xref: /openbmc/linux/fs/splice.c (revision 9f69e8a7)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36 
37 /*
38  * Attempt to steal a page from a pipe buffer. This should perhaps go into
39  * a vm helper function, it's already simplified quite a bit by the
40  * addition of remove_mapping(). If success is returned, the caller may
41  * attempt to reuse this page for another destination.
42  */
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 				     struct pipe_buffer *buf)
45 {
46 	struct page *page = buf->page;
47 	struct address_space *mapping;
48 
49 	lock_page(page);
50 
51 	mapping = page_mapping(page);
52 	if (mapping) {
53 		WARN_ON(!PageUptodate(page));
54 
55 		/*
56 		 * At least for ext2 with nobh option, we need to wait on
57 		 * writeback completing on this page, since we'll remove it
58 		 * from the pagecache.  Otherwise truncate wont wait on the
59 		 * page, allowing the disk blocks to be reused by someone else
60 		 * before we actually wrote our data to them. fs corruption
61 		 * ensues.
62 		 */
63 		wait_on_page_writeback(page);
64 
65 		if (page_has_private(page) &&
66 		    !try_to_release_page(page, GFP_KERNEL))
67 			goto out_unlock;
68 
69 		/*
70 		 * If we succeeded in removing the mapping, set LRU flag
71 		 * and return good.
72 		 */
73 		if (remove_mapping(mapping, page)) {
74 			buf->flags |= PIPE_BUF_FLAG_LRU;
75 			return 0;
76 		}
77 	}
78 
79 	/*
80 	 * Raced with truncate or failed to remove page from current
81 	 * address space, unlock and return failure.
82 	 */
83 out_unlock:
84 	unlock_page(page);
85 	return 1;
86 }
87 
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 					struct pipe_buffer *buf)
90 {
91 	page_cache_release(buf->page);
92 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94 
95 /*
96  * Check whether the contents of buf is OK to access. Since the content
97  * is a page cache page, IO may be in flight.
98  */
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 				       struct pipe_buffer *buf)
101 {
102 	struct page *page = buf->page;
103 	int err;
104 
105 	if (!PageUptodate(page)) {
106 		lock_page(page);
107 
108 		/*
109 		 * Page got truncated/unhashed. This will cause a 0-byte
110 		 * splice, if this is the first page.
111 		 */
112 		if (!page->mapping) {
113 			err = -ENODATA;
114 			goto error;
115 		}
116 
117 		/*
118 		 * Uh oh, read-error from disk.
119 		 */
120 		if (!PageUptodate(page)) {
121 			err = -EIO;
122 			goto error;
123 		}
124 
125 		/*
126 		 * Page is ok afterall, we are done.
127 		 */
128 		unlock_page(page);
129 	}
130 
131 	return 0;
132 error:
133 	unlock_page(page);
134 	return err;
135 }
136 
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 	.can_merge = 0,
139 	.confirm = page_cache_pipe_buf_confirm,
140 	.release = page_cache_pipe_buf_release,
141 	.steal = page_cache_pipe_buf_steal,
142 	.get = generic_pipe_buf_get,
143 };
144 
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 				    struct pipe_buffer *buf)
147 {
148 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 		return 1;
150 
151 	buf->flags |= PIPE_BUF_FLAG_LRU;
152 	return generic_pipe_buf_steal(pipe, buf);
153 }
154 
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 	.can_merge = 0,
157 	.confirm = generic_pipe_buf_confirm,
158 	.release = page_cache_pipe_buf_release,
159 	.steal = user_page_pipe_buf_steal,
160 	.get = generic_pipe_buf_get,
161 };
162 
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165 	smp_mb();
166 	if (waitqueue_active(&pipe->wait))
167 		wake_up_interruptible(&pipe->wait);
168 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170 
171 /**
172  * splice_to_pipe - fill passed data into a pipe
173  * @pipe:	pipe to fill
174  * @spd:	data to fill
175  *
176  * Description:
177  *    @spd contains a map of pages and len/offset tuples, along with
178  *    the struct pipe_buf_operations associated with these pages. This
179  *    function will link that data to the pipe.
180  *
181  */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 		       struct splice_pipe_desc *spd)
184 {
185 	unsigned int spd_pages = spd->nr_pages;
186 	int ret, do_wakeup, page_nr;
187 
188 	ret = 0;
189 	do_wakeup = 0;
190 	page_nr = 0;
191 
192 	pipe_lock(pipe);
193 
194 	for (;;) {
195 		if (!pipe->readers) {
196 			send_sig(SIGPIPE, current, 0);
197 			if (!ret)
198 				ret = -EPIPE;
199 			break;
200 		}
201 
202 		if (pipe->nrbufs < pipe->buffers) {
203 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
204 			struct pipe_buffer *buf = pipe->bufs + newbuf;
205 
206 			buf->page = spd->pages[page_nr];
207 			buf->offset = spd->partial[page_nr].offset;
208 			buf->len = spd->partial[page_nr].len;
209 			buf->private = spd->partial[page_nr].private;
210 			buf->ops = spd->ops;
211 			if (spd->flags & SPLICE_F_GIFT)
212 				buf->flags |= PIPE_BUF_FLAG_GIFT;
213 
214 			pipe->nrbufs++;
215 			page_nr++;
216 			ret += buf->len;
217 
218 			if (pipe->files)
219 				do_wakeup = 1;
220 
221 			if (!--spd->nr_pages)
222 				break;
223 			if (pipe->nrbufs < pipe->buffers)
224 				continue;
225 
226 			break;
227 		}
228 
229 		if (spd->flags & SPLICE_F_NONBLOCK) {
230 			if (!ret)
231 				ret = -EAGAIN;
232 			break;
233 		}
234 
235 		if (signal_pending(current)) {
236 			if (!ret)
237 				ret = -ERESTARTSYS;
238 			break;
239 		}
240 
241 		if (do_wakeup) {
242 			smp_mb();
243 			if (waitqueue_active(&pipe->wait))
244 				wake_up_interruptible_sync(&pipe->wait);
245 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
246 			do_wakeup = 0;
247 		}
248 
249 		pipe->waiting_writers++;
250 		pipe_wait(pipe);
251 		pipe->waiting_writers--;
252 	}
253 
254 	pipe_unlock(pipe);
255 
256 	if (do_wakeup)
257 		wakeup_pipe_readers(pipe);
258 
259 	while (page_nr < spd_pages)
260 		spd->spd_release(spd, page_nr++);
261 
262 	return ret;
263 }
264 
265 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
266 {
267 	page_cache_release(spd->pages[i]);
268 }
269 
270 /*
271  * Check if we need to grow the arrays holding pages and partial page
272  * descriptions.
273  */
274 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
275 {
276 	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
277 
278 	spd->nr_pages_max = buffers;
279 	if (buffers <= PIPE_DEF_BUFFERS)
280 		return 0;
281 
282 	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
283 	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
284 
285 	if (spd->pages && spd->partial)
286 		return 0;
287 
288 	kfree(spd->pages);
289 	kfree(spd->partial);
290 	return -ENOMEM;
291 }
292 
293 void splice_shrink_spd(struct splice_pipe_desc *spd)
294 {
295 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
296 		return;
297 
298 	kfree(spd->pages);
299 	kfree(spd->partial);
300 }
301 
302 static int
303 __generic_file_splice_read(struct file *in, loff_t *ppos,
304 			   struct pipe_inode_info *pipe, size_t len,
305 			   unsigned int flags)
306 {
307 	struct address_space *mapping = in->f_mapping;
308 	unsigned int loff, nr_pages, req_pages;
309 	struct page *pages[PIPE_DEF_BUFFERS];
310 	struct partial_page partial[PIPE_DEF_BUFFERS];
311 	struct page *page;
312 	pgoff_t index, end_index;
313 	loff_t isize;
314 	int error, page_nr;
315 	struct splice_pipe_desc spd = {
316 		.pages = pages,
317 		.partial = partial,
318 		.nr_pages_max = PIPE_DEF_BUFFERS,
319 		.flags = flags,
320 		.ops = &page_cache_pipe_buf_ops,
321 		.spd_release = spd_release_page,
322 	};
323 
324 	if (splice_grow_spd(pipe, &spd))
325 		return -ENOMEM;
326 
327 	index = *ppos >> PAGE_CACHE_SHIFT;
328 	loff = *ppos & ~PAGE_CACHE_MASK;
329 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
330 	nr_pages = min(req_pages, spd.nr_pages_max);
331 
332 	/*
333 	 * Lookup the (hopefully) full range of pages we need.
334 	 */
335 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
336 	index += spd.nr_pages;
337 
338 	/*
339 	 * If find_get_pages_contig() returned fewer pages than we needed,
340 	 * readahead/allocate the rest and fill in the holes.
341 	 */
342 	if (spd.nr_pages < nr_pages)
343 		page_cache_sync_readahead(mapping, &in->f_ra, in,
344 				index, req_pages - spd.nr_pages);
345 
346 	error = 0;
347 	while (spd.nr_pages < nr_pages) {
348 		/*
349 		 * Page could be there, find_get_pages_contig() breaks on
350 		 * the first hole.
351 		 */
352 		page = find_get_page(mapping, index);
353 		if (!page) {
354 			/*
355 			 * page didn't exist, allocate one.
356 			 */
357 			page = page_cache_alloc_cold(mapping);
358 			if (!page)
359 				break;
360 
361 			error = add_to_page_cache_lru(page, mapping, index,
362 						GFP_KERNEL);
363 			if (unlikely(error)) {
364 				page_cache_release(page);
365 				if (error == -EEXIST)
366 					continue;
367 				break;
368 			}
369 			/*
370 			 * add_to_page_cache() locks the page, unlock it
371 			 * to avoid convoluting the logic below even more.
372 			 */
373 			unlock_page(page);
374 		}
375 
376 		spd.pages[spd.nr_pages++] = page;
377 		index++;
378 	}
379 
380 	/*
381 	 * Now loop over the map and see if we need to start IO on any
382 	 * pages, fill in the partial map, etc.
383 	 */
384 	index = *ppos >> PAGE_CACHE_SHIFT;
385 	nr_pages = spd.nr_pages;
386 	spd.nr_pages = 0;
387 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
388 		unsigned int this_len;
389 
390 		if (!len)
391 			break;
392 
393 		/*
394 		 * this_len is the max we'll use from this page
395 		 */
396 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
397 		page = spd.pages[page_nr];
398 
399 		if (PageReadahead(page))
400 			page_cache_async_readahead(mapping, &in->f_ra, in,
401 					page, index, req_pages - page_nr);
402 
403 		/*
404 		 * If the page isn't uptodate, we may need to start io on it
405 		 */
406 		if (!PageUptodate(page)) {
407 			lock_page(page);
408 
409 			/*
410 			 * Page was truncated, or invalidated by the
411 			 * filesystem.  Redo the find/create, but this time the
412 			 * page is kept locked, so there's no chance of another
413 			 * race with truncate/invalidate.
414 			 */
415 			if (!page->mapping) {
416 				unlock_page(page);
417 				page = find_or_create_page(mapping, index,
418 						mapping_gfp_mask(mapping));
419 
420 				if (!page) {
421 					error = -ENOMEM;
422 					break;
423 				}
424 				page_cache_release(spd.pages[page_nr]);
425 				spd.pages[page_nr] = page;
426 			}
427 			/*
428 			 * page was already under io and is now done, great
429 			 */
430 			if (PageUptodate(page)) {
431 				unlock_page(page);
432 				goto fill_it;
433 			}
434 
435 			/*
436 			 * need to read in the page
437 			 */
438 			error = mapping->a_ops->readpage(in, page);
439 			if (unlikely(error)) {
440 				/*
441 				 * We really should re-lookup the page here,
442 				 * but it complicates things a lot. Instead
443 				 * lets just do what we already stored, and
444 				 * we'll get it the next time we are called.
445 				 */
446 				if (error == AOP_TRUNCATED_PAGE)
447 					error = 0;
448 
449 				break;
450 			}
451 		}
452 fill_it:
453 		/*
454 		 * i_size must be checked after PageUptodate.
455 		 */
456 		isize = i_size_read(mapping->host);
457 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
458 		if (unlikely(!isize || index > end_index))
459 			break;
460 
461 		/*
462 		 * if this is the last page, see if we need to shrink
463 		 * the length and stop
464 		 */
465 		if (end_index == index) {
466 			unsigned int plen;
467 
468 			/*
469 			 * max good bytes in this page
470 			 */
471 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
472 			if (plen <= loff)
473 				break;
474 
475 			/*
476 			 * force quit after adding this page
477 			 */
478 			this_len = min(this_len, plen - loff);
479 			len = this_len;
480 		}
481 
482 		spd.partial[page_nr].offset = loff;
483 		spd.partial[page_nr].len = this_len;
484 		len -= this_len;
485 		loff = 0;
486 		spd.nr_pages++;
487 		index++;
488 	}
489 
490 	/*
491 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
492 	 * we got, 'nr_pages' is how many pages are in the map.
493 	 */
494 	while (page_nr < nr_pages)
495 		page_cache_release(spd.pages[page_nr++]);
496 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
497 
498 	if (spd.nr_pages)
499 		error = splice_to_pipe(pipe, &spd);
500 
501 	splice_shrink_spd(&spd);
502 	return error;
503 }
504 
505 /**
506  * generic_file_splice_read - splice data from file to a pipe
507  * @in:		file to splice from
508  * @ppos:	position in @in
509  * @pipe:	pipe to splice to
510  * @len:	number of bytes to splice
511  * @flags:	splice modifier flags
512  *
513  * Description:
514  *    Will read pages from given file and fill them into a pipe. Can be
515  *    used as long as the address_space operations for the source implements
516  *    a readpage() hook.
517  *
518  */
519 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
520 				 struct pipe_inode_info *pipe, size_t len,
521 				 unsigned int flags)
522 {
523 	loff_t isize, left;
524 	int ret;
525 
526 	if (IS_DAX(in->f_mapping->host))
527 		return default_file_splice_read(in, ppos, pipe, len, flags);
528 
529 	isize = i_size_read(in->f_mapping->host);
530 	if (unlikely(*ppos >= isize))
531 		return 0;
532 
533 	left = isize - *ppos;
534 	if (unlikely(left < len))
535 		len = left;
536 
537 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
538 	if (ret > 0) {
539 		*ppos += ret;
540 		file_accessed(in);
541 	}
542 
543 	return ret;
544 }
545 EXPORT_SYMBOL(generic_file_splice_read);
546 
547 static const struct pipe_buf_operations default_pipe_buf_ops = {
548 	.can_merge = 0,
549 	.confirm = generic_pipe_buf_confirm,
550 	.release = generic_pipe_buf_release,
551 	.steal = generic_pipe_buf_steal,
552 	.get = generic_pipe_buf_get,
553 };
554 
555 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
556 				    struct pipe_buffer *buf)
557 {
558 	return 1;
559 }
560 
561 /* Pipe buffer operations for a socket and similar. */
562 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
563 	.can_merge = 0,
564 	.confirm = generic_pipe_buf_confirm,
565 	.release = generic_pipe_buf_release,
566 	.steal = generic_pipe_buf_nosteal,
567 	.get = generic_pipe_buf_get,
568 };
569 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
570 
571 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
572 			    unsigned long vlen, loff_t offset)
573 {
574 	mm_segment_t old_fs;
575 	loff_t pos = offset;
576 	ssize_t res;
577 
578 	old_fs = get_fs();
579 	set_fs(get_ds());
580 	/* The cast to a user pointer is valid due to the set_fs() */
581 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
582 	set_fs(old_fs);
583 
584 	return res;
585 }
586 
587 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
588 			    loff_t pos)
589 {
590 	mm_segment_t old_fs;
591 	ssize_t res;
592 
593 	old_fs = get_fs();
594 	set_fs(get_ds());
595 	/* The cast to a user pointer is valid due to the set_fs() */
596 	res = vfs_write(file, (__force const char __user *)buf, count, &pos);
597 	set_fs(old_fs);
598 
599 	return res;
600 }
601 EXPORT_SYMBOL(kernel_write);
602 
603 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
604 				 struct pipe_inode_info *pipe, size_t len,
605 				 unsigned int flags)
606 {
607 	unsigned int nr_pages;
608 	unsigned int nr_freed;
609 	size_t offset;
610 	struct page *pages[PIPE_DEF_BUFFERS];
611 	struct partial_page partial[PIPE_DEF_BUFFERS];
612 	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
613 	ssize_t res;
614 	size_t this_len;
615 	int error;
616 	int i;
617 	struct splice_pipe_desc spd = {
618 		.pages = pages,
619 		.partial = partial,
620 		.nr_pages_max = PIPE_DEF_BUFFERS,
621 		.flags = flags,
622 		.ops = &default_pipe_buf_ops,
623 		.spd_release = spd_release_page,
624 	};
625 
626 	if (splice_grow_spd(pipe, &spd))
627 		return -ENOMEM;
628 
629 	res = -ENOMEM;
630 	vec = __vec;
631 	if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
632 		vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
633 		if (!vec)
634 			goto shrink_ret;
635 	}
636 
637 	offset = *ppos & ~PAGE_CACHE_MASK;
638 	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
639 
640 	for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
641 		struct page *page;
642 
643 		page = alloc_page(GFP_USER);
644 		error = -ENOMEM;
645 		if (!page)
646 			goto err;
647 
648 		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
649 		vec[i].iov_base = (void __user *) page_address(page);
650 		vec[i].iov_len = this_len;
651 		spd.pages[i] = page;
652 		spd.nr_pages++;
653 		len -= this_len;
654 		offset = 0;
655 	}
656 
657 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
658 	if (res < 0) {
659 		error = res;
660 		goto err;
661 	}
662 
663 	error = 0;
664 	if (!res)
665 		goto err;
666 
667 	nr_freed = 0;
668 	for (i = 0; i < spd.nr_pages; i++) {
669 		this_len = min_t(size_t, vec[i].iov_len, res);
670 		spd.partial[i].offset = 0;
671 		spd.partial[i].len = this_len;
672 		if (!this_len) {
673 			__free_page(spd.pages[i]);
674 			spd.pages[i] = NULL;
675 			nr_freed++;
676 		}
677 		res -= this_len;
678 	}
679 	spd.nr_pages -= nr_freed;
680 
681 	res = splice_to_pipe(pipe, &spd);
682 	if (res > 0)
683 		*ppos += res;
684 
685 shrink_ret:
686 	if (vec != __vec)
687 		kfree(vec);
688 	splice_shrink_spd(&spd);
689 	return res;
690 
691 err:
692 	for (i = 0; i < spd.nr_pages; i++)
693 		__free_page(spd.pages[i]);
694 
695 	res = error;
696 	goto shrink_ret;
697 }
698 EXPORT_SYMBOL(default_file_splice_read);
699 
700 /*
701  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
702  * using sendpage(). Return the number of bytes sent.
703  */
704 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
705 			    struct pipe_buffer *buf, struct splice_desc *sd)
706 {
707 	struct file *file = sd->u.file;
708 	loff_t pos = sd->pos;
709 	int more;
710 
711 	if (!likely(file->f_op->sendpage))
712 		return -EINVAL;
713 
714 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
715 
716 	if (sd->len < sd->total_len && pipe->nrbufs > 1)
717 		more |= MSG_SENDPAGE_NOTLAST;
718 
719 	return file->f_op->sendpage(file, buf->page, buf->offset,
720 				    sd->len, &pos, more);
721 }
722 
723 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
724 {
725 	smp_mb();
726 	if (waitqueue_active(&pipe->wait))
727 		wake_up_interruptible(&pipe->wait);
728 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
729 }
730 
731 /**
732  * splice_from_pipe_feed - feed available data from a pipe to a file
733  * @pipe:	pipe to splice from
734  * @sd:		information to @actor
735  * @actor:	handler that splices the data
736  *
737  * Description:
738  *    This function loops over the pipe and calls @actor to do the
739  *    actual moving of a single struct pipe_buffer to the desired
740  *    destination.  It returns when there's no more buffers left in
741  *    the pipe or if the requested number of bytes (@sd->total_len)
742  *    have been copied.  It returns a positive number (one) if the
743  *    pipe needs to be filled with more data, zero if the required
744  *    number of bytes have been copied and -errno on error.
745  *
746  *    This, together with splice_from_pipe_{begin,end,next}, may be
747  *    used to implement the functionality of __splice_from_pipe() when
748  *    locking is required around copying the pipe buffers to the
749  *    destination.
750  */
751 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
752 			  splice_actor *actor)
753 {
754 	int ret;
755 
756 	while (pipe->nrbufs) {
757 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
758 		const struct pipe_buf_operations *ops = buf->ops;
759 
760 		sd->len = buf->len;
761 		if (sd->len > sd->total_len)
762 			sd->len = sd->total_len;
763 
764 		ret = buf->ops->confirm(pipe, buf);
765 		if (unlikely(ret)) {
766 			if (ret == -ENODATA)
767 				ret = 0;
768 			return ret;
769 		}
770 
771 		ret = actor(pipe, buf, sd);
772 		if (ret <= 0)
773 			return ret;
774 
775 		buf->offset += ret;
776 		buf->len -= ret;
777 
778 		sd->num_spliced += ret;
779 		sd->len -= ret;
780 		sd->pos += ret;
781 		sd->total_len -= ret;
782 
783 		if (!buf->len) {
784 			buf->ops = NULL;
785 			ops->release(pipe, buf);
786 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
787 			pipe->nrbufs--;
788 			if (pipe->files)
789 				sd->need_wakeup = true;
790 		}
791 
792 		if (!sd->total_len)
793 			return 0;
794 	}
795 
796 	return 1;
797 }
798 
799 /**
800  * splice_from_pipe_next - wait for some data to splice from
801  * @pipe:	pipe to splice from
802  * @sd:		information about the splice operation
803  *
804  * Description:
805  *    This function will wait for some data and return a positive
806  *    value (one) if pipe buffers are available.  It will return zero
807  *    or -errno if no more data needs to be spliced.
808  */
809 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
810 {
811 	while (!pipe->nrbufs) {
812 		if (!pipe->writers)
813 			return 0;
814 
815 		if (!pipe->waiting_writers && sd->num_spliced)
816 			return 0;
817 
818 		if (sd->flags & SPLICE_F_NONBLOCK)
819 			return -EAGAIN;
820 
821 		if (signal_pending(current))
822 			return -ERESTARTSYS;
823 
824 		if (sd->need_wakeup) {
825 			wakeup_pipe_writers(pipe);
826 			sd->need_wakeup = false;
827 		}
828 
829 		pipe_wait(pipe);
830 	}
831 
832 	return 1;
833 }
834 
835 /**
836  * splice_from_pipe_begin - start splicing from pipe
837  * @sd:		information about the splice operation
838  *
839  * Description:
840  *    This function should be called before a loop containing
841  *    splice_from_pipe_next() and splice_from_pipe_feed() to
842  *    initialize the necessary fields of @sd.
843  */
844 static void splice_from_pipe_begin(struct splice_desc *sd)
845 {
846 	sd->num_spliced = 0;
847 	sd->need_wakeup = false;
848 }
849 
850 /**
851  * splice_from_pipe_end - finish splicing from pipe
852  * @pipe:	pipe to splice from
853  * @sd:		information about the splice operation
854  *
855  * Description:
856  *    This function will wake up pipe writers if necessary.  It should
857  *    be called after a loop containing splice_from_pipe_next() and
858  *    splice_from_pipe_feed().
859  */
860 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
861 {
862 	if (sd->need_wakeup)
863 		wakeup_pipe_writers(pipe);
864 }
865 
866 /**
867  * __splice_from_pipe - splice data from a pipe to given actor
868  * @pipe:	pipe to splice from
869  * @sd:		information to @actor
870  * @actor:	handler that splices the data
871  *
872  * Description:
873  *    This function does little more than loop over the pipe and call
874  *    @actor to do the actual moving of a single struct pipe_buffer to
875  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
876  *    pipe_to_user.
877  *
878  */
879 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
880 			   splice_actor *actor)
881 {
882 	int ret;
883 
884 	splice_from_pipe_begin(sd);
885 	do {
886 		ret = splice_from_pipe_next(pipe, sd);
887 		if (ret > 0)
888 			ret = splice_from_pipe_feed(pipe, sd, actor);
889 	} while (ret > 0);
890 	splice_from_pipe_end(pipe, sd);
891 
892 	return sd->num_spliced ? sd->num_spliced : ret;
893 }
894 EXPORT_SYMBOL(__splice_from_pipe);
895 
896 /**
897  * splice_from_pipe - splice data from a pipe to a file
898  * @pipe:	pipe to splice from
899  * @out:	file to splice to
900  * @ppos:	position in @out
901  * @len:	how many bytes to splice
902  * @flags:	splice modifier flags
903  * @actor:	handler that splices the data
904  *
905  * Description:
906  *    See __splice_from_pipe. This function locks the pipe inode,
907  *    otherwise it's identical to __splice_from_pipe().
908  *
909  */
910 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
911 			 loff_t *ppos, size_t len, unsigned int flags,
912 			 splice_actor *actor)
913 {
914 	ssize_t ret;
915 	struct splice_desc sd = {
916 		.total_len = len,
917 		.flags = flags,
918 		.pos = *ppos,
919 		.u.file = out,
920 	};
921 
922 	pipe_lock(pipe);
923 	ret = __splice_from_pipe(pipe, &sd, actor);
924 	pipe_unlock(pipe);
925 
926 	return ret;
927 }
928 
929 /**
930  * iter_file_splice_write - splice data from a pipe to a file
931  * @pipe:	pipe info
932  * @out:	file to write to
933  * @ppos:	position in @out
934  * @len:	number of bytes to splice
935  * @flags:	splice modifier flags
936  *
937  * Description:
938  *    Will either move or copy pages (determined by @flags options) from
939  *    the given pipe inode to the given file.
940  *    This one is ->write_iter-based.
941  *
942  */
943 ssize_t
944 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
945 			  loff_t *ppos, size_t len, unsigned int flags)
946 {
947 	struct splice_desc sd = {
948 		.total_len = len,
949 		.flags = flags,
950 		.pos = *ppos,
951 		.u.file = out,
952 	};
953 	int nbufs = pipe->buffers;
954 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
955 					GFP_KERNEL);
956 	ssize_t ret;
957 
958 	if (unlikely(!array))
959 		return -ENOMEM;
960 
961 	pipe_lock(pipe);
962 
963 	splice_from_pipe_begin(&sd);
964 	while (sd.total_len) {
965 		struct iov_iter from;
966 		size_t left;
967 		int n, idx;
968 
969 		ret = splice_from_pipe_next(pipe, &sd);
970 		if (ret <= 0)
971 			break;
972 
973 		if (unlikely(nbufs < pipe->buffers)) {
974 			kfree(array);
975 			nbufs = pipe->buffers;
976 			array = kcalloc(nbufs, sizeof(struct bio_vec),
977 					GFP_KERNEL);
978 			if (!array) {
979 				ret = -ENOMEM;
980 				break;
981 			}
982 		}
983 
984 		/* build the vector */
985 		left = sd.total_len;
986 		for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
987 			struct pipe_buffer *buf = pipe->bufs + idx;
988 			size_t this_len = buf->len;
989 
990 			if (this_len > left)
991 				this_len = left;
992 
993 			if (idx == pipe->buffers - 1)
994 				idx = -1;
995 
996 			ret = buf->ops->confirm(pipe, buf);
997 			if (unlikely(ret)) {
998 				if (ret == -ENODATA)
999 					ret = 0;
1000 				goto done;
1001 			}
1002 
1003 			array[n].bv_page = buf->page;
1004 			array[n].bv_len = this_len;
1005 			array[n].bv_offset = buf->offset;
1006 			left -= this_len;
1007 		}
1008 
1009 		iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1010 			      sd.total_len - left);
1011 		ret = vfs_iter_write(out, &from, &sd.pos);
1012 		if (ret <= 0)
1013 			break;
1014 
1015 		sd.num_spliced += ret;
1016 		sd.total_len -= ret;
1017 		*ppos = sd.pos;
1018 
1019 		/* dismiss the fully eaten buffers, adjust the partial one */
1020 		while (ret) {
1021 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1022 			if (ret >= buf->len) {
1023 				const struct pipe_buf_operations *ops = buf->ops;
1024 				ret -= buf->len;
1025 				buf->len = 0;
1026 				buf->ops = NULL;
1027 				ops->release(pipe, buf);
1028 				pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1029 				pipe->nrbufs--;
1030 				if (pipe->files)
1031 					sd.need_wakeup = true;
1032 			} else {
1033 				buf->offset += ret;
1034 				buf->len -= ret;
1035 				ret = 0;
1036 			}
1037 		}
1038 	}
1039 done:
1040 	kfree(array);
1041 	splice_from_pipe_end(pipe, &sd);
1042 
1043 	pipe_unlock(pipe);
1044 
1045 	if (sd.num_spliced)
1046 		ret = sd.num_spliced;
1047 
1048 	return ret;
1049 }
1050 
1051 EXPORT_SYMBOL(iter_file_splice_write);
1052 
1053 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1054 			  struct splice_desc *sd)
1055 {
1056 	int ret;
1057 	void *data;
1058 	loff_t tmp = sd->pos;
1059 
1060 	data = kmap(buf->page);
1061 	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1062 	kunmap(buf->page);
1063 
1064 	return ret;
1065 }
1066 
1067 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1068 					 struct file *out, loff_t *ppos,
1069 					 size_t len, unsigned int flags)
1070 {
1071 	ssize_t ret;
1072 
1073 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1074 	if (ret > 0)
1075 		*ppos += ret;
1076 
1077 	return ret;
1078 }
1079 
1080 /**
1081  * generic_splice_sendpage - splice data from a pipe to a socket
1082  * @pipe:	pipe to splice from
1083  * @out:	socket to write to
1084  * @ppos:	position in @out
1085  * @len:	number of bytes to splice
1086  * @flags:	splice modifier flags
1087  *
1088  * Description:
1089  *    Will send @len bytes from the pipe to a network socket. No data copying
1090  *    is involved.
1091  *
1092  */
1093 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1094 				loff_t *ppos, size_t len, unsigned int flags)
1095 {
1096 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1097 }
1098 
1099 EXPORT_SYMBOL(generic_splice_sendpage);
1100 
1101 /*
1102  * Attempt to initiate a splice from pipe to file.
1103  */
1104 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1105 			   loff_t *ppos, size_t len, unsigned int flags)
1106 {
1107 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1108 				loff_t *, size_t, unsigned int);
1109 
1110 	if (out->f_op->splice_write)
1111 		splice_write = out->f_op->splice_write;
1112 	else
1113 		splice_write = default_file_splice_write;
1114 
1115 	return splice_write(pipe, out, ppos, len, flags);
1116 }
1117 
1118 /*
1119  * Attempt to initiate a splice from a file to a pipe.
1120  */
1121 static long do_splice_to(struct file *in, loff_t *ppos,
1122 			 struct pipe_inode_info *pipe, size_t len,
1123 			 unsigned int flags)
1124 {
1125 	ssize_t (*splice_read)(struct file *, loff_t *,
1126 			       struct pipe_inode_info *, size_t, unsigned int);
1127 	int ret;
1128 
1129 	if (unlikely(!(in->f_mode & FMODE_READ)))
1130 		return -EBADF;
1131 
1132 	ret = rw_verify_area(READ, in, ppos, len);
1133 	if (unlikely(ret < 0))
1134 		return ret;
1135 
1136 	if (in->f_op->splice_read)
1137 		splice_read = in->f_op->splice_read;
1138 	else
1139 		splice_read = default_file_splice_read;
1140 
1141 	return splice_read(in, ppos, pipe, len, flags);
1142 }
1143 
1144 /**
1145  * splice_direct_to_actor - splices data directly between two non-pipes
1146  * @in:		file to splice from
1147  * @sd:		actor information on where to splice to
1148  * @actor:	handles the data splicing
1149  *
1150  * Description:
1151  *    This is a special case helper to splice directly between two
1152  *    points, without requiring an explicit pipe. Internally an allocated
1153  *    pipe is cached in the process, and reused during the lifetime of
1154  *    that process.
1155  *
1156  */
1157 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1158 			       splice_direct_actor *actor)
1159 {
1160 	struct pipe_inode_info *pipe;
1161 	long ret, bytes;
1162 	umode_t i_mode;
1163 	size_t len;
1164 	int i, flags, more;
1165 
1166 	/*
1167 	 * We require the input being a regular file, as we don't want to
1168 	 * randomly drop data for eg socket -> socket splicing. Use the
1169 	 * piped splicing for that!
1170 	 */
1171 	i_mode = file_inode(in)->i_mode;
1172 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1173 		return -EINVAL;
1174 
1175 	/*
1176 	 * neither in nor out is a pipe, setup an internal pipe attached to
1177 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1178 	 */
1179 	pipe = current->splice_pipe;
1180 	if (unlikely(!pipe)) {
1181 		pipe = alloc_pipe_info();
1182 		if (!pipe)
1183 			return -ENOMEM;
1184 
1185 		/*
1186 		 * We don't have an immediate reader, but we'll read the stuff
1187 		 * out of the pipe right after the splice_to_pipe(). So set
1188 		 * PIPE_READERS appropriately.
1189 		 */
1190 		pipe->readers = 1;
1191 
1192 		current->splice_pipe = pipe;
1193 	}
1194 
1195 	/*
1196 	 * Do the splice.
1197 	 */
1198 	ret = 0;
1199 	bytes = 0;
1200 	len = sd->total_len;
1201 	flags = sd->flags;
1202 
1203 	/*
1204 	 * Don't block on output, we have to drain the direct pipe.
1205 	 */
1206 	sd->flags &= ~SPLICE_F_NONBLOCK;
1207 	more = sd->flags & SPLICE_F_MORE;
1208 
1209 	while (len) {
1210 		size_t read_len;
1211 		loff_t pos = sd->pos, prev_pos = pos;
1212 
1213 		ret = do_splice_to(in, &pos, pipe, len, flags);
1214 		if (unlikely(ret <= 0))
1215 			goto out_release;
1216 
1217 		read_len = ret;
1218 		sd->total_len = read_len;
1219 
1220 		/*
1221 		 * If more data is pending, set SPLICE_F_MORE
1222 		 * If this is the last data and SPLICE_F_MORE was not set
1223 		 * initially, clears it.
1224 		 */
1225 		if (read_len < len)
1226 			sd->flags |= SPLICE_F_MORE;
1227 		else if (!more)
1228 			sd->flags &= ~SPLICE_F_MORE;
1229 		/*
1230 		 * NOTE: nonblocking mode only applies to the input. We
1231 		 * must not do the output in nonblocking mode as then we
1232 		 * could get stuck data in the internal pipe:
1233 		 */
1234 		ret = actor(pipe, sd);
1235 		if (unlikely(ret <= 0)) {
1236 			sd->pos = prev_pos;
1237 			goto out_release;
1238 		}
1239 
1240 		bytes += ret;
1241 		len -= ret;
1242 		sd->pos = pos;
1243 
1244 		if (ret < read_len) {
1245 			sd->pos = prev_pos + ret;
1246 			goto out_release;
1247 		}
1248 	}
1249 
1250 done:
1251 	pipe->nrbufs = pipe->curbuf = 0;
1252 	file_accessed(in);
1253 	return bytes;
1254 
1255 out_release:
1256 	/*
1257 	 * If we did an incomplete transfer we must release
1258 	 * the pipe buffers in question:
1259 	 */
1260 	for (i = 0; i < pipe->buffers; i++) {
1261 		struct pipe_buffer *buf = pipe->bufs + i;
1262 
1263 		if (buf->ops) {
1264 			buf->ops->release(pipe, buf);
1265 			buf->ops = NULL;
1266 		}
1267 	}
1268 
1269 	if (!bytes)
1270 		bytes = ret;
1271 
1272 	goto done;
1273 }
1274 EXPORT_SYMBOL(splice_direct_to_actor);
1275 
1276 static int direct_splice_actor(struct pipe_inode_info *pipe,
1277 			       struct splice_desc *sd)
1278 {
1279 	struct file *file = sd->u.file;
1280 
1281 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1282 			      sd->flags);
1283 }
1284 
1285 /**
1286  * do_splice_direct - splices data directly between two files
1287  * @in:		file to splice from
1288  * @ppos:	input file offset
1289  * @out:	file to splice to
1290  * @opos:	output file offset
1291  * @len:	number of bytes to splice
1292  * @flags:	splice modifier flags
1293  *
1294  * Description:
1295  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1296  *    doing it in the application would incur an extra system call
1297  *    (splice in + splice out, as compared to just sendfile()). So this helper
1298  *    can splice directly through a process-private pipe.
1299  *
1300  */
1301 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1302 		      loff_t *opos, size_t len, unsigned int flags)
1303 {
1304 	struct splice_desc sd = {
1305 		.len		= len,
1306 		.total_len	= len,
1307 		.flags		= flags,
1308 		.pos		= *ppos,
1309 		.u.file		= out,
1310 		.opos		= opos,
1311 	};
1312 	long ret;
1313 
1314 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1315 		return -EBADF;
1316 
1317 	if (unlikely(out->f_flags & O_APPEND))
1318 		return -EINVAL;
1319 
1320 	ret = rw_verify_area(WRITE, out, opos, len);
1321 	if (unlikely(ret < 0))
1322 		return ret;
1323 
1324 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1325 	if (ret > 0)
1326 		*ppos = sd.pos;
1327 
1328 	return ret;
1329 }
1330 EXPORT_SYMBOL(do_splice_direct);
1331 
1332 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1333 			       struct pipe_inode_info *opipe,
1334 			       size_t len, unsigned int flags);
1335 
1336 /*
1337  * Determine where to splice to/from.
1338  */
1339 static long do_splice(struct file *in, loff_t __user *off_in,
1340 		      struct file *out, loff_t __user *off_out,
1341 		      size_t len, unsigned int flags)
1342 {
1343 	struct pipe_inode_info *ipipe;
1344 	struct pipe_inode_info *opipe;
1345 	loff_t offset;
1346 	long ret;
1347 
1348 	ipipe = get_pipe_info(in);
1349 	opipe = get_pipe_info(out);
1350 
1351 	if (ipipe && opipe) {
1352 		if (off_in || off_out)
1353 			return -ESPIPE;
1354 
1355 		if (!(in->f_mode & FMODE_READ))
1356 			return -EBADF;
1357 
1358 		if (!(out->f_mode & FMODE_WRITE))
1359 			return -EBADF;
1360 
1361 		/* Splicing to self would be fun, but... */
1362 		if (ipipe == opipe)
1363 			return -EINVAL;
1364 
1365 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1366 	}
1367 
1368 	if (ipipe) {
1369 		if (off_in)
1370 			return -ESPIPE;
1371 		if (off_out) {
1372 			if (!(out->f_mode & FMODE_PWRITE))
1373 				return -EINVAL;
1374 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1375 				return -EFAULT;
1376 		} else {
1377 			offset = out->f_pos;
1378 		}
1379 
1380 		if (unlikely(!(out->f_mode & FMODE_WRITE)))
1381 			return -EBADF;
1382 
1383 		if (unlikely(out->f_flags & O_APPEND))
1384 			return -EINVAL;
1385 
1386 		ret = rw_verify_area(WRITE, out, &offset, len);
1387 		if (unlikely(ret < 0))
1388 			return ret;
1389 
1390 		file_start_write(out);
1391 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1392 		file_end_write(out);
1393 
1394 		if (!off_out)
1395 			out->f_pos = offset;
1396 		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1397 			ret = -EFAULT;
1398 
1399 		return ret;
1400 	}
1401 
1402 	if (opipe) {
1403 		if (off_out)
1404 			return -ESPIPE;
1405 		if (off_in) {
1406 			if (!(in->f_mode & FMODE_PREAD))
1407 				return -EINVAL;
1408 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1409 				return -EFAULT;
1410 		} else {
1411 			offset = in->f_pos;
1412 		}
1413 
1414 		ret = do_splice_to(in, &offset, opipe, len, flags);
1415 
1416 		if (!off_in)
1417 			in->f_pos = offset;
1418 		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1419 			ret = -EFAULT;
1420 
1421 		return ret;
1422 	}
1423 
1424 	return -EINVAL;
1425 }
1426 
1427 /*
1428  * Map an iov into an array of pages and offset/length tupples. With the
1429  * partial_page structure, we can map several non-contiguous ranges into
1430  * our ones pages[] map instead of splitting that operation into pieces.
1431  * Could easily be exported as a generic helper for other users, in which
1432  * case one would probably want to add a 'max_nr_pages' parameter as well.
1433  */
1434 static int get_iovec_page_array(const struct iovec __user *iov,
1435 				unsigned int nr_vecs, struct page **pages,
1436 				struct partial_page *partial, bool aligned,
1437 				unsigned int pipe_buffers)
1438 {
1439 	int buffers = 0, error = 0;
1440 
1441 	while (nr_vecs) {
1442 		unsigned long off, npages;
1443 		struct iovec entry;
1444 		void __user *base;
1445 		size_t len;
1446 		int i;
1447 
1448 		error = -EFAULT;
1449 		if (copy_from_user(&entry, iov, sizeof(entry)))
1450 			break;
1451 
1452 		base = entry.iov_base;
1453 		len = entry.iov_len;
1454 
1455 		/*
1456 		 * Sanity check this iovec. 0 read succeeds.
1457 		 */
1458 		error = 0;
1459 		if (unlikely(!len))
1460 			break;
1461 		error = -EFAULT;
1462 		if (!access_ok(VERIFY_READ, base, len))
1463 			break;
1464 
1465 		/*
1466 		 * Get this base offset and number of pages, then map
1467 		 * in the user pages.
1468 		 */
1469 		off = (unsigned long) base & ~PAGE_MASK;
1470 
1471 		/*
1472 		 * If asked for alignment, the offset must be zero and the
1473 		 * length a multiple of the PAGE_SIZE.
1474 		 */
1475 		error = -EINVAL;
1476 		if (aligned && (off || len & ~PAGE_MASK))
1477 			break;
1478 
1479 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1480 		if (npages > pipe_buffers - buffers)
1481 			npages = pipe_buffers - buffers;
1482 
1483 		error = get_user_pages_fast((unsigned long)base, npages,
1484 					0, &pages[buffers]);
1485 
1486 		if (unlikely(error <= 0))
1487 			break;
1488 
1489 		/*
1490 		 * Fill this contiguous range into the partial page map.
1491 		 */
1492 		for (i = 0; i < error; i++) {
1493 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1494 
1495 			partial[buffers].offset = off;
1496 			partial[buffers].len = plen;
1497 
1498 			off = 0;
1499 			len -= plen;
1500 			buffers++;
1501 		}
1502 
1503 		/*
1504 		 * We didn't complete this iov, stop here since it probably
1505 		 * means we have to move some of this into a pipe to
1506 		 * be able to continue.
1507 		 */
1508 		if (len)
1509 			break;
1510 
1511 		/*
1512 		 * Don't continue if we mapped fewer pages than we asked for,
1513 		 * or if we mapped the max number of pages that we have
1514 		 * room for.
1515 		 */
1516 		if (error < npages || buffers == pipe_buffers)
1517 			break;
1518 
1519 		nr_vecs--;
1520 		iov++;
1521 	}
1522 
1523 	if (buffers)
1524 		return buffers;
1525 
1526 	return error;
1527 }
1528 
1529 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1530 			struct splice_desc *sd)
1531 {
1532 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1533 	return n == sd->len ? n : -EFAULT;
1534 }
1535 
1536 /*
1537  * For lack of a better implementation, implement vmsplice() to userspace
1538  * as a simple copy of the pipes pages to the user iov.
1539  */
1540 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1541 			     unsigned long nr_segs, unsigned int flags)
1542 {
1543 	struct pipe_inode_info *pipe;
1544 	struct splice_desc sd;
1545 	long ret;
1546 	struct iovec iovstack[UIO_FASTIOV];
1547 	struct iovec *iov = iovstack;
1548 	struct iov_iter iter;
1549 
1550 	pipe = get_pipe_info(file);
1551 	if (!pipe)
1552 		return -EBADF;
1553 
1554 	ret = import_iovec(READ, uiov, nr_segs,
1555 			   ARRAY_SIZE(iovstack), &iov, &iter);
1556 	if (ret < 0)
1557 		return ret;
1558 
1559 	sd.total_len = iov_iter_count(&iter);
1560 	sd.len = 0;
1561 	sd.flags = flags;
1562 	sd.u.data = &iter;
1563 	sd.pos = 0;
1564 
1565 	if (sd.total_len) {
1566 		pipe_lock(pipe);
1567 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1568 		pipe_unlock(pipe);
1569 	}
1570 
1571 	kfree(iov);
1572 	return ret;
1573 }
1574 
1575 /*
1576  * vmsplice splices a user address range into a pipe. It can be thought of
1577  * as splice-from-memory, where the regular splice is splice-from-file (or
1578  * to file). In both cases the output is a pipe, naturally.
1579  */
1580 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1581 			     unsigned long nr_segs, unsigned int flags)
1582 {
1583 	struct pipe_inode_info *pipe;
1584 	struct page *pages[PIPE_DEF_BUFFERS];
1585 	struct partial_page partial[PIPE_DEF_BUFFERS];
1586 	struct splice_pipe_desc spd = {
1587 		.pages = pages,
1588 		.partial = partial,
1589 		.nr_pages_max = PIPE_DEF_BUFFERS,
1590 		.flags = flags,
1591 		.ops = &user_page_pipe_buf_ops,
1592 		.spd_release = spd_release_page,
1593 	};
1594 	long ret;
1595 
1596 	pipe = get_pipe_info(file);
1597 	if (!pipe)
1598 		return -EBADF;
1599 
1600 	if (splice_grow_spd(pipe, &spd))
1601 		return -ENOMEM;
1602 
1603 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1604 					    spd.partial, false,
1605 					    spd.nr_pages_max);
1606 	if (spd.nr_pages <= 0)
1607 		ret = spd.nr_pages;
1608 	else
1609 		ret = splice_to_pipe(pipe, &spd);
1610 
1611 	splice_shrink_spd(&spd);
1612 	return ret;
1613 }
1614 
1615 /*
1616  * Note that vmsplice only really supports true splicing _from_ user memory
1617  * to a pipe, not the other way around. Splicing from user memory is a simple
1618  * operation that can be supported without any funky alignment restrictions
1619  * or nasty vm tricks. We simply map in the user memory and fill them into
1620  * a pipe. The reverse isn't quite as easy, though. There are two possible
1621  * solutions for that:
1622  *
1623  *	- memcpy() the data internally, at which point we might as well just
1624  *	  do a regular read() on the buffer anyway.
1625  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1626  *	  has restriction limitations on both ends of the pipe).
1627  *
1628  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1629  *
1630  */
1631 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1632 		unsigned long, nr_segs, unsigned int, flags)
1633 {
1634 	struct fd f;
1635 	long error;
1636 
1637 	if (unlikely(nr_segs > UIO_MAXIOV))
1638 		return -EINVAL;
1639 	else if (unlikely(!nr_segs))
1640 		return 0;
1641 
1642 	error = -EBADF;
1643 	f = fdget(fd);
1644 	if (f.file) {
1645 		if (f.file->f_mode & FMODE_WRITE)
1646 			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1647 		else if (f.file->f_mode & FMODE_READ)
1648 			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1649 
1650 		fdput(f);
1651 	}
1652 
1653 	return error;
1654 }
1655 
1656 #ifdef CONFIG_COMPAT
1657 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1658 		    unsigned int, nr_segs, unsigned int, flags)
1659 {
1660 	unsigned i;
1661 	struct iovec __user *iov;
1662 	if (nr_segs > UIO_MAXIOV)
1663 		return -EINVAL;
1664 	iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1665 	for (i = 0; i < nr_segs; i++) {
1666 		struct compat_iovec v;
1667 		if (get_user(v.iov_base, &iov32[i].iov_base) ||
1668 		    get_user(v.iov_len, &iov32[i].iov_len) ||
1669 		    put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1670 		    put_user(v.iov_len, &iov[i].iov_len))
1671 			return -EFAULT;
1672 	}
1673 	return sys_vmsplice(fd, iov, nr_segs, flags);
1674 }
1675 #endif
1676 
1677 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1678 		int, fd_out, loff_t __user *, off_out,
1679 		size_t, len, unsigned int, flags)
1680 {
1681 	struct fd in, out;
1682 	long error;
1683 
1684 	if (unlikely(!len))
1685 		return 0;
1686 
1687 	error = -EBADF;
1688 	in = fdget(fd_in);
1689 	if (in.file) {
1690 		if (in.file->f_mode & FMODE_READ) {
1691 			out = fdget(fd_out);
1692 			if (out.file) {
1693 				if (out.file->f_mode & FMODE_WRITE)
1694 					error = do_splice(in.file, off_in,
1695 							  out.file, off_out,
1696 							  len, flags);
1697 				fdput(out);
1698 			}
1699 		}
1700 		fdput(in);
1701 	}
1702 	return error;
1703 }
1704 
1705 /*
1706  * Make sure there's data to read. Wait for input if we can, otherwise
1707  * return an appropriate error.
1708  */
1709 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1710 {
1711 	int ret;
1712 
1713 	/*
1714 	 * Check ->nrbufs without the inode lock first. This function
1715 	 * is speculative anyways, so missing one is ok.
1716 	 */
1717 	if (pipe->nrbufs)
1718 		return 0;
1719 
1720 	ret = 0;
1721 	pipe_lock(pipe);
1722 
1723 	while (!pipe->nrbufs) {
1724 		if (signal_pending(current)) {
1725 			ret = -ERESTARTSYS;
1726 			break;
1727 		}
1728 		if (!pipe->writers)
1729 			break;
1730 		if (!pipe->waiting_writers) {
1731 			if (flags & SPLICE_F_NONBLOCK) {
1732 				ret = -EAGAIN;
1733 				break;
1734 			}
1735 		}
1736 		pipe_wait(pipe);
1737 	}
1738 
1739 	pipe_unlock(pipe);
1740 	return ret;
1741 }
1742 
1743 /*
1744  * Make sure there's writeable room. Wait for room if we can, otherwise
1745  * return an appropriate error.
1746  */
1747 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1748 {
1749 	int ret;
1750 
1751 	/*
1752 	 * Check ->nrbufs without the inode lock first. This function
1753 	 * is speculative anyways, so missing one is ok.
1754 	 */
1755 	if (pipe->nrbufs < pipe->buffers)
1756 		return 0;
1757 
1758 	ret = 0;
1759 	pipe_lock(pipe);
1760 
1761 	while (pipe->nrbufs >= pipe->buffers) {
1762 		if (!pipe->readers) {
1763 			send_sig(SIGPIPE, current, 0);
1764 			ret = -EPIPE;
1765 			break;
1766 		}
1767 		if (flags & SPLICE_F_NONBLOCK) {
1768 			ret = -EAGAIN;
1769 			break;
1770 		}
1771 		if (signal_pending(current)) {
1772 			ret = -ERESTARTSYS;
1773 			break;
1774 		}
1775 		pipe->waiting_writers++;
1776 		pipe_wait(pipe);
1777 		pipe->waiting_writers--;
1778 	}
1779 
1780 	pipe_unlock(pipe);
1781 	return ret;
1782 }
1783 
1784 /*
1785  * Splice contents of ipipe to opipe.
1786  */
1787 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1788 			       struct pipe_inode_info *opipe,
1789 			       size_t len, unsigned int flags)
1790 {
1791 	struct pipe_buffer *ibuf, *obuf;
1792 	int ret = 0, nbuf;
1793 	bool input_wakeup = false;
1794 
1795 
1796 retry:
1797 	ret = ipipe_prep(ipipe, flags);
1798 	if (ret)
1799 		return ret;
1800 
1801 	ret = opipe_prep(opipe, flags);
1802 	if (ret)
1803 		return ret;
1804 
1805 	/*
1806 	 * Potential ABBA deadlock, work around it by ordering lock
1807 	 * grabbing by pipe info address. Otherwise two different processes
1808 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1809 	 */
1810 	pipe_double_lock(ipipe, opipe);
1811 
1812 	do {
1813 		if (!opipe->readers) {
1814 			send_sig(SIGPIPE, current, 0);
1815 			if (!ret)
1816 				ret = -EPIPE;
1817 			break;
1818 		}
1819 
1820 		if (!ipipe->nrbufs && !ipipe->writers)
1821 			break;
1822 
1823 		/*
1824 		 * Cannot make any progress, because either the input
1825 		 * pipe is empty or the output pipe is full.
1826 		 */
1827 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1828 			/* Already processed some buffers, break */
1829 			if (ret)
1830 				break;
1831 
1832 			if (flags & SPLICE_F_NONBLOCK) {
1833 				ret = -EAGAIN;
1834 				break;
1835 			}
1836 
1837 			/*
1838 			 * We raced with another reader/writer and haven't
1839 			 * managed to process any buffers.  A zero return
1840 			 * value means EOF, so retry instead.
1841 			 */
1842 			pipe_unlock(ipipe);
1843 			pipe_unlock(opipe);
1844 			goto retry;
1845 		}
1846 
1847 		ibuf = ipipe->bufs + ipipe->curbuf;
1848 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1849 		obuf = opipe->bufs + nbuf;
1850 
1851 		if (len >= ibuf->len) {
1852 			/*
1853 			 * Simply move the whole buffer from ipipe to opipe
1854 			 */
1855 			*obuf = *ibuf;
1856 			ibuf->ops = NULL;
1857 			opipe->nrbufs++;
1858 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1859 			ipipe->nrbufs--;
1860 			input_wakeup = true;
1861 		} else {
1862 			/*
1863 			 * Get a reference to this pipe buffer,
1864 			 * so we can copy the contents over.
1865 			 */
1866 			ibuf->ops->get(ipipe, ibuf);
1867 			*obuf = *ibuf;
1868 
1869 			/*
1870 			 * Don't inherit the gift flag, we need to
1871 			 * prevent multiple steals of this page.
1872 			 */
1873 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1874 
1875 			obuf->len = len;
1876 			opipe->nrbufs++;
1877 			ibuf->offset += obuf->len;
1878 			ibuf->len -= obuf->len;
1879 		}
1880 		ret += obuf->len;
1881 		len -= obuf->len;
1882 	} while (len);
1883 
1884 	pipe_unlock(ipipe);
1885 	pipe_unlock(opipe);
1886 
1887 	/*
1888 	 * If we put data in the output pipe, wakeup any potential readers.
1889 	 */
1890 	if (ret > 0)
1891 		wakeup_pipe_readers(opipe);
1892 
1893 	if (input_wakeup)
1894 		wakeup_pipe_writers(ipipe);
1895 
1896 	return ret;
1897 }
1898 
1899 /*
1900  * Link contents of ipipe to opipe.
1901  */
1902 static int link_pipe(struct pipe_inode_info *ipipe,
1903 		     struct pipe_inode_info *opipe,
1904 		     size_t len, unsigned int flags)
1905 {
1906 	struct pipe_buffer *ibuf, *obuf;
1907 	int ret = 0, i = 0, nbuf;
1908 
1909 	/*
1910 	 * Potential ABBA deadlock, work around it by ordering lock
1911 	 * grabbing by pipe info address. Otherwise two different processes
1912 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1913 	 */
1914 	pipe_double_lock(ipipe, opipe);
1915 
1916 	do {
1917 		if (!opipe->readers) {
1918 			send_sig(SIGPIPE, current, 0);
1919 			if (!ret)
1920 				ret = -EPIPE;
1921 			break;
1922 		}
1923 
1924 		/*
1925 		 * If we have iterated all input buffers or ran out of
1926 		 * output room, break.
1927 		 */
1928 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1929 			break;
1930 
1931 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1932 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1933 
1934 		/*
1935 		 * Get a reference to this pipe buffer,
1936 		 * so we can copy the contents over.
1937 		 */
1938 		ibuf->ops->get(ipipe, ibuf);
1939 
1940 		obuf = opipe->bufs + nbuf;
1941 		*obuf = *ibuf;
1942 
1943 		/*
1944 		 * Don't inherit the gift flag, we need to
1945 		 * prevent multiple steals of this page.
1946 		 */
1947 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1948 
1949 		if (obuf->len > len)
1950 			obuf->len = len;
1951 
1952 		opipe->nrbufs++;
1953 		ret += obuf->len;
1954 		len -= obuf->len;
1955 		i++;
1956 	} while (len);
1957 
1958 	/*
1959 	 * return EAGAIN if we have the potential of some data in the
1960 	 * future, otherwise just return 0
1961 	 */
1962 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1963 		ret = -EAGAIN;
1964 
1965 	pipe_unlock(ipipe);
1966 	pipe_unlock(opipe);
1967 
1968 	/*
1969 	 * If we put data in the output pipe, wakeup any potential readers.
1970 	 */
1971 	if (ret > 0)
1972 		wakeup_pipe_readers(opipe);
1973 
1974 	return ret;
1975 }
1976 
1977 /*
1978  * This is a tee(1) implementation that works on pipes. It doesn't copy
1979  * any data, it simply references the 'in' pages on the 'out' pipe.
1980  * The 'flags' used are the SPLICE_F_* variants, currently the only
1981  * applicable one is SPLICE_F_NONBLOCK.
1982  */
1983 static long do_tee(struct file *in, struct file *out, size_t len,
1984 		   unsigned int flags)
1985 {
1986 	struct pipe_inode_info *ipipe = get_pipe_info(in);
1987 	struct pipe_inode_info *opipe = get_pipe_info(out);
1988 	int ret = -EINVAL;
1989 
1990 	/*
1991 	 * Duplicate the contents of ipipe to opipe without actually
1992 	 * copying the data.
1993 	 */
1994 	if (ipipe && opipe && ipipe != opipe) {
1995 		/*
1996 		 * Keep going, unless we encounter an error. The ipipe/opipe
1997 		 * ordering doesn't really matter.
1998 		 */
1999 		ret = ipipe_prep(ipipe, flags);
2000 		if (!ret) {
2001 			ret = opipe_prep(opipe, flags);
2002 			if (!ret)
2003 				ret = link_pipe(ipipe, opipe, len, flags);
2004 		}
2005 	}
2006 
2007 	return ret;
2008 }
2009 
2010 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2011 {
2012 	struct fd in;
2013 	int error;
2014 
2015 	if (unlikely(!len))
2016 		return 0;
2017 
2018 	error = -EBADF;
2019 	in = fdget(fdin);
2020 	if (in.file) {
2021 		if (in.file->f_mode & FMODE_READ) {
2022 			struct fd out = fdget(fdout);
2023 			if (out.file) {
2024 				if (out.file->f_mode & FMODE_WRITE)
2025 					error = do_tee(in.file, out.file,
2026 							len, flags);
2027 				fdput(out);
2028 			}
2029 		}
2030  		fdput(in);
2031  	}
2032 
2033 	return error;
2034 }
2035