1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/bvec.h> 21 #include <linux/fs.h> 22 #include <linux/file.h> 23 #include <linux/pagemap.h> 24 #include <linux/splice.h> 25 #include <linux/memcontrol.h> 26 #include <linux/mm_inline.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/export.h> 30 #include <linux/syscalls.h> 31 #include <linux/uio.h> 32 #include <linux/security.h> 33 #include <linux/gfp.h> 34 #include <linux/socket.h> 35 #include <linux/compat.h> 36 #include <linux/sched/signal.h> 37 38 #include "internal.h" 39 40 /* 41 * Attempt to steal a page from a pipe buffer. This should perhaps go into 42 * a vm helper function, it's already simplified quite a bit by the 43 * addition of remove_mapping(). If success is returned, the caller may 44 * attempt to reuse this page for another destination. 45 */ 46 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 47 struct pipe_buffer *buf) 48 { 49 struct page *page = buf->page; 50 struct address_space *mapping; 51 52 lock_page(page); 53 54 mapping = page_mapping(page); 55 if (mapping) { 56 WARN_ON(!PageUptodate(page)); 57 58 /* 59 * At least for ext2 with nobh option, we need to wait on 60 * writeback completing on this page, since we'll remove it 61 * from the pagecache. Otherwise truncate wont wait on the 62 * page, allowing the disk blocks to be reused by someone else 63 * before we actually wrote our data to them. fs corruption 64 * ensues. 65 */ 66 wait_on_page_writeback(page); 67 68 if (page_has_private(page) && 69 !try_to_release_page(page, GFP_KERNEL)) 70 goto out_unlock; 71 72 /* 73 * If we succeeded in removing the mapping, set LRU flag 74 * and return good. 75 */ 76 if (remove_mapping(mapping, page)) { 77 buf->flags |= PIPE_BUF_FLAG_LRU; 78 return 0; 79 } 80 } 81 82 /* 83 * Raced with truncate or failed to remove page from current 84 * address space, unlock and return failure. 85 */ 86 out_unlock: 87 unlock_page(page); 88 return 1; 89 } 90 91 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 92 struct pipe_buffer *buf) 93 { 94 put_page(buf->page); 95 buf->flags &= ~PIPE_BUF_FLAG_LRU; 96 } 97 98 /* 99 * Check whether the contents of buf is OK to access. Since the content 100 * is a page cache page, IO may be in flight. 101 */ 102 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 103 struct pipe_buffer *buf) 104 { 105 struct page *page = buf->page; 106 int err; 107 108 if (!PageUptodate(page)) { 109 lock_page(page); 110 111 /* 112 * Page got truncated/unhashed. This will cause a 0-byte 113 * splice, if this is the first page. 114 */ 115 if (!page->mapping) { 116 err = -ENODATA; 117 goto error; 118 } 119 120 /* 121 * Uh oh, read-error from disk. 122 */ 123 if (!PageUptodate(page)) { 124 err = -EIO; 125 goto error; 126 } 127 128 /* 129 * Page is ok afterall, we are done. 130 */ 131 unlock_page(page); 132 } 133 134 return 0; 135 error: 136 unlock_page(page); 137 return err; 138 } 139 140 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 141 .can_merge = 0, 142 .confirm = page_cache_pipe_buf_confirm, 143 .release = page_cache_pipe_buf_release, 144 .steal = page_cache_pipe_buf_steal, 145 .get = generic_pipe_buf_get, 146 }; 147 148 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 149 struct pipe_buffer *buf) 150 { 151 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 152 return 1; 153 154 buf->flags |= PIPE_BUF_FLAG_LRU; 155 return generic_pipe_buf_steal(pipe, buf); 156 } 157 158 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 159 .can_merge = 0, 160 .confirm = generic_pipe_buf_confirm, 161 .release = page_cache_pipe_buf_release, 162 .steal = user_page_pipe_buf_steal, 163 .get = generic_pipe_buf_get, 164 }; 165 166 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 167 { 168 smp_mb(); 169 if (waitqueue_active(&pipe->wait)) 170 wake_up_interruptible(&pipe->wait); 171 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 172 } 173 174 /** 175 * splice_to_pipe - fill passed data into a pipe 176 * @pipe: pipe to fill 177 * @spd: data to fill 178 * 179 * Description: 180 * @spd contains a map of pages and len/offset tuples, along with 181 * the struct pipe_buf_operations associated with these pages. This 182 * function will link that data to the pipe. 183 * 184 */ 185 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 186 struct splice_pipe_desc *spd) 187 { 188 unsigned int spd_pages = spd->nr_pages; 189 int ret = 0, page_nr = 0; 190 191 if (!spd_pages) 192 return 0; 193 194 if (unlikely(!pipe->readers)) { 195 send_sig(SIGPIPE, current, 0); 196 ret = -EPIPE; 197 goto out; 198 } 199 200 while (pipe->nrbufs < pipe->buffers) { 201 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 202 struct pipe_buffer *buf = pipe->bufs + newbuf; 203 204 buf->page = spd->pages[page_nr]; 205 buf->offset = spd->partial[page_nr].offset; 206 buf->len = spd->partial[page_nr].len; 207 buf->private = spd->partial[page_nr].private; 208 buf->ops = spd->ops; 209 buf->flags = 0; 210 211 pipe->nrbufs++; 212 page_nr++; 213 ret += buf->len; 214 215 if (!--spd->nr_pages) 216 break; 217 } 218 219 if (!ret) 220 ret = -EAGAIN; 221 222 out: 223 while (page_nr < spd_pages) 224 spd->spd_release(spd, page_nr++); 225 226 return ret; 227 } 228 EXPORT_SYMBOL_GPL(splice_to_pipe); 229 230 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 231 { 232 int ret; 233 234 if (unlikely(!pipe->readers)) { 235 send_sig(SIGPIPE, current, 0); 236 ret = -EPIPE; 237 } else if (pipe->nrbufs == pipe->buffers) { 238 ret = -EAGAIN; 239 } else { 240 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 241 pipe->bufs[newbuf] = *buf; 242 pipe->nrbufs++; 243 return buf->len; 244 } 245 pipe_buf_release(pipe, buf); 246 return ret; 247 } 248 EXPORT_SYMBOL(add_to_pipe); 249 250 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 251 { 252 put_page(spd->pages[i]); 253 } 254 255 /* 256 * Check if we need to grow the arrays holding pages and partial page 257 * descriptions. 258 */ 259 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 260 { 261 unsigned int buffers = ACCESS_ONCE(pipe->buffers); 262 263 spd->nr_pages_max = buffers; 264 if (buffers <= PIPE_DEF_BUFFERS) 265 return 0; 266 267 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL); 268 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL); 269 270 if (spd->pages && spd->partial) 271 return 0; 272 273 kfree(spd->pages); 274 kfree(spd->partial); 275 return -ENOMEM; 276 } 277 278 void splice_shrink_spd(struct splice_pipe_desc *spd) 279 { 280 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 281 return; 282 283 kfree(spd->pages); 284 kfree(spd->partial); 285 } 286 287 /** 288 * generic_file_splice_read - splice data from file to a pipe 289 * @in: file to splice from 290 * @ppos: position in @in 291 * @pipe: pipe to splice to 292 * @len: number of bytes to splice 293 * @flags: splice modifier flags 294 * 295 * Description: 296 * Will read pages from given file and fill them into a pipe. Can be 297 * used as long as it has more or less sane ->read_iter(). 298 * 299 */ 300 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 301 struct pipe_inode_info *pipe, size_t len, 302 unsigned int flags) 303 { 304 struct iov_iter to; 305 struct kiocb kiocb; 306 int idx, ret; 307 308 iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len); 309 idx = to.idx; 310 init_sync_kiocb(&kiocb, in); 311 kiocb.ki_pos = *ppos; 312 ret = call_read_iter(in, &kiocb, &to); 313 if (ret > 0) { 314 *ppos = kiocb.ki_pos; 315 file_accessed(in); 316 } else if (ret < 0) { 317 to.idx = idx; 318 to.iov_offset = 0; 319 iov_iter_advance(&to, 0); /* to free what was emitted */ 320 /* 321 * callers of ->splice_read() expect -EAGAIN on 322 * "can't put anything in there", rather than -EFAULT. 323 */ 324 if (ret == -EFAULT) 325 ret = -EAGAIN; 326 } 327 328 return ret; 329 } 330 EXPORT_SYMBOL(generic_file_splice_read); 331 332 const struct pipe_buf_operations default_pipe_buf_ops = { 333 .can_merge = 0, 334 .confirm = generic_pipe_buf_confirm, 335 .release = generic_pipe_buf_release, 336 .steal = generic_pipe_buf_steal, 337 .get = generic_pipe_buf_get, 338 }; 339 340 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe, 341 struct pipe_buffer *buf) 342 { 343 return 1; 344 } 345 346 /* Pipe buffer operations for a socket and similar. */ 347 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 348 .can_merge = 0, 349 .confirm = generic_pipe_buf_confirm, 350 .release = generic_pipe_buf_release, 351 .steal = generic_pipe_buf_nosteal, 352 .get = generic_pipe_buf_get, 353 }; 354 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 355 356 static ssize_t kernel_readv(struct file *file, const struct kvec *vec, 357 unsigned long vlen, loff_t offset) 358 { 359 mm_segment_t old_fs; 360 loff_t pos = offset; 361 ssize_t res; 362 363 old_fs = get_fs(); 364 set_fs(get_ds()); 365 /* The cast to a user pointer is valid due to the set_fs() */ 366 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0); 367 set_fs(old_fs); 368 369 return res; 370 } 371 372 ssize_t kernel_write(struct file *file, const char *buf, size_t count, 373 loff_t pos) 374 { 375 mm_segment_t old_fs; 376 ssize_t res; 377 378 old_fs = get_fs(); 379 set_fs(get_ds()); 380 /* The cast to a user pointer is valid due to the set_fs() */ 381 res = vfs_write(file, (__force const char __user *)buf, count, &pos); 382 set_fs(old_fs); 383 384 return res; 385 } 386 EXPORT_SYMBOL(kernel_write); 387 388 static ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 389 struct pipe_inode_info *pipe, size_t len, 390 unsigned int flags) 391 { 392 struct kvec *vec, __vec[PIPE_DEF_BUFFERS]; 393 struct iov_iter to; 394 struct page **pages; 395 unsigned int nr_pages; 396 size_t offset, dummy, copied = 0; 397 ssize_t res; 398 int i; 399 400 if (pipe->nrbufs == pipe->buffers) 401 return -EAGAIN; 402 403 /* 404 * Try to keep page boundaries matching to source pagecache ones - 405 * it probably won't be much help, but... 406 */ 407 offset = *ppos & ~PAGE_MASK; 408 409 iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len + offset); 410 411 res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &dummy); 412 if (res <= 0) 413 return -ENOMEM; 414 415 BUG_ON(dummy); 416 nr_pages = DIV_ROUND_UP(res, PAGE_SIZE); 417 418 vec = __vec; 419 if (nr_pages > PIPE_DEF_BUFFERS) { 420 vec = kmalloc(nr_pages * sizeof(struct kvec), GFP_KERNEL); 421 if (unlikely(!vec)) { 422 res = -ENOMEM; 423 goto out; 424 } 425 } 426 427 pipe->bufs[to.idx].offset = offset; 428 pipe->bufs[to.idx].len -= offset; 429 430 for (i = 0; i < nr_pages; i++) { 431 size_t this_len = min_t(size_t, len, PAGE_SIZE - offset); 432 vec[i].iov_base = page_address(pages[i]) + offset; 433 vec[i].iov_len = this_len; 434 len -= this_len; 435 offset = 0; 436 } 437 438 res = kernel_readv(in, vec, nr_pages, *ppos); 439 if (res > 0) { 440 copied = res; 441 *ppos += res; 442 } 443 444 if (vec != __vec) 445 kfree(vec); 446 out: 447 for (i = 0; i < nr_pages; i++) 448 put_page(pages[i]); 449 kvfree(pages); 450 iov_iter_advance(&to, copied); /* truncates and discards */ 451 return res; 452 } 453 454 /* 455 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 456 * using sendpage(). Return the number of bytes sent. 457 */ 458 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 459 struct pipe_buffer *buf, struct splice_desc *sd) 460 { 461 struct file *file = sd->u.file; 462 loff_t pos = sd->pos; 463 int more; 464 465 if (!likely(file->f_op->sendpage)) 466 return -EINVAL; 467 468 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0; 469 470 if (sd->len < sd->total_len && pipe->nrbufs > 1) 471 more |= MSG_SENDPAGE_NOTLAST; 472 473 return file->f_op->sendpage(file, buf->page, buf->offset, 474 sd->len, &pos, more); 475 } 476 477 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 478 { 479 smp_mb(); 480 if (waitqueue_active(&pipe->wait)) 481 wake_up_interruptible(&pipe->wait); 482 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 483 } 484 485 /** 486 * splice_from_pipe_feed - feed available data from a pipe to a file 487 * @pipe: pipe to splice from 488 * @sd: information to @actor 489 * @actor: handler that splices the data 490 * 491 * Description: 492 * This function loops over the pipe and calls @actor to do the 493 * actual moving of a single struct pipe_buffer to the desired 494 * destination. It returns when there's no more buffers left in 495 * the pipe or if the requested number of bytes (@sd->total_len) 496 * have been copied. It returns a positive number (one) if the 497 * pipe needs to be filled with more data, zero if the required 498 * number of bytes have been copied and -errno on error. 499 * 500 * This, together with splice_from_pipe_{begin,end,next}, may be 501 * used to implement the functionality of __splice_from_pipe() when 502 * locking is required around copying the pipe buffers to the 503 * destination. 504 */ 505 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 506 splice_actor *actor) 507 { 508 int ret; 509 510 while (pipe->nrbufs) { 511 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 512 513 sd->len = buf->len; 514 if (sd->len > sd->total_len) 515 sd->len = sd->total_len; 516 517 ret = pipe_buf_confirm(pipe, buf); 518 if (unlikely(ret)) { 519 if (ret == -ENODATA) 520 ret = 0; 521 return ret; 522 } 523 524 ret = actor(pipe, buf, sd); 525 if (ret <= 0) 526 return ret; 527 528 buf->offset += ret; 529 buf->len -= ret; 530 531 sd->num_spliced += ret; 532 sd->len -= ret; 533 sd->pos += ret; 534 sd->total_len -= ret; 535 536 if (!buf->len) { 537 pipe_buf_release(pipe, buf); 538 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 539 pipe->nrbufs--; 540 if (pipe->files) 541 sd->need_wakeup = true; 542 } 543 544 if (!sd->total_len) 545 return 0; 546 } 547 548 return 1; 549 } 550 551 /** 552 * splice_from_pipe_next - wait for some data to splice from 553 * @pipe: pipe to splice from 554 * @sd: information about the splice operation 555 * 556 * Description: 557 * This function will wait for some data and return a positive 558 * value (one) if pipe buffers are available. It will return zero 559 * or -errno if no more data needs to be spliced. 560 */ 561 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 562 { 563 /* 564 * Check for signal early to make process killable when there are 565 * always buffers available 566 */ 567 if (signal_pending(current)) 568 return -ERESTARTSYS; 569 570 while (!pipe->nrbufs) { 571 if (!pipe->writers) 572 return 0; 573 574 if (!pipe->waiting_writers && sd->num_spliced) 575 return 0; 576 577 if (sd->flags & SPLICE_F_NONBLOCK) 578 return -EAGAIN; 579 580 if (signal_pending(current)) 581 return -ERESTARTSYS; 582 583 if (sd->need_wakeup) { 584 wakeup_pipe_writers(pipe); 585 sd->need_wakeup = false; 586 } 587 588 pipe_wait(pipe); 589 } 590 591 return 1; 592 } 593 594 /** 595 * splice_from_pipe_begin - start splicing from pipe 596 * @sd: information about the splice operation 597 * 598 * Description: 599 * This function should be called before a loop containing 600 * splice_from_pipe_next() and splice_from_pipe_feed() to 601 * initialize the necessary fields of @sd. 602 */ 603 static void splice_from_pipe_begin(struct splice_desc *sd) 604 { 605 sd->num_spliced = 0; 606 sd->need_wakeup = false; 607 } 608 609 /** 610 * splice_from_pipe_end - finish splicing from pipe 611 * @pipe: pipe to splice from 612 * @sd: information about the splice operation 613 * 614 * Description: 615 * This function will wake up pipe writers if necessary. It should 616 * be called after a loop containing splice_from_pipe_next() and 617 * splice_from_pipe_feed(). 618 */ 619 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 620 { 621 if (sd->need_wakeup) 622 wakeup_pipe_writers(pipe); 623 } 624 625 /** 626 * __splice_from_pipe - splice data from a pipe to given actor 627 * @pipe: pipe to splice from 628 * @sd: information to @actor 629 * @actor: handler that splices the data 630 * 631 * Description: 632 * This function does little more than loop over the pipe and call 633 * @actor to do the actual moving of a single struct pipe_buffer to 634 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 635 * pipe_to_user. 636 * 637 */ 638 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 639 splice_actor *actor) 640 { 641 int ret; 642 643 splice_from_pipe_begin(sd); 644 do { 645 cond_resched(); 646 ret = splice_from_pipe_next(pipe, sd); 647 if (ret > 0) 648 ret = splice_from_pipe_feed(pipe, sd, actor); 649 } while (ret > 0); 650 splice_from_pipe_end(pipe, sd); 651 652 return sd->num_spliced ? sd->num_spliced : ret; 653 } 654 EXPORT_SYMBOL(__splice_from_pipe); 655 656 /** 657 * splice_from_pipe - splice data from a pipe to a file 658 * @pipe: pipe to splice from 659 * @out: file to splice to 660 * @ppos: position in @out 661 * @len: how many bytes to splice 662 * @flags: splice modifier flags 663 * @actor: handler that splices the data 664 * 665 * Description: 666 * See __splice_from_pipe. This function locks the pipe inode, 667 * otherwise it's identical to __splice_from_pipe(). 668 * 669 */ 670 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 671 loff_t *ppos, size_t len, unsigned int flags, 672 splice_actor *actor) 673 { 674 ssize_t ret; 675 struct splice_desc sd = { 676 .total_len = len, 677 .flags = flags, 678 .pos = *ppos, 679 .u.file = out, 680 }; 681 682 pipe_lock(pipe); 683 ret = __splice_from_pipe(pipe, &sd, actor); 684 pipe_unlock(pipe); 685 686 return ret; 687 } 688 689 /** 690 * iter_file_splice_write - splice data from a pipe to a file 691 * @pipe: pipe info 692 * @out: file to write to 693 * @ppos: position in @out 694 * @len: number of bytes to splice 695 * @flags: splice modifier flags 696 * 697 * Description: 698 * Will either move or copy pages (determined by @flags options) from 699 * the given pipe inode to the given file. 700 * This one is ->write_iter-based. 701 * 702 */ 703 ssize_t 704 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 705 loff_t *ppos, size_t len, unsigned int flags) 706 { 707 struct splice_desc sd = { 708 .total_len = len, 709 .flags = flags, 710 .pos = *ppos, 711 .u.file = out, 712 }; 713 int nbufs = pipe->buffers; 714 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 715 GFP_KERNEL); 716 ssize_t ret; 717 718 if (unlikely(!array)) 719 return -ENOMEM; 720 721 pipe_lock(pipe); 722 723 splice_from_pipe_begin(&sd); 724 while (sd.total_len) { 725 struct iov_iter from; 726 size_t left; 727 int n, idx; 728 729 ret = splice_from_pipe_next(pipe, &sd); 730 if (ret <= 0) 731 break; 732 733 if (unlikely(nbufs < pipe->buffers)) { 734 kfree(array); 735 nbufs = pipe->buffers; 736 array = kcalloc(nbufs, sizeof(struct bio_vec), 737 GFP_KERNEL); 738 if (!array) { 739 ret = -ENOMEM; 740 break; 741 } 742 } 743 744 /* build the vector */ 745 left = sd.total_len; 746 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) { 747 struct pipe_buffer *buf = pipe->bufs + idx; 748 size_t this_len = buf->len; 749 750 if (this_len > left) 751 this_len = left; 752 753 if (idx == pipe->buffers - 1) 754 idx = -1; 755 756 ret = pipe_buf_confirm(pipe, buf); 757 if (unlikely(ret)) { 758 if (ret == -ENODATA) 759 ret = 0; 760 goto done; 761 } 762 763 array[n].bv_page = buf->page; 764 array[n].bv_len = this_len; 765 array[n].bv_offset = buf->offset; 766 left -= this_len; 767 } 768 769 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n, 770 sd.total_len - left); 771 ret = vfs_iter_write(out, &from, &sd.pos); 772 if (ret <= 0) 773 break; 774 775 sd.num_spliced += ret; 776 sd.total_len -= ret; 777 *ppos = sd.pos; 778 779 /* dismiss the fully eaten buffers, adjust the partial one */ 780 while (ret) { 781 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 782 if (ret >= buf->len) { 783 ret -= buf->len; 784 buf->len = 0; 785 pipe_buf_release(pipe, buf); 786 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 787 pipe->nrbufs--; 788 if (pipe->files) 789 sd.need_wakeup = true; 790 } else { 791 buf->offset += ret; 792 buf->len -= ret; 793 ret = 0; 794 } 795 } 796 } 797 done: 798 kfree(array); 799 splice_from_pipe_end(pipe, &sd); 800 801 pipe_unlock(pipe); 802 803 if (sd.num_spliced) 804 ret = sd.num_spliced; 805 806 return ret; 807 } 808 809 EXPORT_SYMBOL(iter_file_splice_write); 810 811 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 812 struct splice_desc *sd) 813 { 814 int ret; 815 void *data; 816 loff_t tmp = sd->pos; 817 818 data = kmap(buf->page); 819 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp); 820 kunmap(buf->page); 821 822 return ret; 823 } 824 825 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 826 struct file *out, loff_t *ppos, 827 size_t len, unsigned int flags) 828 { 829 ssize_t ret; 830 831 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 832 if (ret > 0) 833 *ppos += ret; 834 835 return ret; 836 } 837 838 /** 839 * generic_splice_sendpage - splice data from a pipe to a socket 840 * @pipe: pipe to splice from 841 * @out: socket to write to 842 * @ppos: position in @out 843 * @len: number of bytes to splice 844 * @flags: splice modifier flags 845 * 846 * Description: 847 * Will send @len bytes from the pipe to a network socket. No data copying 848 * is involved. 849 * 850 */ 851 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 852 loff_t *ppos, size_t len, unsigned int flags) 853 { 854 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 855 } 856 857 EXPORT_SYMBOL(generic_splice_sendpage); 858 859 /* 860 * Attempt to initiate a splice from pipe to file. 861 */ 862 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 863 loff_t *ppos, size_t len, unsigned int flags) 864 { 865 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 866 loff_t *, size_t, unsigned int); 867 868 if (out->f_op->splice_write) 869 splice_write = out->f_op->splice_write; 870 else 871 splice_write = default_file_splice_write; 872 873 return splice_write(pipe, out, ppos, len, flags); 874 } 875 876 /* 877 * Attempt to initiate a splice from a file to a pipe. 878 */ 879 static long do_splice_to(struct file *in, loff_t *ppos, 880 struct pipe_inode_info *pipe, size_t len, 881 unsigned int flags) 882 { 883 ssize_t (*splice_read)(struct file *, loff_t *, 884 struct pipe_inode_info *, size_t, unsigned int); 885 int ret; 886 887 if (unlikely(!(in->f_mode & FMODE_READ))) 888 return -EBADF; 889 890 ret = rw_verify_area(READ, in, ppos, len); 891 if (unlikely(ret < 0)) 892 return ret; 893 894 if (unlikely(len > MAX_RW_COUNT)) 895 len = MAX_RW_COUNT; 896 897 if (in->f_op->splice_read) 898 splice_read = in->f_op->splice_read; 899 else 900 splice_read = default_file_splice_read; 901 902 return splice_read(in, ppos, pipe, len, flags); 903 } 904 905 /** 906 * splice_direct_to_actor - splices data directly between two non-pipes 907 * @in: file to splice from 908 * @sd: actor information on where to splice to 909 * @actor: handles the data splicing 910 * 911 * Description: 912 * This is a special case helper to splice directly between two 913 * points, without requiring an explicit pipe. Internally an allocated 914 * pipe is cached in the process, and reused during the lifetime of 915 * that process. 916 * 917 */ 918 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 919 splice_direct_actor *actor) 920 { 921 struct pipe_inode_info *pipe; 922 long ret, bytes; 923 umode_t i_mode; 924 size_t len; 925 int i, flags, more; 926 927 /* 928 * We require the input being a regular file, as we don't want to 929 * randomly drop data for eg socket -> socket splicing. Use the 930 * piped splicing for that! 931 */ 932 i_mode = file_inode(in)->i_mode; 933 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 934 return -EINVAL; 935 936 /* 937 * neither in nor out is a pipe, setup an internal pipe attached to 938 * 'out' and transfer the wanted data from 'in' to 'out' through that 939 */ 940 pipe = current->splice_pipe; 941 if (unlikely(!pipe)) { 942 pipe = alloc_pipe_info(); 943 if (!pipe) 944 return -ENOMEM; 945 946 /* 947 * We don't have an immediate reader, but we'll read the stuff 948 * out of the pipe right after the splice_to_pipe(). So set 949 * PIPE_READERS appropriately. 950 */ 951 pipe->readers = 1; 952 953 current->splice_pipe = pipe; 954 } 955 956 /* 957 * Do the splice. 958 */ 959 ret = 0; 960 bytes = 0; 961 len = sd->total_len; 962 flags = sd->flags; 963 964 /* 965 * Don't block on output, we have to drain the direct pipe. 966 */ 967 sd->flags &= ~SPLICE_F_NONBLOCK; 968 more = sd->flags & SPLICE_F_MORE; 969 970 while (len) { 971 size_t read_len; 972 loff_t pos = sd->pos, prev_pos = pos; 973 974 ret = do_splice_to(in, &pos, pipe, len, flags); 975 if (unlikely(ret <= 0)) 976 goto out_release; 977 978 read_len = ret; 979 sd->total_len = read_len; 980 981 /* 982 * If more data is pending, set SPLICE_F_MORE 983 * If this is the last data and SPLICE_F_MORE was not set 984 * initially, clears it. 985 */ 986 if (read_len < len) 987 sd->flags |= SPLICE_F_MORE; 988 else if (!more) 989 sd->flags &= ~SPLICE_F_MORE; 990 /* 991 * NOTE: nonblocking mode only applies to the input. We 992 * must not do the output in nonblocking mode as then we 993 * could get stuck data in the internal pipe: 994 */ 995 ret = actor(pipe, sd); 996 if (unlikely(ret <= 0)) { 997 sd->pos = prev_pos; 998 goto out_release; 999 } 1000 1001 bytes += ret; 1002 len -= ret; 1003 sd->pos = pos; 1004 1005 if (ret < read_len) { 1006 sd->pos = prev_pos + ret; 1007 goto out_release; 1008 } 1009 } 1010 1011 done: 1012 pipe->nrbufs = pipe->curbuf = 0; 1013 file_accessed(in); 1014 return bytes; 1015 1016 out_release: 1017 /* 1018 * If we did an incomplete transfer we must release 1019 * the pipe buffers in question: 1020 */ 1021 for (i = 0; i < pipe->buffers; i++) { 1022 struct pipe_buffer *buf = pipe->bufs + i; 1023 1024 if (buf->ops) 1025 pipe_buf_release(pipe, buf); 1026 } 1027 1028 if (!bytes) 1029 bytes = ret; 1030 1031 goto done; 1032 } 1033 EXPORT_SYMBOL(splice_direct_to_actor); 1034 1035 static int direct_splice_actor(struct pipe_inode_info *pipe, 1036 struct splice_desc *sd) 1037 { 1038 struct file *file = sd->u.file; 1039 1040 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1041 sd->flags); 1042 } 1043 1044 /** 1045 * do_splice_direct - splices data directly between two files 1046 * @in: file to splice from 1047 * @ppos: input file offset 1048 * @out: file to splice to 1049 * @opos: output file offset 1050 * @len: number of bytes to splice 1051 * @flags: splice modifier flags 1052 * 1053 * Description: 1054 * For use by do_sendfile(). splice can easily emulate sendfile, but 1055 * doing it in the application would incur an extra system call 1056 * (splice in + splice out, as compared to just sendfile()). So this helper 1057 * can splice directly through a process-private pipe. 1058 * 1059 */ 1060 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1061 loff_t *opos, size_t len, unsigned int flags) 1062 { 1063 struct splice_desc sd = { 1064 .len = len, 1065 .total_len = len, 1066 .flags = flags, 1067 .pos = *ppos, 1068 .u.file = out, 1069 .opos = opos, 1070 }; 1071 long ret; 1072 1073 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1074 return -EBADF; 1075 1076 if (unlikely(out->f_flags & O_APPEND)) 1077 return -EINVAL; 1078 1079 ret = rw_verify_area(WRITE, out, opos, len); 1080 if (unlikely(ret < 0)) 1081 return ret; 1082 1083 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1084 if (ret > 0) 1085 *ppos = sd.pos; 1086 1087 return ret; 1088 } 1089 EXPORT_SYMBOL(do_splice_direct); 1090 1091 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 1092 { 1093 for (;;) { 1094 if (unlikely(!pipe->readers)) { 1095 send_sig(SIGPIPE, current, 0); 1096 return -EPIPE; 1097 } 1098 if (pipe->nrbufs != pipe->buffers) 1099 return 0; 1100 if (flags & SPLICE_F_NONBLOCK) 1101 return -EAGAIN; 1102 if (signal_pending(current)) 1103 return -ERESTARTSYS; 1104 pipe->waiting_writers++; 1105 pipe_wait(pipe); 1106 pipe->waiting_writers--; 1107 } 1108 } 1109 1110 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1111 struct pipe_inode_info *opipe, 1112 size_t len, unsigned int flags); 1113 1114 /* 1115 * Determine where to splice to/from. 1116 */ 1117 static long do_splice(struct file *in, loff_t __user *off_in, 1118 struct file *out, loff_t __user *off_out, 1119 size_t len, unsigned int flags) 1120 { 1121 struct pipe_inode_info *ipipe; 1122 struct pipe_inode_info *opipe; 1123 loff_t offset; 1124 long ret; 1125 1126 ipipe = get_pipe_info(in); 1127 opipe = get_pipe_info(out); 1128 1129 if (ipipe && opipe) { 1130 if (off_in || off_out) 1131 return -ESPIPE; 1132 1133 if (!(in->f_mode & FMODE_READ)) 1134 return -EBADF; 1135 1136 if (!(out->f_mode & FMODE_WRITE)) 1137 return -EBADF; 1138 1139 /* Splicing to self would be fun, but... */ 1140 if (ipipe == opipe) 1141 return -EINVAL; 1142 1143 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1144 } 1145 1146 if (ipipe) { 1147 if (off_in) 1148 return -ESPIPE; 1149 if (off_out) { 1150 if (!(out->f_mode & FMODE_PWRITE)) 1151 return -EINVAL; 1152 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1153 return -EFAULT; 1154 } else { 1155 offset = out->f_pos; 1156 } 1157 1158 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1159 return -EBADF; 1160 1161 if (unlikely(out->f_flags & O_APPEND)) 1162 return -EINVAL; 1163 1164 ret = rw_verify_area(WRITE, out, &offset, len); 1165 if (unlikely(ret < 0)) 1166 return ret; 1167 1168 file_start_write(out); 1169 ret = do_splice_from(ipipe, out, &offset, len, flags); 1170 file_end_write(out); 1171 1172 if (!off_out) 1173 out->f_pos = offset; 1174 else if (copy_to_user(off_out, &offset, sizeof(loff_t))) 1175 ret = -EFAULT; 1176 1177 return ret; 1178 } 1179 1180 if (opipe) { 1181 if (off_out) 1182 return -ESPIPE; 1183 if (off_in) { 1184 if (!(in->f_mode & FMODE_PREAD)) 1185 return -EINVAL; 1186 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1187 return -EFAULT; 1188 } else { 1189 offset = in->f_pos; 1190 } 1191 1192 pipe_lock(opipe); 1193 ret = wait_for_space(opipe, flags); 1194 if (!ret) 1195 ret = do_splice_to(in, &offset, opipe, len, flags); 1196 pipe_unlock(opipe); 1197 if (ret > 0) 1198 wakeup_pipe_readers(opipe); 1199 if (!off_in) 1200 in->f_pos = offset; 1201 else if (copy_to_user(off_in, &offset, sizeof(loff_t))) 1202 ret = -EFAULT; 1203 1204 return ret; 1205 } 1206 1207 return -EINVAL; 1208 } 1209 1210 static int iter_to_pipe(struct iov_iter *from, 1211 struct pipe_inode_info *pipe, 1212 unsigned flags) 1213 { 1214 struct pipe_buffer buf = { 1215 .ops = &user_page_pipe_buf_ops, 1216 .flags = flags 1217 }; 1218 size_t total = 0; 1219 int ret = 0; 1220 bool failed = false; 1221 1222 while (iov_iter_count(from) && !failed) { 1223 struct page *pages[16]; 1224 ssize_t copied; 1225 size_t start; 1226 int n; 1227 1228 copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start); 1229 if (copied <= 0) { 1230 ret = copied; 1231 break; 1232 } 1233 1234 for (n = 0; copied; n++, start = 0) { 1235 int size = min_t(int, copied, PAGE_SIZE - start); 1236 if (!failed) { 1237 buf.page = pages[n]; 1238 buf.offset = start; 1239 buf.len = size; 1240 ret = add_to_pipe(pipe, &buf); 1241 if (unlikely(ret < 0)) { 1242 failed = true; 1243 } else { 1244 iov_iter_advance(from, ret); 1245 total += ret; 1246 } 1247 } else { 1248 put_page(pages[n]); 1249 } 1250 copied -= size; 1251 } 1252 } 1253 return total ? total : ret; 1254 } 1255 1256 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1257 struct splice_desc *sd) 1258 { 1259 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1260 return n == sd->len ? n : -EFAULT; 1261 } 1262 1263 /* 1264 * For lack of a better implementation, implement vmsplice() to userspace 1265 * as a simple copy of the pipes pages to the user iov. 1266 */ 1267 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov, 1268 unsigned long nr_segs, unsigned int flags) 1269 { 1270 struct pipe_inode_info *pipe; 1271 struct splice_desc sd; 1272 long ret; 1273 struct iovec iovstack[UIO_FASTIOV]; 1274 struct iovec *iov = iovstack; 1275 struct iov_iter iter; 1276 1277 pipe = get_pipe_info(file); 1278 if (!pipe) 1279 return -EBADF; 1280 1281 ret = import_iovec(READ, uiov, nr_segs, 1282 ARRAY_SIZE(iovstack), &iov, &iter); 1283 if (ret < 0) 1284 return ret; 1285 1286 sd.total_len = iov_iter_count(&iter); 1287 sd.len = 0; 1288 sd.flags = flags; 1289 sd.u.data = &iter; 1290 sd.pos = 0; 1291 1292 if (sd.total_len) { 1293 pipe_lock(pipe); 1294 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1295 pipe_unlock(pipe); 1296 } 1297 1298 kfree(iov); 1299 return ret; 1300 } 1301 1302 /* 1303 * vmsplice splices a user address range into a pipe. It can be thought of 1304 * as splice-from-memory, where the regular splice is splice-from-file (or 1305 * to file). In both cases the output is a pipe, naturally. 1306 */ 1307 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *uiov, 1308 unsigned long nr_segs, unsigned int flags) 1309 { 1310 struct pipe_inode_info *pipe; 1311 struct iovec iovstack[UIO_FASTIOV]; 1312 struct iovec *iov = iovstack; 1313 struct iov_iter from; 1314 long ret; 1315 unsigned buf_flag = 0; 1316 1317 if (flags & SPLICE_F_GIFT) 1318 buf_flag = PIPE_BUF_FLAG_GIFT; 1319 1320 pipe = get_pipe_info(file); 1321 if (!pipe) 1322 return -EBADF; 1323 1324 ret = import_iovec(WRITE, uiov, nr_segs, 1325 ARRAY_SIZE(iovstack), &iov, &from); 1326 if (ret < 0) 1327 return ret; 1328 1329 pipe_lock(pipe); 1330 ret = wait_for_space(pipe, flags); 1331 if (!ret) 1332 ret = iter_to_pipe(&from, pipe, buf_flag); 1333 pipe_unlock(pipe); 1334 if (ret > 0) 1335 wakeup_pipe_readers(pipe); 1336 kfree(iov); 1337 return ret; 1338 } 1339 1340 /* 1341 * Note that vmsplice only really supports true splicing _from_ user memory 1342 * to a pipe, not the other way around. Splicing from user memory is a simple 1343 * operation that can be supported without any funky alignment restrictions 1344 * or nasty vm tricks. We simply map in the user memory and fill them into 1345 * a pipe. The reverse isn't quite as easy, though. There are two possible 1346 * solutions for that: 1347 * 1348 * - memcpy() the data internally, at which point we might as well just 1349 * do a regular read() on the buffer anyway. 1350 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1351 * has restriction limitations on both ends of the pipe). 1352 * 1353 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1354 * 1355 */ 1356 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1357 unsigned long, nr_segs, unsigned int, flags) 1358 { 1359 struct fd f; 1360 long error; 1361 1362 if (unlikely(nr_segs > UIO_MAXIOV)) 1363 return -EINVAL; 1364 else if (unlikely(!nr_segs)) 1365 return 0; 1366 1367 error = -EBADF; 1368 f = fdget(fd); 1369 if (f.file) { 1370 if (f.file->f_mode & FMODE_WRITE) 1371 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags); 1372 else if (f.file->f_mode & FMODE_READ) 1373 error = vmsplice_to_user(f.file, iov, nr_segs, flags); 1374 1375 fdput(f); 1376 } 1377 1378 return error; 1379 } 1380 1381 #ifdef CONFIG_COMPAT 1382 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32, 1383 unsigned int, nr_segs, unsigned int, flags) 1384 { 1385 unsigned i; 1386 struct iovec __user *iov; 1387 if (nr_segs > UIO_MAXIOV) 1388 return -EINVAL; 1389 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec)); 1390 for (i = 0; i < nr_segs; i++) { 1391 struct compat_iovec v; 1392 if (get_user(v.iov_base, &iov32[i].iov_base) || 1393 get_user(v.iov_len, &iov32[i].iov_len) || 1394 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) || 1395 put_user(v.iov_len, &iov[i].iov_len)) 1396 return -EFAULT; 1397 } 1398 return sys_vmsplice(fd, iov, nr_segs, flags); 1399 } 1400 #endif 1401 1402 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1403 int, fd_out, loff_t __user *, off_out, 1404 size_t, len, unsigned int, flags) 1405 { 1406 struct fd in, out; 1407 long error; 1408 1409 if (unlikely(!len)) 1410 return 0; 1411 1412 error = -EBADF; 1413 in = fdget(fd_in); 1414 if (in.file) { 1415 if (in.file->f_mode & FMODE_READ) { 1416 out = fdget(fd_out); 1417 if (out.file) { 1418 if (out.file->f_mode & FMODE_WRITE) 1419 error = do_splice(in.file, off_in, 1420 out.file, off_out, 1421 len, flags); 1422 fdput(out); 1423 } 1424 } 1425 fdput(in); 1426 } 1427 return error; 1428 } 1429 1430 /* 1431 * Make sure there's data to read. Wait for input if we can, otherwise 1432 * return an appropriate error. 1433 */ 1434 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1435 { 1436 int ret; 1437 1438 /* 1439 * Check ->nrbufs without the inode lock first. This function 1440 * is speculative anyways, so missing one is ok. 1441 */ 1442 if (pipe->nrbufs) 1443 return 0; 1444 1445 ret = 0; 1446 pipe_lock(pipe); 1447 1448 while (!pipe->nrbufs) { 1449 if (signal_pending(current)) { 1450 ret = -ERESTARTSYS; 1451 break; 1452 } 1453 if (!pipe->writers) 1454 break; 1455 if (!pipe->waiting_writers) { 1456 if (flags & SPLICE_F_NONBLOCK) { 1457 ret = -EAGAIN; 1458 break; 1459 } 1460 } 1461 pipe_wait(pipe); 1462 } 1463 1464 pipe_unlock(pipe); 1465 return ret; 1466 } 1467 1468 /* 1469 * Make sure there's writeable room. Wait for room if we can, otherwise 1470 * return an appropriate error. 1471 */ 1472 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1473 { 1474 int ret; 1475 1476 /* 1477 * Check ->nrbufs without the inode lock first. This function 1478 * is speculative anyways, so missing one is ok. 1479 */ 1480 if (pipe->nrbufs < pipe->buffers) 1481 return 0; 1482 1483 ret = 0; 1484 pipe_lock(pipe); 1485 1486 while (pipe->nrbufs >= pipe->buffers) { 1487 if (!pipe->readers) { 1488 send_sig(SIGPIPE, current, 0); 1489 ret = -EPIPE; 1490 break; 1491 } 1492 if (flags & SPLICE_F_NONBLOCK) { 1493 ret = -EAGAIN; 1494 break; 1495 } 1496 if (signal_pending(current)) { 1497 ret = -ERESTARTSYS; 1498 break; 1499 } 1500 pipe->waiting_writers++; 1501 pipe_wait(pipe); 1502 pipe->waiting_writers--; 1503 } 1504 1505 pipe_unlock(pipe); 1506 return ret; 1507 } 1508 1509 /* 1510 * Splice contents of ipipe to opipe. 1511 */ 1512 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1513 struct pipe_inode_info *opipe, 1514 size_t len, unsigned int flags) 1515 { 1516 struct pipe_buffer *ibuf, *obuf; 1517 int ret = 0, nbuf; 1518 bool input_wakeup = false; 1519 1520 1521 retry: 1522 ret = ipipe_prep(ipipe, flags); 1523 if (ret) 1524 return ret; 1525 1526 ret = opipe_prep(opipe, flags); 1527 if (ret) 1528 return ret; 1529 1530 /* 1531 * Potential ABBA deadlock, work around it by ordering lock 1532 * grabbing by pipe info address. Otherwise two different processes 1533 * could deadlock (one doing tee from A -> B, the other from B -> A). 1534 */ 1535 pipe_double_lock(ipipe, opipe); 1536 1537 do { 1538 if (!opipe->readers) { 1539 send_sig(SIGPIPE, current, 0); 1540 if (!ret) 1541 ret = -EPIPE; 1542 break; 1543 } 1544 1545 if (!ipipe->nrbufs && !ipipe->writers) 1546 break; 1547 1548 /* 1549 * Cannot make any progress, because either the input 1550 * pipe is empty or the output pipe is full. 1551 */ 1552 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) { 1553 /* Already processed some buffers, break */ 1554 if (ret) 1555 break; 1556 1557 if (flags & SPLICE_F_NONBLOCK) { 1558 ret = -EAGAIN; 1559 break; 1560 } 1561 1562 /* 1563 * We raced with another reader/writer and haven't 1564 * managed to process any buffers. A zero return 1565 * value means EOF, so retry instead. 1566 */ 1567 pipe_unlock(ipipe); 1568 pipe_unlock(opipe); 1569 goto retry; 1570 } 1571 1572 ibuf = ipipe->bufs + ipipe->curbuf; 1573 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1574 obuf = opipe->bufs + nbuf; 1575 1576 if (len >= ibuf->len) { 1577 /* 1578 * Simply move the whole buffer from ipipe to opipe 1579 */ 1580 *obuf = *ibuf; 1581 ibuf->ops = NULL; 1582 opipe->nrbufs++; 1583 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1); 1584 ipipe->nrbufs--; 1585 input_wakeup = true; 1586 } else { 1587 /* 1588 * Get a reference to this pipe buffer, 1589 * so we can copy the contents over. 1590 */ 1591 pipe_buf_get(ipipe, ibuf); 1592 *obuf = *ibuf; 1593 1594 /* 1595 * Don't inherit the gift flag, we need to 1596 * prevent multiple steals of this page. 1597 */ 1598 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1599 1600 obuf->len = len; 1601 opipe->nrbufs++; 1602 ibuf->offset += obuf->len; 1603 ibuf->len -= obuf->len; 1604 } 1605 ret += obuf->len; 1606 len -= obuf->len; 1607 } while (len); 1608 1609 pipe_unlock(ipipe); 1610 pipe_unlock(opipe); 1611 1612 /* 1613 * If we put data in the output pipe, wakeup any potential readers. 1614 */ 1615 if (ret > 0) 1616 wakeup_pipe_readers(opipe); 1617 1618 if (input_wakeup) 1619 wakeup_pipe_writers(ipipe); 1620 1621 return ret; 1622 } 1623 1624 /* 1625 * Link contents of ipipe to opipe. 1626 */ 1627 static int link_pipe(struct pipe_inode_info *ipipe, 1628 struct pipe_inode_info *opipe, 1629 size_t len, unsigned int flags) 1630 { 1631 struct pipe_buffer *ibuf, *obuf; 1632 int ret = 0, i = 0, nbuf; 1633 1634 /* 1635 * Potential ABBA deadlock, work around it by ordering lock 1636 * grabbing by pipe info address. Otherwise two different processes 1637 * could deadlock (one doing tee from A -> B, the other from B -> A). 1638 */ 1639 pipe_double_lock(ipipe, opipe); 1640 1641 do { 1642 if (!opipe->readers) { 1643 send_sig(SIGPIPE, current, 0); 1644 if (!ret) 1645 ret = -EPIPE; 1646 break; 1647 } 1648 1649 /* 1650 * If we have iterated all input buffers or ran out of 1651 * output room, break. 1652 */ 1653 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) 1654 break; 1655 1656 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1)); 1657 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1658 1659 /* 1660 * Get a reference to this pipe buffer, 1661 * so we can copy the contents over. 1662 */ 1663 pipe_buf_get(ipipe, ibuf); 1664 1665 obuf = opipe->bufs + nbuf; 1666 *obuf = *ibuf; 1667 1668 /* 1669 * Don't inherit the gift flag, we need to 1670 * prevent multiple steals of this page. 1671 */ 1672 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1673 1674 if (obuf->len > len) 1675 obuf->len = len; 1676 1677 opipe->nrbufs++; 1678 ret += obuf->len; 1679 len -= obuf->len; 1680 i++; 1681 } while (len); 1682 1683 /* 1684 * return EAGAIN if we have the potential of some data in the 1685 * future, otherwise just return 0 1686 */ 1687 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1688 ret = -EAGAIN; 1689 1690 pipe_unlock(ipipe); 1691 pipe_unlock(opipe); 1692 1693 /* 1694 * If we put data in the output pipe, wakeup any potential readers. 1695 */ 1696 if (ret > 0) 1697 wakeup_pipe_readers(opipe); 1698 1699 return ret; 1700 } 1701 1702 /* 1703 * This is a tee(1) implementation that works on pipes. It doesn't copy 1704 * any data, it simply references the 'in' pages on the 'out' pipe. 1705 * The 'flags' used are the SPLICE_F_* variants, currently the only 1706 * applicable one is SPLICE_F_NONBLOCK. 1707 */ 1708 static long do_tee(struct file *in, struct file *out, size_t len, 1709 unsigned int flags) 1710 { 1711 struct pipe_inode_info *ipipe = get_pipe_info(in); 1712 struct pipe_inode_info *opipe = get_pipe_info(out); 1713 int ret = -EINVAL; 1714 1715 /* 1716 * Duplicate the contents of ipipe to opipe without actually 1717 * copying the data. 1718 */ 1719 if (ipipe && opipe && ipipe != opipe) { 1720 /* 1721 * Keep going, unless we encounter an error. The ipipe/opipe 1722 * ordering doesn't really matter. 1723 */ 1724 ret = ipipe_prep(ipipe, flags); 1725 if (!ret) { 1726 ret = opipe_prep(opipe, flags); 1727 if (!ret) 1728 ret = link_pipe(ipipe, opipe, len, flags); 1729 } 1730 } 1731 1732 return ret; 1733 } 1734 1735 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1736 { 1737 struct fd in; 1738 int error; 1739 1740 if (unlikely(!len)) 1741 return 0; 1742 1743 error = -EBADF; 1744 in = fdget(fdin); 1745 if (in.file) { 1746 if (in.file->f_mode & FMODE_READ) { 1747 struct fd out = fdget(fdout); 1748 if (out.file) { 1749 if (out.file->f_mode & FMODE_WRITE) 1750 error = do_tee(in.file, out.file, 1751 len, flags); 1752 fdput(out); 1753 } 1754 } 1755 fdput(in); 1756 } 1757 1758 return error; 1759 } 1760