xref: /openbmc/linux/fs/splice.c (revision a1e58bbd)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 
33 /*
34  * Attempt to steal a page from a pipe buffer. This should perhaps go into
35  * a vm helper function, it's already simplified quite a bit by the
36  * addition of remove_mapping(). If success is returned, the caller may
37  * attempt to reuse this page for another destination.
38  */
39 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
40 				     struct pipe_buffer *buf)
41 {
42 	struct page *page = buf->page;
43 	struct address_space *mapping;
44 
45 	lock_page(page);
46 
47 	mapping = page_mapping(page);
48 	if (mapping) {
49 		WARN_ON(!PageUptodate(page));
50 
51 		/*
52 		 * At least for ext2 with nobh option, we need to wait on
53 		 * writeback completing on this page, since we'll remove it
54 		 * from the pagecache.  Otherwise truncate wont wait on the
55 		 * page, allowing the disk blocks to be reused by someone else
56 		 * before we actually wrote our data to them. fs corruption
57 		 * ensues.
58 		 */
59 		wait_on_page_writeback(page);
60 
61 		if (PagePrivate(page))
62 			try_to_release_page(page, GFP_KERNEL);
63 
64 		/*
65 		 * If we succeeded in removing the mapping, set LRU flag
66 		 * and return good.
67 		 */
68 		if (remove_mapping(mapping, page)) {
69 			buf->flags |= PIPE_BUF_FLAG_LRU;
70 			return 0;
71 		}
72 	}
73 
74 	/*
75 	 * Raced with truncate or failed to remove page from current
76 	 * address space, unlock and return failure.
77 	 */
78 	unlock_page(page);
79 	return 1;
80 }
81 
82 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
83 					struct pipe_buffer *buf)
84 {
85 	page_cache_release(buf->page);
86 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
87 }
88 
89 /*
90  * Check whether the contents of buf is OK to access. Since the content
91  * is a page cache page, IO may be in flight.
92  */
93 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
94 				       struct pipe_buffer *buf)
95 {
96 	struct page *page = buf->page;
97 	int err;
98 
99 	if (!PageUptodate(page)) {
100 		lock_page(page);
101 
102 		/*
103 		 * Page got truncated/unhashed. This will cause a 0-byte
104 		 * splice, if this is the first page.
105 		 */
106 		if (!page->mapping) {
107 			err = -ENODATA;
108 			goto error;
109 		}
110 
111 		/*
112 		 * Uh oh, read-error from disk.
113 		 */
114 		if (!PageUptodate(page)) {
115 			err = -EIO;
116 			goto error;
117 		}
118 
119 		/*
120 		 * Page is ok afterall, we are done.
121 		 */
122 		unlock_page(page);
123 	}
124 
125 	return 0;
126 error:
127 	unlock_page(page);
128 	return err;
129 }
130 
131 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
132 	.can_merge = 0,
133 	.map = generic_pipe_buf_map,
134 	.unmap = generic_pipe_buf_unmap,
135 	.confirm = page_cache_pipe_buf_confirm,
136 	.release = page_cache_pipe_buf_release,
137 	.steal = page_cache_pipe_buf_steal,
138 	.get = generic_pipe_buf_get,
139 };
140 
141 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
142 				    struct pipe_buffer *buf)
143 {
144 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
145 		return 1;
146 
147 	buf->flags |= PIPE_BUF_FLAG_LRU;
148 	return generic_pipe_buf_steal(pipe, buf);
149 }
150 
151 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
152 	.can_merge = 0,
153 	.map = generic_pipe_buf_map,
154 	.unmap = generic_pipe_buf_unmap,
155 	.confirm = generic_pipe_buf_confirm,
156 	.release = page_cache_pipe_buf_release,
157 	.steal = user_page_pipe_buf_steal,
158 	.get = generic_pipe_buf_get,
159 };
160 
161 /**
162  * splice_to_pipe - fill passed data into a pipe
163  * @pipe:	pipe to fill
164  * @spd:	data to fill
165  *
166  * Description:
167  *    @spd contains a map of pages and len/offset tuples, along with
168  *    the struct pipe_buf_operations associated with these pages. This
169  *    function will link that data to the pipe.
170  *
171  */
172 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
173 		       struct splice_pipe_desc *spd)
174 {
175 	unsigned int spd_pages = spd->nr_pages;
176 	int ret, do_wakeup, page_nr;
177 
178 	ret = 0;
179 	do_wakeup = 0;
180 	page_nr = 0;
181 
182 	if (pipe->inode)
183 		mutex_lock(&pipe->inode->i_mutex);
184 
185 	for (;;) {
186 		if (!pipe->readers) {
187 			send_sig(SIGPIPE, current, 0);
188 			if (!ret)
189 				ret = -EPIPE;
190 			break;
191 		}
192 
193 		if (pipe->nrbufs < PIPE_BUFFERS) {
194 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
195 			struct pipe_buffer *buf = pipe->bufs + newbuf;
196 
197 			buf->page = spd->pages[page_nr];
198 			buf->offset = spd->partial[page_nr].offset;
199 			buf->len = spd->partial[page_nr].len;
200 			buf->private = spd->partial[page_nr].private;
201 			buf->ops = spd->ops;
202 			if (spd->flags & SPLICE_F_GIFT)
203 				buf->flags |= PIPE_BUF_FLAG_GIFT;
204 
205 			pipe->nrbufs++;
206 			page_nr++;
207 			ret += buf->len;
208 
209 			if (pipe->inode)
210 				do_wakeup = 1;
211 
212 			if (!--spd->nr_pages)
213 				break;
214 			if (pipe->nrbufs < PIPE_BUFFERS)
215 				continue;
216 
217 			break;
218 		}
219 
220 		if (spd->flags & SPLICE_F_NONBLOCK) {
221 			if (!ret)
222 				ret = -EAGAIN;
223 			break;
224 		}
225 
226 		if (signal_pending(current)) {
227 			if (!ret)
228 				ret = -ERESTARTSYS;
229 			break;
230 		}
231 
232 		if (do_wakeup) {
233 			smp_mb();
234 			if (waitqueue_active(&pipe->wait))
235 				wake_up_interruptible_sync(&pipe->wait);
236 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
237 			do_wakeup = 0;
238 		}
239 
240 		pipe->waiting_writers++;
241 		pipe_wait(pipe);
242 		pipe->waiting_writers--;
243 	}
244 
245 	if (pipe->inode) {
246 		mutex_unlock(&pipe->inode->i_mutex);
247 
248 		if (do_wakeup) {
249 			smp_mb();
250 			if (waitqueue_active(&pipe->wait))
251 				wake_up_interruptible(&pipe->wait);
252 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
253 		}
254 	}
255 
256 	while (page_nr < spd_pages)
257 		spd->spd_release(spd, page_nr++);
258 
259 	return ret;
260 }
261 
262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
263 {
264 	page_cache_release(spd->pages[i]);
265 }
266 
267 static int
268 __generic_file_splice_read(struct file *in, loff_t *ppos,
269 			   struct pipe_inode_info *pipe, size_t len,
270 			   unsigned int flags)
271 {
272 	struct address_space *mapping = in->f_mapping;
273 	unsigned int loff, nr_pages, req_pages;
274 	struct page *pages[PIPE_BUFFERS];
275 	struct partial_page partial[PIPE_BUFFERS];
276 	struct page *page;
277 	pgoff_t index, end_index;
278 	loff_t isize;
279 	int error, page_nr;
280 	struct splice_pipe_desc spd = {
281 		.pages = pages,
282 		.partial = partial,
283 		.flags = flags,
284 		.ops = &page_cache_pipe_buf_ops,
285 		.spd_release = spd_release_page,
286 	};
287 
288 	index = *ppos >> PAGE_CACHE_SHIFT;
289 	loff = *ppos & ~PAGE_CACHE_MASK;
290 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
291 	nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
292 
293 	/*
294 	 * Lookup the (hopefully) full range of pages we need.
295 	 */
296 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
297 	index += spd.nr_pages;
298 
299 	/*
300 	 * If find_get_pages_contig() returned fewer pages than we needed,
301 	 * readahead/allocate the rest and fill in the holes.
302 	 */
303 	if (spd.nr_pages < nr_pages)
304 		page_cache_sync_readahead(mapping, &in->f_ra, in,
305 				index, req_pages - spd.nr_pages);
306 
307 	error = 0;
308 	while (spd.nr_pages < nr_pages) {
309 		/*
310 		 * Page could be there, find_get_pages_contig() breaks on
311 		 * the first hole.
312 		 */
313 		page = find_get_page(mapping, index);
314 		if (!page) {
315 			/*
316 			 * page didn't exist, allocate one.
317 			 */
318 			page = page_cache_alloc_cold(mapping);
319 			if (!page)
320 				break;
321 
322 			error = add_to_page_cache_lru(page, mapping, index,
323 						mapping_gfp_mask(mapping));
324 			if (unlikely(error)) {
325 				page_cache_release(page);
326 				if (error == -EEXIST)
327 					continue;
328 				break;
329 			}
330 			/*
331 			 * add_to_page_cache() locks the page, unlock it
332 			 * to avoid convoluting the logic below even more.
333 			 */
334 			unlock_page(page);
335 		}
336 
337 		pages[spd.nr_pages++] = page;
338 		index++;
339 	}
340 
341 	/*
342 	 * Now loop over the map and see if we need to start IO on any
343 	 * pages, fill in the partial map, etc.
344 	 */
345 	index = *ppos >> PAGE_CACHE_SHIFT;
346 	nr_pages = spd.nr_pages;
347 	spd.nr_pages = 0;
348 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
349 		unsigned int this_len;
350 
351 		if (!len)
352 			break;
353 
354 		/*
355 		 * this_len is the max we'll use from this page
356 		 */
357 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
358 		page = pages[page_nr];
359 
360 		if (PageReadahead(page))
361 			page_cache_async_readahead(mapping, &in->f_ra, in,
362 					page, index, req_pages - page_nr);
363 
364 		/*
365 		 * If the page isn't uptodate, we may need to start io on it
366 		 */
367 		if (!PageUptodate(page)) {
368 			/*
369 			 * If in nonblock mode then dont block on waiting
370 			 * for an in-flight io page
371 			 */
372 			if (flags & SPLICE_F_NONBLOCK) {
373 				if (TestSetPageLocked(page)) {
374 					error = -EAGAIN;
375 					break;
376 				}
377 			} else
378 				lock_page(page);
379 
380 			/*
381 			 * page was truncated, stop here. if this isn't the
382 			 * first page, we'll just complete what we already
383 			 * added
384 			 */
385 			if (!page->mapping) {
386 				unlock_page(page);
387 				break;
388 			}
389 			/*
390 			 * page was already under io and is now done, great
391 			 */
392 			if (PageUptodate(page)) {
393 				unlock_page(page);
394 				goto fill_it;
395 			}
396 
397 			/*
398 			 * need to read in the page
399 			 */
400 			error = mapping->a_ops->readpage(in, page);
401 			if (unlikely(error)) {
402 				/*
403 				 * We really should re-lookup the page here,
404 				 * but it complicates things a lot. Instead
405 				 * lets just do what we already stored, and
406 				 * we'll get it the next time we are called.
407 				 */
408 				if (error == AOP_TRUNCATED_PAGE)
409 					error = 0;
410 
411 				break;
412 			}
413 		}
414 fill_it:
415 		/*
416 		 * i_size must be checked after PageUptodate.
417 		 */
418 		isize = i_size_read(mapping->host);
419 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
420 		if (unlikely(!isize || index > end_index))
421 			break;
422 
423 		/*
424 		 * if this is the last page, see if we need to shrink
425 		 * the length and stop
426 		 */
427 		if (end_index == index) {
428 			unsigned int plen;
429 
430 			/*
431 			 * max good bytes in this page
432 			 */
433 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
434 			if (plen <= loff)
435 				break;
436 
437 			/*
438 			 * force quit after adding this page
439 			 */
440 			this_len = min(this_len, plen - loff);
441 			len = this_len;
442 		}
443 
444 		partial[page_nr].offset = loff;
445 		partial[page_nr].len = this_len;
446 		len -= this_len;
447 		loff = 0;
448 		spd.nr_pages++;
449 		index++;
450 	}
451 
452 	/*
453 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
454 	 * we got, 'nr_pages' is how many pages are in the map.
455 	 */
456 	while (page_nr < nr_pages)
457 		page_cache_release(pages[page_nr++]);
458 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
459 
460 	if (spd.nr_pages)
461 		return splice_to_pipe(pipe, &spd);
462 
463 	return error;
464 }
465 
466 /**
467  * generic_file_splice_read - splice data from file to a pipe
468  * @in:		file to splice from
469  * @ppos:	position in @in
470  * @pipe:	pipe to splice to
471  * @len:	number of bytes to splice
472  * @flags:	splice modifier flags
473  *
474  * Description:
475  *    Will read pages from given file and fill them into a pipe. Can be
476  *    used as long as the address_space operations for the source implements
477  *    a readpage() hook.
478  *
479  */
480 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
481 				 struct pipe_inode_info *pipe, size_t len,
482 				 unsigned int flags)
483 {
484 	loff_t isize, left;
485 	int ret;
486 
487 	isize = i_size_read(in->f_mapping->host);
488 	if (unlikely(*ppos >= isize))
489 		return 0;
490 
491 	left = isize - *ppos;
492 	if (unlikely(left < len))
493 		len = left;
494 
495 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
496 	if (ret > 0)
497 		*ppos += ret;
498 
499 	return ret;
500 }
501 
502 EXPORT_SYMBOL(generic_file_splice_read);
503 
504 /*
505  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
506  * using sendpage(). Return the number of bytes sent.
507  */
508 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
509 			    struct pipe_buffer *buf, struct splice_desc *sd)
510 {
511 	struct file *file = sd->u.file;
512 	loff_t pos = sd->pos;
513 	int ret, more;
514 
515 	ret = buf->ops->confirm(pipe, buf);
516 	if (!ret) {
517 		more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
518 
519 		ret = file->f_op->sendpage(file, buf->page, buf->offset,
520 					   sd->len, &pos, more);
521 	}
522 
523 	return ret;
524 }
525 
526 /*
527  * This is a little more tricky than the file -> pipe splicing. There are
528  * basically three cases:
529  *
530  *	- Destination page already exists in the address space and there
531  *	  are users of it. For that case we have no other option that
532  *	  copying the data. Tough luck.
533  *	- Destination page already exists in the address space, but there
534  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
535  *	  through to last case.
536  *	- Destination page does not exist, we can add the pipe page to
537  *	  the page cache and avoid the copy.
538  *
539  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
540  * sd->flags), we attempt to migrate pages from the pipe to the output
541  * file address space page cache. This is possible if no one else has
542  * the pipe page referenced outside of the pipe and page cache. If
543  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
544  * a new page in the output file page cache and fill/dirty that.
545  */
546 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
547 			struct splice_desc *sd)
548 {
549 	struct file *file = sd->u.file;
550 	struct address_space *mapping = file->f_mapping;
551 	unsigned int offset, this_len;
552 	struct page *page;
553 	void *fsdata;
554 	int ret;
555 
556 	/*
557 	 * make sure the data in this buffer is uptodate
558 	 */
559 	ret = buf->ops->confirm(pipe, buf);
560 	if (unlikely(ret))
561 		return ret;
562 
563 	offset = sd->pos & ~PAGE_CACHE_MASK;
564 
565 	this_len = sd->len;
566 	if (this_len + offset > PAGE_CACHE_SIZE)
567 		this_len = PAGE_CACHE_SIZE - offset;
568 
569 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
570 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
571 	if (unlikely(ret))
572 		goto out;
573 
574 	if (buf->page != page) {
575 		/*
576 		 * Careful, ->map() uses KM_USER0!
577 		 */
578 		char *src = buf->ops->map(pipe, buf, 1);
579 		char *dst = kmap_atomic(page, KM_USER1);
580 
581 		memcpy(dst + offset, src + buf->offset, this_len);
582 		flush_dcache_page(page);
583 		kunmap_atomic(dst, KM_USER1);
584 		buf->ops->unmap(pipe, buf, src);
585 	}
586 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
587 				page, fsdata);
588 out:
589 	return ret;
590 }
591 
592 /**
593  * __splice_from_pipe - splice data from a pipe to given actor
594  * @pipe:	pipe to splice from
595  * @sd:		information to @actor
596  * @actor:	handler that splices the data
597  *
598  * Description:
599  *    This function does little more than loop over the pipe and call
600  *    @actor to do the actual moving of a single struct pipe_buffer to
601  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
602  *    pipe_to_user.
603  *
604  */
605 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
606 			   splice_actor *actor)
607 {
608 	int ret, do_wakeup, err;
609 
610 	ret = 0;
611 	do_wakeup = 0;
612 
613 	for (;;) {
614 		if (pipe->nrbufs) {
615 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
616 			const struct pipe_buf_operations *ops = buf->ops;
617 
618 			sd->len = buf->len;
619 			if (sd->len > sd->total_len)
620 				sd->len = sd->total_len;
621 
622 			err = actor(pipe, buf, sd);
623 			if (err <= 0) {
624 				if (!ret && err != -ENODATA)
625 					ret = err;
626 
627 				break;
628 			}
629 
630 			ret += err;
631 			buf->offset += err;
632 			buf->len -= err;
633 
634 			sd->len -= err;
635 			sd->pos += err;
636 			sd->total_len -= err;
637 			if (sd->len)
638 				continue;
639 
640 			if (!buf->len) {
641 				buf->ops = NULL;
642 				ops->release(pipe, buf);
643 				pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
644 				pipe->nrbufs--;
645 				if (pipe->inode)
646 					do_wakeup = 1;
647 			}
648 
649 			if (!sd->total_len)
650 				break;
651 		}
652 
653 		if (pipe->nrbufs)
654 			continue;
655 		if (!pipe->writers)
656 			break;
657 		if (!pipe->waiting_writers) {
658 			if (ret)
659 				break;
660 		}
661 
662 		if (sd->flags & SPLICE_F_NONBLOCK) {
663 			if (!ret)
664 				ret = -EAGAIN;
665 			break;
666 		}
667 
668 		if (signal_pending(current)) {
669 			if (!ret)
670 				ret = -ERESTARTSYS;
671 			break;
672 		}
673 
674 		if (do_wakeup) {
675 			smp_mb();
676 			if (waitqueue_active(&pipe->wait))
677 				wake_up_interruptible_sync(&pipe->wait);
678 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
679 			do_wakeup = 0;
680 		}
681 
682 		pipe_wait(pipe);
683 	}
684 
685 	if (do_wakeup) {
686 		smp_mb();
687 		if (waitqueue_active(&pipe->wait))
688 			wake_up_interruptible(&pipe->wait);
689 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
690 	}
691 
692 	return ret;
693 }
694 EXPORT_SYMBOL(__splice_from_pipe);
695 
696 /**
697  * splice_from_pipe - splice data from a pipe to a file
698  * @pipe:	pipe to splice from
699  * @out:	file to splice to
700  * @ppos:	position in @out
701  * @len:	how many bytes to splice
702  * @flags:	splice modifier flags
703  * @actor:	handler that splices the data
704  *
705  * Description:
706  *    See __splice_from_pipe. This function locks the input and output inodes,
707  *    otherwise it's identical to __splice_from_pipe().
708  *
709  */
710 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
711 			 loff_t *ppos, size_t len, unsigned int flags,
712 			 splice_actor *actor)
713 {
714 	ssize_t ret;
715 	struct inode *inode = out->f_mapping->host;
716 	struct splice_desc sd = {
717 		.total_len = len,
718 		.flags = flags,
719 		.pos = *ppos,
720 		.u.file = out,
721 	};
722 
723 	/*
724 	 * The actor worker might be calling ->prepare_write and
725 	 * ->commit_write. Most of the time, these expect i_mutex to
726 	 * be held. Since this may result in an ABBA deadlock with
727 	 * pipe->inode, we have to order lock acquiry here.
728 	 */
729 	inode_double_lock(inode, pipe->inode);
730 	ret = __splice_from_pipe(pipe, &sd, actor);
731 	inode_double_unlock(inode, pipe->inode);
732 
733 	return ret;
734 }
735 
736 /**
737  * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
738  * @pipe:	pipe info
739  * @out:	file to write to
740  * @ppos:	position in @out
741  * @len:	number of bytes to splice
742  * @flags:	splice modifier flags
743  *
744  * Description:
745  *    Will either move or copy pages (determined by @flags options) from
746  *    the given pipe inode to the given file. The caller is responsible
747  *    for acquiring i_mutex on both inodes.
748  *
749  */
750 ssize_t
751 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
752 				 loff_t *ppos, size_t len, unsigned int flags)
753 {
754 	struct address_space *mapping = out->f_mapping;
755 	struct inode *inode = mapping->host;
756 	struct splice_desc sd = {
757 		.total_len = len,
758 		.flags = flags,
759 		.pos = *ppos,
760 		.u.file = out,
761 	};
762 	ssize_t ret;
763 	int err;
764 
765 	err = remove_suid(out->f_path.dentry);
766 	if (unlikely(err))
767 		return err;
768 
769 	ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
770 	if (ret > 0) {
771 		unsigned long nr_pages;
772 
773 		*ppos += ret;
774 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
775 
776 		/*
777 		 * If file or inode is SYNC and we actually wrote some data,
778 		 * sync it.
779 		 */
780 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
781 			err = generic_osync_inode(inode, mapping,
782 						  OSYNC_METADATA|OSYNC_DATA);
783 
784 			if (err)
785 				ret = err;
786 		}
787 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
788 	}
789 
790 	return ret;
791 }
792 
793 EXPORT_SYMBOL(generic_file_splice_write_nolock);
794 
795 /**
796  * generic_file_splice_write - splice data from a pipe to a file
797  * @pipe:	pipe info
798  * @out:	file to write to
799  * @ppos:	position in @out
800  * @len:	number of bytes to splice
801  * @flags:	splice modifier flags
802  *
803  * Description:
804  *    Will either move or copy pages (determined by @flags options) from
805  *    the given pipe inode to the given file.
806  *
807  */
808 ssize_t
809 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
810 			  loff_t *ppos, size_t len, unsigned int flags)
811 {
812 	struct address_space *mapping = out->f_mapping;
813 	struct inode *inode = mapping->host;
814 	int killsuid, killpriv;
815 	ssize_t ret;
816 	int err = 0;
817 
818 	killpriv = security_inode_need_killpriv(out->f_path.dentry);
819 	killsuid = should_remove_suid(out->f_path.dentry);
820 	if (unlikely(killsuid || killpriv)) {
821 		mutex_lock(&inode->i_mutex);
822 		if (killpriv)
823 			err = security_inode_killpriv(out->f_path.dentry);
824 		if (!err && killsuid)
825 			err = __remove_suid(out->f_path.dentry, killsuid);
826 		mutex_unlock(&inode->i_mutex);
827 		if (err)
828 			return err;
829 	}
830 
831 	ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
832 	if (ret > 0) {
833 		unsigned long nr_pages;
834 
835 		*ppos += ret;
836 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
837 
838 		/*
839 		 * If file or inode is SYNC and we actually wrote some data,
840 		 * sync it.
841 		 */
842 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
843 			mutex_lock(&inode->i_mutex);
844 			err = generic_osync_inode(inode, mapping,
845 						  OSYNC_METADATA|OSYNC_DATA);
846 			mutex_unlock(&inode->i_mutex);
847 
848 			if (err)
849 				ret = err;
850 		}
851 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
852 	}
853 
854 	return ret;
855 }
856 
857 EXPORT_SYMBOL(generic_file_splice_write);
858 
859 /**
860  * generic_splice_sendpage - splice data from a pipe to a socket
861  * @pipe:	pipe to splice from
862  * @out:	socket to write to
863  * @ppos:	position in @out
864  * @len:	number of bytes to splice
865  * @flags:	splice modifier flags
866  *
867  * Description:
868  *    Will send @len bytes from the pipe to a network socket. No data copying
869  *    is involved.
870  *
871  */
872 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
873 				loff_t *ppos, size_t len, unsigned int flags)
874 {
875 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
876 }
877 
878 EXPORT_SYMBOL(generic_splice_sendpage);
879 
880 /*
881  * Attempt to initiate a splice from pipe to file.
882  */
883 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
884 			   loff_t *ppos, size_t len, unsigned int flags)
885 {
886 	int ret;
887 
888 	if (unlikely(!out->f_op || !out->f_op->splice_write))
889 		return -EINVAL;
890 
891 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
892 		return -EBADF;
893 
894 	ret = rw_verify_area(WRITE, out, ppos, len);
895 	if (unlikely(ret < 0))
896 		return ret;
897 
898 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
899 }
900 
901 /*
902  * Attempt to initiate a splice from a file to a pipe.
903  */
904 static long do_splice_to(struct file *in, loff_t *ppos,
905 			 struct pipe_inode_info *pipe, size_t len,
906 			 unsigned int flags)
907 {
908 	int ret;
909 
910 	if (unlikely(!in->f_op || !in->f_op->splice_read))
911 		return -EINVAL;
912 
913 	if (unlikely(!(in->f_mode & FMODE_READ)))
914 		return -EBADF;
915 
916 	ret = rw_verify_area(READ, in, ppos, len);
917 	if (unlikely(ret < 0))
918 		return ret;
919 
920 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
921 }
922 
923 /**
924  * splice_direct_to_actor - splices data directly between two non-pipes
925  * @in:		file to splice from
926  * @sd:		actor information on where to splice to
927  * @actor:	handles the data splicing
928  *
929  * Description:
930  *    This is a special case helper to splice directly between two
931  *    points, without requiring an explicit pipe. Internally an allocated
932  *    pipe is cached in the process, and reused during the lifetime of
933  *    that process.
934  *
935  */
936 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
937 			       splice_direct_actor *actor)
938 {
939 	struct pipe_inode_info *pipe;
940 	long ret, bytes;
941 	umode_t i_mode;
942 	size_t len;
943 	int i, flags;
944 
945 	/*
946 	 * We require the input being a regular file, as we don't want to
947 	 * randomly drop data for eg socket -> socket splicing. Use the
948 	 * piped splicing for that!
949 	 */
950 	i_mode = in->f_path.dentry->d_inode->i_mode;
951 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
952 		return -EINVAL;
953 
954 	/*
955 	 * neither in nor out is a pipe, setup an internal pipe attached to
956 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
957 	 */
958 	pipe = current->splice_pipe;
959 	if (unlikely(!pipe)) {
960 		pipe = alloc_pipe_info(NULL);
961 		if (!pipe)
962 			return -ENOMEM;
963 
964 		/*
965 		 * We don't have an immediate reader, but we'll read the stuff
966 		 * out of the pipe right after the splice_to_pipe(). So set
967 		 * PIPE_READERS appropriately.
968 		 */
969 		pipe->readers = 1;
970 
971 		current->splice_pipe = pipe;
972 	}
973 
974 	/*
975 	 * Do the splice.
976 	 */
977 	ret = 0;
978 	bytes = 0;
979 	len = sd->total_len;
980 	flags = sd->flags;
981 
982 	/*
983 	 * Don't block on output, we have to drain the direct pipe.
984 	 */
985 	sd->flags &= ~SPLICE_F_NONBLOCK;
986 
987 	while (len) {
988 		size_t read_len;
989 		loff_t pos = sd->pos;
990 
991 		ret = do_splice_to(in, &pos, pipe, len, flags);
992 		if (unlikely(ret <= 0))
993 			goto out_release;
994 
995 		read_len = ret;
996 		sd->total_len = read_len;
997 
998 		/*
999 		 * NOTE: nonblocking mode only applies to the input. We
1000 		 * must not do the output in nonblocking mode as then we
1001 		 * could get stuck data in the internal pipe:
1002 		 */
1003 		ret = actor(pipe, sd);
1004 		if (unlikely(ret <= 0))
1005 			goto out_release;
1006 
1007 		bytes += ret;
1008 		len -= ret;
1009 		sd->pos = pos;
1010 
1011 		if (ret < read_len)
1012 			goto out_release;
1013 	}
1014 
1015 done:
1016 	pipe->nrbufs = pipe->curbuf = 0;
1017 	file_accessed(in);
1018 	return bytes;
1019 
1020 out_release:
1021 	/*
1022 	 * If we did an incomplete transfer we must release
1023 	 * the pipe buffers in question:
1024 	 */
1025 	for (i = 0; i < PIPE_BUFFERS; i++) {
1026 		struct pipe_buffer *buf = pipe->bufs + i;
1027 
1028 		if (buf->ops) {
1029 			buf->ops->release(pipe, buf);
1030 			buf->ops = NULL;
1031 		}
1032 	}
1033 
1034 	if (!bytes)
1035 		bytes = ret;
1036 
1037 	goto done;
1038 }
1039 EXPORT_SYMBOL(splice_direct_to_actor);
1040 
1041 static int direct_splice_actor(struct pipe_inode_info *pipe,
1042 			       struct splice_desc *sd)
1043 {
1044 	struct file *file = sd->u.file;
1045 
1046 	return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1047 }
1048 
1049 /**
1050  * do_splice_direct - splices data directly between two files
1051  * @in:		file to splice from
1052  * @ppos:	input file offset
1053  * @out:	file to splice to
1054  * @len:	number of bytes to splice
1055  * @flags:	splice modifier flags
1056  *
1057  * Description:
1058  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1059  *    doing it in the application would incur an extra system call
1060  *    (splice in + splice out, as compared to just sendfile()). So this helper
1061  *    can splice directly through a process-private pipe.
1062  *
1063  */
1064 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1065 		      size_t len, unsigned int flags)
1066 {
1067 	struct splice_desc sd = {
1068 		.len		= len,
1069 		.total_len	= len,
1070 		.flags		= flags,
1071 		.pos		= *ppos,
1072 		.u.file		= out,
1073 	};
1074 	long ret;
1075 
1076 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1077 	if (ret > 0)
1078 		*ppos += ret;
1079 
1080 	return ret;
1081 }
1082 
1083 /*
1084  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1085  * location, so checking ->i_pipe is not enough to verify that this is a
1086  * pipe.
1087  */
1088 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1089 {
1090 	if (S_ISFIFO(inode->i_mode))
1091 		return inode->i_pipe;
1092 
1093 	return NULL;
1094 }
1095 
1096 /*
1097  * Determine where to splice to/from.
1098  */
1099 static long do_splice(struct file *in, loff_t __user *off_in,
1100 		      struct file *out, loff_t __user *off_out,
1101 		      size_t len, unsigned int flags)
1102 {
1103 	struct pipe_inode_info *pipe;
1104 	loff_t offset, *off;
1105 	long ret;
1106 
1107 	pipe = pipe_info(in->f_path.dentry->d_inode);
1108 	if (pipe) {
1109 		if (off_in)
1110 			return -ESPIPE;
1111 		if (off_out) {
1112 			if (out->f_op->llseek == no_llseek)
1113 				return -EINVAL;
1114 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1115 				return -EFAULT;
1116 			off = &offset;
1117 		} else
1118 			off = &out->f_pos;
1119 
1120 		ret = do_splice_from(pipe, out, off, len, flags);
1121 
1122 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1123 			ret = -EFAULT;
1124 
1125 		return ret;
1126 	}
1127 
1128 	pipe = pipe_info(out->f_path.dentry->d_inode);
1129 	if (pipe) {
1130 		if (off_out)
1131 			return -ESPIPE;
1132 		if (off_in) {
1133 			if (in->f_op->llseek == no_llseek)
1134 				return -EINVAL;
1135 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1136 				return -EFAULT;
1137 			off = &offset;
1138 		} else
1139 			off = &in->f_pos;
1140 
1141 		ret = do_splice_to(in, off, pipe, len, flags);
1142 
1143 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1144 			ret = -EFAULT;
1145 
1146 		return ret;
1147 	}
1148 
1149 	return -EINVAL;
1150 }
1151 
1152 /*
1153  * Do a copy-from-user while holding the mmap_semaphore for reading, in a
1154  * manner safe from deadlocking with simultaneous mmap() (grabbing mmap_sem
1155  * for writing) and page faulting on the user memory pointed to by src.
1156  * This assumes that we will very rarely hit the partial != 0 path, or this
1157  * will not be a win.
1158  */
1159 static int copy_from_user_mmap_sem(void *dst, const void __user *src, size_t n)
1160 {
1161 	int partial;
1162 
1163 	if (!access_ok(VERIFY_READ, src, n))
1164 		return -EFAULT;
1165 
1166 	pagefault_disable();
1167 	partial = __copy_from_user_inatomic(dst, src, n);
1168 	pagefault_enable();
1169 
1170 	/*
1171 	 * Didn't copy everything, drop the mmap_sem and do a faulting copy
1172 	 */
1173 	if (unlikely(partial)) {
1174 		up_read(&current->mm->mmap_sem);
1175 		partial = copy_from_user(dst, src, n);
1176 		down_read(&current->mm->mmap_sem);
1177 	}
1178 
1179 	return partial;
1180 }
1181 
1182 /*
1183  * Map an iov into an array of pages and offset/length tupples. With the
1184  * partial_page structure, we can map several non-contiguous ranges into
1185  * our ones pages[] map instead of splitting that operation into pieces.
1186  * Could easily be exported as a generic helper for other users, in which
1187  * case one would probably want to add a 'max_nr_pages' parameter as well.
1188  */
1189 static int get_iovec_page_array(const struct iovec __user *iov,
1190 				unsigned int nr_vecs, struct page **pages,
1191 				struct partial_page *partial, int aligned)
1192 {
1193 	int buffers = 0, error = 0;
1194 
1195 	down_read(&current->mm->mmap_sem);
1196 
1197 	while (nr_vecs) {
1198 		unsigned long off, npages;
1199 		struct iovec entry;
1200 		void __user *base;
1201 		size_t len;
1202 		int i;
1203 
1204 		error = -EFAULT;
1205 		if (copy_from_user_mmap_sem(&entry, iov, sizeof(entry)))
1206 			break;
1207 
1208 		base = entry.iov_base;
1209 		len = entry.iov_len;
1210 
1211 		/*
1212 		 * Sanity check this iovec. 0 read succeeds.
1213 		 */
1214 		error = 0;
1215 		if (unlikely(!len))
1216 			break;
1217 		error = -EFAULT;
1218 		if (!access_ok(VERIFY_READ, base, len))
1219 			break;
1220 
1221 		/*
1222 		 * Get this base offset and number of pages, then map
1223 		 * in the user pages.
1224 		 */
1225 		off = (unsigned long) base & ~PAGE_MASK;
1226 
1227 		/*
1228 		 * If asked for alignment, the offset must be zero and the
1229 		 * length a multiple of the PAGE_SIZE.
1230 		 */
1231 		error = -EINVAL;
1232 		if (aligned && (off || len & ~PAGE_MASK))
1233 			break;
1234 
1235 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1236 		if (npages > PIPE_BUFFERS - buffers)
1237 			npages = PIPE_BUFFERS - buffers;
1238 
1239 		error = get_user_pages(current, current->mm,
1240 				       (unsigned long) base, npages, 0, 0,
1241 				       &pages[buffers], NULL);
1242 
1243 		if (unlikely(error <= 0))
1244 			break;
1245 
1246 		/*
1247 		 * Fill this contiguous range into the partial page map.
1248 		 */
1249 		for (i = 0; i < error; i++) {
1250 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1251 
1252 			partial[buffers].offset = off;
1253 			partial[buffers].len = plen;
1254 
1255 			off = 0;
1256 			len -= plen;
1257 			buffers++;
1258 		}
1259 
1260 		/*
1261 		 * We didn't complete this iov, stop here since it probably
1262 		 * means we have to move some of this into a pipe to
1263 		 * be able to continue.
1264 		 */
1265 		if (len)
1266 			break;
1267 
1268 		/*
1269 		 * Don't continue if we mapped fewer pages than we asked for,
1270 		 * or if we mapped the max number of pages that we have
1271 		 * room for.
1272 		 */
1273 		if (error < npages || buffers == PIPE_BUFFERS)
1274 			break;
1275 
1276 		nr_vecs--;
1277 		iov++;
1278 	}
1279 
1280 	up_read(&current->mm->mmap_sem);
1281 
1282 	if (buffers)
1283 		return buffers;
1284 
1285 	return error;
1286 }
1287 
1288 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1289 			struct splice_desc *sd)
1290 {
1291 	char *src;
1292 	int ret;
1293 
1294 	ret = buf->ops->confirm(pipe, buf);
1295 	if (unlikely(ret))
1296 		return ret;
1297 
1298 	/*
1299 	 * See if we can use the atomic maps, by prefaulting in the
1300 	 * pages and doing an atomic copy
1301 	 */
1302 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1303 		src = buf->ops->map(pipe, buf, 1);
1304 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1305 							sd->len);
1306 		buf->ops->unmap(pipe, buf, src);
1307 		if (!ret) {
1308 			ret = sd->len;
1309 			goto out;
1310 		}
1311 	}
1312 
1313 	/*
1314 	 * No dice, use slow non-atomic map and copy
1315  	 */
1316 	src = buf->ops->map(pipe, buf, 0);
1317 
1318 	ret = sd->len;
1319 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1320 		ret = -EFAULT;
1321 
1322 	buf->ops->unmap(pipe, buf, src);
1323 out:
1324 	if (ret > 0)
1325 		sd->u.userptr += ret;
1326 	return ret;
1327 }
1328 
1329 /*
1330  * For lack of a better implementation, implement vmsplice() to userspace
1331  * as a simple copy of the pipes pages to the user iov.
1332  */
1333 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1334 			     unsigned long nr_segs, unsigned int flags)
1335 {
1336 	struct pipe_inode_info *pipe;
1337 	struct splice_desc sd;
1338 	ssize_t size;
1339 	int error;
1340 	long ret;
1341 
1342 	pipe = pipe_info(file->f_path.dentry->d_inode);
1343 	if (!pipe)
1344 		return -EBADF;
1345 
1346 	if (pipe->inode)
1347 		mutex_lock(&pipe->inode->i_mutex);
1348 
1349 	error = ret = 0;
1350 	while (nr_segs) {
1351 		void __user *base;
1352 		size_t len;
1353 
1354 		/*
1355 		 * Get user address base and length for this iovec.
1356 		 */
1357 		error = get_user(base, &iov->iov_base);
1358 		if (unlikely(error))
1359 			break;
1360 		error = get_user(len, &iov->iov_len);
1361 		if (unlikely(error))
1362 			break;
1363 
1364 		/*
1365 		 * Sanity check this iovec. 0 read succeeds.
1366 		 */
1367 		if (unlikely(!len))
1368 			break;
1369 		if (unlikely(!base)) {
1370 			error = -EFAULT;
1371 			break;
1372 		}
1373 
1374 		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1375 			error = -EFAULT;
1376 			break;
1377 		}
1378 
1379 		sd.len = 0;
1380 		sd.total_len = len;
1381 		sd.flags = flags;
1382 		sd.u.userptr = base;
1383 		sd.pos = 0;
1384 
1385 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1386 		if (size < 0) {
1387 			if (!ret)
1388 				ret = size;
1389 
1390 			break;
1391 		}
1392 
1393 		ret += size;
1394 
1395 		if (size < len)
1396 			break;
1397 
1398 		nr_segs--;
1399 		iov++;
1400 	}
1401 
1402 	if (pipe->inode)
1403 		mutex_unlock(&pipe->inode->i_mutex);
1404 
1405 	if (!ret)
1406 		ret = error;
1407 
1408 	return ret;
1409 }
1410 
1411 /*
1412  * vmsplice splices a user address range into a pipe. It can be thought of
1413  * as splice-from-memory, where the regular splice is splice-from-file (or
1414  * to file). In both cases the output is a pipe, naturally.
1415  */
1416 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1417 			     unsigned long nr_segs, unsigned int flags)
1418 {
1419 	struct pipe_inode_info *pipe;
1420 	struct page *pages[PIPE_BUFFERS];
1421 	struct partial_page partial[PIPE_BUFFERS];
1422 	struct splice_pipe_desc spd = {
1423 		.pages = pages,
1424 		.partial = partial,
1425 		.flags = flags,
1426 		.ops = &user_page_pipe_buf_ops,
1427 		.spd_release = spd_release_page,
1428 	};
1429 
1430 	pipe = pipe_info(file->f_path.dentry->d_inode);
1431 	if (!pipe)
1432 		return -EBADF;
1433 
1434 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1435 					    flags & SPLICE_F_GIFT);
1436 	if (spd.nr_pages <= 0)
1437 		return spd.nr_pages;
1438 
1439 	return splice_to_pipe(pipe, &spd);
1440 }
1441 
1442 /*
1443  * Note that vmsplice only really supports true splicing _from_ user memory
1444  * to a pipe, not the other way around. Splicing from user memory is a simple
1445  * operation that can be supported without any funky alignment restrictions
1446  * or nasty vm tricks. We simply map in the user memory and fill them into
1447  * a pipe. The reverse isn't quite as easy, though. There are two possible
1448  * solutions for that:
1449  *
1450  *	- memcpy() the data internally, at which point we might as well just
1451  *	  do a regular read() on the buffer anyway.
1452  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1453  *	  has restriction limitations on both ends of the pipe).
1454  *
1455  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1456  *
1457  */
1458 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1459 			     unsigned long nr_segs, unsigned int flags)
1460 {
1461 	struct file *file;
1462 	long error;
1463 	int fput;
1464 
1465 	if (unlikely(nr_segs > UIO_MAXIOV))
1466 		return -EINVAL;
1467 	else if (unlikely(!nr_segs))
1468 		return 0;
1469 
1470 	error = -EBADF;
1471 	file = fget_light(fd, &fput);
1472 	if (file) {
1473 		if (file->f_mode & FMODE_WRITE)
1474 			error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1475 		else if (file->f_mode & FMODE_READ)
1476 			error = vmsplice_to_user(file, iov, nr_segs, flags);
1477 
1478 		fput_light(file, fput);
1479 	}
1480 
1481 	return error;
1482 }
1483 
1484 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1485 			   int fd_out, loff_t __user *off_out,
1486 			   size_t len, unsigned int flags)
1487 {
1488 	long error;
1489 	struct file *in, *out;
1490 	int fput_in, fput_out;
1491 
1492 	if (unlikely(!len))
1493 		return 0;
1494 
1495 	error = -EBADF;
1496 	in = fget_light(fd_in, &fput_in);
1497 	if (in) {
1498 		if (in->f_mode & FMODE_READ) {
1499 			out = fget_light(fd_out, &fput_out);
1500 			if (out) {
1501 				if (out->f_mode & FMODE_WRITE)
1502 					error = do_splice(in, off_in,
1503 							  out, off_out,
1504 							  len, flags);
1505 				fput_light(out, fput_out);
1506 			}
1507 		}
1508 
1509 		fput_light(in, fput_in);
1510 	}
1511 
1512 	return error;
1513 }
1514 
1515 /*
1516  * Make sure there's data to read. Wait for input if we can, otherwise
1517  * return an appropriate error.
1518  */
1519 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1520 {
1521 	int ret;
1522 
1523 	/*
1524 	 * Check ->nrbufs without the inode lock first. This function
1525 	 * is speculative anyways, so missing one is ok.
1526 	 */
1527 	if (pipe->nrbufs)
1528 		return 0;
1529 
1530 	ret = 0;
1531 	mutex_lock(&pipe->inode->i_mutex);
1532 
1533 	while (!pipe->nrbufs) {
1534 		if (signal_pending(current)) {
1535 			ret = -ERESTARTSYS;
1536 			break;
1537 		}
1538 		if (!pipe->writers)
1539 			break;
1540 		if (!pipe->waiting_writers) {
1541 			if (flags & SPLICE_F_NONBLOCK) {
1542 				ret = -EAGAIN;
1543 				break;
1544 			}
1545 		}
1546 		pipe_wait(pipe);
1547 	}
1548 
1549 	mutex_unlock(&pipe->inode->i_mutex);
1550 	return ret;
1551 }
1552 
1553 /*
1554  * Make sure there's writeable room. Wait for room if we can, otherwise
1555  * return an appropriate error.
1556  */
1557 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1558 {
1559 	int ret;
1560 
1561 	/*
1562 	 * Check ->nrbufs without the inode lock first. This function
1563 	 * is speculative anyways, so missing one is ok.
1564 	 */
1565 	if (pipe->nrbufs < PIPE_BUFFERS)
1566 		return 0;
1567 
1568 	ret = 0;
1569 	mutex_lock(&pipe->inode->i_mutex);
1570 
1571 	while (pipe->nrbufs >= PIPE_BUFFERS) {
1572 		if (!pipe->readers) {
1573 			send_sig(SIGPIPE, current, 0);
1574 			ret = -EPIPE;
1575 			break;
1576 		}
1577 		if (flags & SPLICE_F_NONBLOCK) {
1578 			ret = -EAGAIN;
1579 			break;
1580 		}
1581 		if (signal_pending(current)) {
1582 			ret = -ERESTARTSYS;
1583 			break;
1584 		}
1585 		pipe->waiting_writers++;
1586 		pipe_wait(pipe);
1587 		pipe->waiting_writers--;
1588 	}
1589 
1590 	mutex_unlock(&pipe->inode->i_mutex);
1591 	return ret;
1592 }
1593 
1594 /*
1595  * Link contents of ipipe to opipe.
1596  */
1597 static int link_pipe(struct pipe_inode_info *ipipe,
1598 		     struct pipe_inode_info *opipe,
1599 		     size_t len, unsigned int flags)
1600 {
1601 	struct pipe_buffer *ibuf, *obuf;
1602 	int ret = 0, i = 0, nbuf;
1603 
1604 	/*
1605 	 * Potential ABBA deadlock, work around it by ordering lock
1606 	 * grabbing by inode address. Otherwise two different processes
1607 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1608 	 */
1609 	inode_double_lock(ipipe->inode, opipe->inode);
1610 
1611 	do {
1612 		if (!opipe->readers) {
1613 			send_sig(SIGPIPE, current, 0);
1614 			if (!ret)
1615 				ret = -EPIPE;
1616 			break;
1617 		}
1618 
1619 		/*
1620 		 * If we have iterated all input buffers or ran out of
1621 		 * output room, break.
1622 		 */
1623 		if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1624 			break;
1625 
1626 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1627 		nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1628 
1629 		/*
1630 		 * Get a reference to this pipe buffer,
1631 		 * so we can copy the contents over.
1632 		 */
1633 		ibuf->ops->get(ipipe, ibuf);
1634 
1635 		obuf = opipe->bufs + nbuf;
1636 		*obuf = *ibuf;
1637 
1638 		/*
1639 		 * Don't inherit the gift flag, we need to
1640 		 * prevent multiple steals of this page.
1641 		 */
1642 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1643 
1644 		if (obuf->len > len)
1645 			obuf->len = len;
1646 
1647 		opipe->nrbufs++;
1648 		ret += obuf->len;
1649 		len -= obuf->len;
1650 		i++;
1651 	} while (len);
1652 
1653 	/*
1654 	 * return EAGAIN if we have the potential of some data in the
1655 	 * future, otherwise just return 0
1656 	 */
1657 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1658 		ret = -EAGAIN;
1659 
1660 	inode_double_unlock(ipipe->inode, opipe->inode);
1661 
1662 	/*
1663 	 * If we put data in the output pipe, wakeup any potential readers.
1664 	 */
1665 	if (ret > 0) {
1666 		smp_mb();
1667 		if (waitqueue_active(&opipe->wait))
1668 			wake_up_interruptible(&opipe->wait);
1669 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1670 	}
1671 
1672 	return ret;
1673 }
1674 
1675 /*
1676  * This is a tee(1) implementation that works on pipes. It doesn't copy
1677  * any data, it simply references the 'in' pages on the 'out' pipe.
1678  * The 'flags' used are the SPLICE_F_* variants, currently the only
1679  * applicable one is SPLICE_F_NONBLOCK.
1680  */
1681 static long do_tee(struct file *in, struct file *out, size_t len,
1682 		   unsigned int flags)
1683 {
1684 	struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1685 	struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1686 	int ret = -EINVAL;
1687 
1688 	/*
1689 	 * Duplicate the contents of ipipe to opipe without actually
1690 	 * copying the data.
1691 	 */
1692 	if (ipipe && opipe && ipipe != opipe) {
1693 		/*
1694 		 * Keep going, unless we encounter an error. The ipipe/opipe
1695 		 * ordering doesn't really matter.
1696 		 */
1697 		ret = link_ipipe_prep(ipipe, flags);
1698 		if (!ret) {
1699 			ret = link_opipe_prep(opipe, flags);
1700 			if (!ret)
1701 				ret = link_pipe(ipipe, opipe, len, flags);
1702 		}
1703 	}
1704 
1705 	return ret;
1706 }
1707 
1708 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1709 {
1710 	struct file *in;
1711 	int error, fput_in;
1712 
1713 	if (unlikely(!len))
1714 		return 0;
1715 
1716 	error = -EBADF;
1717 	in = fget_light(fdin, &fput_in);
1718 	if (in) {
1719 		if (in->f_mode & FMODE_READ) {
1720 			int fput_out;
1721 			struct file *out = fget_light(fdout, &fput_out);
1722 
1723 			if (out) {
1724 				if (out->f_mode & FMODE_WRITE)
1725 					error = do_tee(in, out, len, flags);
1726 				fput_light(out, fput_out);
1727 			}
1728 		}
1729  		fput_light(in, fput_in);
1730  	}
1731 
1732 	return error;
1733 }
1734