
332 			 * to avoid convoluting the logic below even more.
333 			 */
334 			unlock_page(page);
335 		}
336 
337 		pages[spd.nr_pages++] = page;
338 		index++;
339 	}
340 
341 	/*
342 	 * Now loop over the map and see if we need to start IO on any
343 	 * pages, fill in the partial map, etc.
344 	 */
345 	index = *ppos >> PAGE_CACHE_SHIFT;
346 	nr_pages = spd.nr_pages;
347 	spd.nr_pages = 0;
348 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
349 		unsigned int this_len;
350 
351 		if (!len)
352 			break;
353 
354 		/*
355 		 * this_len is the max we'll use from this page
356 		 */
357 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
358 		page = pages[page_nr];
359 
360 		if (PageReadahead(page))
361 			page_cache_async_readahead(mapping, &in->f_ra, in,
362 					page, index, req_pages - page_nr);
363 
364 		/*
365 		 * If the page isn't uptodate, we may need to start io on it
366 		 */
367 		if (!PageUptodate(page)) {
368 			/*
369 			 * If in nonblock mode then dont block on waiting
370 			 * for an in-flight io page
371 			 */
372 			if (flags & SPLICE_F_NONBLOCK) {
373 				if (!trylock_page(page)) {
374 					error = -EAGAIN;
375 					break;
376 				}
377 			} else
378 				lock_page(page);
379 
380 			/*
381 			 * Page was truncated, or invalidated by the
382 			 * filesystem.  Redo the find/create, but this time the
383 			 * page is kept locked, so there's no chance of another
384 			 * race with truncate/invalidate.
385 			 */
386 			if (!page->mapping) {
387 				unlock_page(page);
388 				page = find_or_create_page(mapping, index,
389 						mapping_gfp_mask(mapping));
390 
391 				if (!page) {
392 					error = -ENOMEM;
393 					break;
394 				}
395 				page_cache_release(pages[page_nr]);
396 				pages[page_nr] = page;
397 			}
398 			/*
399 			 * page was already under io and is now done, great
400 			 */
401 			if (PageUptodate(page)) {
402 				unlock_page(page);
403 				goto fill_it;
404 			}
405 
406 			/*
407 			 * need to read in the page
408 			 */
409 			error = mapping->a_ops->readpage(in, page);
410 			if (unlikely(error)) {
411 				/*
412 				 * We really should re-lookup the page here,
413 				 * but it complicates things a lot. Instead
414 				 * lets just do what we already stored, and
415 				 * we'll get it the next time we are called.
416 				 */
417 				if (error == AOP_TRUNCATED_PAGE)
418 					error = 0;
419 
420 				break;
421 			}
422 		}
423 fill_it:
424 		/*
425 		 * i_size must be checked after PageUptodate.
426 		 */
427 		isize = i_size_read(mapping->host);
428 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
429 		if (unlikely(!isize || index > end_index))
430 			break;
431 
432 		/*
433 		 * if this is the last page, see if we need to shrink
434 		 * the length and stop
435 		 */
436 		if (end_index == index) {
437 			unsigned int plen;
438 
439 			/*
440 			 * max good bytes in this page
441 			 */
442 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
443 			if (plen <= loff)
444 				break;
445 
446 			/*
447 			 * force quit after adding this page
448 			 */
449 			this_len = min(this_len, plen - loff);
450 			len = this_len;
451 		}
452 
453 		partial[page_nr].offset = loff;
454 		partial[page_nr].len = this_len;
455 		len -= this_len;
456 		loff = 0;
457 		spd.nr_pages++;
458 		index++;
459 	}
460 
461 	/*
462 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
463 	 * we got, 'nr_pages' is how many pages are in the map.
464 	 */
465 	while (page_nr < nr_pages)
466 		page_cache_release(pages[page_nr++]);
467 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
468 
469 	if (spd.nr_pages)
470 		return splice_to_pipe(pipe, &spd);
471 
472 	return error;
473 }
474 
475 /**
476  * generic_file_splice_read - splice data from file to a pipe
477  * @in:		file to splice from
478  * @ppos:	position in @in
479  * @pipe:	pipe to splice to
480  * @len:	number of bytes to splice
481  * @flags:	splice modifier flags
482  *
483  * Description:
484  *    Will read pages from given file and fill them into a pipe. Can be
485  *    used as long as the address_space operations for the source implements
486  *    a readpage() hook.
487  *
488  */
489 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
490 				 struct pipe_inode_info *pipe, size_t len,
491 				 unsigned int flags)
492 {
493 	loff_t isize, left;
494 	int ret;
495 
496 	isize = i_size_read(in->f_mapping->host);
497 	if (unlikely(*ppos >= isize))
498 		return 0;
499 
500 	left = isize - *ppos;
501 	if (unlikely(left < len))
502 		len = left;
503 
504 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
505 	if (ret > 0)
506 		*ppos += ret;
507 
508 	return ret;
509 }
510 
511 EXPORT_SYMBOL(generic_file_splice_read);
512 
513 /*
514  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
515  * using sendpage(). Return the number of bytes sent.
516  */
517 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
518 			    struct pipe_buffer *buf, struct splice_desc *sd)
519 {
520 	struct file *file = sd->u.file;
521 	loff_t pos = sd->pos;
522 	int ret, more;
523 
524 	ret = buf->ops->confirm(pipe, buf);
525 	if (!ret) {
526 		more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
527 
528 		ret = file->f_op->sendpage(file, buf->page, buf->offset,
529 					   sd->len, &pos, more);
530 	}
531 
532 	return ret;
533 }
534 
535 /*
536  * This is a little more tricky than the file -> pipe splicing. There are
537  * basically three cases:
538  *
539  *	- Destination page already exists in the address space and there
540  *	  are users of it. For that case we have no other option that
541  *	  copying the data. Tough luck.
542  *	- Destination page already exists in the address space, but there
543  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
544  *	  through to last case.
545  *	- Destination page does not exist, we can add the pipe page to
546  *	  the page cache and avoid the copy.
547  *
548  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
549  * sd->flags), we attempt to migrate pages from the pipe to the output
550  * file address space page cache. This is possible if no one else has
551  * the pipe page referenced outside of the pipe and page cache. If
552  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
553  * a new page in the output file page cache and fill/dirty that.
554  */
555 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
556 		 struct splice_desc *sd)
557 {
558 	struct file *file = sd->u.file;
559 	struct address_space *mapping = file->f_mapping;
560 	unsigned int offset, this_len;
561 	struct page *page;
562 	void *fsdata;
563 	int ret;
564 
565 	/*
566 	 * make sure the data in this buffer is uptodate
567 	 */
568 	ret = buf->ops->confirm(pipe, buf);
569 	if (unlikely(ret))
570 		return ret;
571 
572 	offset = sd->pos & ~PAGE_CACHE_MASK;
573 
574 	this_len = sd->len;
575 	if (this_len + offset > PAGE_CACHE_SIZE)
576 		this_len = PAGE_CACHE_SIZE - offset;
577 
578 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
579 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
580 	if (unlikely(ret))
581 		goto out;
582 
583 	if (buf->page != page) {
584 		/*
585 		 * Careful, ->map() uses KM_USER0!
586 		 */
587 		char *src = buf->ops->map(pipe, buf, 1);
588 		char *dst = kmap_atomic(page, KM_USER1);
589 
590 		memcpy(dst + offset, src + buf->offset, this_len);
591 		flush_dcache_page(page);
592 		kunmap_atomic(dst, KM_USER1);
593 		buf->ops->unmap(pipe, buf, src);
594 	}
595 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
596 				page, fsdata);
597 out:
598 	return ret;
599 }
600 EXPORT_SYMBOL(pipe_to_file);
601 
602 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
603 {
604 	smp_mb();
605 	if (waitqueue_active(&pipe->wait))
606 		wake_up_interruptible(&pipe->wait);
607 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
608 }
609 
610 /**
611  * splice_from_pipe_feed - feed available data from a pipe to a file
612  * @pipe:	pipe to splice from
613  * @sd:		information to @actor
614  * @actor:	handler that splices the data
615  *
616  * Description:
617 
618  *    This function loops over the pipe and calls @actor to do the
619  *    actual moving of a single struct pipe_buffer to the desired
620  *    destination.  It returns when there's no more buffers left in
621  *    the pipe or if the requested number of bytes (@sd->total_len)
622  *    have been copied.  It returns a positive number (one) if the
623  *    pipe needs to be filled with more data, zero if the required
624  *    number of bytes have been copied and -errno on error.
625  *
626  *    This, together with splice_from_pipe_{begin,end,next}, may be
627  *    used to implement the functionality of __splice_from_pipe() when
628  *    locking is required around copying the pipe buffers to the
629  *    destination.
630  */
631 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
632 			  splice_actor *actor)
633 {
634 	int ret;
635 
636 	while (pipe->nrbufs) {
637 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
638 		const struct pipe_buf_operations *ops = buf->ops;
639 
640 		sd->len = buf->len;
641 		if (sd->len > sd->total_len)
642 			sd->len = sd->total_len;
643 
644 		ret = actor(pipe, buf, sd);
645 		if (ret <= 0) {
646 			if (ret == -ENODATA)
647 				ret = 0;
648 			return ret;
649 		}
650 		buf->offset += ret;
651 		buf->len -= ret;
652 
653 		sd->num_spliced += ret;
654 		sd->len -= ret;
655 		sd->pos += ret;
656 		sd->total_len -= ret;
657 
658 		if (!buf->len) {
659 			buf->ops = NULL;
660 			ops->release(pipe, buf);
661 			pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
662 			pipe->nrbufs--;
663 			if (pipe->inode)
664 				sd->need_wakeup = true;
665 		}
666 
667 		if (!sd->total_len)
668 			return 0;
669 	}
670 
671 	return 1;
672 }
673 EXPORT_SYMBOL(splice_from_pipe_feed);
674 
675 /**
676  * splice_from_pipe_next - wait for some data to splice from
677  * @pipe:	pipe to splice from
678  * @sd:		information about the splice operation
679  *
680  * Description:
681  *    This function will wait for some data and return a positive
682  *    value (one) if pipe buffers are available.  It will return zero
683  *    or -errno if no more data needs to be spliced.
684  */
685 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
686 {
687 	while (!pipe->nrbufs) {
688 		if (!pipe->writers)
689 			return 0;
690 
691 		if (!pipe->waiting_writers && sd->num_spliced)
692 			return 0;
693 
694 		if (sd->flags & SPLICE_F_NONBLOCK)
695 			return -EAGAIN;
696 
697 		if (signal_pending(current))
698 			return -ERESTARTSYS;
699 
700 		if (sd->need_wakeup) {
701 			wakeup_pipe_writers(pipe);
702 			sd->need_wakeup = false;
703 		}
704 
705 		pipe_wait(pipe);
706 	}
707 
708 	return 1;
709 }
710 EXPORT_SYMBOL(splice_from_pipe_next);
711 
712 /**
713  * splice_from_pipe_begin - start splicing from pipe
714  * @pipe:	pipe to splice from
715  *
716  * Description:
717  *    This function should be called before a loop containing
718  *    splice_from_pipe_next() and splice_from_pipe_feed() to
719  *    initialize the necessary fields of @sd.
720  */
721 void splice_from_pipe_begin(struct splice_desc *sd)
722 {
723 	sd->num_spliced = 0;
724 	sd->need_wakeup = false;
725 }
726 EXPORT_SYMBOL(splice_from_pipe_begin);
727 
728 /**
729  * splice_from_pipe_end - finish splicing from pipe
730  * @pipe:	pipe to splice from
731  * @sd:		information about the splice operation
732  *
733  * Description:
734  *    This function will wake up pipe writers if necessary.  It should
735  *    be called after a loop containing splice_from_pipe_next() and
736  *    splice_from_pipe_feed().
737  */
738 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
739 {
740 	if (sd->need_wakeup)
741 		wakeup_pipe_writers(pipe);
742 }
743 EXPORT_SYMBOL(splice_from_pipe_end);
744 
745 /**
746  * __splice_from_pipe - splice data from a pipe to given actor
747  * @pipe:	pipe to splice from
748  * @sd:		information to @actor
749  * @actor:	handler that splices the data
750  *
751  * Description:
752  *    This function does little more than loop over the pipe and call
753  *    @actor to do the actual moving of a single struct pipe_buffer to
754  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
755  *    pipe_to_user.
756  *
757  */
758 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
759 			   splice_actor *actor)
760 {
761 	int ret;
762 
763 	splice_from_pipe_begin(sd);
764 	do {
765 		ret = splice_from_pipe_next(pipe, sd);
766 		if (ret > 0)
767 			ret = splice_from_pipe_feed(pipe, sd, actor);
768 	} while (ret > 0);
769 	splice_from_pipe_end(pipe, sd);
770 
771 	return sd->num_spliced ? sd->num_spliced : ret;
772 }
773 EXPORT_SYMBOL(__splice_from_pipe);
774 
775 /**
776  * splice_from_pipe - splice data from a pipe to a file
777  * @pipe:	pipe to splice from
778  * @out:	file to splice to
779  * @ppos:	position in @out
780  * @len:	how many bytes to splice
781  * @flags:	splice modifier flags
782  * @actor:	handler that splices the data
783  *
784  * Description:
785  *    See __splice_from_pipe. This function locks the pipe inode,
786  *    otherwise it's identical to __splice_from_pipe().
787  *
788  */
789 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
790 			 loff_t *ppos, size_t len, unsigned int flags,
791 			 splice_actor *actor)
792 {
793 	ssize_t ret;
794 	struct splice_desc sd = {
795 		.total_len = len,
796 		.flags = flags,
797 		.pos = *ppos,
798 		.u.file = out,
799 	};
800 
801 	pipe_lock(pipe);
802 	ret = __splice_from_pipe(pipe, &sd, actor);
803 	pipe_unlock(pipe);
804 
805 	return ret;
806 }
807 
808 /**
809  * generic_file_splice_write - splice data from a pipe to a file
810  * @pipe:	pipe info
811  * @out:	file to write to
812  * @ppos:	position in @out
813  * @len:	number of bytes to splice
814  * @flags:	splice modifier flags
815  *
816  * Description:
817  *    Will either move or copy pages (determined by @flags options) from
818  *    the given pipe inode to the given file.
819  *
820  */
821 ssize_t
822 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
823 			  loff_t *ppos, size_t len, unsigned int flags)
824 {
825 	struct address_space *mapping = out->f_mapping;
826 	struct inode *inode = mapping->host;
827 	struct splice_desc sd = {
828 		.total_len = len,
829 		.flags = flags,
830 		.pos = *ppos,
831 		.u.file = out,
832 	};
833 	ssize_t ret;
834 
835 	pipe_lock(pipe);
836 
837 	splice_from_pipe_begin(&sd);
838 	do {
839 		ret = splice_from_pipe_next(pipe, &sd);
840 		if (ret <= 0)
841 			break;
842 
843 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
844 		ret = file_remove_suid(out);
845 		if (!ret)
846 			ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
847 		mutex_unlock(&inode->i_mutex);
848 	} while (ret > 0);
849 	splice_from_pipe_end(pipe, &sd);
850 
851 	pipe_unlock(pipe);
852 
853 	if (sd.num_spliced)
854 		ret = sd.num_spliced;
855 
856 	if (ret > 0) {
857 		unsigned long nr_pages;
858 
859 		*ppos += ret;
860 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
861 
862 		/*
863 		 * If file or inode is SYNC and we actually wrote some data,
864 		 * sync it.
865 		 */
866 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
867 			int err;
868 
869 			mutex_lock(&inode->i_mutex);
870 			err = generic_osync_inode(inode, mapping,
871 						  OSYNC_METADATA|OSYNC_DATA);
872 			mutex_unlock(&inode->i_mutex);
873 
874 			if (err)
875 				ret = err;
876 		}
877 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
878 	}
879 
880 	return ret;
881 }
882 
883 EXPORT_SYMBOL(generic_file_splice_write);
884 
885 /**
886  * generic_splice_sendpage - splice data from a pipe to a socket
887  * @pipe:	pipe to splice from
888  * @out:	socket to write to
889  * @ppos:	position in @out
890  * @len:	number of bytes to splice
891  * @flags:	splice modifier flags
892  *
893  * Description:
894  *    Will send @len bytes from the pipe to a network socket. No data copying
895  *    is involved.
896  *
897  */
898 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
899 				loff_t *ppos, size_t len, unsigned int flags)
900 {
901 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
902 }
903 
904 EXPORT_SYMBOL(generic_splice_sendpage);
905 
906 /*
907  * Attempt to initiate a splice from pipe to file.
908  */
909 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
910 			   loff_t *ppos, size_t len, unsigned int flags)
911 {
912 	int ret;
913 
914 	if (unlikely(!out->f_op || !out->f_op->splice_write))
915 		return -EINVAL;
916 
917 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
918 		return -EBADF;
919 
920 	if (unlikely(out->f_flags & O_APPEND))
921 		return -EINVAL;
922 
923 	ret = rw_verify_area(WRITE, out, ppos, len);
924 	if (unlikely(ret < 0))
925 		return ret;
926 
927 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
928 }
929 
930 /*
931  * Attempt to initiate a splice from a file to a pipe.
932  */
933 static long do_splice_to(struct file *in, loff_t *ppos,
934 			 struct pipe_inode_info *pipe, size_t len,
935 			 unsigned int flags)
936 {
937 	int ret;
938 
939 	if (unlikely(!in->f_op || !in->f_op->splice_read))
940 		return -EINVAL;
941 
942 	if (unlikely(!(in->f_mode & FMODE_READ)))
943 		return -EBADF;
944 
945 	ret = rw_verify_area(READ, in, ppos, len);
946 	if (unlikely(ret < 0))
947 		return ret;
948 
949 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
950 }
951 
952 /**
953  * splice_direct_to_actor - splices data directly between two non-pipes
954  * @in:		file to splice from
955  * @sd:		actor information on where to splice to
956  * @actor:	handles the data splicing
957  *
958  * Description:
959  *    This is a special case helper to splice directly between two
960  *    points, without requiring an explicit pipe. Internally an allocated
961  *    pipe is cached in the process, and reused during the lifetime of
962  *    that process.
963  *
964  */
965 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
966 			       splice_direct_actor *actor)
967 {
968 	struct pipe_inode_info *pipe;
969 	long ret, bytes;
970 	umode_t i_mode;
971 	size_t len;
972 	int i, flags;
973 
974 	/*
975 	 * We require the input being a regular file, as we don't want to
976 	 * randomly drop data for eg socket -> socket splicing. Use the
977 	 * piped splicing for that!
978 	 */
979 	i_mode = in->f_path.dentry->d_inode->i_mode;
980 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
981 		return -EINVAL;
982 
983 	/*
984 	 * neither in nor out is a pipe, setup an internal pipe attached to
985 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
986 	 */
987 	pipe = current->splice_pipe;
988 	if (unlikely(!pipe)) {
989 		pipe = alloc_pipe_info(NULL);
990 		if (!pipe)
991 			return -ENOMEM;
992 
993 		/*
994 		 * We don't have an immediate reader, but we'll read the stuff
995 		 * out of the pipe right after the splice_to_pipe(). So set
996 		 * PIPE_READERS appropriately.
997 		 */
998 		pipe->readers = 1;
999 
1000 		current->splice_pipe = pipe;
1001 	}
1002 
1003 	/*
1004 	 * Do the splice.
1005 	 */
1006 	ret = 0;
1007 	bytes = 0;
1008 	len = sd->total_len;
1009 	flags = sd->flags;
1010 
1011 	/*
1012 	 * Don't block on output, we have to drain the direct pipe.
1013 	 */
1014 	sd->flags &= ~SPLICE_F_NONBLOCK;
1015 
1016 	while (len) {
1017 		size_t read_len;
1018 		loff_t pos = sd->pos, prev_pos = pos;
1019 
1020 		ret = do_splice_to(in, &pos, pipe, len, flags);
1021 		if (unlikely(ret <= 0))
1022 			goto out_release;
1023 
1024 		read_len = ret;
1025 		sd->total_len = read_len;
1026 
1027 		/*
1028 		 * NOTE: nonblocking mode only applies to the input. We
1029 		 * must not do the output in nonblocking mode as then we
1030 		 * could get stuck data in the internal pipe:
1031 		 */
1032 		ret = actor(pipe, sd);
1033 		if (unlikely(ret <= 0)) {
1034 			sd->pos = prev_pos;
1035 			goto out_release;
1036 		}
1037 
1038 		bytes += ret;
1039 		len -= ret;
1040 		sd->pos = pos;
1041 
1042 		if (ret < read_len) {
1043 			sd->pos = prev_pos + ret;
1044 			goto out_release;
1045 		}
1046 	}
1047 
1048 done:
1049 	pipe->nrbufs = pipe->curbuf = 0;
1050 	file_accessed(in);
1051 	return bytes;
1052 
1053 out_release:
1054 	/*
1055 	 * If we did an incomplete transfer we must release
1056 	 * the pipe buffers in question:
1057 	 */
1058 	for (i = 0; i < PIPE_BUFFERS; i++) {
1059 		struct pipe_buffer *buf = pipe->bufs + i;
1060 
1061 		if (buf->ops) {
1062 			buf->ops->release(pipe, buf);
1063 			buf->ops = NULL;
1064 		}
1065 	}
1066 
1067 	if (!bytes)
1068 		bytes = ret;
1069 
1070 	goto done;
1071 }
1072 EXPORT_SYMBOL(splice_direct_to_actor);
1073 
1074 static int direct_splice_actor(struct pipe_inode_info *pipe,
1075 			       struct splice_desc *sd)
1076 {
1077 	struct file *file = sd->u.file;
1078 
1079 	return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1080 }
1081 
1082 /**
1083  * do_splice_direct - splices data directly between two files
1084  * @in:		file to splice from
1085  * @ppos:	input file offset
1086  * @out:	file to splice to
1087  * @len:	number of bytes to splice
1088  * @flags:	splice modifier flags
1089  *
1090  * Description:
1091  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1092  *    doing it in the application would incur an extra system call
1093  *    (splice in + splice out, as compared to just sendfile()). So this helper
1094  *    can splice directly through a process-private pipe.
1095  *
1096  */
1097 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1098 		      size_t len, unsigned int flags)
1099 {
1100 	struct splice_desc sd = {
1101 		.len		= len,
1102 		.total_len	= len,
1103 		.flags		= flags,
1104 		.pos		= *ppos,
1105 		.u.file		= out,
1106 	};
1107 	long ret;
1108 
1109 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1110 	if (ret > 0)
1111 		*ppos = sd.pos;
1112 
1113 	return ret;
1114 }
1115 
1116 /*
1117  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1118  * location, so checking ->i_pipe is not enough to verify that this is a
1119  * pipe.
1120  */
1121 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1122 {
1123 	if (S_ISFIFO(inode->i_mode))
1124 		return inode->i_pipe;
1125 
1126 	return NULL;
1127 }
1128 
1129 /*
1130  * Determine where to splice to/from.
1131  */
1132 static long do_splice(struct file *in, loff_t __user *off_in,
1133 		      struct file *out, loff_t __user *off_out,
1134 		      size_t len, unsigned int flags)
1135 {
1136 	struct pipe_inode_info *pipe;
1137 	loff_t offset, *off;
1138 	long ret;
1139 
1140 	pipe = pipe_info(in->f_path.dentry->d_inode);
1141 	if (pipe) {
1142 		if (off_in)
1143 			return -ESPIPE;
1144 		if (off_out) {
1145 			if (out->f_op->llseek == no_llseek)
1146 				return -EINVAL;
1147 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1148 				return -EFAULT;
1149 			off = &offset;
1150 		} else
1151 			off = &out->f_pos;
1152 
1153 		ret = do_splice_from(pipe, out, off, len, flags);
1154 
1155 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1156 			ret = -EFAULT;
1157 
1158 		return ret;
1159 	}
1160 
1161 	pipe = pipe_info(out->f_path.dentry->d_inode);
1162 	if (pipe) {
1163 		if (off_out)
1164 			return -ESPIPE;
1165 		if (off_in) {
1166 			if (in->f_op->llseek == no_llseek)
1167 				return -EINVAL;
1168 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1169 				return -EFAULT;
1170 			off = &offset;
1171 		} else
1172 			off = &in->f_pos;
1173 
1174 		ret = do_splice_to(in, off, pipe, len, flags);
1175 
1176 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1177 			ret = -EFAULT;
1178 
1179 		return ret;
1180 	}
1181 
1182 	return -EINVAL;
1183 }
1184 
1185 /*
1186  * Map an iov into an array of pages and offset/length tupples. With the
1187  * partial_page structure, we can map several non-contiguous ranges into
1188  * our ones pages[] map instead of splitting that operation into pieces.
1189  * Could easily be exported as a generic helper for other users, in which
1190  * case one would probably want to add a 'max_nr_pages' parameter as well.
1191  */
1192 static int get_iovec_page_array(const struct iovec __user *iov,
1193 				unsigned int nr_vecs, struct page **pages,
1194 				struct partial_page *partial, int aligned)
1195 {
1196 	int buffers = 0, error = 0;
1197 
1198 	while (nr_vecs) {
1199 		unsigned long off, npages;
1200 		struct iovec entry;
1201 		void __user *base;
1202 		size_t len;
1203 		int i;
1204 
1205 		error = -EFAULT;
1206 		if (copy_from_user(&entry, iov, sizeof(entry)))
1207 			break;
1208 
1209 		base = entry.iov_base;
1210 		len = entry.iov_len;
1211 
1212 		/*
1213 		 * Sanity check this iovec. 0 read succeeds.
1214 		 */
1215 		error = 0;
1216 		if (unlikely(!len))
1217 			break;
1218 		error = -EFAULT;
1219 		if (!access_ok(VERIFY_READ, base, len))
1220 			break;
1221 
1222 		/*
1223 		 * Get this base offset and number of pages, then map
1224 		 * in the user pages.
1225 		 */
1226 		off = (unsigned long) base & ~PAGE_MASK;
1227 
1228 		/*
1229 		 * If asked for alignment, the offset must be zero and the
1230 		 * length a multiple of the PAGE_SIZE.
1231 		 */
1232 		error = -EINVAL;
1233 		if (aligned && (off || len & ~PAGE_MASK))
1234 			break;
1235 
1236 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1237 		if (npages > PIPE_BUFFERS - buffers)
1238 			npages = PIPE_BUFFERS - buffers;
1239 
1240 		error = get_user_pages_fast((unsigned long)base, npages,
1241 					0, &pages[buffers]);
1242 
1243 		if (unlikely(error <= 0))
1244 			break;
1245 
1246 		/*
1247 		 * Fill this contiguous range into the partial page map.
1248 		 */
1249 		for (i = 0; i < error; i++) {
1250 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1251 
1252 			partial[buffers].offset = off;
1253 			partial[buffers].len = plen;
1254 
1255 			off = 0;
1256 			len -= plen;
1257 			buffers++;
1258 		}
1259 
1260 		/*
1261 		 * We didn't complete this iov, stop here since it probably
1262 		 * means we have to move some of this into a pipe to
1263 		 * be able to continue.
1264 		 */
1265 		if (len)
1266 			break;
1267 
1268 		/*
1269 		 * Don't continue if we mapped fewer pages than we asked for,
1270 		 * or if we mapped the max number of pages that we have
1271 		 * room for.
1272 		 */
1273 		if (error < npages || buffers == PIPE_BUFFERS)
1274 			break;
1275 
1276 		nr_vecs--;
1277 		iov++;
1278 	}
1279 
1280 	if (buffers)
1281 		return buffers;
1282 
1283 	return error;
1284 }
1285 
1286 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1287 			struct splice_desc *sd)
1288 {
1289 	char *src;
1290 	int ret;
1291 
1292 	ret = buf->ops->confirm(pipe, buf);
1293 	if (unlikely(ret))
1294 		return ret;
1295 
1296 	/*
1297 	 * See if we can use the atomic maps, by prefaulting in the
1298 	 * pages and doing an atomic copy
1299 	 */
1300 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1301 		src = buf->ops->map(pipe, buf, 1);
1302 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1303 							sd->len);
1304 		buf->ops->unmap(pipe, buf, src);
1305 		if (!ret) {
1306 			ret = sd->len;
1307 			goto out;
1308 		}
1309 	}
1310 
1311 	/*
1312 	 * No dice, use slow non-atomic map and copy
1313  	 */
1314 	src = buf->ops->map(pipe, buf, 0);
1315 
1316 	ret = sd->len;
1317 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1318 		ret = -EFAULT;
1319 
1320 	buf->ops->unmap(pipe, buf, src);
1321 out:
1322 	if (ret > 0)
1323 		sd->u.userptr += ret;
1324 	return ret;
1325 }
1326 
1327 /*
1328  * For lack of a better implementation, implement vmsplice() to userspace
1329  * as a simple copy of the pipes pages to the user iov.
1330  */
1331 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1332 			     unsigned long nr_segs, unsigned int flags)
1333 {
1334 	struct pipe_inode_info *pipe;
1335 	struct splice_desc sd;
1336 	ssize_t size;
1337 	int error;
1338 	long ret;
1339 
1340 	pipe = pipe_info(file->f_path.dentry->d_inode);
1341 	if (!pipe)
1342 		return -EBADF;
1343 
1344 	pipe_lock(pipe);
1345 
1346 	error = ret = 0;
1347 	while (nr_segs) {
1348 		void __user *base;
1349 		size_t len;
1350 
1351 		/*
1352 		 * Get user address base and length for this iovec.
1353 		 */
1354 		error = get_user(base, &iov->iov_base);
1355 		if (unlikely(error))
1356 			break;
1357 		error = get_user(len, &iov->iov_len);
1358 		if (unlikely(error))
1359 			break;
1360 
1361 		/*
1362 		 * Sanity check this iovec. 0 read succeeds.
1363 		 */
1364 		if (unlikely(!len))
1365 			break;
1366 		if (unlikely(!base)) {
1367 			error = -EFAULT;
1368 			break;
1369 		}
1370 
1371 		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1372 			error = -EFAULT;
1373 			break;
1374 		}
1375 
1376 		sd.len = 0;
1377 		sd.total_len = len;
1378 		sd.flags = flags;
1379 		sd.u.userptr = base;
1380 		sd.pos = 0;
1381 
1382 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1383 		if (size < 0) {
1384 			if (!ret)
1385 				ret = size;
1386 
1387 			break;
1388 		}
1389 
1390 		ret += size;
1391 
1392 		if (size < len)
1393 			break;
1394 
1395 		nr_segs--;
1396 		iov++;
1397 	}
1398 
1399 	pipe_unlock(pipe);
1400 
1401 	if (!ret)
1402 		ret = error;
1403 
1404 	return ret;
1405 }
1406 
1407 /*
1408  * vmsplice splices a user address range into a pipe. It can be thought of
1409  * as splice-from-memory, where the regular splice is splice-from-file (or
1410  * to file). In both cases the output is a pipe, naturally.
1411  */
1412 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1413 			     unsigned long nr_segs, unsigned int flags)
1414 {
1415 	struct pipe_inode_info *pipe;
1416 	struct page *pages[PIPE_BUFFERS];
1417 	struct partial_page partial[PIPE_BUFFERS];
1418 	struct splice_pipe_desc spd = {
1419 		.pages = pages,
1420 		.partial = partial,
1421 		.flags = flags,
1422 		.ops = &user_page_pipe_buf_ops,
1423 		.spd_release = spd_release_page,
1424 	};
1425 
1426 	pipe = pipe_info(file->f_path.dentry->d_inode);
1427 	if (!pipe)
1428 		return -EBADF;
1429 
1430 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1431 					    flags & SPLICE_F_GIFT);
1432 	if (spd.nr_pages <= 0)
1433 		return spd.nr_pages;
1434 
1435 	return splice_to_pipe(pipe, &spd);
1436 }
1437 
1438 /*
1439  * Note that vmsplice only really supports true splicing _from_ user memory
1440  * to a pipe, not the other way around. Splicing from user memory is a simple
1441  * operation that can be supported without any funky alignment restrictions
1442  * or nasty vm tricks. We simply map in the user memory and fill them into
1443  * a pipe. The reverse isn't quite as easy, though. There are two possible
1444  * solutions for that:
1445  *
1446  *	- memcpy() the data internally, at which point we might as well just
1447  *	  do a regular read() on the buffer anyway.
1448  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1449  *	  has restriction limitations on both ends of the pipe).
1450  *
1451  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1452  *
1453  */
1454 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1455 		unsigned long, nr_segs, unsigned int, flags)
1456 {
1457 	struct file *file;
1458 	long error;
1459 	int fput;
1460 
1461 	if (unlikely(nr_segs > UIO_MAXIOV))
1462 		return -EINVAL;
1463 	else if (unlikely(!nr_segs))
1464 		return 0;
1465 
1466 	error = -EBADF;
1467 	file = fget_light(fd, &fput);
1468 	if (file) {
1469 		if (file->f_mode & FMODE_WRITE)
1470 			error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1471 		else if (file->f_mode & FMODE_READ)
1472 			error = vmsplice_to_user(file, iov, nr_segs, flags);
1473 
1474 		fput_light(file, fput);
1475 	}
1476 
1477 	return error;
1478 }
1479 
1480 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1481 		int, fd_out, loff_t __user *, off_out,
1482 		size_t, len, unsigned int, flags)
1483 {
1484 	long error;
1485 	struct file *in, *out;
1486 	int fput_in, fput_out;
1487 
1488 	if (unlikely(!len))
1489 		return 0;
1490 
1491 	error = -EBADF;
1492 	in = fget_light(fd_in, &fput_in);
1493 	if (in) {
1494 		if (in->f_mode & FMODE_READ) {
1495 			out = fget_light(fd_out, &fput_out);
1496 			if (out) {
1497 				if (out->f_mode & FMODE_WRITE)
1498 					error = do_splice(in, off_in,
1499 							  out, off_out,
1500 							  len, flags);
1501 				fput_light(out, fput_out);
1502 			}
1503 		}
1504 
1505 		fput_light(in, fput_in);
1506 	}
1507 
1508 	return error;
1509 }
1510 
1511 /*
1512  * Make sure there's data to read. Wait for input if we can, otherwise
1513  * return an appropriate error.
1514  */
1515 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1516 {
1517 	int ret;
1518 
1519 	/*
1520 	 * Check ->nrbufs without the inode lock first. This function
1521 	 * is speculative anyways, so missing one is ok.
1522 	 */
1523 	if (pipe->nrbufs)
1524 		return 0;
1525 
1526 	ret = 0;
1527 	pipe_lock(pipe);
1528 
1529 	while (!pipe->nrbufs) {
1530 		if (signal_pending(current)) {
1531 			ret = -ERESTARTSYS;
1532 			break;
1533 		}
1534 		if (!pipe->writers)
1535 			break;
1536 		if (!pipe->waiting_writers) {
1537 			if (flags & SPLICE_F_NONBLOCK) {
1538 				ret = -EAGAIN;
1539 				break;
1540 			}
1541 		}
1542 		pipe_wait(pipe);
1543 	}
1544 
1545 	pipe_unlock(pipe);
1546 	return ret;
1547 }
1548 
1549 /*
1550  * Make sure there's writeable room. Wait for room if we can, otherwise
1551  * return an appropriate error.
1552  */
1553 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1554 {
1555 	int ret;
1556 
1557 	/*
1558 	 * Check ->nrbufs without the inode lock first. This function
1559 	 * is speculative anyways, so missing one is ok.
1560 	 */
1561 	if (pipe->nrbufs < PIPE_BUFFERS)
1562 		return 0;
1563 
1564 	ret = 0;
1565 	pipe_lock(pipe);
1566 
1567 	while (pipe->nrbufs >= PIPE_BUFFERS) {
1568 		if (!pipe->readers) {
1569 			send_sig(SIGPIPE, current, 0);
1570 			ret = -EPIPE;
1571 			break;
1572 		}
1573 		if (flags & SPLICE_F_NONBLOCK) {
1574 			ret = -EAGAIN;
1575 			break;
1576 		}
1577 		if (signal_pending(current)) {
1578 			ret = -ERESTARTSYS;
1579 			break;
1580 		}
1581 		pipe->waiting_writers++;
1582 		pipe_wait(pipe);
1583 		pipe->waiting_writers--;
1584 	}
1585 
1586 	pipe_unlock(pipe);
1587 	return ret;
1588 }
1589 
1590 /*
1591  * Link contents of ipipe to opipe.
1592  */
1593 static int link_pipe(struct pipe_inode_info *ipipe,
1594 		     struct pipe_inode_info *opipe,
1595 		     size_t len, unsigned int flags)
1596 {
1597 	struct pipe_buffer *ibuf, *obuf;
1598 	int ret = 0, i = 0, nbuf;
1599 
1600 	/*
1601 	 * Potential ABBA deadlock, work around it by ordering lock
1602 	 * grabbing by pipe info address. Otherwise two different processes
1603 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1604 	 */
1605 	pipe_double_lock(ipipe, opipe);
1606 
1607 	do {
1608 		if (!opipe->readers) {
1609 			send_sig(SIGPIPE, current, 0);
1610 			if (!ret)
1611 				ret = -EPIPE;
1612 			break;
1613 		}
1614 
1615 		/*
1616 		 * If we have iterated all input buffers or ran out of
1617 		 * output room, break.
1618 		 */
1619 		if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1620 			break;
1621 
1622 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1623 		nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1624 
1625 		/*
1626 		 * Get a reference to this pipe buffer,
1627 		 * so we can copy the contents over.
1628 		 */
1629 		ibuf->ops->get(ipipe, ibuf);
1630 
1631 		obuf = opipe->bufs + nbuf;
1632 		*obuf = *ibuf;
1633 
1634 		/*
1635 		 * Don't inherit the gift flag, we need to
1636 		 * prevent multiple steals of this page.
1637 		 */
1638 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1639 
1640 		if (obuf->len > len)
1641 			obuf->len = len;
1642 
1643 		opipe->nrbufs++;
1644 		ret += obuf->len;
1645 		len -= obuf->len;
1646 		i++;
1647 	} while (len);
1648 
1649 	/*
1650 	 * return EAGAIN if we have the potential of some data in the
1651 	 * future, otherwise just return 0
1652 	 */
1653 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1654 		ret = -EAGAIN;
1655 
1656 	pipe_unlock(ipipe);
1657 	pipe_unlock(opipe);
1658 
1659 	/*
1660 	 * If we put data in the output pipe, wakeup any potential readers.
1661 	 */
1662 	if (ret > 0) {
1663 		smp_mb();
1664 		if (waitqueue_active(&opipe->wait))
1665 			wake_up_interruptible(&opipe->wait);
1666 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1667 	}
1668 
1669 	return ret;
1670 }
1671 
1672 /*
1673  * This is a tee(1) implementation that works on pipes. It doesn't copy
1674  * any data, it simply references the 'in' pages on the 'out' pipe.
1675  * The 'flags' used are the SPLICE_F_* variants, currently the only
1676  * applicable one is SPLICE_F_NONBLOCK.
1677  */
1678 static long do_tee(struct file *in, struct file *out, size_t len,
1679 		   unsigned int flags)
1680 {
1681 	struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1682 	struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1683 	int ret = -EINVAL;
1684 
1685 	/*
1686 	 * Duplicate the contents of ipipe to opipe without actually
1687 	 * copying the data.
1688 	 */
1689 	if (ipipe && opipe && ipipe != opipe) {
1690 		/*
1691 		 * Keep going, unless we encounter an error. The ipipe/opipe
1692 		 * ordering doesn't really matter.
1693 		 */
1694 		ret = link_ipipe_prep(ipipe, flags);
1695 		if (!ret) {
1696 			ret = link_opipe_prep(opipe, flags);
1697 			if (!ret)
1698 				ret = link_pipe(ipipe, opipe, len, flags);
1699 		}
1700 	}
1701 
1702 	return ret;
1703 }
1704 
1705 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1706 {
1707 	struct file *in;
1708 	int error, fput_in;
1709 
1710 	if (unlikely(!len))
1711 		return 0;
1712 
1713 	error = -EBADF;
1714 	in = fget_light(fdin, &fput_in);
1715 	if (in) {
1716 		if (in->f_mode & FMODE_READ) {
1717 			int fput_out;
1718 			struct file *out = fget_light(fdout, &fput_out);
1719 
1720 			if (out) {
1721 				if (out->f_mode & FMODE_WRITE)
1722 					error = do_tee(in, out, len, flags);
1723 				fput_light(out, fput_out);
1724 			}
1725 		}
1726  		fput_light(in, fput_in);
1727  	}
1728 
1729 	return error;
1730 }
1731