xref: /openbmc/linux/fs/splice.c (revision b021d05e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * "splice": joining two ropes together by interweaving their strands.
4  *
5  * This is the "extended pipe" functionality, where a pipe is used as
6  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7  * buffer that you can use to transfer data from one end to the other.
8  *
9  * The traditional unix read/write is extended with a "splice()" operation
10  * that transfers data buffers to or from a pipe buffer.
11  *
12  * Named by Larry McVoy, original implementation from Linus, extended by
13  * Jens to support splicing to files, network, direct splicing, etc and
14  * fixing lots of bugs.
15  *
16  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19  *
20  */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/fsnotify.h>
34 #include <linux/security.h>
35 #include <linux/gfp.h>
36 #include <linux/net.h>
37 #include <linux/socket.h>
38 #include <linux/sched/signal.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
44  * indicate they support non-blocking reads or writes, we must clear it
45  * here if set to avoid blocking other users of this pipe if splice is
46  * being done on it.
47  */
48 static noinline void noinline pipe_clear_nowait(struct file *file)
49 {
50 	fmode_t fmode = READ_ONCE(file->f_mode);
51 
52 	do {
53 		if (!(fmode & FMODE_NOWAIT))
54 			break;
55 	} while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
56 }
57 
58 /*
59  * Attempt to steal a page from a pipe buffer. This should perhaps go into
60  * a vm helper function, it's already simplified quite a bit by the
61  * addition of remove_mapping(). If success is returned, the caller may
62  * attempt to reuse this page for another destination.
63  */
64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
65 		struct pipe_buffer *buf)
66 {
67 	struct folio *folio = page_folio(buf->page);
68 	struct address_space *mapping;
69 
70 	folio_lock(folio);
71 
72 	mapping = folio_mapping(folio);
73 	if (mapping) {
74 		WARN_ON(!folio_test_uptodate(folio));
75 
76 		/*
77 		 * At least for ext2 with nobh option, we need to wait on
78 		 * writeback completing on this folio, since we'll remove it
79 		 * from the pagecache.  Otherwise truncate wont wait on the
80 		 * folio, allowing the disk blocks to be reused by someone else
81 		 * before we actually wrote our data to them. fs corruption
82 		 * ensues.
83 		 */
84 		folio_wait_writeback(folio);
85 
86 		if (folio_has_private(folio) &&
87 		    !filemap_release_folio(folio, GFP_KERNEL))
88 			goto out_unlock;
89 
90 		/*
91 		 * If we succeeded in removing the mapping, set LRU flag
92 		 * and return good.
93 		 */
94 		if (remove_mapping(mapping, folio)) {
95 			buf->flags |= PIPE_BUF_FLAG_LRU;
96 			return true;
97 		}
98 	}
99 
100 	/*
101 	 * Raced with truncate or failed to remove folio from current
102 	 * address space, unlock and return failure.
103 	 */
104 out_unlock:
105 	folio_unlock(folio);
106 	return false;
107 }
108 
109 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
110 					struct pipe_buffer *buf)
111 {
112 	put_page(buf->page);
113 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
114 }
115 
116 /*
117  * Check whether the contents of buf is OK to access. Since the content
118  * is a page cache page, IO may be in flight.
119  */
120 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
121 				       struct pipe_buffer *buf)
122 {
123 	struct page *page = buf->page;
124 	int err;
125 
126 	if (!PageUptodate(page)) {
127 		lock_page(page);
128 
129 		/*
130 		 * Page got truncated/unhashed. This will cause a 0-byte
131 		 * splice, if this is the first page.
132 		 */
133 		if (!page->mapping) {
134 			err = -ENODATA;
135 			goto error;
136 		}
137 
138 		/*
139 		 * Uh oh, read-error from disk.
140 		 */
141 		if (!PageUptodate(page)) {
142 			err = -EIO;
143 			goto error;
144 		}
145 
146 		/*
147 		 * Page is ok afterall, we are done.
148 		 */
149 		unlock_page(page);
150 	}
151 
152 	return 0;
153 error:
154 	unlock_page(page);
155 	return err;
156 }
157 
158 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
159 	.confirm	= page_cache_pipe_buf_confirm,
160 	.release	= page_cache_pipe_buf_release,
161 	.try_steal	= page_cache_pipe_buf_try_steal,
162 	.get		= generic_pipe_buf_get,
163 };
164 
165 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166 		struct pipe_buffer *buf)
167 {
168 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
169 		return false;
170 
171 	buf->flags |= PIPE_BUF_FLAG_LRU;
172 	return generic_pipe_buf_try_steal(pipe, buf);
173 }
174 
175 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
176 	.release	= page_cache_pipe_buf_release,
177 	.try_steal	= user_page_pipe_buf_try_steal,
178 	.get		= generic_pipe_buf_get,
179 };
180 
181 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
182 {
183 	smp_mb();
184 	if (waitqueue_active(&pipe->rd_wait))
185 		wake_up_interruptible(&pipe->rd_wait);
186 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
187 }
188 
189 /**
190  * splice_to_pipe - fill passed data into a pipe
191  * @pipe:	pipe to fill
192  * @spd:	data to fill
193  *
194  * Description:
195  *    @spd contains a map of pages and len/offset tuples, along with
196  *    the struct pipe_buf_operations associated with these pages. This
197  *    function will link that data to the pipe.
198  *
199  */
200 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
201 		       struct splice_pipe_desc *spd)
202 {
203 	unsigned int spd_pages = spd->nr_pages;
204 	unsigned int tail = pipe->tail;
205 	unsigned int head = pipe->head;
206 	unsigned int mask = pipe->ring_size - 1;
207 	int ret = 0, page_nr = 0;
208 
209 	if (!spd_pages)
210 		return 0;
211 
212 	if (unlikely(!pipe->readers)) {
213 		send_sig(SIGPIPE, current, 0);
214 		ret = -EPIPE;
215 		goto out;
216 	}
217 
218 	while (!pipe_full(head, tail, pipe->max_usage)) {
219 		struct pipe_buffer *buf = &pipe->bufs[head & mask];
220 
221 		buf->page = spd->pages[page_nr];
222 		buf->offset = spd->partial[page_nr].offset;
223 		buf->len = spd->partial[page_nr].len;
224 		buf->private = spd->partial[page_nr].private;
225 		buf->ops = spd->ops;
226 		buf->flags = 0;
227 
228 		head++;
229 		pipe->head = head;
230 		page_nr++;
231 		ret += buf->len;
232 
233 		if (!--spd->nr_pages)
234 			break;
235 	}
236 
237 	if (!ret)
238 		ret = -EAGAIN;
239 
240 out:
241 	while (page_nr < spd_pages)
242 		spd->spd_release(spd, page_nr++);
243 
244 	return ret;
245 }
246 EXPORT_SYMBOL_GPL(splice_to_pipe);
247 
248 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
249 {
250 	unsigned int head = pipe->head;
251 	unsigned int tail = pipe->tail;
252 	unsigned int mask = pipe->ring_size - 1;
253 	int ret;
254 
255 	if (unlikely(!pipe->readers)) {
256 		send_sig(SIGPIPE, current, 0);
257 		ret = -EPIPE;
258 	} else if (pipe_full(head, tail, pipe->max_usage)) {
259 		ret = -EAGAIN;
260 	} else {
261 		pipe->bufs[head & mask] = *buf;
262 		pipe->head = head + 1;
263 		return buf->len;
264 	}
265 	pipe_buf_release(pipe, buf);
266 	return ret;
267 }
268 EXPORT_SYMBOL(add_to_pipe);
269 
270 /*
271  * Check if we need to grow the arrays holding pages and partial page
272  * descriptions.
273  */
274 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
275 {
276 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
277 
278 	spd->nr_pages_max = max_usage;
279 	if (max_usage <= PIPE_DEF_BUFFERS)
280 		return 0;
281 
282 	spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
283 	spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
284 				     GFP_KERNEL);
285 
286 	if (spd->pages && spd->partial)
287 		return 0;
288 
289 	kfree(spd->pages);
290 	kfree(spd->partial);
291 	return -ENOMEM;
292 }
293 
294 void splice_shrink_spd(struct splice_pipe_desc *spd)
295 {
296 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
297 		return;
298 
299 	kfree(spd->pages);
300 	kfree(spd->partial);
301 }
302 
303 /**
304  * copy_splice_read -  Copy data from a file and splice the copy into a pipe
305  * @in: The file to read from
306  * @ppos: Pointer to the file position to read from
307  * @pipe: The pipe to splice into
308  * @len: The amount to splice
309  * @flags: The SPLICE_F_* flags
310  *
311  * This function allocates a bunch of pages sufficient to hold the requested
312  * amount of data (but limited by the remaining pipe capacity), passes it to
313  * the file's ->read_iter() to read into and then splices the used pages into
314  * the pipe.
315  *
316  * Return: On success, the number of bytes read will be returned and *@ppos
317  * will be updated if appropriate; 0 will be returned if there is no more data
318  * to be read; -EAGAIN will be returned if the pipe had no space, and some
319  * other negative error code will be returned on error.  A short read may occur
320  * if the pipe has insufficient space, we reach the end of the data or we hit a
321  * hole.
322  */
323 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
324 			 struct pipe_inode_info *pipe,
325 			 size_t len, unsigned int flags)
326 {
327 	struct iov_iter to;
328 	struct bio_vec *bv;
329 	struct kiocb kiocb;
330 	struct page **pages;
331 	ssize_t ret;
332 	size_t used, npages, chunk, remain, keep = 0;
333 	int i;
334 
335 	/* Work out how much data we can actually add into the pipe */
336 	used = pipe_occupancy(pipe->head, pipe->tail);
337 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
338 	len = min_t(size_t, len, npages * PAGE_SIZE);
339 	npages = DIV_ROUND_UP(len, PAGE_SIZE);
340 
341 	bv = kzalloc(array_size(npages, sizeof(bv[0])) +
342 		     array_size(npages, sizeof(struct page *)), GFP_KERNEL);
343 	if (!bv)
344 		return -ENOMEM;
345 
346 	pages = (struct page **)(bv + npages);
347 	npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
348 	if (!npages) {
349 		kfree(bv);
350 		return -ENOMEM;
351 	}
352 
353 	remain = len = min_t(size_t, len, npages * PAGE_SIZE);
354 
355 	for (i = 0; i < npages; i++) {
356 		chunk = min_t(size_t, PAGE_SIZE, remain);
357 		bv[i].bv_page = pages[i];
358 		bv[i].bv_offset = 0;
359 		bv[i].bv_len = chunk;
360 		remain -= chunk;
361 	}
362 
363 	/* Do the I/O */
364 	iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
365 	init_sync_kiocb(&kiocb, in);
366 	kiocb.ki_pos = *ppos;
367 	ret = call_read_iter(in, &kiocb, &to);
368 
369 	if (ret > 0) {
370 		keep = DIV_ROUND_UP(ret, PAGE_SIZE);
371 		*ppos = kiocb.ki_pos;
372 	}
373 
374 	/*
375 	 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in
376 	 * there", rather than -EFAULT.
377 	 */
378 	if (ret == -EFAULT)
379 		ret = -EAGAIN;
380 
381 	/* Free any pages that didn't get touched at all. */
382 	if (keep < npages)
383 		release_pages(pages + keep, npages - keep);
384 
385 	/* Push the remaining pages into the pipe. */
386 	remain = ret;
387 	for (i = 0; i < keep; i++) {
388 		struct pipe_buffer *buf = pipe_head_buf(pipe);
389 
390 		chunk = min_t(size_t, remain, PAGE_SIZE);
391 		*buf = (struct pipe_buffer) {
392 			.ops	= &default_pipe_buf_ops,
393 			.page	= bv[i].bv_page,
394 			.offset	= 0,
395 			.len	= chunk,
396 		};
397 		pipe->head++;
398 		remain -= chunk;
399 	}
400 
401 	kfree(bv);
402 	return ret;
403 }
404 EXPORT_SYMBOL(copy_splice_read);
405 
406 const struct pipe_buf_operations default_pipe_buf_ops = {
407 	.release	= generic_pipe_buf_release,
408 	.try_steal	= generic_pipe_buf_try_steal,
409 	.get		= generic_pipe_buf_get,
410 };
411 
412 /* Pipe buffer operations for a socket and similar. */
413 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
414 	.release	= generic_pipe_buf_release,
415 	.get		= generic_pipe_buf_get,
416 };
417 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
418 
419 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
420 {
421 	smp_mb();
422 	if (waitqueue_active(&pipe->wr_wait))
423 		wake_up_interruptible(&pipe->wr_wait);
424 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
425 }
426 
427 /**
428  * splice_from_pipe_feed - feed available data from a pipe to a file
429  * @pipe:	pipe to splice from
430  * @sd:		information to @actor
431  * @actor:	handler that splices the data
432  *
433  * Description:
434  *    This function loops over the pipe and calls @actor to do the
435  *    actual moving of a single struct pipe_buffer to the desired
436  *    destination.  It returns when there's no more buffers left in
437  *    the pipe or if the requested number of bytes (@sd->total_len)
438  *    have been copied.  It returns a positive number (one) if the
439  *    pipe needs to be filled with more data, zero if the required
440  *    number of bytes have been copied and -errno on error.
441  *
442  *    This, together with splice_from_pipe_{begin,end,next}, may be
443  *    used to implement the functionality of __splice_from_pipe() when
444  *    locking is required around copying the pipe buffers to the
445  *    destination.
446  */
447 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
448 			  splice_actor *actor)
449 {
450 	unsigned int head = pipe->head;
451 	unsigned int tail = pipe->tail;
452 	unsigned int mask = pipe->ring_size - 1;
453 	int ret;
454 
455 	while (!pipe_empty(head, tail)) {
456 		struct pipe_buffer *buf = &pipe->bufs[tail & mask];
457 
458 		sd->len = buf->len;
459 		if (sd->len > sd->total_len)
460 			sd->len = sd->total_len;
461 
462 		ret = pipe_buf_confirm(pipe, buf);
463 		if (unlikely(ret)) {
464 			if (ret == -ENODATA)
465 				ret = 0;
466 			return ret;
467 		}
468 
469 		ret = actor(pipe, buf, sd);
470 		if (ret <= 0)
471 			return ret;
472 
473 		buf->offset += ret;
474 		buf->len -= ret;
475 
476 		sd->num_spliced += ret;
477 		sd->len -= ret;
478 		sd->pos += ret;
479 		sd->total_len -= ret;
480 
481 		if (!buf->len) {
482 			pipe_buf_release(pipe, buf);
483 			tail++;
484 			pipe->tail = tail;
485 			if (pipe->files)
486 				sd->need_wakeup = true;
487 		}
488 
489 		if (!sd->total_len)
490 			return 0;
491 	}
492 
493 	return 1;
494 }
495 
496 /* We know we have a pipe buffer, but maybe it's empty? */
497 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
498 {
499 	unsigned int tail = pipe->tail;
500 	unsigned int mask = pipe->ring_size - 1;
501 	struct pipe_buffer *buf = &pipe->bufs[tail & mask];
502 
503 	if (unlikely(!buf->len)) {
504 		pipe_buf_release(pipe, buf);
505 		pipe->tail = tail+1;
506 		return true;
507 	}
508 
509 	return false;
510 }
511 
512 /**
513  * splice_from_pipe_next - wait for some data to splice from
514  * @pipe:	pipe to splice from
515  * @sd:		information about the splice operation
516  *
517  * Description:
518  *    This function will wait for some data and return a positive
519  *    value (one) if pipe buffers are available.  It will return zero
520  *    or -errno if no more data needs to be spliced.
521  */
522 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
523 {
524 	/*
525 	 * Check for signal early to make process killable when there are
526 	 * always buffers available
527 	 */
528 	if (signal_pending(current))
529 		return -ERESTARTSYS;
530 
531 repeat:
532 	while (pipe_empty(pipe->head, pipe->tail)) {
533 		if (!pipe->writers)
534 			return 0;
535 
536 		if (sd->num_spliced)
537 			return 0;
538 
539 		if (sd->flags & SPLICE_F_NONBLOCK)
540 			return -EAGAIN;
541 
542 		if (signal_pending(current))
543 			return -ERESTARTSYS;
544 
545 		if (sd->need_wakeup) {
546 			wakeup_pipe_writers(pipe);
547 			sd->need_wakeup = false;
548 		}
549 
550 		pipe_wait_readable(pipe);
551 	}
552 
553 	if (eat_empty_buffer(pipe))
554 		goto repeat;
555 
556 	return 1;
557 }
558 
559 /**
560  * splice_from_pipe_begin - start splicing from pipe
561  * @sd:		information about the splice operation
562  *
563  * Description:
564  *    This function should be called before a loop containing
565  *    splice_from_pipe_next() and splice_from_pipe_feed() to
566  *    initialize the necessary fields of @sd.
567  */
568 static void splice_from_pipe_begin(struct splice_desc *sd)
569 {
570 	sd->num_spliced = 0;
571 	sd->need_wakeup = false;
572 }
573 
574 /**
575  * splice_from_pipe_end - finish splicing from pipe
576  * @pipe:	pipe to splice from
577  * @sd:		information about the splice operation
578  *
579  * Description:
580  *    This function will wake up pipe writers if necessary.  It should
581  *    be called after a loop containing splice_from_pipe_next() and
582  *    splice_from_pipe_feed().
583  */
584 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
585 {
586 	if (sd->need_wakeup)
587 		wakeup_pipe_writers(pipe);
588 }
589 
590 /**
591  * __splice_from_pipe - splice data from a pipe to given actor
592  * @pipe:	pipe to splice from
593  * @sd:		information to @actor
594  * @actor:	handler that splices the data
595  *
596  * Description:
597  *    This function does little more than loop over the pipe and call
598  *    @actor to do the actual moving of a single struct pipe_buffer to
599  *    the desired destination. See pipe_to_file, pipe_to_sendmsg, or
600  *    pipe_to_user.
601  *
602  */
603 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
604 			   splice_actor *actor)
605 {
606 	int ret;
607 
608 	splice_from_pipe_begin(sd);
609 	do {
610 		cond_resched();
611 		ret = splice_from_pipe_next(pipe, sd);
612 		if (ret > 0)
613 			ret = splice_from_pipe_feed(pipe, sd, actor);
614 	} while (ret > 0);
615 	splice_from_pipe_end(pipe, sd);
616 
617 	return sd->num_spliced ? sd->num_spliced : ret;
618 }
619 EXPORT_SYMBOL(__splice_from_pipe);
620 
621 /**
622  * splice_from_pipe - splice data from a pipe to a file
623  * @pipe:	pipe to splice from
624  * @out:	file to splice to
625  * @ppos:	position in @out
626  * @len:	how many bytes to splice
627  * @flags:	splice modifier flags
628  * @actor:	handler that splices the data
629  *
630  * Description:
631  *    See __splice_from_pipe. This function locks the pipe inode,
632  *    otherwise it's identical to __splice_from_pipe().
633  *
634  */
635 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
636 			 loff_t *ppos, size_t len, unsigned int flags,
637 			 splice_actor *actor)
638 {
639 	ssize_t ret;
640 	struct splice_desc sd = {
641 		.total_len = len,
642 		.flags = flags,
643 		.pos = *ppos,
644 		.u.file = out,
645 	};
646 
647 	pipe_lock(pipe);
648 	ret = __splice_from_pipe(pipe, &sd, actor);
649 	pipe_unlock(pipe);
650 
651 	return ret;
652 }
653 
654 /**
655  * iter_file_splice_write - splice data from a pipe to a file
656  * @pipe:	pipe info
657  * @out:	file to write to
658  * @ppos:	position in @out
659  * @len:	number of bytes to splice
660  * @flags:	splice modifier flags
661  *
662  * Description:
663  *    Will either move or copy pages (determined by @flags options) from
664  *    the given pipe inode to the given file.
665  *    This one is ->write_iter-based.
666  *
667  */
668 ssize_t
669 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
670 			  loff_t *ppos, size_t len, unsigned int flags)
671 {
672 	struct splice_desc sd = {
673 		.total_len = len,
674 		.flags = flags,
675 		.pos = *ppos,
676 		.u.file = out,
677 	};
678 	int nbufs = pipe->max_usage;
679 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
680 					GFP_KERNEL);
681 	ssize_t ret;
682 
683 	if (unlikely(!array))
684 		return -ENOMEM;
685 
686 	pipe_lock(pipe);
687 
688 	splice_from_pipe_begin(&sd);
689 	while (sd.total_len) {
690 		struct iov_iter from;
691 		unsigned int head, tail, mask;
692 		size_t left;
693 		int n;
694 
695 		ret = splice_from_pipe_next(pipe, &sd);
696 		if (ret <= 0)
697 			break;
698 
699 		if (unlikely(nbufs < pipe->max_usage)) {
700 			kfree(array);
701 			nbufs = pipe->max_usage;
702 			array = kcalloc(nbufs, sizeof(struct bio_vec),
703 					GFP_KERNEL);
704 			if (!array) {
705 				ret = -ENOMEM;
706 				break;
707 			}
708 		}
709 
710 		head = pipe->head;
711 		tail = pipe->tail;
712 		mask = pipe->ring_size - 1;
713 
714 		/* build the vector */
715 		left = sd.total_len;
716 		for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
717 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
718 			size_t this_len = buf->len;
719 
720 			/* zero-length bvecs are not supported, skip them */
721 			if (!this_len)
722 				continue;
723 			this_len = min(this_len, left);
724 
725 			ret = pipe_buf_confirm(pipe, buf);
726 			if (unlikely(ret)) {
727 				if (ret == -ENODATA)
728 					ret = 0;
729 				goto done;
730 			}
731 
732 			bvec_set_page(&array[n], buf->page, this_len,
733 				      buf->offset);
734 			left -= this_len;
735 			n++;
736 		}
737 
738 		iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
739 		ret = vfs_iter_write(out, &from, &sd.pos, 0);
740 		if (ret <= 0)
741 			break;
742 
743 		sd.num_spliced += ret;
744 		sd.total_len -= ret;
745 		*ppos = sd.pos;
746 
747 		/* dismiss the fully eaten buffers, adjust the partial one */
748 		tail = pipe->tail;
749 		while (ret) {
750 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
751 			if (ret >= buf->len) {
752 				ret -= buf->len;
753 				buf->len = 0;
754 				pipe_buf_release(pipe, buf);
755 				tail++;
756 				pipe->tail = tail;
757 				if (pipe->files)
758 					sd.need_wakeup = true;
759 			} else {
760 				buf->offset += ret;
761 				buf->len -= ret;
762 				ret = 0;
763 			}
764 		}
765 	}
766 done:
767 	kfree(array);
768 	splice_from_pipe_end(pipe, &sd);
769 
770 	pipe_unlock(pipe);
771 
772 	if (sd.num_spliced)
773 		ret = sd.num_spliced;
774 
775 	return ret;
776 }
777 
778 EXPORT_SYMBOL(iter_file_splice_write);
779 
780 #ifdef CONFIG_NET
781 /**
782  * splice_to_socket - splice data from a pipe to a socket
783  * @pipe:	pipe to splice from
784  * @out:	socket to write to
785  * @ppos:	position in @out
786  * @len:	number of bytes to splice
787  * @flags:	splice modifier flags
788  *
789  * Description:
790  *    Will send @len bytes from the pipe to a network socket. No data copying
791  *    is involved.
792  *
793  */
794 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
795 			 loff_t *ppos, size_t len, unsigned int flags)
796 {
797 	struct socket *sock = sock_from_file(out);
798 	struct bio_vec bvec[16];
799 	struct msghdr msg = {};
800 	ssize_t ret = 0;
801 	size_t spliced = 0;
802 	bool need_wakeup = false;
803 
804 	pipe_lock(pipe);
805 
806 	while (len > 0) {
807 		unsigned int head, tail, mask, bc = 0;
808 		size_t remain = len;
809 
810 		/*
811 		 * Check for signal early to make process killable when there
812 		 * are always buffers available
813 		 */
814 		ret = -ERESTARTSYS;
815 		if (signal_pending(current))
816 			break;
817 
818 		while (pipe_empty(pipe->head, pipe->tail)) {
819 			ret = 0;
820 			if (!pipe->writers)
821 				goto out;
822 
823 			if (spliced)
824 				goto out;
825 
826 			ret = -EAGAIN;
827 			if (flags & SPLICE_F_NONBLOCK)
828 				goto out;
829 
830 			ret = -ERESTARTSYS;
831 			if (signal_pending(current))
832 				goto out;
833 
834 			if (need_wakeup) {
835 				wakeup_pipe_writers(pipe);
836 				need_wakeup = false;
837 			}
838 
839 			pipe_wait_readable(pipe);
840 		}
841 
842 		head = pipe->head;
843 		tail = pipe->tail;
844 		mask = pipe->ring_size - 1;
845 
846 		while (!pipe_empty(head, tail)) {
847 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
848 			size_t seg;
849 
850 			if (!buf->len) {
851 				tail++;
852 				continue;
853 			}
854 
855 			seg = min_t(size_t, remain, buf->len);
856 
857 			ret = pipe_buf_confirm(pipe, buf);
858 			if (unlikely(ret)) {
859 				if (ret == -ENODATA)
860 					ret = 0;
861 				break;
862 			}
863 
864 			bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
865 			remain -= seg;
866 			if (remain == 0 || bc >= ARRAY_SIZE(bvec))
867 				break;
868 			tail++;
869 		}
870 
871 		if (!bc)
872 			break;
873 
874 		msg.msg_flags = MSG_SPLICE_PAGES;
875 		if (flags & SPLICE_F_MORE)
876 			msg.msg_flags |= MSG_MORE;
877 		if (remain && pipe_occupancy(pipe->head, tail) > 0)
878 			msg.msg_flags |= MSG_MORE;
879 
880 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
881 			      len - remain);
882 		ret = sock_sendmsg(sock, &msg);
883 		if (ret <= 0)
884 			break;
885 
886 		spliced += ret;
887 		len -= ret;
888 		tail = pipe->tail;
889 		while (ret > 0) {
890 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
891 			size_t seg = min_t(size_t, ret, buf->len);
892 
893 			buf->offset += seg;
894 			buf->len -= seg;
895 			ret -= seg;
896 
897 			if (!buf->len) {
898 				pipe_buf_release(pipe, buf);
899 				tail++;
900 			}
901 		}
902 
903 		if (tail != pipe->tail) {
904 			pipe->tail = tail;
905 			if (pipe->files)
906 				need_wakeup = true;
907 		}
908 	}
909 
910 out:
911 	pipe_unlock(pipe);
912 	if (need_wakeup)
913 		wakeup_pipe_writers(pipe);
914 	return spliced ?: ret;
915 }
916 #endif
917 
918 static int warn_unsupported(struct file *file, const char *op)
919 {
920 	pr_debug_ratelimited(
921 		"splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
922 		op, file, current->pid, current->comm);
923 	return -EINVAL;
924 }
925 
926 /*
927  * Attempt to initiate a splice from pipe to file.
928  */
929 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
930 			   loff_t *ppos, size_t len, unsigned int flags)
931 {
932 	if (unlikely(!out->f_op->splice_write))
933 		return warn_unsupported(out, "write");
934 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
935 }
936 
937 /*
938  * Indicate to the caller that there was a premature EOF when reading from the
939  * source and the caller didn't indicate they would be sending more data after
940  * this.
941  */
942 static void do_splice_eof(struct splice_desc *sd)
943 {
944 	if (sd->splice_eof)
945 		sd->splice_eof(sd);
946 }
947 
948 /**
949  * vfs_splice_read - Read data from a file and splice it into a pipe
950  * @in:		File to splice from
951  * @ppos:	Input file offset
952  * @pipe:	Pipe to splice to
953  * @len:	Number of bytes to splice
954  * @flags:	Splice modifier flags (SPLICE_F_*)
955  *
956  * Splice the requested amount of data from the input file to the pipe.  This
957  * is synchronous as the caller must hold the pipe lock across the entire
958  * operation.
959  *
960  * If successful, it returns the amount of data spliced, 0 if it hit the EOF or
961  * a hole and a negative error code otherwise.
962  */
963 long vfs_splice_read(struct file *in, loff_t *ppos,
964 		     struct pipe_inode_info *pipe, size_t len,
965 		     unsigned int flags)
966 {
967 	unsigned int p_space;
968 	int ret;
969 
970 	if (unlikely(!(in->f_mode & FMODE_READ)))
971 		return -EBADF;
972 	if (!len)
973 		return 0;
974 
975 	/* Don't try to read more the pipe has space for. */
976 	p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
977 	len = min_t(size_t, len, p_space << PAGE_SHIFT);
978 
979 	ret = rw_verify_area(READ, in, ppos, len);
980 	if (unlikely(ret < 0))
981 		return ret;
982 
983 	if (unlikely(len > MAX_RW_COUNT))
984 		len = MAX_RW_COUNT;
985 
986 	if (unlikely(!in->f_op->splice_read))
987 		return warn_unsupported(in, "read");
988 	/*
989 	 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a
990 	 * buffer, copy into it and splice that into the pipe.
991 	 */
992 	if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
993 		return copy_splice_read(in, ppos, pipe, len, flags);
994 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
995 }
996 EXPORT_SYMBOL_GPL(vfs_splice_read);
997 
998 /**
999  * splice_direct_to_actor - splices data directly between two non-pipes
1000  * @in:		file to splice from
1001  * @sd:		actor information on where to splice to
1002  * @actor:	handles the data splicing
1003  *
1004  * Description:
1005  *    This is a special case helper to splice directly between two
1006  *    points, without requiring an explicit pipe. Internally an allocated
1007  *    pipe is cached in the process, and reused during the lifetime of
1008  *    that process.
1009  *
1010  */
1011 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1012 			       splice_direct_actor *actor)
1013 {
1014 	struct pipe_inode_info *pipe;
1015 	long ret, bytes;
1016 	size_t len;
1017 	int i, flags, more;
1018 
1019 	/*
1020 	 * We require the input to be seekable, as we don't want to randomly
1021 	 * drop data for eg socket -> socket splicing. Use the piped splicing
1022 	 * for that!
1023 	 */
1024 	if (unlikely(!(in->f_mode & FMODE_LSEEK)))
1025 		return -EINVAL;
1026 
1027 	/*
1028 	 * neither in nor out is a pipe, setup an internal pipe attached to
1029 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1030 	 */
1031 	pipe = current->splice_pipe;
1032 	if (unlikely(!pipe)) {
1033 		pipe = alloc_pipe_info();
1034 		if (!pipe)
1035 			return -ENOMEM;
1036 
1037 		/*
1038 		 * We don't have an immediate reader, but we'll read the stuff
1039 		 * out of the pipe right after the splice_to_pipe(). So set
1040 		 * PIPE_READERS appropriately.
1041 		 */
1042 		pipe->readers = 1;
1043 
1044 		current->splice_pipe = pipe;
1045 	}
1046 
1047 	/*
1048 	 * Do the splice.
1049 	 */
1050 	bytes = 0;
1051 	len = sd->total_len;
1052 
1053 	/* Don't block on output, we have to drain the direct pipe. */
1054 	flags = sd->flags;
1055 	sd->flags &= ~SPLICE_F_NONBLOCK;
1056 
1057 	/*
1058 	 * We signal MORE until we've read sufficient data to fulfill the
1059 	 * request and we keep signalling it if the caller set it.
1060 	 */
1061 	more = sd->flags & SPLICE_F_MORE;
1062 	sd->flags |= SPLICE_F_MORE;
1063 
1064 	WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
1065 
1066 	while (len) {
1067 		size_t read_len;
1068 		loff_t pos = sd->pos, prev_pos = pos;
1069 
1070 		ret = vfs_splice_read(in, &pos, pipe, len, flags);
1071 		if (unlikely(ret <= 0))
1072 			goto read_failure;
1073 
1074 		read_len = ret;
1075 		sd->total_len = read_len;
1076 
1077 		/*
1078 		 * If we now have sufficient data to fulfill the request then
1079 		 * we clear SPLICE_F_MORE if it was not set initially.
1080 		 */
1081 		if (read_len >= len && !more)
1082 			sd->flags &= ~SPLICE_F_MORE;
1083 
1084 		/*
1085 		 * NOTE: nonblocking mode only applies to the input. We
1086 		 * must not do the output in nonblocking mode as then we
1087 		 * could get stuck data in the internal pipe:
1088 		 */
1089 		ret = actor(pipe, sd);
1090 		if (unlikely(ret <= 0)) {
1091 			sd->pos = prev_pos;
1092 			goto out_release;
1093 		}
1094 
1095 		bytes += ret;
1096 		len -= ret;
1097 		sd->pos = pos;
1098 
1099 		if (ret < read_len) {
1100 			sd->pos = prev_pos + ret;
1101 			goto out_release;
1102 		}
1103 	}
1104 
1105 done:
1106 	pipe->tail = pipe->head = 0;
1107 	file_accessed(in);
1108 	return bytes;
1109 
1110 read_failure:
1111 	/*
1112 	 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
1113 	 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
1114 	 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at
1115 	 * least 1 byte *then* we will also do the ->splice_eof() call.
1116 	 */
1117 	if (ret == 0 && !more && len > 0 && bytes)
1118 		do_splice_eof(sd);
1119 out_release:
1120 	/*
1121 	 * If we did an incomplete transfer we must release
1122 	 * the pipe buffers in question:
1123 	 */
1124 	for (i = 0; i < pipe->ring_size; i++) {
1125 		struct pipe_buffer *buf = &pipe->bufs[i];
1126 
1127 		if (buf->ops)
1128 			pipe_buf_release(pipe, buf);
1129 	}
1130 
1131 	if (!bytes)
1132 		bytes = ret;
1133 
1134 	goto done;
1135 }
1136 EXPORT_SYMBOL(splice_direct_to_actor);
1137 
1138 static int direct_splice_actor(struct pipe_inode_info *pipe,
1139 			       struct splice_desc *sd)
1140 {
1141 	struct file *file = sd->u.file;
1142 
1143 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1144 			      sd->flags);
1145 }
1146 
1147 static void direct_file_splice_eof(struct splice_desc *sd)
1148 {
1149 	struct file *file = sd->u.file;
1150 
1151 	if (file->f_op->splice_eof)
1152 		file->f_op->splice_eof(file);
1153 }
1154 
1155 /**
1156  * do_splice_direct - splices data directly between two files
1157  * @in:		file to splice from
1158  * @ppos:	input file offset
1159  * @out:	file to splice to
1160  * @opos:	output file offset
1161  * @len:	number of bytes to splice
1162  * @flags:	splice modifier flags
1163  *
1164  * Description:
1165  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1166  *    doing it in the application would incur an extra system call
1167  *    (splice in + splice out, as compared to just sendfile()). So this helper
1168  *    can splice directly through a process-private pipe.
1169  *
1170  */
1171 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1172 		      loff_t *opos, size_t len, unsigned int flags)
1173 {
1174 	struct splice_desc sd = {
1175 		.len		= len,
1176 		.total_len	= len,
1177 		.flags		= flags,
1178 		.pos		= *ppos,
1179 		.u.file		= out,
1180 		.splice_eof	= direct_file_splice_eof,
1181 		.opos		= opos,
1182 	};
1183 	long ret;
1184 
1185 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1186 		return -EBADF;
1187 
1188 	if (unlikely(out->f_flags & O_APPEND))
1189 		return -EINVAL;
1190 
1191 	ret = rw_verify_area(WRITE, out, opos, len);
1192 	if (unlikely(ret < 0))
1193 		return ret;
1194 
1195 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1196 	if (ret > 0)
1197 		*ppos = sd.pos;
1198 
1199 	return ret;
1200 }
1201 EXPORT_SYMBOL(do_splice_direct);
1202 
1203 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1204 {
1205 	for (;;) {
1206 		if (unlikely(!pipe->readers)) {
1207 			send_sig(SIGPIPE, current, 0);
1208 			return -EPIPE;
1209 		}
1210 		if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1211 			return 0;
1212 		if (flags & SPLICE_F_NONBLOCK)
1213 			return -EAGAIN;
1214 		if (signal_pending(current))
1215 			return -ERESTARTSYS;
1216 		pipe_wait_writable(pipe);
1217 	}
1218 }
1219 
1220 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1221 			       struct pipe_inode_info *opipe,
1222 			       size_t len, unsigned int flags);
1223 
1224 long splice_file_to_pipe(struct file *in,
1225 			 struct pipe_inode_info *opipe,
1226 			 loff_t *offset,
1227 			 size_t len, unsigned int flags)
1228 {
1229 	long ret;
1230 
1231 	pipe_lock(opipe);
1232 	ret = wait_for_space(opipe, flags);
1233 	if (!ret)
1234 		ret = vfs_splice_read(in, offset, opipe, len, flags);
1235 	pipe_unlock(opipe);
1236 	if (ret > 0)
1237 		wakeup_pipe_readers(opipe);
1238 	return ret;
1239 }
1240 
1241 /*
1242  * Determine where to splice to/from.
1243  */
1244 long do_splice(struct file *in, loff_t *off_in, struct file *out,
1245 	       loff_t *off_out, size_t len, unsigned int flags)
1246 {
1247 	struct pipe_inode_info *ipipe;
1248 	struct pipe_inode_info *opipe;
1249 	loff_t offset;
1250 	long ret;
1251 
1252 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1253 		     !(out->f_mode & FMODE_WRITE)))
1254 		return -EBADF;
1255 
1256 	ipipe = get_pipe_info(in, true);
1257 	opipe = get_pipe_info(out, true);
1258 
1259 	if (ipipe && opipe) {
1260 		if (off_in || off_out)
1261 			return -ESPIPE;
1262 
1263 		/* Splicing to self would be fun, but... */
1264 		if (ipipe == opipe)
1265 			return -EINVAL;
1266 
1267 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1268 			flags |= SPLICE_F_NONBLOCK;
1269 
1270 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1271 	}
1272 
1273 	if (ipipe) {
1274 		if (off_in)
1275 			return -ESPIPE;
1276 		if (off_out) {
1277 			if (!(out->f_mode & FMODE_PWRITE))
1278 				return -EINVAL;
1279 			offset = *off_out;
1280 		} else {
1281 			offset = out->f_pos;
1282 		}
1283 
1284 		if (unlikely(out->f_flags & O_APPEND))
1285 			return -EINVAL;
1286 
1287 		ret = rw_verify_area(WRITE, out, &offset, len);
1288 		if (unlikely(ret < 0))
1289 			return ret;
1290 
1291 		if (in->f_flags & O_NONBLOCK)
1292 			flags |= SPLICE_F_NONBLOCK;
1293 
1294 		file_start_write(out);
1295 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1296 		file_end_write(out);
1297 
1298 		if (ret > 0)
1299 			fsnotify_modify(out);
1300 
1301 		if (!off_out)
1302 			out->f_pos = offset;
1303 		else
1304 			*off_out = offset;
1305 
1306 		return ret;
1307 	}
1308 
1309 	if (opipe) {
1310 		if (off_out)
1311 			return -ESPIPE;
1312 		if (off_in) {
1313 			if (!(in->f_mode & FMODE_PREAD))
1314 				return -EINVAL;
1315 			offset = *off_in;
1316 		} else {
1317 			offset = in->f_pos;
1318 		}
1319 
1320 		if (out->f_flags & O_NONBLOCK)
1321 			flags |= SPLICE_F_NONBLOCK;
1322 
1323 		ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1324 
1325 		if (ret > 0)
1326 			fsnotify_access(in);
1327 
1328 		if (!off_in)
1329 			in->f_pos = offset;
1330 		else
1331 			*off_in = offset;
1332 
1333 		return ret;
1334 	}
1335 
1336 	return -EINVAL;
1337 }
1338 
1339 static long __do_splice(struct file *in, loff_t __user *off_in,
1340 			struct file *out, loff_t __user *off_out,
1341 			size_t len, unsigned int flags)
1342 {
1343 	struct pipe_inode_info *ipipe;
1344 	struct pipe_inode_info *opipe;
1345 	loff_t offset, *__off_in = NULL, *__off_out = NULL;
1346 	long ret;
1347 
1348 	ipipe = get_pipe_info(in, true);
1349 	opipe = get_pipe_info(out, true);
1350 
1351 	if (ipipe) {
1352 		if (off_in)
1353 			return -ESPIPE;
1354 		pipe_clear_nowait(in);
1355 	}
1356 	if (opipe) {
1357 		if (off_out)
1358 			return -ESPIPE;
1359 		pipe_clear_nowait(out);
1360 	}
1361 
1362 	if (off_out) {
1363 		if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1364 			return -EFAULT;
1365 		__off_out = &offset;
1366 	}
1367 	if (off_in) {
1368 		if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1369 			return -EFAULT;
1370 		__off_in = &offset;
1371 	}
1372 
1373 	ret = do_splice(in, __off_in, out, __off_out, len, flags);
1374 	if (ret < 0)
1375 		return ret;
1376 
1377 	if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1378 		return -EFAULT;
1379 	if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1380 		return -EFAULT;
1381 
1382 	return ret;
1383 }
1384 
1385 static int iter_to_pipe(struct iov_iter *from,
1386 			struct pipe_inode_info *pipe,
1387 			unsigned flags)
1388 {
1389 	struct pipe_buffer buf = {
1390 		.ops = &user_page_pipe_buf_ops,
1391 		.flags = flags
1392 	};
1393 	size_t total = 0;
1394 	int ret = 0;
1395 
1396 	while (iov_iter_count(from)) {
1397 		struct page *pages[16];
1398 		ssize_t left;
1399 		size_t start;
1400 		int i, n;
1401 
1402 		left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1403 		if (left <= 0) {
1404 			ret = left;
1405 			break;
1406 		}
1407 
1408 		n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1409 		for (i = 0; i < n; i++) {
1410 			int size = min_t(int, left, PAGE_SIZE - start);
1411 
1412 			buf.page = pages[i];
1413 			buf.offset = start;
1414 			buf.len = size;
1415 			ret = add_to_pipe(pipe, &buf);
1416 			if (unlikely(ret < 0)) {
1417 				iov_iter_revert(from, left);
1418 				// this one got dropped by add_to_pipe()
1419 				while (++i < n)
1420 					put_page(pages[i]);
1421 				goto out;
1422 			}
1423 			total += ret;
1424 			left -= size;
1425 			start = 0;
1426 		}
1427 	}
1428 out:
1429 	return total ? total : ret;
1430 }
1431 
1432 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1433 			struct splice_desc *sd)
1434 {
1435 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1436 	return n == sd->len ? n : -EFAULT;
1437 }
1438 
1439 /*
1440  * For lack of a better implementation, implement vmsplice() to userspace
1441  * as a simple copy of the pipes pages to the user iov.
1442  */
1443 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1444 			     unsigned int flags)
1445 {
1446 	struct pipe_inode_info *pipe = get_pipe_info(file, true);
1447 	struct splice_desc sd = {
1448 		.total_len = iov_iter_count(iter),
1449 		.flags = flags,
1450 		.u.data = iter
1451 	};
1452 	long ret = 0;
1453 
1454 	if (!pipe)
1455 		return -EBADF;
1456 
1457 	pipe_clear_nowait(file);
1458 
1459 	if (sd.total_len) {
1460 		pipe_lock(pipe);
1461 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1462 		pipe_unlock(pipe);
1463 	}
1464 
1465 	return ret;
1466 }
1467 
1468 /*
1469  * vmsplice splices a user address range into a pipe. It can be thought of
1470  * as splice-from-memory, where the regular splice is splice-from-file (or
1471  * to file). In both cases the output is a pipe, naturally.
1472  */
1473 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1474 			     unsigned int flags)
1475 {
1476 	struct pipe_inode_info *pipe;
1477 	long ret = 0;
1478 	unsigned buf_flag = 0;
1479 
1480 	if (flags & SPLICE_F_GIFT)
1481 		buf_flag = PIPE_BUF_FLAG_GIFT;
1482 
1483 	pipe = get_pipe_info(file, true);
1484 	if (!pipe)
1485 		return -EBADF;
1486 
1487 	pipe_clear_nowait(file);
1488 
1489 	pipe_lock(pipe);
1490 	ret = wait_for_space(pipe, flags);
1491 	if (!ret)
1492 		ret = iter_to_pipe(iter, pipe, buf_flag);
1493 	pipe_unlock(pipe);
1494 	if (ret > 0)
1495 		wakeup_pipe_readers(pipe);
1496 	return ret;
1497 }
1498 
1499 static int vmsplice_type(struct fd f, int *type)
1500 {
1501 	if (!f.file)
1502 		return -EBADF;
1503 	if (f.file->f_mode & FMODE_WRITE) {
1504 		*type = ITER_SOURCE;
1505 	} else if (f.file->f_mode & FMODE_READ) {
1506 		*type = ITER_DEST;
1507 	} else {
1508 		fdput(f);
1509 		return -EBADF;
1510 	}
1511 	return 0;
1512 }
1513 
1514 /*
1515  * Note that vmsplice only really supports true splicing _from_ user memory
1516  * to a pipe, not the other way around. Splicing from user memory is a simple
1517  * operation that can be supported without any funky alignment restrictions
1518  * or nasty vm tricks. We simply map in the user memory and fill them into
1519  * a pipe. The reverse isn't quite as easy, though. There are two possible
1520  * solutions for that:
1521  *
1522  *	- memcpy() the data internally, at which point we might as well just
1523  *	  do a regular read() on the buffer anyway.
1524  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1525  *	  has restriction limitations on both ends of the pipe).
1526  *
1527  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1528  *
1529  */
1530 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1531 		unsigned long, nr_segs, unsigned int, flags)
1532 {
1533 	struct iovec iovstack[UIO_FASTIOV];
1534 	struct iovec *iov = iovstack;
1535 	struct iov_iter iter;
1536 	ssize_t error;
1537 	struct fd f;
1538 	int type;
1539 
1540 	if (unlikely(flags & ~SPLICE_F_ALL))
1541 		return -EINVAL;
1542 
1543 	f = fdget(fd);
1544 	error = vmsplice_type(f, &type);
1545 	if (error)
1546 		return error;
1547 
1548 	error = import_iovec(type, uiov, nr_segs,
1549 			     ARRAY_SIZE(iovstack), &iov, &iter);
1550 	if (error < 0)
1551 		goto out_fdput;
1552 
1553 	if (!iov_iter_count(&iter))
1554 		error = 0;
1555 	else if (type == ITER_SOURCE)
1556 		error = vmsplice_to_pipe(f.file, &iter, flags);
1557 	else
1558 		error = vmsplice_to_user(f.file, &iter, flags);
1559 
1560 	kfree(iov);
1561 out_fdput:
1562 	fdput(f);
1563 	return error;
1564 }
1565 
1566 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1567 		int, fd_out, loff_t __user *, off_out,
1568 		size_t, len, unsigned int, flags)
1569 {
1570 	struct fd in, out;
1571 	long error;
1572 
1573 	if (unlikely(!len))
1574 		return 0;
1575 
1576 	if (unlikely(flags & ~SPLICE_F_ALL))
1577 		return -EINVAL;
1578 
1579 	error = -EBADF;
1580 	in = fdget(fd_in);
1581 	if (in.file) {
1582 		out = fdget(fd_out);
1583 		if (out.file) {
1584 			error = __do_splice(in.file, off_in, out.file, off_out,
1585 						len, flags);
1586 			fdput(out);
1587 		}
1588 		fdput(in);
1589 	}
1590 	return error;
1591 }
1592 
1593 /*
1594  * Make sure there's data to read. Wait for input if we can, otherwise
1595  * return an appropriate error.
1596  */
1597 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1598 {
1599 	int ret;
1600 
1601 	/*
1602 	 * Check the pipe occupancy without the inode lock first. This function
1603 	 * is speculative anyways, so missing one is ok.
1604 	 */
1605 	if (!pipe_empty(pipe->head, pipe->tail))
1606 		return 0;
1607 
1608 	ret = 0;
1609 	pipe_lock(pipe);
1610 
1611 	while (pipe_empty(pipe->head, pipe->tail)) {
1612 		if (signal_pending(current)) {
1613 			ret = -ERESTARTSYS;
1614 			break;
1615 		}
1616 		if (!pipe->writers)
1617 			break;
1618 		if (flags & SPLICE_F_NONBLOCK) {
1619 			ret = -EAGAIN;
1620 			break;
1621 		}
1622 		pipe_wait_readable(pipe);
1623 	}
1624 
1625 	pipe_unlock(pipe);
1626 	return ret;
1627 }
1628 
1629 /*
1630  * Make sure there's writeable room. Wait for room if we can, otherwise
1631  * return an appropriate error.
1632  */
1633 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1634 {
1635 	int ret;
1636 
1637 	/*
1638 	 * Check pipe occupancy without the inode lock first. This function
1639 	 * is speculative anyways, so missing one is ok.
1640 	 */
1641 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1642 		return 0;
1643 
1644 	ret = 0;
1645 	pipe_lock(pipe);
1646 
1647 	while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1648 		if (!pipe->readers) {
1649 			send_sig(SIGPIPE, current, 0);
1650 			ret = -EPIPE;
1651 			break;
1652 		}
1653 		if (flags & SPLICE_F_NONBLOCK) {
1654 			ret = -EAGAIN;
1655 			break;
1656 		}
1657 		if (signal_pending(current)) {
1658 			ret = -ERESTARTSYS;
1659 			break;
1660 		}
1661 		pipe_wait_writable(pipe);
1662 	}
1663 
1664 	pipe_unlock(pipe);
1665 	return ret;
1666 }
1667 
1668 /*
1669  * Splice contents of ipipe to opipe.
1670  */
1671 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1672 			       struct pipe_inode_info *opipe,
1673 			       size_t len, unsigned int flags)
1674 {
1675 	struct pipe_buffer *ibuf, *obuf;
1676 	unsigned int i_head, o_head;
1677 	unsigned int i_tail, o_tail;
1678 	unsigned int i_mask, o_mask;
1679 	int ret = 0;
1680 	bool input_wakeup = false;
1681 
1682 
1683 retry:
1684 	ret = ipipe_prep(ipipe, flags);
1685 	if (ret)
1686 		return ret;
1687 
1688 	ret = opipe_prep(opipe, flags);
1689 	if (ret)
1690 		return ret;
1691 
1692 	/*
1693 	 * Potential ABBA deadlock, work around it by ordering lock
1694 	 * grabbing by pipe info address. Otherwise two different processes
1695 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1696 	 */
1697 	pipe_double_lock(ipipe, opipe);
1698 
1699 	i_tail = ipipe->tail;
1700 	i_mask = ipipe->ring_size - 1;
1701 	o_head = opipe->head;
1702 	o_mask = opipe->ring_size - 1;
1703 
1704 	do {
1705 		size_t o_len;
1706 
1707 		if (!opipe->readers) {
1708 			send_sig(SIGPIPE, current, 0);
1709 			if (!ret)
1710 				ret = -EPIPE;
1711 			break;
1712 		}
1713 
1714 		i_head = ipipe->head;
1715 		o_tail = opipe->tail;
1716 
1717 		if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1718 			break;
1719 
1720 		/*
1721 		 * Cannot make any progress, because either the input
1722 		 * pipe is empty or the output pipe is full.
1723 		 */
1724 		if (pipe_empty(i_head, i_tail) ||
1725 		    pipe_full(o_head, o_tail, opipe->max_usage)) {
1726 			/* Already processed some buffers, break */
1727 			if (ret)
1728 				break;
1729 
1730 			if (flags & SPLICE_F_NONBLOCK) {
1731 				ret = -EAGAIN;
1732 				break;
1733 			}
1734 
1735 			/*
1736 			 * We raced with another reader/writer and haven't
1737 			 * managed to process any buffers.  A zero return
1738 			 * value means EOF, so retry instead.
1739 			 */
1740 			pipe_unlock(ipipe);
1741 			pipe_unlock(opipe);
1742 			goto retry;
1743 		}
1744 
1745 		ibuf = &ipipe->bufs[i_tail & i_mask];
1746 		obuf = &opipe->bufs[o_head & o_mask];
1747 
1748 		if (len >= ibuf->len) {
1749 			/*
1750 			 * Simply move the whole buffer from ipipe to opipe
1751 			 */
1752 			*obuf = *ibuf;
1753 			ibuf->ops = NULL;
1754 			i_tail++;
1755 			ipipe->tail = i_tail;
1756 			input_wakeup = true;
1757 			o_len = obuf->len;
1758 			o_head++;
1759 			opipe->head = o_head;
1760 		} else {
1761 			/*
1762 			 * Get a reference to this pipe buffer,
1763 			 * so we can copy the contents over.
1764 			 */
1765 			if (!pipe_buf_get(ipipe, ibuf)) {
1766 				if (ret == 0)
1767 					ret = -EFAULT;
1768 				break;
1769 			}
1770 			*obuf = *ibuf;
1771 
1772 			/*
1773 			 * Don't inherit the gift and merge flags, we need to
1774 			 * prevent multiple steals of this page.
1775 			 */
1776 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1777 			obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1778 
1779 			obuf->len = len;
1780 			ibuf->offset += len;
1781 			ibuf->len -= len;
1782 			o_len = len;
1783 			o_head++;
1784 			opipe->head = o_head;
1785 		}
1786 		ret += o_len;
1787 		len -= o_len;
1788 	} while (len);
1789 
1790 	pipe_unlock(ipipe);
1791 	pipe_unlock(opipe);
1792 
1793 	/*
1794 	 * If we put data in the output pipe, wakeup any potential readers.
1795 	 */
1796 	if (ret > 0)
1797 		wakeup_pipe_readers(opipe);
1798 
1799 	if (input_wakeup)
1800 		wakeup_pipe_writers(ipipe);
1801 
1802 	return ret;
1803 }
1804 
1805 /*
1806  * Link contents of ipipe to opipe.
1807  */
1808 static int link_pipe(struct pipe_inode_info *ipipe,
1809 		     struct pipe_inode_info *opipe,
1810 		     size_t len, unsigned int flags)
1811 {
1812 	struct pipe_buffer *ibuf, *obuf;
1813 	unsigned int i_head, o_head;
1814 	unsigned int i_tail, o_tail;
1815 	unsigned int i_mask, o_mask;
1816 	int ret = 0;
1817 
1818 	/*
1819 	 * Potential ABBA deadlock, work around it by ordering lock
1820 	 * grabbing by pipe info address. Otherwise two different processes
1821 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1822 	 */
1823 	pipe_double_lock(ipipe, opipe);
1824 
1825 	i_tail = ipipe->tail;
1826 	i_mask = ipipe->ring_size - 1;
1827 	o_head = opipe->head;
1828 	o_mask = opipe->ring_size - 1;
1829 
1830 	do {
1831 		if (!opipe->readers) {
1832 			send_sig(SIGPIPE, current, 0);
1833 			if (!ret)
1834 				ret = -EPIPE;
1835 			break;
1836 		}
1837 
1838 		i_head = ipipe->head;
1839 		o_tail = opipe->tail;
1840 
1841 		/*
1842 		 * If we have iterated all input buffers or run out of
1843 		 * output room, break.
1844 		 */
1845 		if (pipe_empty(i_head, i_tail) ||
1846 		    pipe_full(o_head, o_tail, opipe->max_usage))
1847 			break;
1848 
1849 		ibuf = &ipipe->bufs[i_tail & i_mask];
1850 		obuf = &opipe->bufs[o_head & o_mask];
1851 
1852 		/*
1853 		 * Get a reference to this pipe buffer,
1854 		 * so we can copy the contents over.
1855 		 */
1856 		if (!pipe_buf_get(ipipe, ibuf)) {
1857 			if (ret == 0)
1858 				ret = -EFAULT;
1859 			break;
1860 		}
1861 
1862 		*obuf = *ibuf;
1863 
1864 		/*
1865 		 * Don't inherit the gift and merge flag, we need to prevent
1866 		 * multiple steals of this page.
1867 		 */
1868 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1869 		obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1870 
1871 		if (obuf->len > len)
1872 			obuf->len = len;
1873 		ret += obuf->len;
1874 		len -= obuf->len;
1875 
1876 		o_head++;
1877 		opipe->head = o_head;
1878 		i_tail++;
1879 	} while (len);
1880 
1881 	pipe_unlock(ipipe);
1882 	pipe_unlock(opipe);
1883 
1884 	/*
1885 	 * If we put data in the output pipe, wakeup any potential readers.
1886 	 */
1887 	if (ret > 0)
1888 		wakeup_pipe_readers(opipe);
1889 
1890 	return ret;
1891 }
1892 
1893 /*
1894  * This is a tee(1) implementation that works on pipes. It doesn't copy
1895  * any data, it simply references the 'in' pages on the 'out' pipe.
1896  * The 'flags' used are the SPLICE_F_* variants, currently the only
1897  * applicable one is SPLICE_F_NONBLOCK.
1898  */
1899 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1900 {
1901 	struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1902 	struct pipe_inode_info *opipe = get_pipe_info(out, true);
1903 	int ret = -EINVAL;
1904 
1905 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1906 		     !(out->f_mode & FMODE_WRITE)))
1907 		return -EBADF;
1908 
1909 	/*
1910 	 * Duplicate the contents of ipipe to opipe without actually
1911 	 * copying the data.
1912 	 */
1913 	if (ipipe && opipe && ipipe != opipe) {
1914 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1915 			flags |= SPLICE_F_NONBLOCK;
1916 
1917 		/*
1918 		 * Keep going, unless we encounter an error. The ipipe/opipe
1919 		 * ordering doesn't really matter.
1920 		 */
1921 		ret = ipipe_prep(ipipe, flags);
1922 		if (!ret) {
1923 			ret = opipe_prep(opipe, flags);
1924 			if (!ret)
1925 				ret = link_pipe(ipipe, opipe, len, flags);
1926 		}
1927 	}
1928 
1929 	return ret;
1930 }
1931 
1932 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1933 {
1934 	struct fd in, out;
1935 	int error;
1936 
1937 	if (unlikely(flags & ~SPLICE_F_ALL))
1938 		return -EINVAL;
1939 
1940 	if (unlikely(!len))
1941 		return 0;
1942 
1943 	error = -EBADF;
1944 	in = fdget(fdin);
1945 	if (in.file) {
1946 		out = fdget(fdout);
1947 		if (out.file) {
1948 			error = do_tee(in.file, out.file, len, flags);
1949 			fdput(out);
1950 		}
1951  		fdput(in);
1952  	}
1953 
1954 	return error;
1955 }
1956