1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * "splice": joining two ropes together by interweaving their strands. 4 * 5 * This is the "extended pipe" functionality, where a pipe is used as 6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 7 * buffer that you can use to transfer data from one end to the other. 8 * 9 * The traditional unix read/write is extended with a "splice()" operation 10 * that transfers data buffers to or from a pipe buffer. 11 * 12 * Named by Larry McVoy, original implementation from Linus, extended by 13 * Jens to support splicing to files, network, direct splicing, etc and 14 * fixing lots of bugs. 15 * 16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 19 * 20 */ 21 #include <linux/bvec.h> 22 #include <linux/fs.h> 23 #include <linux/file.h> 24 #include <linux/pagemap.h> 25 #include <linux/splice.h> 26 #include <linux/memcontrol.h> 27 #include <linux/mm_inline.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/export.h> 31 #include <linux/syscalls.h> 32 #include <linux/uio.h> 33 #include <linux/fsnotify.h> 34 #include <linux/security.h> 35 #include <linux/gfp.h> 36 #include <linux/net.h> 37 #include <linux/socket.h> 38 #include <linux/sched/signal.h> 39 40 #include "internal.h" 41 42 /* 43 * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to 44 * indicate they support non-blocking reads or writes, we must clear it 45 * here if set to avoid blocking other users of this pipe if splice is 46 * being done on it. 47 */ 48 static noinline void noinline pipe_clear_nowait(struct file *file) 49 { 50 fmode_t fmode = READ_ONCE(file->f_mode); 51 52 do { 53 if (!(fmode & FMODE_NOWAIT)) 54 break; 55 } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT)); 56 } 57 58 /* 59 * Attempt to steal a page from a pipe buffer. This should perhaps go into 60 * a vm helper function, it's already simplified quite a bit by the 61 * addition of remove_mapping(). If success is returned, the caller may 62 * attempt to reuse this page for another destination. 63 */ 64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe, 65 struct pipe_buffer *buf) 66 { 67 struct folio *folio = page_folio(buf->page); 68 struct address_space *mapping; 69 70 folio_lock(folio); 71 72 mapping = folio_mapping(folio); 73 if (mapping) { 74 WARN_ON(!folio_test_uptodate(folio)); 75 76 /* 77 * At least for ext2 with nobh option, we need to wait on 78 * writeback completing on this folio, since we'll remove it 79 * from the pagecache. Otherwise truncate wont wait on the 80 * folio, allowing the disk blocks to be reused by someone else 81 * before we actually wrote our data to them. fs corruption 82 * ensues. 83 */ 84 folio_wait_writeback(folio); 85 86 if (folio_has_private(folio) && 87 !filemap_release_folio(folio, GFP_KERNEL)) 88 goto out_unlock; 89 90 /* 91 * If we succeeded in removing the mapping, set LRU flag 92 * and return good. 93 */ 94 if (remove_mapping(mapping, folio)) { 95 buf->flags |= PIPE_BUF_FLAG_LRU; 96 return true; 97 } 98 } 99 100 /* 101 * Raced with truncate or failed to remove folio from current 102 * address space, unlock and return failure. 103 */ 104 out_unlock: 105 folio_unlock(folio); 106 return false; 107 } 108 109 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 110 struct pipe_buffer *buf) 111 { 112 put_page(buf->page); 113 buf->flags &= ~PIPE_BUF_FLAG_LRU; 114 } 115 116 /* 117 * Check whether the contents of buf is OK to access. Since the content 118 * is a page cache page, IO may be in flight. 119 */ 120 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 121 struct pipe_buffer *buf) 122 { 123 struct page *page = buf->page; 124 int err; 125 126 if (!PageUptodate(page)) { 127 lock_page(page); 128 129 /* 130 * Page got truncated/unhashed. This will cause a 0-byte 131 * splice, if this is the first page. 132 */ 133 if (!page->mapping) { 134 err = -ENODATA; 135 goto error; 136 } 137 138 /* 139 * Uh oh, read-error from disk. 140 */ 141 if (!PageUptodate(page)) { 142 err = -EIO; 143 goto error; 144 } 145 146 /* 147 * Page is ok afterall, we are done. 148 */ 149 unlock_page(page); 150 } 151 152 return 0; 153 error: 154 unlock_page(page); 155 return err; 156 } 157 158 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 159 .confirm = page_cache_pipe_buf_confirm, 160 .release = page_cache_pipe_buf_release, 161 .try_steal = page_cache_pipe_buf_try_steal, 162 .get = generic_pipe_buf_get, 163 }; 164 165 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe, 166 struct pipe_buffer *buf) 167 { 168 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 169 return false; 170 171 buf->flags |= PIPE_BUF_FLAG_LRU; 172 return generic_pipe_buf_try_steal(pipe, buf); 173 } 174 175 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 176 .release = page_cache_pipe_buf_release, 177 .try_steal = user_page_pipe_buf_try_steal, 178 .get = generic_pipe_buf_get, 179 }; 180 181 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 182 { 183 smp_mb(); 184 if (waitqueue_active(&pipe->rd_wait)) 185 wake_up_interruptible(&pipe->rd_wait); 186 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 187 } 188 189 /** 190 * splice_to_pipe - fill passed data into a pipe 191 * @pipe: pipe to fill 192 * @spd: data to fill 193 * 194 * Description: 195 * @spd contains a map of pages and len/offset tuples, along with 196 * the struct pipe_buf_operations associated with these pages. This 197 * function will link that data to the pipe. 198 * 199 */ 200 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 201 struct splice_pipe_desc *spd) 202 { 203 unsigned int spd_pages = spd->nr_pages; 204 unsigned int tail = pipe->tail; 205 unsigned int head = pipe->head; 206 unsigned int mask = pipe->ring_size - 1; 207 int ret = 0, page_nr = 0; 208 209 if (!spd_pages) 210 return 0; 211 212 if (unlikely(!pipe->readers)) { 213 send_sig(SIGPIPE, current, 0); 214 ret = -EPIPE; 215 goto out; 216 } 217 218 while (!pipe_full(head, tail, pipe->max_usage)) { 219 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 220 221 buf->page = spd->pages[page_nr]; 222 buf->offset = spd->partial[page_nr].offset; 223 buf->len = spd->partial[page_nr].len; 224 buf->private = spd->partial[page_nr].private; 225 buf->ops = spd->ops; 226 buf->flags = 0; 227 228 head++; 229 pipe->head = head; 230 page_nr++; 231 ret += buf->len; 232 233 if (!--spd->nr_pages) 234 break; 235 } 236 237 if (!ret) 238 ret = -EAGAIN; 239 240 out: 241 while (page_nr < spd_pages) 242 spd->spd_release(spd, page_nr++); 243 244 return ret; 245 } 246 EXPORT_SYMBOL_GPL(splice_to_pipe); 247 248 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 249 { 250 unsigned int head = pipe->head; 251 unsigned int tail = pipe->tail; 252 unsigned int mask = pipe->ring_size - 1; 253 int ret; 254 255 if (unlikely(!pipe->readers)) { 256 send_sig(SIGPIPE, current, 0); 257 ret = -EPIPE; 258 } else if (pipe_full(head, tail, pipe->max_usage)) { 259 ret = -EAGAIN; 260 } else { 261 pipe->bufs[head & mask] = *buf; 262 pipe->head = head + 1; 263 return buf->len; 264 } 265 pipe_buf_release(pipe, buf); 266 return ret; 267 } 268 EXPORT_SYMBOL(add_to_pipe); 269 270 /* 271 * Check if we need to grow the arrays holding pages and partial page 272 * descriptions. 273 */ 274 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 275 { 276 unsigned int max_usage = READ_ONCE(pipe->max_usage); 277 278 spd->nr_pages_max = max_usage; 279 if (max_usage <= PIPE_DEF_BUFFERS) 280 return 0; 281 282 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL); 283 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page), 284 GFP_KERNEL); 285 286 if (spd->pages && spd->partial) 287 return 0; 288 289 kfree(spd->pages); 290 kfree(spd->partial); 291 return -ENOMEM; 292 } 293 294 void splice_shrink_spd(struct splice_pipe_desc *spd) 295 { 296 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 297 return; 298 299 kfree(spd->pages); 300 kfree(spd->partial); 301 } 302 303 /** 304 * copy_splice_read - Copy data from a file and splice the copy into a pipe 305 * @in: The file to read from 306 * @ppos: Pointer to the file position to read from 307 * @pipe: The pipe to splice into 308 * @len: The amount to splice 309 * @flags: The SPLICE_F_* flags 310 * 311 * This function allocates a bunch of pages sufficient to hold the requested 312 * amount of data (but limited by the remaining pipe capacity), passes it to 313 * the file's ->read_iter() to read into and then splices the used pages into 314 * the pipe. 315 * 316 * Return: On success, the number of bytes read will be returned and *@ppos 317 * will be updated if appropriate; 0 will be returned if there is no more data 318 * to be read; -EAGAIN will be returned if the pipe had no space, and some 319 * other negative error code will be returned on error. A short read may occur 320 * if the pipe has insufficient space, we reach the end of the data or we hit a 321 * hole. 322 */ 323 ssize_t copy_splice_read(struct file *in, loff_t *ppos, 324 struct pipe_inode_info *pipe, 325 size_t len, unsigned int flags) 326 { 327 struct iov_iter to; 328 struct bio_vec *bv; 329 struct kiocb kiocb; 330 struct page **pages; 331 ssize_t ret; 332 size_t used, npages, chunk, remain, keep = 0; 333 int i; 334 335 /* Work out how much data we can actually add into the pipe */ 336 used = pipe_occupancy(pipe->head, pipe->tail); 337 npages = max_t(ssize_t, pipe->max_usage - used, 0); 338 len = min_t(size_t, len, npages * PAGE_SIZE); 339 npages = DIV_ROUND_UP(len, PAGE_SIZE); 340 341 bv = kzalloc(array_size(npages, sizeof(bv[0])) + 342 array_size(npages, sizeof(struct page *)), GFP_KERNEL); 343 if (!bv) 344 return -ENOMEM; 345 346 pages = (struct page **)(bv + npages); 347 npages = alloc_pages_bulk_array(GFP_USER, npages, pages); 348 if (!npages) { 349 kfree(bv); 350 return -ENOMEM; 351 } 352 353 remain = len = min_t(size_t, len, npages * PAGE_SIZE); 354 355 for (i = 0; i < npages; i++) { 356 chunk = min_t(size_t, PAGE_SIZE, remain); 357 bv[i].bv_page = pages[i]; 358 bv[i].bv_offset = 0; 359 bv[i].bv_len = chunk; 360 remain -= chunk; 361 } 362 363 /* Do the I/O */ 364 iov_iter_bvec(&to, ITER_DEST, bv, npages, len); 365 init_sync_kiocb(&kiocb, in); 366 kiocb.ki_pos = *ppos; 367 ret = call_read_iter(in, &kiocb, &to); 368 369 if (ret > 0) { 370 keep = DIV_ROUND_UP(ret, PAGE_SIZE); 371 *ppos = kiocb.ki_pos; 372 } 373 374 /* 375 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in 376 * there", rather than -EFAULT. 377 */ 378 if (ret == -EFAULT) 379 ret = -EAGAIN; 380 381 /* Free any pages that didn't get touched at all. */ 382 if (keep < npages) 383 release_pages(pages + keep, npages - keep); 384 385 /* Push the remaining pages into the pipe. */ 386 remain = ret; 387 for (i = 0; i < keep; i++) { 388 struct pipe_buffer *buf = pipe_head_buf(pipe); 389 390 chunk = min_t(size_t, remain, PAGE_SIZE); 391 *buf = (struct pipe_buffer) { 392 .ops = &default_pipe_buf_ops, 393 .page = bv[i].bv_page, 394 .offset = 0, 395 .len = chunk, 396 }; 397 pipe->head++; 398 remain -= chunk; 399 } 400 401 kfree(bv); 402 return ret; 403 } 404 EXPORT_SYMBOL(copy_splice_read); 405 406 const struct pipe_buf_operations default_pipe_buf_ops = { 407 .release = generic_pipe_buf_release, 408 .try_steal = generic_pipe_buf_try_steal, 409 .get = generic_pipe_buf_get, 410 }; 411 412 /* Pipe buffer operations for a socket and similar. */ 413 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 414 .release = generic_pipe_buf_release, 415 .get = generic_pipe_buf_get, 416 }; 417 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 418 419 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 420 { 421 smp_mb(); 422 if (waitqueue_active(&pipe->wr_wait)) 423 wake_up_interruptible(&pipe->wr_wait); 424 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 425 } 426 427 /** 428 * splice_from_pipe_feed - feed available data from a pipe to a file 429 * @pipe: pipe to splice from 430 * @sd: information to @actor 431 * @actor: handler that splices the data 432 * 433 * Description: 434 * This function loops over the pipe and calls @actor to do the 435 * actual moving of a single struct pipe_buffer to the desired 436 * destination. It returns when there's no more buffers left in 437 * the pipe or if the requested number of bytes (@sd->total_len) 438 * have been copied. It returns a positive number (one) if the 439 * pipe needs to be filled with more data, zero if the required 440 * number of bytes have been copied and -errno on error. 441 * 442 * This, together with splice_from_pipe_{begin,end,next}, may be 443 * used to implement the functionality of __splice_from_pipe() when 444 * locking is required around copying the pipe buffers to the 445 * destination. 446 */ 447 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 448 splice_actor *actor) 449 { 450 unsigned int head = pipe->head; 451 unsigned int tail = pipe->tail; 452 unsigned int mask = pipe->ring_size - 1; 453 int ret; 454 455 while (!pipe_empty(head, tail)) { 456 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 457 458 sd->len = buf->len; 459 if (sd->len > sd->total_len) 460 sd->len = sd->total_len; 461 462 ret = pipe_buf_confirm(pipe, buf); 463 if (unlikely(ret)) { 464 if (ret == -ENODATA) 465 ret = 0; 466 return ret; 467 } 468 469 ret = actor(pipe, buf, sd); 470 if (ret <= 0) 471 return ret; 472 473 buf->offset += ret; 474 buf->len -= ret; 475 476 sd->num_spliced += ret; 477 sd->len -= ret; 478 sd->pos += ret; 479 sd->total_len -= ret; 480 481 if (!buf->len) { 482 pipe_buf_release(pipe, buf); 483 tail++; 484 pipe->tail = tail; 485 if (pipe->files) 486 sd->need_wakeup = true; 487 } 488 489 if (!sd->total_len) 490 return 0; 491 } 492 493 return 1; 494 } 495 496 /* We know we have a pipe buffer, but maybe it's empty? */ 497 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe) 498 { 499 unsigned int tail = pipe->tail; 500 unsigned int mask = pipe->ring_size - 1; 501 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 502 503 if (unlikely(!buf->len)) { 504 pipe_buf_release(pipe, buf); 505 pipe->tail = tail+1; 506 return true; 507 } 508 509 return false; 510 } 511 512 /** 513 * splice_from_pipe_next - wait for some data to splice from 514 * @pipe: pipe to splice from 515 * @sd: information about the splice operation 516 * 517 * Description: 518 * This function will wait for some data and return a positive 519 * value (one) if pipe buffers are available. It will return zero 520 * or -errno if no more data needs to be spliced. 521 */ 522 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 523 { 524 /* 525 * Check for signal early to make process killable when there are 526 * always buffers available 527 */ 528 if (signal_pending(current)) 529 return -ERESTARTSYS; 530 531 repeat: 532 while (pipe_empty(pipe->head, pipe->tail)) { 533 if (!pipe->writers) 534 return 0; 535 536 if (sd->num_spliced) 537 return 0; 538 539 if (sd->flags & SPLICE_F_NONBLOCK) 540 return -EAGAIN; 541 542 if (signal_pending(current)) 543 return -ERESTARTSYS; 544 545 if (sd->need_wakeup) { 546 wakeup_pipe_writers(pipe); 547 sd->need_wakeup = false; 548 } 549 550 pipe_wait_readable(pipe); 551 } 552 553 if (eat_empty_buffer(pipe)) 554 goto repeat; 555 556 return 1; 557 } 558 559 /** 560 * splice_from_pipe_begin - start splicing from pipe 561 * @sd: information about the splice operation 562 * 563 * Description: 564 * This function should be called before a loop containing 565 * splice_from_pipe_next() and splice_from_pipe_feed() to 566 * initialize the necessary fields of @sd. 567 */ 568 static void splice_from_pipe_begin(struct splice_desc *sd) 569 { 570 sd->num_spliced = 0; 571 sd->need_wakeup = false; 572 } 573 574 /** 575 * splice_from_pipe_end - finish splicing from pipe 576 * @pipe: pipe to splice from 577 * @sd: information about the splice operation 578 * 579 * Description: 580 * This function will wake up pipe writers if necessary. It should 581 * be called after a loop containing splice_from_pipe_next() and 582 * splice_from_pipe_feed(). 583 */ 584 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 585 { 586 if (sd->need_wakeup) 587 wakeup_pipe_writers(pipe); 588 } 589 590 /** 591 * __splice_from_pipe - splice data from a pipe to given actor 592 * @pipe: pipe to splice from 593 * @sd: information to @actor 594 * @actor: handler that splices the data 595 * 596 * Description: 597 * This function does little more than loop over the pipe and call 598 * @actor to do the actual moving of a single struct pipe_buffer to 599 * the desired destination. See pipe_to_file, pipe_to_sendmsg, or 600 * pipe_to_user. 601 * 602 */ 603 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 604 splice_actor *actor) 605 { 606 int ret; 607 608 splice_from_pipe_begin(sd); 609 do { 610 cond_resched(); 611 ret = splice_from_pipe_next(pipe, sd); 612 if (ret > 0) 613 ret = splice_from_pipe_feed(pipe, sd, actor); 614 } while (ret > 0); 615 splice_from_pipe_end(pipe, sd); 616 617 return sd->num_spliced ? sd->num_spliced : ret; 618 } 619 EXPORT_SYMBOL(__splice_from_pipe); 620 621 /** 622 * splice_from_pipe - splice data from a pipe to a file 623 * @pipe: pipe to splice from 624 * @out: file to splice to 625 * @ppos: position in @out 626 * @len: how many bytes to splice 627 * @flags: splice modifier flags 628 * @actor: handler that splices the data 629 * 630 * Description: 631 * See __splice_from_pipe. This function locks the pipe inode, 632 * otherwise it's identical to __splice_from_pipe(). 633 * 634 */ 635 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 636 loff_t *ppos, size_t len, unsigned int flags, 637 splice_actor *actor) 638 { 639 ssize_t ret; 640 struct splice_desc sd = { 641 .total_len = len, 642 .flags = flags, 643 .pos = *ppos, 644 .u.file = out, 645 }; 646 647 pipe_lock(pipe); 648 ret = __splice_from_pipe(pipe, &sd, actor); 649 pipe_unlock(pipe); 650 651 return ret; 652 } 653 654 /** 655 * iter_file_splice_write - splice data from a pipe to a file 656 * @pipe: pipe info 657 * @out: file to write to 658 * @ppos: position in @out 659 * @len: number of bytes to splice 660 * @flags: splice modifier flags 661 * 662 * Description: 663 * Will either move or copy pages (determined by @flags options) from 664 * the given pipe inode to the given file. 665 * This one is ->write_iter-based. 666 * 667 */ 668 ssize_t 669 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 670 loff_t *ppos, size_t len, unsigned int flags) 671 { 672 struct splice_desc sd = { 673 .total_len = len, 674 .flags = flags, 675 .pos = *ppos, 676 .u.file = out, 677 }; 678 int nbufs = pipe->max_usage; 679 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 680 GFP_KERNEL); 681 ssize_t ret; 682 683 if (unlikely(!array)) 684 return -ENOMEM; 685 686 pipe_lock(pipe); 687 688 splice_from_pipe_begin(&sd); 689 while (sd.total_len) { 690 struct iov_iter from; 691 unsigned int head, tail, mask; 692 size_t left; 693 int n; 694 695 ret = splice_from_pipe_next(pipe, &sd); 696 if (ret <= 0) 697 break; 698 699 if (unlikely(nbufs < pipe->max_usage)) { 700 kfree(array); 701 nbufs = pipe->max_usage; 702 array = kcalloc(nbufs, sizeof(struct bio_vec), 703 GFP_KERNEL); 704 if (!array) { 705 ret = -ENOMEM; 706 break; 707 } 708 } 709 710 head = pipe->head; 711 tail = pipe->tail; 712 mask = pipe->ring_size - 1; 713 714 /* build the vector */ 715 left = sd.total_len; 716 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) { 717 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 718 size_t this_len = buf->len; 719 720 /* zero-length bvecs are not supported, skip them */ 721 if (!this_len) 722 continue; 723 this_len = min(this_len, left); 724 725 ret = pipe_buf_confirm(pipe, buf); 726 if (unlikely(ret)) { 727 if (ret == -ENODATA) 728 ret = 0; 729 goto done; 730 } 731 732 bvec_set_page(&array[n], buf->page, this_len, 733 buf->offset); 734 left -= this_len; 735 n++; 736 } 737 738 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left); 739 ret = vfs_iter_write(out, &from, &sd.pos, 0); 740 if (ret <= 0) 741 break; 742 743 sd.num_spliced += ret; 744 sd.total_len -= ret; 745 *ppos = sd.pos; 746 747 /* dismiss the fully eaten buffers, adjust the partial one */ 748 tail = pipe->tail; 749 while (ret) { 750 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 751 if (ret >= buf->len) { 752 ret -= buf->len; 753 buf->len = 0; 754 pipe_buf_release(pipe, buf); 755 tail++; 756 pipe->tail = tail; 757 if (pipe->files) 758 sd.need_wakeup = true; 759 } else { 760 buf->offset += ret; 761 buf->len -= ret; 762 ret = 0; 763 } 764 } 765 } 766 done: 767 kfree(array); 768 splice_from_pipe_end(pipe, &sd); 769 770 pipe_unlock(pipe); 771 772 if (sd.num_spliced) 773 ret = sd.num_spliced; 774 775 return ret; 776 } 777 778 EXPORT_SYMBOL(iter_file_splice_write); 779 780 #ifdef CONFIG_NET 781 /** 782 * splice_to_socket - splice data from a pipe to a socket 783 * @pipe: pipe to splice from 784 * @out: socket to write to 785 * @ppos: position in @out 786 * @len: number of bytes to splice 787 * @flags: splice modifier flags 788 * 789 * Description: 790 * Will send @len bytes from the pipe to a network socket. No data copying 791 * is involved. 792 * 793 */ 794 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out, 795 loff_t *ppos, size_t len, unsigned int flags) 796 { 797 struct socket *sock = sock_from_file(out); 798 struct bio_vec bvec[16]; 799 struct msghdr msg = {}; 800 ssize_t ret = 0; 801 size_t spliced = 0; 802 bool need_wakeup = false; 803 804 pipe_lock(pipe); 805 806 while (len > 0) { 807 unsigned int head, tail, mask, bc = 0; 808 size_t remain = len; 809 810 /* 811 * Check for signal early to make process killable when there 812 * are always buffers available 813 */ 814 ret = -ERESTARTSYS; 815 if (signal_pending(current)) 816 break; 817 818 while (pipe_empty(pipe->head, pipe->tail)) { 819 ret = 0; 820 if (!pipe->writers) 821 goto out; 822 823 if (spliced) 824 goto out; 825 826 ret = -EAGAIN; 827 if (flags & SPLICE_F_NONBLOCK) 828 goto out; 829 830 ret = -ERESTARTSYS; 831 if (signal_pending(current)) 832 goto out; 833 834 if (need_wakeup) { 835 wakeup_pipe_writers(pipe); 836 need_wakeup = false; 837 } 838 839 pipe_wait_readable(pipe); 840 } 841 842 head = pipe->head; 843 tail = pipe->tail; 844 mask = pipe->ring_size - 1; 845 846 while (!pipe_empty(head, tail)) { 847 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 848 size_t seg; 849 850 if (!buf->len) { 851 tail++; 852 continue; 853 } 854 855 seg = min_t(size_t, remain, buf->len); 856 857 ret = pipe_buf_confirm(pipe, buf); 858 if (unlikely(ret)) { 859 if (ret == -ENODATA) 860 ret = 0; 861 break; 862 } 863 864 bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset); 865 remain -= seg; 866 if (remain == 0 || bc >= ARRAY_SIZE(bvec)) 867 break; 868 tail++; 869 } 870 871 if (!bc) 872 break; 873 874 msg.msg_flags = MSG_SPLICE_PAGES; 875 if (flags & SPLICE_F_MORE) 876 msg.msg_flags |= MSG_MORE; 877 if (remain && pipe_occupancy(pipe->head, tail) > 0) 878 msg.msg_flags |= MSG_MORE; 879 880 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc, 881 len - remain); 882 ret = sock_sendmsg(sock, &msg); 883 if (ret <= 0) 884 break; 885 886 spliced += ret; 887 len -= ret; 888 tail = pipe->tail; 889 while (ret > 0) { 890 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 891 size_t seg = min_t(size_t, ret, buf->len); 892 893 buf->offset += seg; 894 buf->len -= seg; 895 ret -= seg; 896 897 if (!buf->len) { 898 pipe_buf_release(pipe, buf); 899 tail++; 900 } 901 } 902 903 if (tail != pipe->tail) { 904 pipe->tail = tail; 905 if (pipe->files) 906 need_wakeup = true; 907 } 908 } 909 910 out: 911 pipe_unlock(pipe); 912 if (need_wakeup) 913 wakeup_pipe_writers(pipe); 914 return spliced ?: ret; 915 } 916 #endif 917 918 static int warn_unsupported(struct file *file, const char *op) 919 { 920 pr_debug_ratelimited( 921 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n", 922 op, file, current->pid, current->comm); 923 return -EINVAL; 924 } 925 926 /* 927 * Attempt to initiate a splice from pipe to file. 928 */ 929 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 930 loff_t *ppos, size_t len, unsigned int flags) 931 { 932 if (unlikely(!out->f_op->splice_write)) 933 return warn_unsupported(out, "write"); 934 return out->f_op->splice_write(pipe, out, ppos, len, flags); 935 } 936 937 /* 938 * Indicate to the caller that there was a premature EOF when reading from the 939 * source and the caller didn't indicate they would be sending more data after 940 * this. 941 */ 942 static void do_splice_eof(struct splice_desc *sd) 943 { 944 if (sd->splice_eof) 945 sd->splice_eof(sd); 946 } 947 948 /** 949 * vfs_splice_read - Read data from a file and splice it into a pipe 950 * @in: File to splice from 951 * @ppos: Input file offset 952 * @pipe: Pipe to splice to 953 * @len: Number of bytes to splice 954 * @flags: Splice modifier flags (SPLICE_F_*) 955 * 956 * Splice the requested amount of data from the input file to the pipe. This 957 * is synchronous as the caller must hold the pipe lock across the entire 958 * operation. 959 * 960 * If successful, it returns the amount of data spliced, 0 if it hit the EOF or 961 * a hole and a negative error code otherwise. 962 */ 963 long vfs_splice_read(struct file *in, loff_t *ppos, 964 struct pipe_inode_info *pipe, size_t len, 965 unsigned int flags) 966 { 967 unsigned int p_space; 968 int ret; 969 970 if (unlikely(!(in->f_mode & FMODE_READ))) 971 return -EBADF; 972 if (!len) 973 return 0; 974 975 /* Don't try to read more the pipe has space for. */ 976 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail); 977 len = min_t(size_t, len, p_space << PAGE_SHIFT); 978 979 ret = rw_verify_area(READ, in, ppos, len); 980 if (unlikely(ret < 0)) 981 return ret; 982 983 if (unlikely(len > MAX_RW_COUNT)) 984 len = MAX_RW_COUNT; 985 986 if (unlikely(!in->f_op->splice_read)) 987 return warn_unsupported(in, "read"); 988 /* 989 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a 990 * buffer, copy into it and splice that into the pipe. 991 */ 992 if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host)) 993 return copy_splice_read(in, ppos, pipe, len, flags); 994 return in->f_op->splice_read(in, ppos, pipe, len, flags); 995 } 996 EXPORT_SYMBOL_GPL(vfs_splice_read); 997 998 /** 999 * splice_direct_to_actor - splices data directly between two non-pipes 1000 * @in: file to splice from 1001 * @sd: actor information on where to splice to 1002 * @actor: handles the data splicing 1003 * 1004 * Description: 1005 * This is a special case helper to splice directly between two 1006 * points, without requiring an explicit pipe. Internally an allocated 1007 * pipe is cached in the process, and reused during the lifetime of 1008 * that process. 1009 * 1010 */ 1011 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1012 splice_direct_actor *actor) 1013 { 1014 struct pipe_inode_info *pipe; 1015 long ret, bytes; 1016 size_t len; 1017 int i, flags, more; 1018 1019 /* 1020 * We require the input to be seekable, as we don't want to randomly 1021 * drop data for eg socket -> socket splicing. Use the piped splicing 1022 * for that! 1023 */ 1024 if (unlikely(!(in->f_mode & FMODE_LSEEK))) 1025 return -EINVAL; 1026 1027 /* 1028 * neither in nor out is a pipe, setup an internal pipe attached to 1029 * 'out' and transfer the wanted data from 'in' to 'out' through that 1030 */ 1031 pipe = current->splice_pipe; 1032 if (unlikely(!pipe)) { 1033 pipe = alloc_pipe_info(); 1034 if (!pipe) 1035 return -ENOMEM; 1036 1037 /* 1038 * We don't have an immediate reader, but we'll read the stuff 1039 * out of the pipe right after the splice_to_pipe(). So set 1040 * PIPE_READERS appropriately. 1041 */ 1042 pipe->readers = 1; 1043 1044 current->splice_pipe = pipe; 1045 } 1046 1047 /* 1048 * Do the splice. 1049 */ 1050 bytes = 0; 1051 len = sd->total_len; 1052 1053 /* Don't block on output, we have to drain the direct pipe. */ 1054 flags = sd->flags; 1055 sd->flags &= ~SPLICE_F_NONBLOCK; 1056 1057 /* 1058 * We signal MORE until we've read sufficient data to fulfill the 1059 * request and we keep signalling it if the caller set it. 1060 */ 1061 more = sd->flags & SPLICE_F_MORE; 1062 sd->flags |= SPLICE_F_MORE; 1063 1064 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail)); 1065 1066 while (len) { 1067 size_t read_len; 1068 loff_t pos = sd->pos, prev_pos = pos; 1069 1070 ret = vfs_splice_read(in, &pos, pipe, len, flags); 1071 if (unlikely(ret <= 0)) 1072 goto read_failure; 1073 1074 read_len = ret; 1075 sd->total_len = read_len; 1076 1077 /* 1078 * If we now have sufficient data to fulfill the request then 1079 * we clear SPLICE_F_MORE if it was not set initially. 1080 */ 1081 if (read_len >= len && !more) 1082 sd->flags &= ~SPLICE_F_MORE; 1083 1084 /* 1085 * NOTE: nonblocking mode only applies to the input. We 1086 * must not do the output in nonblocking mode as then we 1087 * could get stuck data in the internal pipe: 1088 */ 1089 ret = actor(pipe, sd); 1090 if (unlikely(ret <= 0)) { 1091 sd->pos = prev_pos; 1092 goto out_release; 1093 } 1094 1095 bytes += ret; 1096 len -= ret; 1097 sd->pos = pos; 1098 1099 if (ret < read_len) { 1100 sd->pos = prev_pos + ret; 1101 goto out_release; 1102 } 1103 } 1104 1105 done: 1106 pipe->tail = pipe->head = 0; 1107 file_accessed(in); 1108 return bytes; 1109 1110 read_failure: 1111 /* 1112 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that 1113 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a 1114 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at 1115 * least 1 byte *then* we will also do the ->splice_eof() call. 1116 */ 1117 if (ret == 0 && !more && len > 0 && bytes) 1118 do_splice_eof(sd); 1119 out_release: 1120 /* 1121 * If we did an incomplete transfer we must release 1122 * the pipe buffers in question: 1123 */ 1124 for (i = 0; i < pipe->ring_size; i++) { 1125 struct pipe_buffer *buf = &pipe->bufs[i]; 1126 1127 if (buf->ops) 1128 pipe_buf_release(pipe, buf); 1129 } 1130 1131 if (!bytes) 1132 bytes = ret; 1133 1134 goto done; 1135 } 1136 EXPORT_SYMBOL(splice_direct_to_actor); 1137 1138 static int direct_splice_actor(struct pipe_inode_info *pipe, 1139 struct splice_desc *sd) 1140 { 1141 struct file *file = sd->u.file; 1142 1143 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1144 sd->flags); 1145 } 1146 1147 static void direct_file_splice_eof(struct splice_desc *sd) 1148 { 1149 struct file *file = sd->u.file; 1150 1151 if (file->f_op->splice_eof) 1152 file->f_op->splice_eof(file); 1153 } 1154 1155 /** 1156 * do_splice_direct - splices data directly between two files 1157 * @in: file to splice from 1158 * @ppos: input file offset 1159 * @out: file to splice to 1160 * @opos: output file offset 1161 * @len: number of bytes to splice 1162 * @flags: splice modifier flags 1163 * 1164 * Description: 1165 * For use by do_sendfile(). splice can easily emulate sendfile, but 1166 * doing it in the application would incur an extra system call 1167 * (splice in + splice out, as compared to just sendfile()). So this helper 1168 * can splice directly through a process-private pipe. 1169 * 1170 */ 1171 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1172 loff_t *opos, size_t len, unsigned int flags) 1173 { 1174 struct splice_desc sd = { 1175 .len = len, 1176 .total_len = len, 1177 .flags = flags, 1178 .pos = *ppos, 1179 .u.file = out, 1180 .splice_eof = direct_file_splice_eof, 1181 .opos = opos, 1182 }; 1183 long ret; 1184 1185 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1186 return -EBADF; 1187 1188 if (unlikely(out->f_flags & O_APPEND)) 1189 return -EINVAL; 1190 1191 ret = rw_verify_area(WRITE, out, opos, len); 1192 if (unlikely(ret < 0)) 1193 return ret; 1194 1195 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1196 if (ret > 0) 1197 *ppos = sd.pos; 1198 1199 return ret; 1200 } 1201 EXPORT_SYMBOL(do_splice_direct); 1202 1203 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 1204 { 1205 for (;;) { 1206 if (unlikely(!pipe->readers)) { 1207 send_sig(SIGPIPE, current, 0); 1208 return -EPIPE; 1209 } 1210 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1211 return 0; 1212 if (flags & SPLICE_F_NONBLOCK) 1213 return -EAGAIN; 1214 if (signal_pending(current)) 1215 return -ERESTARTSYS; 1216 pipe_wait_writable(pipe); 1217 } 1218 } 1219 1220 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1221 struct pipe_inode_info *opipe, 1222 size_t len, unsigned int flags); 1223 1224 long splice_file_to_pipe(struct file *in, 1225 struct pipe_inode_info *opipe, 1226 loff_t *offset, 1227 size_t len, unsigned int flags) 1228 { 1229 long ret; 1230 1231 pipe_lock(opipe); 1232 ret = wait_for_space(opipe, flags); 1233 if (!ret) 1234 ret = vfs_splice_read(in, offset, opipe, len, flags); 1235 pipe_unlock(opipe); 1236 if (ret > 0) 1237 wakeup_pipe_readers(opipe); 1238 return ret; 1239 } 1240 1241 /* 1242 * Determine where to splice to/from. 1243 */ 1244 long do_splice(struct file *in, loff_t *off_in, struct file *out, 1245 loff_t *off_out, size_t len, unsigned int flags) 1246 { 1247 struct pipe_inode_info *ipipe; 1248 struct pipe_inode_info *opipe; 1249 loff_t offset; 1250 long ret; 1251 1252 if (unlikely(!(in->f_mode & FMODE_READ) || 1253 !(out->f_mode & FMODE_WRITE))) 1254 return -EBADF; 1255 1256 ipipe = get_pipe_info(in, true); 1257 opipe = get_pipe_info(out, true); 1258 1259 if (ipipe && opipe) { 1260 if (off_in || off_out) 1261 return -ESPIPE; 1262 1263 /* Splicing to self would be fun, but... */ 1264 if (ipipe == opipe) 1265 return -EINVAL; 1266 1267 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1268 flags |= SPLICE_F_NONBLOCK; 1269 1270 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1271 } 1272 1273 if (ipipe) { 1274 if (off_in) 1275 return -ESPIPE; 1276 if (off_out) { 1277 if (!(out->f_mode & FMODE_PWRITE)) 1278 return -EINVAL; 1279 offset = *off_out; 1280 } else { 1281 offset = out->f_pos; 1282 } 1283 1284 if (unlikely(out->f_flags & O_APPEND)) 1285 return -EINVAL; 1286 1287 ret = rw_verify_area(WRITE, out, &offset, len); 1288 if (unlikely(ret < 0)) 1289 return ret; 1290 1291 if (in->f_flags & O_NONBLOCK) 1292 flags |= SPLICE_F_NONBLOCK; 1293 1294 file_start_write(out); 1295 ret = do_splice_from(ipipe, out, &offset, len, flags); 1296 file_end_write(out); 1297 1298 if (ret > 0) 1299 fsnotify_modify(out); 1300 1301 if (!off_out) 1302 out->f_pos = offset; 1303 else 1304 *off_out = offset; 1305 1306 return ret; 1307 } 1308 1309 if (opipe) { 1310 if (off_out) 1311 return -ESPIPE; 1312 if (off_in) { 1313 if (!(in->f_mode & FMODE_PREAD)) 1314 return -EINVAL; 1315 offset = *off_in; 1316 } else { 1317 offset = in->f_pos; 1318 } 1319 1320 if (out->f_flags & O_NONBLOCK) 1321 flags |= SPLICE_F_NONBLOCK; 1322 1323 ret = splice_file_to_pipe(in, opipe, &offset, len, flags); 1324 1325 if (ret > 0) 1326 fsnotify_access(in); 1327 1328 if (!off_in) 1329 in->f_pos = offset; 1330 else 1331 *off_in = offset; 1332 1333 return ret; 1334 } 1335 1336 return -EINVAL; 1337 } 1338 1339 static long __do_splice(struct file *in, loff_t __user *off_in, 1340 struct file *out, loff_t __user *off_out, 1341 size_t len, unsigned int flags) 1342 { 1343 struct pipe_inode_info *ipipe; 1344 struct pipe_inode_info *opipe; 1345 loff_t offset, *__off_in = NULL, *__off_out = NULL; 1346 long ret; 1347 1348 ipipe = get_pipe_info(in, true); 1349 opipe = get_pipe_info(out, true); 1350 1351 if (ipipe) { 1352 if (off_in) 1353 return -ESPIPE; 1354 pipe_clear_nowait(in); 1355 } 1356 if (opipe) { 1357 if (off_out) 1358 return -ESPIPE; 1359 pipe_clear_nowait(out); 1360 } 1361 1362 if (off_out) { 1363 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1364 return -EFAULT; 1365 __off_out = &offset; 1366 } 1367 if (off_in) { 1368 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1369 return -EFAULT; 1370 __off_in = &offset; 1371 } 1372 1373 ret = do_splice(in, __off_in, out, __off_out, len, flags); 1374 if (ret < 0) 1375 return ret; 1376 1377 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t))) 1378 return -EFAULT; 1379 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t))) 1380 return -EFAULT; 1381 1382 return ret; 1383 } 1384 1385 static int iter_to_pipe(struct iov_iter *from, 1386 struct pipe_inode_info *pipe, 1387 unsigned flags) 1388 { 1389 struct pipe_buffer buf = { 1390 .ops = &user_page_pipe_buf_ops, 1391 .flags = flags 1392 }; 1393 size_t total = 0; 1394 int ret = 0; 1395 1396 while (iov_iter_count(from)) { 1397 struct page *pages[16]; 1398 ssize_t left; 1399 size_t start; 1400 int i, n; 1401 1402 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start); 1403 if (left <= 0) { 1404 ret = left; 1405 break; 1406 } 1407 1408 n = DIV_ROUND_UP(left + start, PAGE_SIZE); 1409 for (i = 0; i < n; i++) { 1410 int size = min_t(int, left, PAGE_SIZE - start); 1411 1412 buf.page = pages[i]; 1413 buf.offset = start; 1414 buf.len = size; 1415 ret = add_to_pipe(pipe, &buf); 1416 if (unlikely(ret < 0)) { 1417 iov_iter_revert(from, left); 1418 // this one got dropped by add_to_pipe() 1419 while (++i < n) 1420 put_page(pages[i]); 1421 goto out; 1422 } 1423 total += ret; 1424 left -= size; 1425 start = 0; 1426 } 1427 } 1428 out: 1429 return total ? total : ret; 1430 } 1431 1432 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1433 struct splice_desc *sd) 1434 { 1435 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1436 return n == sd->len ? n : -EFAULT; 1437 } 1438 1439 /* 1440 * For lack of a better implementation, implement vmsplice() to userspace 1441 * as a simple copy of the pipes pages to the user iov. 1442 */ 1443 static long vmsplice_to_user(struct file *file, struct iov_iter *iter, 1444 unsigned int flags) 1445 { 1446 struct pipe_inode_info *pipe = get_pipe_info(file, true); 1447 struct splice_desc sd = { 1448 .total_len = iov_iter_count(iter), 1449 .flags = flags, 1450 .u.data = iter 1451 }; 1452 long ret = 0; 1453 1454 if (!pipe) 1455 return -EBADF; 1456 1457 pipe_clear_nowait(file); 1458 1459 if (sd.total_len) { 1460 pipe_lock(pipe); 1461 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1462 pipe_unlock(pipe); 1463 } 1464 1465 return ret; 1466 } 1467 1468 /* 1469 * vmsplice splices a user address range into a pipe. It can be thought of 1470 * as splice-from-memory, where the regular splice is splice-from-file (or 1471 * to file). In both cases the output is a pipe, naturally. 1472 */ 1473 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter, 1474 unsigned int flags) 1475 { 1476 struct pipe_inode_info *pipe; 1477 long ret = 0; 1478 unsigned buf_flag = 0; 1479 1480 if (flags & SPLICE_F_GIFT) 1481 buf_flag = PIPE_BUF_FLAG_GIFT; 1482 1483 pipe = get_pipe_info(file, true); 1484 if (!pipe) 1485 return -EBADF; 1486 1487 pipe_clear_nowait(file); 1488 1489 pipe_lock(pipe); 1490 ret = wait_for_space(pipe, flags); 1491 if (!ret) 1492 ret = iter_to_pipe(iter, pipe, buf_flag); 1493 pipe_unlock(pipe); 1494 if (ret > 0) 1495 wakeup_pipe_readers(pipe); 1496 return ret; 1497 } 1498 1499 static int vmsplice_type(struct fd f, int *type) 1500 { 1501 if (!f.file) 1502 return -EBADF; 1503 if (f.file->f_mode & FMODE_WRITE) { 1504 *type = ITER_SOURCE; 1505 } else if (f.file->f_mode & FMODE_READ) { 1506 *type = ITER_DEST; 1507 } else { 1508 fdput(f); 1509 return -EBADF; 1510 } 1511 return 0; 1512 } 1513 1514 /* 1515 * Note that vmsplice only really supports true splicing _from_ user memory 1516 * to a pipe, not the other way around. Splicing from user memory is a simple 1517 * operation that can be supported without any funky alignment restrictions 1518 * or nasty vm tricks. We simply map in the user memory and fill them into 1519 * a pipe. The reverse isn't quite as easy, though. There are two possible 1520 * solutions for that: 1521 * 1522 * - memcpy() the data internally, at which point we might as well just 1523 * do a regular read() on the buffer anyway. 1524 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1525 * has restriction limitations on both ends of the pipe). 1526 * 1527 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1528 * 1529 */ 1530 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov, 1531 unsigned long, nr_segs, unsigned int, flags) 1532 { 1533 struct iovec iovstack[UIO_FASTIOV]; 1534 struct iovec *iov = iovstack; 1535 struct iov_iter iter; 1536 ssize_t error; 1537 struct fd f; 1538 int type; 1539 1540 if (unlikely(flags & ~SPLICE_F_ALL)) 1541 return -EINVAL; 1542 1543 f = fdget(fd); 1544 error = vmsplice_type(f, &type); 1545 if (error) 1546 return error; 1547 1548 error = import_iovec(type, uiov, nr_segs, 1549 ARRAY_SIZE(iovstack), &iov, &iter); 1550 if (error < 0) 1551 goto out_fdput; 1552 1553 if (!iov_iter_count(&iter)) 1554 error = 0; 1555 else if (type == ITER_SOURCE) 1556 error = vmsplice_to_pipe(f.file, &iter, flags); 1557 else 1558 error = vmsplice_to_user(f.file, &iter, flags); 1559 1560 kfree(iov); 1561 out_fdput: 1562 fdput(f); 1563 return error; 1564 } 1565 1566 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1567 int, fd_out, loff_t __user *, off_out, 1568 size_t, len, unsigned int, flags) 1569 { 1570 struct fd in, out; 1571 long error; 1572 1573 if (unlikely(!len)) 1574 return 0; 1575 1576 if (unlikely(flags & ~SPLICE_F_ALL)) 1577 return -EINVAL; 1578 1579 error = -EBADF; 1580 in = fdget(fd_in); 1581 if (in.file) { 1582 out = fdget(fd_out); 1583 if (out.file) { 1584 error = __do_splice(in.file, off_in, out.file, off_out, 1585 len, flags); 1586 fdput(out); 1587 } 1588 fdput(in); 1589 } 1590 return error; 1591 } 1592 1593 /* 1594 * Make sure there's data to read. Wait for input if we can, otherwise 1595 * return an appropriate error. 1596 */ 1597 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1598 { 1599 int ret; 1600 1601 /* 1602 * Check the pipe occupancy without the inode lock first. This function 1603 * is speculative anyways, so missing one is ok. 1604 */ 1605 if (!pipe_empty(pipe->head, pipe->tail)) 1606 return 0; 1607 1608 ret = 0; 1609 pipe_lock(pipe); 1610 1611 while (pipe_empty(pipe->head, pipe->tail)) { 1612 if (signal_pending(current)) { 1613 ret = -ERESTARTSYS; 1614 break; 1615 } 1616 if (!pipe->writers) 1617 break; 1618 if (flags & SPLICE_F_NONBLOCK) { 1619 ret = -EAGAIN; 1620 break; 1621 } 1622 pipe_wait_readable(pipe); 1623 } 1624 1625 pipe_unlock(pipe); 1626 return ret; 1627 } 1628 1629 /* 1630 * Make sure there's writeable room. Wait for room if we can, otherwise 1631 * return an appropriate error. 1632 */ 1633 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1634 { 1635 int ret; 1636 1637 /* 1638 * Check pipe occupancy without the inode lock first. This function 1639 * is speculative anyways, so missing one is ok. 1640 */ 1641 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1642 return 0; 1643 1644 ret = 0; 1645 pipe_lock(pipe); 1646 1647 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 1648 if (!pipe->readers) { 1649 send_sig(SIGPIPE, current, 0); 1650 ret = -EPIPE; 1651 break; 1652 } 1653 if (flags & SPLICE_F_NONBLOCK) { 1654 ret = -EAGAIN; 1655 break; 1656 } 1657 if (signal_pending(current)) { 1658 ret = -ERESTARTSYS; 1659 break; 1660 } 1661 pipe_wait_writable(pipe); 1662 } 1663 1664 pipe_unlock(pipe); 1665 return ret; 1666 } 1667 1668 /* 1669 * Splice contents of ipipe to opipe. 1670 */ 1671 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1672 struct pipe_inode_info *opipe, 1673 size_t len, unsigned int flags) 1674 { 1675 struct pipe_buffer *ibuf, *obuf; 1676 unsigned int i_head, o_head; 1677 unsigned int i_tail, o_tail; 1678 unsigned int i_mask, o_mask; 1679 int ret = 0; 1680 bool input_wakeup = false; 1681 1682 1683 retry: 1684 ret = ipipe_prep(ipipe, flags); 1685 if (ret) 1686 return ret; 1687 1688 ret = opipe_prep(opipe, flags); 1689 if (ret) 1690 return ret; 1691 1692 /* 1693 * Potential ABBA deadlock, work around it by ordering lock 1694 * grabbing by pipe info address. Otherwise two different processes 1695 * could deadlock (one doing tee from A -> B, the other from B -> A). 1696 */ 1697 pipe_double_lock(ipipe, opipe); 1698 1699 i_tail = ipipe->tail; 1700 i_mask = ipipe->ring_size - 1; 1701 o_head = opipe->head; 1702 o_mask = opipe->ring_size - 1; 1703 1704 do { 1705 size_t o_len; 1706 1707 if (!opipe->readers) { 1708 send_sig(SIGPIPE, current, 0); 1709 if (!ret) 1710 ret = -EPIPE; 1711 break; 1712 } 1713 1714 i_head = ipipe->head; 1715 o_tail = opipe->tail; 1716 1717 if (pipe_empty(i_head, i_tail) && !ipipe->writers) 1718 break; 1719 1720 /* 1721 * Cannot make any progress, because either the input 1722 * pipe is empty or the output pipe is full. 1723 */ 1724 if (pipe_empty(i_head, i_tail) || 1725 pipe_full(o_head, o_tail, opipe->max_usage)) { 1726 /* Already processed some buffers, break */ 1727 if (ret) 1728 break; 1729 1730 if (flags & SPLICE_F_NONBLOCK) { 1731 ret = -EAGAIN; 1732 break; 1733 } 1734 1735 /* 1736 * We raced with another reader/writer and haven't 1737 * managed to process any buffers. A zero return 1738 * value means EOF, so retry instead. 1739 */ 1740 pipe_unlock(ipipe); 1741 pipe_unlock(opipe); 1742 goto retry; 1743 } 1744 1745 ibuf = &ipipe->bufs[i_tail & i_mask]; 1746 obuf = &opipe->bufs[o_head & o_mask]; 1747 1748 if (len >= ibuf->len) { 1749 /* 1750 * Simply move the whole buffer from ipipe to opipe 1751 */ 1752 *obuf = *ibuf; 1753 ibuf->ops = NULL; 1754 i_tail++; 1755 ipipe->tail = i_tail; 1756 input_wakeup = true; 1757 o_len = obuf->len; 1758 o_head++; 1759 opipe->head = o_head; 1760 } else { 1761 /* 1762 * Get a reference to this pipe buffer, 1763 * so we can copy the contents over. 1764 */ 1765 if (!pipe_buf_get(ipipe, ibuf)) { 1766 if (ret == 0) 1767 ret = -EFAULT; 1768 break; 1769 } 1770 *obuf = *ibuf; 1771 1772 /* 1773 * Don't inherit the gift and merge flags, we need to 1774 * prevent multiple steals of this page. 1775 */ 1776 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1777 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1778 1779 obuf->len = len; 1780 ibuf->offset += len; 1781 ibuf->len -= len; 1782 o_len = len; 1783 o_head++; 1784 opipe->head = o_head; 1785 } 1786 ret += o_len; 1787 len -= o_len; 1788 } while (len); 1789 1790 pipe_unlock(ipipe); 1791 pipe_unlock(opipe); 1792 1793 /* 1794 * If we put data in the output pipe, wakeup any potential readers. 1795 */ 1796 if (ret > 0) 1797 wakeup_pipe_readers(opipe); 1798 1799 if (input_wakeup) 1800 wakeup_pipe_writers(ipipe); 1801 1802 return ret; 1803 } 1804 1805 /* 1806 * Link contents of ipipe to opipe. 1807 */ 1808 static int link_pipe(struct pipe_inode_info *ipipe, 1809 struct pipe_inode_info *opipe, 1810 size_t len, unsigned int flags) 1811 { 1812 struct pipe_buffer *ibuf, *obuf; 1813 unsigned int i_head, o_head; 1814 unsigned int i_tail, o_tail; 1815 unsigned int i_mask, o_mask; 1816 int ret = 0; 1817 1818 /* 1819 * Potential ABBA deadlock, work around it by ordering lock 1820 * grabbing by pipe info address. Otherwise two different processes 1821 * could deadlock (one doing tee from A -> B, the other from B -> A). 1822 */ 1823 pipe_double_lock(ipipe, opipe); 1824 1825 i_tail = ipipe->tail; 1826 i_mask = ipipe->ring_size - 1; 1827 o_head = opipe->head; 1828 o_mask = opipe->ring_size - 1; 1829 1830 do { 1831 if (!opipe->readers) { 1832 send_sig(SIGPIPE, current, 0); 1833 if (!ret) 1834 ret = -EPIPE; 1835 break; 1836 } 1837 1838 i_head = ipipe->head; 1839 o_tail = opipe->tail; 1840 1841 /* 1842 * If we have iterated all input buffers or run out of 1843 * output room, break. 1844 */ 1845 if (pipe_empty(i_head, i_tail) || 1846 pipe_full(o_head, o_tail, opipe->max_usage)) 1847 break; 1848 1849 ibuf = &ipipe->bufs[i_tail & i_mask]; 1850 obuf = &opipe->bufs[o_head & o_mask]; 1851 1852 /* 1853 * Get a reference to this pipe buffer, 1854 * so we can copy the contents over. 1855 */ 1856 if (!pipe_buf_get(ipipe, ibuf)) { 1857 if (ret == 0) 1858 ret = -EFAULT; 1859 break; 1860 } 1861 1862 *obuf = *ibuf; 1863 1864 /* 1865 * Don't inherit the gift and merge flag, we need to prevent 1866 * multiple steals of this page. 1867 */ 1868 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1869 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1870 1871 if (obuf->len > len) 1872 obuf->len = len; 1873 ret += obuf->len; 1874 len -= obuf->len; 1875 1876 o_head++; 1877 opipe->head = o_head; 1878 i_tail++; 1879 } while (len); 1880 1881 pipe_unlock(ipipe); 1882 pipe_unlock(opipe); 1883 1884 /* 1885 * If we put data in the output pipe, wakeup any potential readers. 1886 */ 1887 if (ret > 0) 1888 wakeup_pipe_readers(opipe); 1889 1890 return ret; 1891 } 1892 1893 /* 1894 * This is a tee(1) implementation that works on pipes. It doesn't copy 1895 * any data, it simply references the 'in' pages on the 'out' pipe. 1896 * The 'flags' used are the SPLICE_F_* variants, currently the only 1897 * applicable one is SPLICE_F_NONBLOCK. 1898 */ 1899 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags) 1900 { 1901 struct pipe_inode_info *ipipe = get_pipe_info(in, true); 1902 struct pipe_inode_info *opipe = get_pipe_info(out, true); 1903 int ret = -EINVAL; 1904 1905 if (unlikely(!(in->f_mode & FMODE_READ) || 1906 !(out->f_mode & FMODE_WRITE))) 1907 return -EBADF; 1908 1909 /* 1910 * Duplicate the contents of ipipe to opipe without actually 1911 * copying the data. 1912 */ 1913 if (ipipe && opipe && ipipe != opipe) { 1914 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1915 flags |= SPLICE_F_NONBLOCK; 1916 1917 /* 1918 * Keep going, unless we encounter an error. The ipipe/opipe 1919 * ordering doesn't really matter. 1920 */ 1921 ret = ipipe_prep(ipipe, flags); 1922 if (!ret) { 1923 ret = opipe_prep(opipe, flags); 1924 if (!ret) 1925 ret = link_pipe(ipipe, opipe, len, flags); 1926 } 1927 } 1928 1929 return ret; 1930 } 1931 1932 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1933 { 1934 struct fd in, out; 1935 int error; 1936 1937 if (unlikely(flags & ~SPLICE_F_ALL)) 1938 return -EINVAL; 1939 1940 if (unlikely(!len)) 1941 return 0; 1942 1943 error = -EBADF; 1944 in = fdget(fdin); 1945 if (in.file) { 1946 out = fdget(fdout); 1947 if (out.file) { 1948 error = do_tee(in.file, out.file, len, flags); 1949 fdput(out); 1950 } 1951 fdput(in); 1952 } 1953 1954 return error; 1955 } 1956