xref: /openbmc/linux/fs/splice.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/bvec.h>
21 #include <linux/fs.h>
22 #include <linux/file.h>
23 #include <linux/pagemap.h>
24 #include <linux/splice.h>
25 #include <linux/memcontrol.h>
26 #include <linux/mm_inline.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/export.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34 #include <linux/socket.h>
35 #include <linux/compat.h>
36 #include <linux/sched/signal.h>
37 
38 #include "internal.h"
39 
40 /*
41  * Attempt to steal a page from a pipe buffer. This should perhaps go into
42  * a vm helper function, it's already simplified quite a bit by the
43  * addition of remove_mapping(). If success is returned, the caller may
44  * attempt to reuse this page for another destination.
45  */
46 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
47 				     struct pipe_buffer *buf)
48 {
49 	struct page *page = buf->page;
50 	struct address_space *mapping;
51 
52 	lock_page(page);
53 
54 	mapping = page_mapping(page);
55 	if (mapping) {
56 		WARN_ON(!PageUptodate(page));
57 
58 		/*
59 		 * At least for ext2 with nobh option, we need to wait on
60 		 * writeback completing on this page, since we'll remove it
61 		 * from the pagecache.  Otherwise truncate wont wait on the
62 		 * page, allowing the disk blocks to be reused by someone else
63 		 * before we actually wrote our data to them. fs corruption
64 		 * ensues.
65 		 */
66 		wait_on_page_writeback(page);
67 
68 		if (page_has_private(page) &&
69 		    !try_to_release_page(page, GFP_KERNEL))
70 			goto out_unlock;
71 
72 		/*
73 		 * If we succeeded in removing the mapping, set LRU flag
74 		 * and return good.
75 		 */
76 		if (remove_mapping(mapping, page)) {
77 			buf->flags |= PIPE_BUF_FLAG_LRU;
78 			return 0;
79 		}
80 	}
81 
82 	/*
83 	 * Raced with truncate or failed to remove page from current
84 	 * address space, unlock and return failure.
85 	 */
86 out_unlock:
87 	unlock_page(page);
88 	return 1;
89 }
90 
91 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
92 					struct pipe_buffer *buf)
93 {
94 	put_page(buf->page);
95 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
96 }
97 
98 /*
99  * Check whether the contents of buf is OK to access. Since the content
100  * is a page cache page, IO may be in flight.
101  */
102 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
103 				       struct pipe_buffer *buf)
104 {
105 	struct page *page = buf->page;
106 	int err;
107 
108 	if (!PageUptodate(page)) {
109 		lock_page(page);
110 
111 		/*
112 		 * Page got truncated/unhashed. This will cause a 0-byte
113 		 * splice, if this is the first page.
114 		 */
115 		if (!page->mapping) {
116 			err = -ENODATA;
117 			goto error;
118 		}
119 
120 		/*
121 		 * Uh oh, read-error from disk.
122 		 */
123 		if (!PageUptodate(page)) {
124 			err = -EIO;
125 			goto error;
126 		}
127 
128 		/*
129 		 * Page is ok afterall, we are done.
130 		 */
131 		unlock_page(page);
132 	}
133 
134 	return 0;
135 error:
136 	unlock_page(page);
137 	return err;
138 }
139 
140 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
141 	.can_merge = 0,
142 	.confirm = page_cache_pipe_buf_confirm,
143 	.release = page_cache_pipe_buf_release,
144 	.steal = page_cache_pipe_buf_steal,
145 	.get = generic_pipe_buf_get,
146 };
147 
148 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
149 				    struct pipe_buffer *buf)
150 {
151 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
152 		return 1;
153 
154 	buf->flags |= PIPE_BUF_FLAG_LRU;
155 	return generic_pipe_buf_steal(pipe, buf);
156 }
157 
158 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
159 	.can_merge = 0,
160 	.confirm = generic_pipe_buf_confirm,
161 	.release = page_cache_pipe_buf_release,
162 	.steal = user_page_pipe_buf_steal,
163 	.get = generic_pipe_buf_get,
164 };
165 
166 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
167 {
168 	smp_mb();
169 	if (waitqueue_active(&pipe->wait))
170 		wake_up_interruptible(&pipe->wait);
171 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172 }
173 
174 /**
175  * splice_to_pipe - fill passed data into a pipe
176  * @pipe:	pipe to fill
177  * @spd:	data to fill
178  *
179  * Description:
180  *    @spd contains a map of pages and len/offset tuples, along with
181  *    the struct pipe_buf_operations associated with these pages. This
182  *    function will link that data to the pipe.
183  *
184  */
185 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
186 		       struct splice_pipe_desc *spd)
187 {
188 	unsigned int spd_pages = spd->nr_pages;
189 	int ret = 0, page_nr = 0;
190 
191 	if (!spd_pages)
192 		return 0;
193 
194 	if (unlikely(!pipe->readers)) {
195 		send_sig(SIGPIPE, current, 0);
196 		ret = -EPIPE;
197 		goto out;
198 	}
199 
200 	while (pipe->nrbufs < pipe->buffers) {
201 		int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
202 		struct pipe_buffer *buf = pipe->bufs + newbuf;
203 
204 		buf->page = spd->pages[page_nr];
205 		buf->offset = spd->partial[page_nr].offset;
206 		buf->len = spd->partial[page_nr].len;
207 		buf->private = spd->partial[page_nr].private;
208 		buf->ops = spd->ops;
209 		buf->flags = 0;
210 
211 		pipe->nrbufs++;
212 		page_nr++;
213 		ret += buf->len;
214 
215 		if (!--spd->nr_pages)
216 			break;
217 	}
218 
219 	if (!ret)
220 		ret = -EAGAIN;
221 
222 out:
223 	while (page_nr < spd_pages)
224 		spd->spd_release(spd, page_nr++);
225 
226 	return ret;
227 }
228 EXPORT_SYMBOL_GPL(splice_to_pipe);
229 
230 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
231 {
232 	int ret;
233 
234 	if (unlikely(!pipe->readers)) {
235 		send_sig(SIGPIPE, current, 0);
236 		ret = -EPIPE;
237 	} else if (pipe->nrbufs == pipe->buffers) {
238 		ret = -EAGAIN;
239 	} else {
240 		int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
241 		pipe->bufs[newbuf] = *buf;
242 		pipe->nrbufs++;
243 		return buf->len;
244 	}
245 	pipe_buf_release(pipe, buf);
246 	return ret;
247 }
248 EXPORT_SYMBOL(add_to_pipe);
249 
250 /*
251  * Check if we need to grow the arrays holding pages and partial page
252  * descriptions.
253  */
254 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
255 {
256 	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
257 
258 	spd->nr_pages_max = buffers;
259 	if (buffers <= PIPE_DEF_BUFFERS)
260 		return 0;
261 
262 	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
263 	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
264 
265 	if (spd->pages && spd->partial)
266 		return 0;
267 
268 	kfree(spd->pages);
269 	kfree(spd->partial);
270 	return -ENOMEM;
271 }
272 
273 void splice_shrink_spd(struct splice_pipe_desc *spd)
274 {
275 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
276 		return;
277 
278 	kfree(spd->pages);
279 	kfree(spd->partial);
280 }
281 
282 /**
283  * generic_file_splice_read - splice data from file to a pipe
284  * @in:		file to splice from
285  * @ppos:	position in @in
286  * @pipe:	pipe to splice to
287  * @len:	number of bytes to splice
288  * @flags:	splice modifier flags
289  *
290  * Description:
291  *    Will read pages from given file and fill them into a pipe. Can be
292  *    used as long as it has more or less sane ->read_iter().
293  *
294  */
295 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
296 				 struct pipe_inode_info *pipe, size_t len,
297 				 unsigned int flags)
298 {
299 	struct iov_iter to;
300 	struct kiocb kiocb;
301 	int idx, ret;
302 
303 	iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len);
304 	idx = to.idx;
305 	init_sync_kiocb(&kiocb, in);
306 	kiocb.ki_pos = *ppos;
307 	ret = call_read_iter(in, &kiocb, &to);
308 	if (ret > 0) {
309 		*ppos = kiocb.ki_pos;
310 		file_accessed(in);
311 	} else if (ret < 0) {
312 		to.idx = idx;
313 		to.iov_offset = 0;
314 		iov_iter_advance(&to, 0); /* to free what was emitted */
315 		/*
316 		 * callers of ->splice_read() expect -EAGAIN on
317 		 * "can't put anything in there", rather than -EFAULT.
318 		 */
319 		if (ret == -EFAULT)
320 			ret = -EAGAIN;
321 	}
322 
323 	return ret;
324 }
325 EXPORT_SYMBOL(generic_file_splice_read);
326 
327 const struct pipe_buf_operations default_pipe_buf_ops = {
328 	.can_merge = 0,
329 	.confirm = generic_pipe_buf_confirm,
330 	.release = generic_pipe_buf_release,
331 	.steal = generic_pipe_buf_steal,
332 	.get = generic_pipe_buf_get,
333 };
334 
335 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
336 				    struct pipe_buffer *buf)
337 {
338 	return 1;
339 }
340 
341 /* Pipe buffer operations for a socket and similar. */
342 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
343 	.can_merge = 0,
344 	.confirm = generic_pipe_buf_confirm,
345 	.release = generic_pipe_buf_release,
346 	.steal = generic_pipe_buf_nosteal,
347 	.get = generic_pipe_buf_get,
348 };
349 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
350 
351 static ssize_t kernel_readv(struct file *file, const struct kvec *vec,
352 			    unsigned long vlen, loff_t offset)
353 {
354 	mm_segment_t old_fs;
355 	loff_t pos = offset;
356 	ssize_t res;
357 
358 	old_fs = get_fs();
359 	set_fs(get_ds());
360 	/* The cast to a user pointer is valid due to the set_fs() */
361 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
362 	set_fs(old_fs);
363 
364 	return res;
365 }
366 
367 static ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
368 				 struct pipe_inode_info *pipe, size_t len,
369 				 unsigned int flags)
370 {
371 	struct kvec *vec, __vec[PIPE_DEF_BUFFERS];
372 	struct iov_iter to;
373 	struct page **pages;
374 	unsigned int nr_pages;
375 	size_t offset, base, copied = 0;
376 	ssize_t res;
377 	int i;
378 
379 	if (pipe->nrbufs == pipe->buffers)
380 		return -EAGAIN;
381 
382 	/*
383 	 * Try to keep page boundaries matching to source pagecache ones -
384 	 * it probably won't be much help, but...
385 	 */
386 	offset = *ppos & ~PAGE_MASK;
387 
388 	iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len + offset);
389 
390 	res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &base);
391 	if (res <= 0)
392 		return -ENOMEM;
393 
394 	nr_pages = DIV_ROUND_UP(res + base, PAGE_SIZE);
395 
396 	vec = __vec;
397 	if (nr_pages > PIPE_DEF_BUFFERS) {
398 		vec = kmalloc(nr_pages * sizeof(struct kvec), GFP_KERNEL);
399 		if (unlikely(!vec)) {
400 			res = -ENOMEM;
401 			goto out;
402 		}
403 	}
404 
405 	pipe->bufs[to.idx].offset = offset;
406 	pipe->bufs[to.idx].len -= offset;
407 
408 	for (i = 0; i < nr_pages; i++) {
409 		size_t this_len = min_t(size_t, len, PAGE_SIZE - offset);
410 		vec[i].iov_base = page_address(pages[i]) + offset;
411 		vec[i].iov_len = this_len;
412 		len -= this_len;
413 		offset = 0;
414 	}
415 
416 	res = kernel_readv(in, vec, nr_pages, *ppos);
417 	if (res > 0) {
418 		copied = res;
419 		*ppos += res;
420 	}
421 
422 	if (vec != __vec)
423 		kfree(vec);
424 out:
425 	for (i = 0; i < nr_pages; i++)
426 		put_page(pages[i]);
427 	kvfree(pages);
428 	iov_iter_advance(&to, copied);	/* truncates and discards */
429 	return res;
430 }
431 
432 /*
433  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
434  * using sendpage(). Return the number of bytes sent.
435  */
436 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
437 			    struct pipe_buffer *buf, struct splice_desc *sd)
438 {
439 	struct file *file = sd->u.file;
440 	loff_t pos = sd->pos;
441 	int more;
442 
443 	if (!likely(file->f_op->sendpage))
444 		return -EINVAL;
445 
446 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
447 
448 	if (sd->len < sd->total_len && pipe->nrbufs > 1)
449 		more |= MSG_SENDPAGE_NOTLAST;
450 
451 	return file->f_op->sendpage(file, buf->page, buf->offset,
452 				    sd->len, &pos, more);
453 }
454 
455 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
456 {
457 	smp_mb();
458 	if (waitqueue_active(&pipe->wait))
459 		wake_up_interruptible(&pipe->wait);
460 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
461 }
462 
463 /**
464  * splice_from_pipe_feed - feed available data from a pipe to a file
465  * @pipe:	pipe to splice from
466  * @sd:		information to @actor
467  * @actor:	handler that splices the data
468  *
469  * Description:
470  *    This function loops over the pipe and calls @actor to do the
471  *    actual moving of a single struct pipe_buffer to the desired
472  *    destination.  It returns when there's no more buffers left in
473  *    the pipe or if the requested number of bytes (@sd->total_len)
474  *    have been copied.  It returns a positive number (one) if the
475  *    pipe needs to be filled with more data, zero if the required
476  *    number of bytes have been copied and -errno on error.
477  *
478  *    This, together with splice_from_pipe_{begin,end,next}, may be
479  *    used to implement the functionality of __splice_from_pipe() when
480  *    locking is required around copying the pipe buffers to the
481  *    destination.
482  */
483 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
484 			  splice_actor *actor)
485 {
486 	int ret;
487 
488 	while (pipe->nrbufs) {
489 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
490 
491 		sd->len = buf->len;
492 		if (sd->len > sd->total_len)
493 			sd->len = sd->total_len;
494 
495 		ret = pipe_buf_confirm(pipe, buf);
496 		if (unlikely(ret)) {
497 			if (ret == -ENODATA)
498 				ret = 0;
499 			return ret;
500 		}
501 
502 		ret = actor(pipe, buf, sd);
503 		if (ret <= 0)
504 			return ret;
505 
506 		buf->offset += ret;
507 		buf->len -= ret;
508 
509 		sd->num_spliced += ret;
510 		sd->len -= ret;
511 		sd->pos += ret;
512 		sd->total_len -= ret;
513 
514 		if (!buf->len) {
515 			pipe_buf_release(pipe, buf);
516 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
517 			pipe->nrbufs--;
518 			if (pipe->files)
519 				sd->need_wakeup = true;
520 		}
521 
522 		if (!sd->total_len)
523 			return 0;
524 	}
525 
526 	return 1;
527 }
528 
529 /**
530  * splice_from_pipe_next - wait for some data to splice from
531  * @pipe:	pipe to splice from
532  * @sd:		information about the splice operation
533  *
534  * Description:
535  *    This function will wait for some data and return a positive
536  *    value (one) if pipe buffers are available.  It will return zero
537  *    or -errno if no more data needs to be spliced.
538  */
539 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
540 {
541 	/*
542 	 * Check for signal early to make process killable when there are
543 	 * always buffers available
544 	 */
545 	if (signal_pending(current))
546 		return -ERESTARTSYS;
547 
548 	while (!pipe->nrbufs) {
549 		if (!pipe->writers)
550 			return 0;
551 
552 		if (!pipe->waiting_writers && sd->num_spliced)
553 			return 0;
554 
555 		if (sd->flags & SPLICE_F_NONBLOCK)
556 			return -EAGAIN;
557 
558 		if (signal_pending(current))
559 			return -ERESTARTSYS;
560 
561 		if (sd->need_wakeup) {
562 			wakeup_pipe_writers(pipe);
563 			sd->need_wakeup = false;
564 		}
565 
566 		pipe_wait(pipe);
567 	}
568 
569 	return 1;
570 }
571 
572 /**
573  * splice_from_pipe_begin - start splicing from pipe
574  * @sd:		information about the splice operation
575  *
576  * Description:
577  *    This function should be called before a loop containing
578  *    splice_from_pipe_next() and splice_from_pipe_feed() to
579  *    initialize the necessary fields of @sd.
580  */
581 static void splice_from_pipe_begin(struct splice_desc *sd)
582 {
583 	sd->num_spliced = 0;
584 	sd->need_wakeup = false;
585 }
586 
587 /**
588  * splice_from_pipe_end - finish splicing from pipe
589  * @pipe:	pipe to splice from
590  * @sd:		information about the splice operation
591  *
592  * Description:
593  *    This function will wake up pipe writers if necessary.  It should
594  *    be called after a loop containing splice_from_pipe_next() and
595  *    splice_from_pipe_feed().
596  */
597 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
598 {
599 	if (sd->need_wakeup)
600 		wakeup_pipe_writers(pipe);
601 }
602 
603 /**
604  * __splice_from_pipe - splice data from a pipe to given actor
605  * @pipe:	pipe to splice from
606  * @sd:		information to @actor
607  * @actor:	handler that splices the data
608  *
609  * Description:
610  *    This function does little more than loop over the pipe and call
611  *    @actor to do the actual moving of a single struct pipe_buffer to
612  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
613  *    pipe_to_user.
614  *
615  */
616 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
617 			   splice_actor *actor)
618 {
619 	int ret;
620 
621 	splice_from_pipe_begin(sd);
622 	do {
623 		cond_resched();
624 		ret = splice_from_pipe_next(pipe, sd);
625 		if (ret > 0)
626 			ret = splice_from_pipe_feed(pipe, sd, actor);
627 	} while (ret > 0);
628 	splice_from_pipe_end(pipe, sd);
629 
630 	return sd->num_spliced ? sd->num_spliced : ret;
631 }
632 EXPORT_SYMBOL(__splice_from_pipe);
633 
634 /**
635  * splice_from_pipe - splice data from a pipe to a file
636  * @pipe:	pipe to splice from
637  * @out:	file to splice to
638  * @ppos:	position in @out
639  * @len:	how many bytes to splice
640  * @flags:	splice modifier flags
641  * @actor:	handler that splices the data
642  *
643  * Description:
644  *    See __splice_from_pipe. This function locks the pipe inode,
645  *    otherwise it's identical to __splice_from_pipe().
646  *
647  */
648 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
649 			 loff_t *ppos, size_t len, unsigned int flags,
650 			 splice_actor *actor)
651 {
652 	ssize_t ret;
653 	struct splice_desc sd = {
654 		.total_len = len,
655 		.flags = flags,
656 		.pos = *ppos,
657 		.u.file = out,
658 	};
659 
660 	pipe_lock(pipe);
661 	ret = __splice_from_pipe(pipe, &sd, actor);
662 	pipe_unlock(pipe);
663 
664 	return ret;
665 }
666 
667 /**
668  * iter_file_splice_write - splice data from a pipe to a file
669  * @pipe:	pipe info
670  * @out:	file to write to
671  * @ppos:	position in @out
672  * @len:	number of bytes to splice
673  * @flags:	splice modifier flags
674  *
675  * Description:
676  *    Will either move or copy pages (determined by @flags options) from
677  *    the given pipe inode to the given file.
678  *    This one is ->write_iter-based.
679  *
680  */
681 ssize_t
682 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
683 			  loff_t *ppos, size_t len, unsigned int flags)
684 {
685 	struct splice_desc sd = {
686 		.total_len = len,
687 		.flags = flags,
688 		.pos = *ppos,
689 		.u.file = out,
690 	};
691 	int nbufs = pipe->buffers;
692 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
693 					GFP_KERNEL);
694 	ssize_t ret;
695 
696 	if (unlikely(!array))
697 		return -ENOMEM;
698 
699 	pipe_lock(pipe);
700 
701 	splice_from_pipe_begin(&sd);
702 	while (sd.total_len) {
703 		struct iov_iter from;
704 		size_t left;
705 		int n, idx;
706 
707 		ret = splice_from_pipe_next(pipe, &sd);
708 		if (ret <= 0)
709 			break;
710 
711 		if (unlikely(nbufs < pipe->buffers)) {
712 			kfree(array);
713 			nbufs = pipe->buffers;
714 			array = kcalloc(nbufs, sizeof(struct bio_vec),
715 					GFP_KERNEL);
716 			if (!array) {
717 				ret = -ENOMEM;
718 				break;
719 			}
720 		}
721 
722 		/* build the vector */
723 		left = sd.total_len;
724 		for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
725 			struct pipe_buffer *buf = pipe->bufs + idx;
726 			size_t this_len = buf->len;
727 
728 			if (this_len > left)
729 				this_len = left;
730 
731 			if (idx == pipe->buffers - 1)
732 				idx = -1;
733 
734 			ret = pipe_buf_confirm(pipe, buf);
735 			if (unlikely(ret)) {
736 				if (ret == -ENODATA)
737 					ret = 0;
738 				goto done;
739 			}
740 
741 			array[n].bv_page = buf->page;
742 			array[n].bv_len = this_len;
743 			array[n].bv_offset = buf->offset;
744 			left -= this_len;
745 		}
746 
747 		iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
748 			      sd.total_len - left);
749 		ret = vfs_iter_write(out, &from, &sd.pos, 0);
750 		if (ret <= 0)
751 			break;
752 
753 		sd.num_spliced += ret;
754 		sd.total_len -= ret;
755 		*ppos = sd.pos;
756 
757 		/* dismiss the fully eaten buffers, adjust the partial one */
758 		while (ret) {
759 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
760 			if (ret >= buf->len) {
761 				ret -= buf->len;
762 				buf->len = 0;
763 				pipe_buf_release(pipe, buf);
764 				pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
765 				pipe->nrbufs--;
766 				if (pipe->files)
767 					sd.need_wakeup = true;
768 			} else {
769 				buf->offset += ret;
770 				buf->len -= ret;
771 				ret = 0;
772 			}
773 		}
774 	}
775 done:
776 	kfree(array);
777 	splice_from_pipe_end(pipe, &sd);
778 
779 	pipe_unlock(pipe);
780 
781 	if (sd.num_spliced)
782 		ret = sd.num_spliced;
783 
784 	return ret;
785 }
786 
787 EXPORT_SYMBOL(iter_file_splice_write);
788 
789 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
790 			  struct splice_desc *sd)
791 {
792 	int ret;
793 	void *data;
794 	loff_t tmp = sd->pos;
795 
796 	data = kmap(buf->page);
797 	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
798 	kunmap(buf->page);
799 
800 	return ret;
801 }
802 
803 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
804 					 struct file *out, loff_t *ppos,
805 					 size_t len, unsigned int flags)
806 {
807 	ssize_t ret;
808 
809 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
810 	if (ret > 0)
811 		*ppos += ret;
812 
813 	return ret;
814 }
815 
816 /**
817  * generic_splice_sendpage - splice data from a pipe to a socket
818  * @pipe:	pipe to splice from
819  * @out:	socket to write to
820  * @ppos:	position in @out
821  * @len:	number of bytes to splice
822  * @flags:	splice modifier flags
823  *
824  * Description:
825  *    Will send @len bytes from the pipe to a network socket. No data copying
826  *    is involved.
827  *
828  */
829 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
830 				loff_t *ppos, size_t len, unsigned int flags)
831 {
832 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
833 }
834 
835 EXPORT_SYMBOL(generic_splice_sendpage);
836 
837 /*
838  * Attempt to initiate a splice from pipe to file.
839  */
840 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
841 			   loff_t *ppos, size_t len, unsigned int flags)
842 {
843 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
844 				loff_t *, size_t, unsigned int);
845 
846 	if (out->f_op->splice_write)
847 		splice_write = out->f_op->splice_write;
848 	else
849 		splice_write = default_file_splice_write;
850 
851 	return splice_write(pipe, out, ppos, len, flags);
852 }
853 
854 /*
855  * Attempt to initiate a splice from a file to a pipe.
856  */
857 static long do_splice_to(struct file *in, loff_t *ppos,
858 			 struct pipe_inode_info *pipe, size_t len,
859 			 unsigned int flags)
860 {
861 	ssize_t (*splice_read)(struct file *, loff_t *,
862 			       struct pipe_inode_info *, size_t, unsigned int);
863 	int ret;
864 
865 	if (unlikely(!(in->f_mode & FMODE_READ)))
866 		return -EBADF;
867 
868 	ret = rw_verify_area(READ, in, ppos, len);
869 	if (unlikely(ret < 0))
870 		return ret;
871 
872 	if (unlikely(len > MAX_RW_COUNT))
873 		len = MAX_RW_COUNT;
874 
875 	if (in->f_op->splice_read)
876 		splice_read = in->f_op->splice_read;
877 	else
878 		splice_read = default_file_splice_read;
879 
880 	return splice_read(in, ppos, pipe, len, flags);
881 }
882 
883 /**
884  * splice_direct_to_actor - splices data directly between two non-pipes
885  * @in:		file to splice from
886  * @sd:		actor information on where to splice to
887  * @actor:	handles the data splicing
888  *
889  * Description:
890  *    This is a special case helper to splice directly between two
891  *    points, without requiring an explicit pipe. Internally an allocated
892  *    pipe is cached in the process, and reused during the lifetime of
893  *    that process.
894  *
895  */
896 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
897 			       splice_direct_actor *actor)
898 {
899 	struct pipe_inode_info *pipe;
900 	long ret, bytes;
901 	umode_t i_mode;
902 	size_t len;
903 	int i, flags, more;
904 
905 	/*
906 	 * We require the input being a regular file, as we don't want to
907 	 * randomly drop data for eg socket -> socket splicing. Use the
908 	 * piped splicing for that!
909 	 */
910 	i_mode = file_inode(in)->i_mode;
911 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
912 		return -EINVAL;
913 
914 	/*
915 	 * neither in nor out is a pipe, setup an internal pipe attached to
916 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
917 	 */
918 	pipe = current->splice_pipe;
919 	if (unlikely(!pipe)) {
920 		pipe = alloc_pipe_info();
921 		if (!pipe)
922 			return -ENOMEM;
923 
924 		/*
925 		 * We don't have an immediate reader, but we'll read the stuff
926 		 * out of the pipe right after the splice_to_pipe(). So set
927 		 * PIPE_READERS appropriately.
928 		 */
929 		pipe->readers = 1;
930 
931 		current->splice_pipe = pipe;
932 	}
933 
934 	/*
935 	 * Do the splice.
936 	 */
937 	ret = 0;
938 	bytes = 0;
939 	len = sd->total_len;
940 	flags = sd->flags;
941 
942 	/*
943 	 * Don't block on output, we have to drain the direct pipe.
944 	 */
945 	sd->flags &= ~SPLICE_F_NONBLOCK;
946 	more = sd->flags & SPLICE_F_MORE;
947 
948 	while (len) {
949 		size_t read_len;
950 		loff_t pos = sd->pos, prev_pos = pos;
951 
952 		ret = do_splice_to(in, &pos, pipe, len, flags);
953 		if (unlikely(ret <= 0))
954 			goto out_release;
955 
956 		read_len = ret;
957 		sd->total_len = read_len;
958 
959 		/*
960 		 * If more data is pending, set SPLICE_F_MORE
961 		 * If this is the last data and SPLICE_F_MORE was not set
962 		 * initially, clears it.
963 		 */
964 		if (read_len < len)
965 			sd->flags |= SPLICE_F_MORE;
966 		else if (!more)
967 			sd->flags &= ~SPLICE_F_MORE;
968 		/*
969 		 * NOTE: nonblocking mode only applies to the input. We
970 		 * must not do the output in nonblocking mode as then we
971 		 * could get stuck data in the internal pipe:
972 		 */
973 		ret = actor(pipe, sd);
974 		if (unlikely(ret <= 0)) {
975 			sd->pos = prev_pos;
976 			goto out_release;
977 		}
978 
979 		bytes += ret;
980 		len -= ret;
981 		sd->pos = pos;
982 
983 		if (ret < read_len) {
984 			sd->pos = prev_pos + ret;
985 			goto out_release;
986 		}
987 	}
988 
989 done:
990 	pipe->nrbufs = pipe->curbuf = 0;
991 	file_accessed(in);
992 	return bytes;
993 
994 out_release:
995 	/*
996 	 * If we did an incomplete transfer we must release
997 	 * the pipe buffers in question:
998 	 */
999 	for (i = 0; i < pipe->buffers; i++) {
1000 		struct pipe_buffer *buf = pipe->bufs + i;
1001 
1002 		if (buf->ops)
1003 			pipe_buf_release(pipe, buf);
1004 	}
1005 
1006 	if (!bytes)
1007 		bytes = ret;
1008 
1009 	goto done;
1010 }
1011 EXPORT_SYMBOL(splice_direct_to_actor);
1012 
1013 static int direct_splice_actor(struct pipe_inode_info *pipe,
1014 			       struct splice_desc *sd)
1015 {
1016 	struct file *file = sd->u.file;
1017 
1018 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1019 			      sd->flags);
1020 }
1021 
1022 /**
1023  * do_splice_direct - splices data directly between two files
1024  * @in:		file to splice from
1025  * @ppos:	input file offset
1026  * @out:	file to splice to
1027  * @opos:	output file offset
1028  * @len:	number of bytes to splice
1029  * @flags:	splice modifier flags
1030  *
1031  * Description:
1032  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1033  *    doing it in the application would incur an extra system call
1034  *    (splice in + splice out, as compared to just sendfile()). So this helper
1035  *    can splice directly through a process-private pipe.
1036  *
1037  */
1038 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1039 		      loff_t *opos, size_t len, unsigned int flags)
1040 {
1041 	struct splice_desc sd = {
1042 		.len		= len,
1043 		.total_len	= len,
1044 		.flags		= flags,
1045 		.pos		= *ppos,
1046 		.u.file		= out,
1047 		.opos		= opos,
1048 	};
1049 	long ret;
1050 
1051 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1052 		return -EBADF;
1053 
1054 	if (unlikely(out->f_flags & O_APPEND))
1055 		return -EINVAL;
1056 
1057 	ret = rw_verify_area(WRITE, out, opos, len);
1058 	if (unlikely(ret < 0))
1059 		return ret;
1060 
1061 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1062 	if (ret > 0)
1063 		*ppos = sd.pos;
1064 
1065 	return ret;
1066 }
1067 EXPORT_SYMBOL(do_splice_direct);
1068 
1069 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1070 {
1071 	for (;;) {
1072 		if (unlikely(!pipe->readers)) {
1073 			send_sig(SIGPIPE, current, 0);
1074 			return -EPIPE;
1075 		}
1076 		if (pipe->nrbufs != pipe->buffers)
1077 			return 0;
1078 		if (flags & SPLICE_F_NONBLOCK)
1079 			return -EAGAIN;
1080 		if (signal_pending(current))
1081 			return -ERESTARTSYS;
1082 		pipe->waiting_writers++;
1083 		pipe_wait(pipe);
1084 		pipe->waiting_writers--;
1085 	}
1086 }
1087 
1088 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1089 			       struct pipe_inode_info *opipe,
1090 			       size_t len, unsigned int flags);
1091 
1092 /*
1093  * Determine where to splice to/from.
1094  */
1095 static long do_splice(struct file *in, loff_t __user *off_in,
1096 		      struct file *out, loff_t __user *off_out,
1097 		      size_t len, unsigned int flags)
1098 {
1099 	struct pipe_inode_info *ipipe;
1100 	struct pipe_inode_info *opipe;
1101 	loff_t offset;
1102 	long ret;
1103 
1104 	ipipe = get_pipe_info(in);
1105 	opipe = get_pipe_info(out);
1106 
1107 	if (ipipe && opipe) {
1108 		if (off_in || off_out)
1109 			return -ESPIPE;
1110 
1111 		if (!(in->f_mode & FMODE_READ))
1112 			return -EBADF;
1113 
1114 		if (!(out->f_mode & FMODE_WRITE))
1115 			return -EBADF;
1116 
1117 		/* Splicing to self would be fun, but... */
1118 		if (ipipe == opipe)
1119 			return -EINVAL;
1120 
1121 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1122 	}
1123 
1124 	if (ipipe) {
1125 		if (off_in)
1126 			return -ESPIPE;
1127 		if (off_out) {
1128 			if (!(out->f_mode & FMODE_PWRITE))
1129 				return -EINVAL;
1130 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1131 				return -EFAULT;
1132 		} else {
1133 			offset = out->f_pos;
1134 		}
1135 
1136 		if (unlikely(!(out->f_mode & FMODE_WRITE)))
1137 			return -EBADF;
1138 
1139 		if (unlikely(out->f_flags & O_APPEND))
1140 			return -EINVAL;
1141 
1142 		ret = rw_verify_area(WRITE, out, &offset, len);
1143 		if (unlikely(ret < 0))
1144 			return ret;
1145 
1146 		file_start_write(out);
1147 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1148 		file_end_write(out);
1149 
1150 		if (!off_out)
1151 			out->f_pos = offset;
1152 		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1153 			ret = -EFAULT;
1154 
1155 		return ret;
1156 	}
1157 
1158 	if (opipe) {
1159 		if (off_out)
1160 			return -ESPIPE;
1161 		if (off_in) {
1162 			if (!(in->f_mode & FMODE_PREAD))
1163 				return -EINVAL;
1164 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1165 				return -EFAULT;
1166 		} else {
1167 			offset = in->f_pos;
1168 		}
1169 
1170 		pipe_lock(opipe);
1171 		ret = wait_for_space(opipe, flags);
1172 		if (!ret)
1173 			ret = do_splice_to(in, &offset, opipe, len, flags);
1174 		pipe_unlock(opipe);
1175 		if (ret > 0)
1176 			wakeup_pipe_readers(opipe);
1177 		if (!off_in)
1178 			in->f_pos = offset;
1179 		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1180 			ret = -EFAULT;
1181 
1182 		return ret;
1183 	}
1184 
1185 	return -EINVAL;
1186 }
1187 
1188 static int iter_to_pipe(struct iov_iter *from,
1189 			struct pipe_inode_info *pipe,
1190 			unsigned flags)
1191 {
1192 	struct pipe_buffer buf = {
1193 		.ops = &user_page_pipe_buf_ops,
1194 		.flags = flags
1195 	};
1196 	size_t total = 0;
1197 	int ret = 0;
1198 	bool failed = false;
1199 
1200 	while (iov_iter_count(from) && !failed) {
1201 		struct page *pages[16];
1202 		ssize_t copied;
1203 		size_t start;
1204 		int n;
1205 
1206 		copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start);
1207 		if (copied <= 0) {
1208 			ret = copied;
1209 			break;
1210 		}
1211 
1212 		for (n = 0; copied; n++, start = 0) {
1213 			int size = min_t(int, copied, PAGE_SIZE - start);
1214 			if (!failed) {
1215 				buf.page = pages[n];
1216 				buf.offset = start;
1217 				buf.len = size;
1218 				ret = add_to_pipe(pipe, &buf);
1219 				if (unlikely(ret < 0)) {
1220 					failed = true;
1221 				} else {
1222 					iov_iter_advance(from, ret);
1223 					total += ret;
1224 				}
1225 			} else {
1226 				put_page(pages[n]);
1227 			}
1228 			copied -= size;
1229 		}
1230 	}
1231 	return total ? total : ret;
1232 }
1233 
1234 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1235 			struct splice_desc *sd)
1236 {
1237 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1238 	return n == sd->len ? n : -EFAULT;
1239 }
1240 
1241 /*
1242  * For lack of a better implementation, implement vmsplice() to userspace
1243  * as a simple copy of the pipes pages to the user iov.
1244  */
1245 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1246 			     unsigned long nr_segs, unsigned int flags)
1247 {
1248 	struct pipe_inode_info *pipe;
1249 	struct splice_desc sd;
1250 	long ret;
1251 	struct iovec iovstack[UIO_FASTIOV];
1252 	struct iovec *iov = iovstack;
1253 	struct iov_iter iter;
1254 
1255 	pipe = get_pipe_info(file);
1256 	if (!pipe)
1257 		return -EBADF;
1258 
1259 	ret = import_iovec(READ, uiov, nr_segs,
1260 			   ARRAY_SIZE(iovstack), &iov, &iter);
1261 	if (ret < 0)
1262 		return ret;
1263 
1264 	sd.total_len = iov_iter_count(&iter);
1265 	sd.len = 0;
1266 	sd.flags = flags;
1267 	sd.u.data = &iter;
1268 	sd.pos = 0;
1269 
1270 	if (sd.total_len) {
1271 		pipe_lock(pipe);
1272 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1273 		pipe_unlock(pipe);
1274 	}
1275 
1276 	kfree(iov);
1277 	return ret;
1278 }
1279 
1280 /*
1281  * vmsplice splices a user address range into a pipe. It can be thought of
1282  * as splice-from-memory, where the regular splice is splice-from-file (or
1283  * to file). In both cases the output is a pipe, naturally.
1284  */
1285 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *uiov,
1286 			     unsigned long nr_segs, unsigned int flags)
1287 {
1288 	struct pipe_inode_info *pipe;
1289 	struct iovec iovstack[UIO_FASTIOV];
1290 	struct iovec *iov = iovstack;
1291 	struct iov_iter from;
1292 	long ret;
1293 	unsigned buf_flag = 0;
1294 
1295 	if (flags & SPLICE_F_GIFT)
1296 		buf_flag = PIPE_BUF_FLAG_GIFT;
1297 
1298 	pipe = get_pipe_info(file);
1299 	if (!pipe)
1300 		return -EBADF;
1301 
1302 	ret = import_iovec(WRITE, uiov, nr_segs,
1303 			   ARRAY_SIZE(iovstack), &iov, &from);
1304 	if (ret < 0)
1305 		return ret;
1306 
1307 	pipe_lock(pipe);
1308 	ret = wait_for_space(pipe, flags);
1309 	if (!ret)
1310 		ret = iter_to_pipe(&from, pipe, buf_flag);
1311 	pipe_unlock(pipe);
1312 	if (ret > 0)
1313 		wakeup_pipe_readers(pipe);
1314 	kfree(iov);
1315 	return ret;
1316 }
1317 
1318 /*
1319  * Note that vmsplice only really supports true splicing _from_ user memory
1320  * to a pipe, not the other way around. Splicing from user memory is a simple
1321  * operation that can be supported without any funky alignment restrictions
1322  * or nasty vm tricks. We simply map in the user memory and fill them into
1323  * a pipe. The reverse isn't quite as easy, though. There are two possible
1324  * solutions for that:
1325  *
1326  *	- memcpy() the data internally, at which point we might as well just
1327  *	  do a regular read() on the buffer anyway.
1328  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1329  *	  has restriction limitations on both ends of the pipe).
1330  *
1331  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1332  *
1333  */
1334 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1335 		unsigned long, nr_segs, unsigned int, flags)
1336 {
1337 	struct fd f;
1338 	long error;
1339 
1340 	if (unlikely(flags & ~SPLICE_F_ALL))
1341 		return -EINVAL;
1342 	if (unlikely(nr_segs > UIO_MAXIOV))
1343 		return -EINVAL;
1344 	else if (unlikely(!nr_segs))
1345 		return 0;
1346 
1347 	error = -EBADF;
1348 	f = fdget(fd);
1349 	if (f.file) {
1350 		if (f.file->f_mode & FMODE_WRITE)
1351 			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1352 		else if (f.file->f_mode & FMODE_READ)
1353 			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1354 
1355 		fdput(f);
1356 	}
1357 
1358 	return error;
1359 }
1360 
1361 #ifdef CONFIG_COMPAT
1362 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1363 		    unsigned int, nr_segs, unsigned int, flags)
1364 {
1365 	unsigned i;
1366 	struct iovec __user *iov;
1367 	if (nr_segs > UIO_MAXIOV)
1368 		return -EINVAL;
1369 	iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1370 	for (i = 0; i < nr_segs; i++) {
1371 		struct compat_iovec v;
1372 		if (get_user(v.iov_base, &iov32[i].iov_base) ||
1373 		    get_user(v.iov_len, &iov32[i].iov_len) ||
1374 		    put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1375 		    put_user(v.iov_len, &iov[i].iov_len))
1376 			return -EFAULT;
1377 	}
1378 	return sys_vmsplice(fd, iov, nr_segs, flags);
1379 }
1380 #endif
1381 
1382 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1383 		int, fd_out, loff_t __user *, off_out,
1384 		size_t, len, unsigned int, flags)
1385 {
1386 	struct fd in, out;
1387 	long error;
1388 
1389 	if (unlikely(!len))
1390 		return 0;
1391 
1392 	if (unlikely(flags & ~SPLICE_F_ALL))
1393 		return -EINVAL;
1394 
1395 	error = -EBADF;
1396 	in = fdget(fd_in);
1397 	if (in.file) {
1398 		if (in.file->f_mode & FMODE_READ) {
1399 			out = fdget(fd_out);
1400 			if (out.file) {
1401 				if (out.file->f_mode & FMODE_WRITE)
1402 					error = do_splice(in.file, off_in,
1403 							  out.file, off_out,
1404 							  len, flags);
1405 				fdput(out);
1406 			}
1407 		}
1408 		fdput(in);
1409 	}
1410 	return error;
1411 }
1412 
1413 /*
1414  * Make sure there's data to read. Wait for input if we can, otherwise
1415  * return an appropriate error.
1416  */
1417 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1418 {
1419 	int ret;
1420 
1421 	/*
1422 	 * Check ->nrbufs without the inode lock first. This function
1423 	 * is speculative anyways, so missing one is ok.
1424 	 */
1425 	if (pipe->nrbufs)
1426 		return 0;
1427 
1428 	ret = 0;
1429 	pipe_lock(pipe);
1430 
1431 	while (!pipe->nrbufs) {
1432 		if (signal_pending(current)) {
1433 			ret = -ERESTARTSYS;
1434 			break;
1435 		}
1436 		if (!pipe->writers)
1437 			break;
1438 		if (!pipe->waiting_writers) {
1439 			if (flags & SPLICE_F_NONBLOCK) {
1440 				ret = -EAGAIN;
1441 				break;
1442 			}
1443 		}
1444 		pipe_wait(pipe);
1445 	}
1446 
1447 	pipe_unlock(pipe);
1448 	return ret;
1449 }
1450 
1451 /*
1452  * Make sure there's writeable room. Wait for room if we can, otherwise
1453  * return an appropriate error.
1454  */
1455 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1456 {
1457 	int ret;
1458 
1459 	/*
1460 	 * Check ->nrbufs without the inode lock first. This function
1461 	 * is speculative anyways, so missing one is ok.
1462 	 */
1463 	if (pipe->nrbufs < pipe->buffers)
1464 		return 0;
1465 
1466 	ret = 0;
1467 	pipe_lock(pipe);
1468 
1469 	while (pipe->nrbufs >= pipe->buffers) {
1470 		if (!pipe->readers) {
1471 			send_sig(SIGPIPE, current, 0);
1472 			ret = -EPIPE;
1473 			break;
1474 		}
1475 		if (flags & SPLICE_F_NONBLOCK) {
1476 			ret = -EAGAIN;
1477 			break;
1478 		}
1479 		if (signal_pending(current)) {
1480 			ret = -ERESTARTSYS;
1481 			break;
1482 		}
1483 		pipe->waiting_writers++;
1484 		pipe_wait(pipe);
1485 		pipe->waiting_writers--;
1486 	}
1487 
1488 	pipe_unlock(pipe);
1489 	return ret;
1490 }
1491 
1492 /*
1493  * Splice contents of ipipe to opipe.
1494  */
1495 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1496 			       struct pipe_inode_info *opipe,
1497 			       size_t len, unsigned int flags)
1498 {
1499 	struct pipe_buffer *ibuf, *obuf;
1500 	int ret = 0, nbuf;
1501 	bool input_wakeup = false;
1502 
1503 
1504 retry:
1505 	ret = ipipe_prep(ipipe, flags);
1506 	if (ret)
1507 		return ret;
1508 
1509 	ret = opipe_prep(opipe, flags);
1510 	if (ret)
1511 		return ret;
1512 
1513 	/*
1514 	 * Potential ABBA deadlock, work around it by ordering lock
1515 	 * grabbing by pipe info address. Otherwise two different processes
1516 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1517 	 */
1518 	pipe_double_lock(ipipe, opipe);
1519 
1520 	do {
1521 		if (!opipe->readers) {
1522 			send_sig(SIGPIPE, current, 0);
1523 			if (!ret)
1524 				ret = -EPIPE;
1525 			break;
1526 		}
1527 
1528 		if (!ipipe->nrbufs && !ipipe->writers)
1529 			break;
1530 
1531 		/*
1532 		 * Cannot make any progress, because either the input
1533 		 * pipe is empty or the output pipe is full.
1534 		 */
1535 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1536 			/* Already processed some buffers, break */
1537 			if (ret)
1538 				break;
1539 
1540 			if (flags & SPLICE_F_NONBLOCK) {
1541 				ret = -EAGAIN;
1542 				break;
1543 			}
1544 
1545 			/*
1546 			 * We raced with another reader/writer and haven't
1547 			 * managed to process any buffers.  A zero return
1548 			 * value means EOF, so retry instead.
1549 			 */
1550 			pipe_unlock(ipipe);
1551 			pipe_unlock(opipe);
1552 			goto retry;
1553 		}
1554 
1555 		ibuf = ipipe->bufs + ipipe->curbuf;
1556 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1557 		obuf = opipe->bufs + nbuf;
1558 
1559 		if (len >= ibuf->len) {
1560 			/*
1561 			 * Simply move the whole buffer from ipipe to opipe
1562 			 */
1563 			*obuf = *ibuf;
1564 			ibuf->ops = NULL;
1565 			opipe->nrbufs++;
1566 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1567 			ipipe->nrbufs--;
1568 			input_wakeup = true;
1569 		} else {
1570 			/*
1571 			 * Get a reference to this pipe buffer,
1572 			 * so we can copy the contents over.
1573 			 */
1574 			pipe_buf_get(ipipe, ibuf);
1575 			*obuf = *ibuf;
1576 
1577 			/*
1578 			 * Don't inherit the gift flag, we need to
1579 			 * prevent multiple steals of this page.
1580 			 */
1581 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1582 
1583 			obuf->len = len;
1584 			opipe->nrbufs++;
1585 			ibuf->offset += obuf->len;
1586 			ibuf->len -= obuf->len;
1587 		}
1588 		ret += obuf->len;
1589 		len -= obuf->len;
1590 	} while (len);
1591 
1592 	pipe_unlock(ipipe);
1593 	pipe_unlock(opipe);
1594 
1595 	/*
1596 	 * If we put data in the output pipe, wakeup any potential readers.
1597 	 */
1598 	if (ret > 0)
1599 		wakeup_pipe_readers(opipe);
1600 
1601 	if (input_wakeup)
1602 		wakeup_pipe_writers(ipipe);
1603 
1604 	return ret;
1605 }
1606 
1607 /*
1608  * Link contents of ipipe to opipe.
1609  */
1610 static int link_pipe(struct pipe_inode_info *ipipe,
1611 		     struct pipe_inode_info *opipe,
1612 		     size_t len, unsigned int flags)
1613 {
1614 	struct pipe_buffer *ibuf, *obuf;
1615 	int ret = 0, i = 0, nbuf;
1616 
1617 	/*
1618 	 * Potential ABBA deadlock, work around it by ordering lock
1619 	 * grabbing by pipe info address. Otherwise two different processes
1620 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1621 	 */
1622 	pipe_double_lock(ipipe, opipe);
1623 
1624 	do {
1625 		if (!opipe->readers) {
1626 			send_sig(SIGPIPE, current, 0);
1627 			if (!ret)
1628 				ret = -EPIPE;
1629 			break;
1630 		}
1631 
1632 		/*
1633 		 * If we have iterated all input buffers or ran out of
1634 		 * output room, break.
1635 		 */
1636 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1637 			break;
1638 
1639 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1640 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1641 
1642 		/*
1643 		 * Get a reference to this pipe buffer,
1644 		 * so we can copy the contents over.
1645 		 */
1646 		pipe_buf_get(ipipe, ibuf);
1647 
1648 		obuf = opipe->bufs + nbuf;
1649 		*obuf = *ibuf;
1650 
1651 		/*
1652 		 * Don't inherit the gift flag, we need to
1653 		 * prevent multiple steals of this page.
1654 		 */
1655 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1656 
1657 		if (obuf->len > len)
1658 			obuf->len = len;
1659 
1660 		opipe->nrbufs++;
1661 		ret += obuf->len;
1662 		len -= obuf->len;
1663 		i++;
1664 	} while (len);
1665 
1666 	/*
1667 	 * return EAGAIN if we have the potential of some data in the
1668 	 * future, otherwise just return 0
1669 	 */
1670 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1671 		ret = -EAGAIN;
1672 
1673 	pipe_unlock(ipipe);
1674 	pipe_unlock(opipe);
1675 
1676 	/*
1677 	 * If we put data in the output pipe, wakeup any potential readers.
1678 	 */
1679 	if (ret > 0)
1680 		wakeup_pipe_readers(opipe);
1681 
1682 	return ret;
1683 }
1684 
1685 /*
1686  * This is a tee(1) implementation that works on pipes. It doesn't copy
1687  * any data, it simply references the 'in' pages on the 'out' pipe.
1688  * The 'flags' used are the SPLICE_F_* variants, currently the only
1689  * applicable one is SPLICE_F_NONBLOCK.
1690  */
1691 static long do_tee(struct file *in, struct file *out, size_t len,
1692 		   unsigned int flags)
1693 {
1694 	struct pipe_inode_info *ipipe = get_pipe_info(in);
1695 	struct pipe_inode_info *opipe = get_pipe_info(out);
1696 	int ret = -EINVAL;
1697 
1698 	/*
1699 	 * Duplicate the contents of ipipe to opipe without actually
1700 	 * copying the data.
1701 	 */
1702 	if (ipipe && opipe && ipipe != opipe) {
1703 		/*
1704 		 * Keep going, unless we encounter an error. The ipipe/opipe
1705 		 * ordering doesn't really matter.
1706 		 */
1707 		ret = ipipe_prep(ipipe, flags);
1708 		if (!ret) {
1709 			ret = opipe_prep(opipe, flags);
1710 			if (!ret)
1711 				ret = link_pipe(ipipe, opipe, len, flags);
1712 		}
1713 	}
1714 
1715 	return ret;
1716 }
1717 
1718 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1719 {
1720 	struct fd in;
1721 	int error;
1722 
1723 	if (unlikely(flags & ~SPLICE_F_ALL))
1724 		return -EINVAL;
1725 
1726 	if (unlikely(!len))
1727 		return 0;
1728 
1729 	error = -EBADF;
1730 	in = fdget(fdin);
1731 	if (in.file) {
1732 		if (in.file->f_mode & FMODE_READ) {
1733 			struct fd out = fdget(fdout);
1734 			if (out.file) {
1735 				if (out.file->f_mode & FMODE_WRITE)
1736 					error = do_tee(in.file, out.file,
1737 							len, flags);
1738 				fdput(out);
1739 			}
1740 		}
1741  		fdput(in);
1742  	}
1743 
1744 	return error;
1745 }
1746