1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/export.h> 29 #include <linux/syscalls.h> 30 #include <linux/uio.h> 31 #include <linux/security.h> 32 #include <linux/gfp.h> 33 #include <linux/socket.h> 34 #include <linux/compat.h> 35 #include "internal.h" 36 37 /* 38 * Attempt to steal a page from a pipe buffer. This should perhaps go into 39 * a vm helper function, it's already simplified quite a bit by the 40 * addition of remove_mapping(). If success is returned, the caller may 41 * attempt to reuse this page for another destination. 42 */ 43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 44 struct pipe_buffer *buf) 45 { 46 struct page *page = buf->page; 47 struct address_space *mapping; 48 49 lock_page(page); 50 51 mapping = page_mapping(page); 52 if (mapping) { 53 WARN_ON(!PageUptodate(page)); 54 55 /* 56 * At least for ext2 with nobh option, we need to wait on 57 * writeback completing on this page, since we'll remove it 58 * from the pagecache. Otherwise truncate wont wait on the 59 * page, allowing the disk blocks to be reused by someone else 60 * before we actually wrote our data to them. fs corruption 61 * ensues. 62 */ 63 wait_on_page_writeback(page); 64 65 if (page_has_private(page) && 66 !try_to_release_page(page, GFP_KERNEL)) 67 goto out_unlock; 68 69 /* 70 * If we succeeded in removing the mapping, set LRU flag 71 * and return good. 72 */ 73 if (remove_mapping(mapping, page)) { 74 buf->flags |= PIPE_BUF_FLAG_LRU; 75 return 0; 76 } 77 } 78 79 /* 80 * Raced with truncate or failed to remove page from current 81 * address space, unlock and return failure. 82 */ 83 out_unlock: 84 unlock_page(page); 85 return 1; 86 } 87 88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 89 struct pipe_buffer *buf) 90 { 91 page_cache_release(buf->page); 92 buf->flags &= ~PIPE_BUF_FLAG_LRU; 93 } 94 95 /* 96 * Check whether the contents of buf is OK to access. Since the content 97 * is a page cache page, IO may be in flight. 98 */ 99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 100 struct pipe_buffer *buf) 101 { 102 struct page *page = buf->page; 103 int err; 104 105 if (!PageUptodate(page)) { 106 lock_page(page); 107 108 /* 109 * Page got truncated/unhashed. This will cause a 0-byte 110 * splice, if this is the first page. 111 */ 112 if (!page->mapping) { 113 err = -ENODATA; 114 goto error; 115 } 116 117 /* 118 * Uh oh, read-error from disk. 119 */ 120 if (!PageUptodate(page)) { 121 err = -EIO; 122 goto error; 123 } 124 125 /* 126 * Page is ok afterall, we are done. 127 */ 128 unlock_page(page); 129 } 130 131 return 0; 132 error: 133 unlock_page(page); 134 return err; 135 } 136 137 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 138 .can_merge = 0, 139 .confirm = page_cache_pipe_buf_confirm, 140 .release = page_cache_pipe_buf_release, 141 .steal = page_cache_pipe_buf_steal, 142 .get = generic_pipe_buf_get, 143 }; 144 145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 146 struct pipe_buffer *buf) 147 { 148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 149 return 1; 150 151 buf->flags |= PIPE_BUF_FLAG_LRU; 152 return generic_pipe_buf_steal(pipe, buf); 153 } 154 155 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 156 .can_merge = 0, 157 .confirm = generic_pipe_buf_confirm, 158 .release = page_cache_pipe_buf_release, 159 .steal = user_page_pipe_buf_steal, 160 .get = generic_pipe_buf_get, 161 }; 162 163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 164 { 165 smp_mb(); 166 if (waitqueue_active(&pipe->wait)) 167 wake_up_interruptible(&pipe->wait); 168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 169 } 170 171 /** 172 * splice_to_pipe - fill passed data into a pipe 173 * @pipe: pipe to fill 174 * @spd: data to fill 175 * 176 * Description: 177 * @spd contains a map of pages and len/offset tuples, along with 178 * the struct pipe_buf_operations associated with these pages. This 179 * function will link that data to the pipe. 180 * 181 */ 182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 183 struct splice_pipe_desc *spd) 184 { 185 unsigned int spd_pages = spd->nr_pages; 186 int ret, do_wakeup, page_nr; 187 188 ret = 0; 189 do_wakeup = 0; 190 page_nr = 0; 191 192 pipe_lock(pipe); 193 194 for (;;) { 195 if (!pipe->readers) { 196 send_sig(SIGPIPE, current, 0); 197 if (!ret) 198 ret = -EPIPE; 199 break; 200 } 201 202 if (pipe->nrbufs < pipe->buffers) { 203 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 204 struct pipe_buffer *buf = pipe->bufs + newbuf; 205 206 buf->page = spd->pages[page_nr]; 207 buf->offset = spd->partial[page_nr].offset; 208 buf->len = spd->partial[page_nr].len; 209 buf->private = spd->partial[page_nr].private; 210 buf->ops = spd->ops; 211 if (spd->flags & SPLICE_F_GIFT) 212 buf->flags |= PIPE_BUF_FLAG_GIFT; 213 214 pipe->nrbufs++; 215 page_nr++; 216 ret += buf->len; 217 218 if (pipe->files) 219 do_wakeup = 1; 220 221 if (!--spd->nr_pages) 222 break; 223 if (pipe->nrbufs < pipe->buffers) 224 continue; 225 226 break; 227 } 228 229 if (spd->flags & SPLICE_F_NONBLOCK) { 230 if (!ret) 231 ret = -EAGAIN; 232 break; 233 } 234 235 if (signal_pending(current)) { 236 if (!ret) 237 ret = -ERESTARTSYS; 238 break; 239 } 240 241 if (do_wakeup) { 242 smp_mb(); 243 if (waitqueue_active(&pipe->wait)) 244 wake_up_interruptible_sync(&pipe->wait); 245 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 246 do_wakeup = 0; 247 } 248 249 pipe->waiting_writers++; 250 pipe_wait(pipe); 251 pipe->waiting_writers--; 252 } 253 254 pipe_unlock(pipe); 255 256 if (do_wakeup) 257 wakeup_pipe_readers(pipe); 258 259 while (page_nr < spd_pages) 260 spd->spd_release(spd, page_nr++); 261 262 return ret; 263 } 264 EXPORT_SYMBOL_GPL(splice_to_pipe); 265 266 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 267 { 268 page_cache_release(spd->pages[i]); 269 } 270 271 /* 272 * Check if we need to grow the arrays holding pages and partial page 273 * descriptions. 274 */ 275 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 276 { 277 unsigned int buffers = ACCESS_ONCE(pipe->buffers); 278 279 spd->nr_pages_max = buffers; 280 if (buffers <= PIPE_DEF_BUFFERS) 281 return 0; 282 283 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL); 284 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL); 285 286 if (spd->pages && spd->partial) 287 return 0; 288 289 kfree(spd->pages); 290 kfree(spd->partial); 291 return -ENOMEM; 292 } 293 294 void splice_shrink_spd(struct splice_pipe_desc *spd) 295 { 296 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 297 return; 298 299 kfree(spd->pages); 300 kfree(spd->partial); 301 } 302 303 static int 304 __generic_file_splice_read(struct file *in, loff_t *ppos, 305 struct pipe_inode_info *pipe, size_t len, 306 unsigned int flags) 307 { 308 struct address_space *mapping = in->f_mapping; 309 unsigned int loff, nr_pages, req_pages; 310 struct page *pages[PIPE_DEF_BUFFERS]; 311 struct partial_page partial[PIPE_DEF_BUFFERS]; 312 struct page *page; 313 pgoff_t index, end_index; 314 loff_t isize; 315 int error, page_nr; 316 struct splice_pipe_desc spd = { 317 .pages = pages, 318 .partial = partial, 319 .nr_pages_max = PIPE_DEF_BUFFERS, 320 .flags = flags, 321 .ops = &page_cache_pipe_buf_ops, 322 .spd_release = spd_release_page, 323 }; 324 325 if (splice_grow_spd(pipe, &spd)) 326 return -ENOMEM; 327 328 index = *ppos >> PAGE_CACHE_SHIFT; 329 loff = *ppos & ~PAGE_CACHE_MASK; 330 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 331 nr_pages = min(req_pages, spd.nr_pages_max); 332 333 /* 334 * Lookup the (hopefully) full range of pages we need. 335 */ 336 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages); 337 index += spd.nr_pages; 338 339 /* 340 * If find_get_pages_contig() returned fewer pages than we needed, 341 * readahead/allocate the rest and fill in the holes. 342 */ 343 if (spd.nr_pages < nr_pages) 344 page_cache_sync_readahead(mapping, &in->f_ra, in, 345 index, req_pages - spd.nr_pages); 346 347 error = 0; 348 while (spd.nr_pages < nr_pages) { 349 /* 350 * Page could be there, find_get_pages_contig() breaks on 351 * the first hole. 352 */ 353 page = find_get_page(mapping, index); 354 if (!page) { 355 /* 356 * page didn't exist, allocate one. 357 */ 358 page = page_cache_alloc_cold(mapping); 359 if (!page) 360 break; 361 362 error = add_to_page_cache_lru(page, mapping, index, 363 mapping_gfp_constraint(mapping, GFP_KERNEL)); 364 if (unlikely(error)) { 365 page_cache_release(page); 366 if (error == -EEXIST) 367 continue; 368 break; 369 } 370 /* 371 * add_to_page_cache() locks the page, unlock it 372 * to avoid convoluting the logic below even more. 373 */ 374 unlock_page(page); 375 } 376 377 spd.pages[spd.nr_pages++] = page; 378 index++; 379 } 380 381 /* 382 * Now loop over the map and see if we need to start IO on any 383 * pages, fill in the partial map, etc. 384 */ 385 index = *ppos >> PAGE_CACHE_SHIFT; 386 nr_pages = spd.nr_pages; 387 spd.nr_pages = 0; 388 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 389 unsigned int this_len; 390 391 if (!len) 392 break; 393 394 /* 395 * this_len is the max we'll use from this page 396 */ 397 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 398 page = spd.pages[page_nr]; 399 400 if (PageReadahead(page)) 401 page_cache_async_readahead(mapping, &in->f_ra, in, 402 page, index, req_pages - page_nr); 403 404 /* 405 * If the page isn't uptodate, we may need to start io on it 406 */ 407 if (!PageUptodate(page)) { 408 lock_page(page); 409 410 /* 411 * Page was truncated, or invalidated by the 412 * filesystem. Redo the find/create, but this time the 413 * page is kept locked, so there's no chance of another 414 * race with truncate/invalidate. 415 */ 416 if (!page->mapping) { 417 unlock_page(page); 418 page = find_or_create_page(mapping, index, 419 mapping_gfp_mask(mapping)); 420 421 if (!page) { 422 error = -ENOMEM; 423 break; 424 } 425 page_cache_release(spd.pages[page_nr]); 426 spd.pages[page_nr] = page; 427 } 428 /* 429 * page was already under io and is now done, great 430 */ 431 if (PageUptodate(page)) { 432 unlock_page(page); 433 goto fill_it; 434 } 435 436 /* 437 * need to read in the page 438 */ 439 error = mapping->a_ops->readpage(in, page); 440 if (unlikely(error)) { 441 /* 442 * We really should re-lookup the page here, 443 * but it complicates things a lot. Instead 444 * lets just do what we already stored, and 445 * we'll get it the next time we are called. 446 */ 447 if (error == AOP_TRUNCATED_PAGE) 448 error = 0; 449 450 break; 451 } 452 } 453 fill_it: 454 /* 455 * i_size must be checked after PageUptodate. 456 */ 457 isize = i_size_read(mapping->host); 458 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 459 if (unlikely(!isize || index > end_index)) 460 break; 461 462 /* 463 * if this is the last page, see if we need to shrink 464 * the length and stop 465 */ 466 if (end_index == index) { 467 unsigned int plen; 468 469 /* 470 * max good bytes in this page 471 */ 472 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 473 if (plen <= loff) 474 break; 475 476 /* 477 * force quit after adding this page 478 */ 479 this_len = min(this_len, plen - loff); 480 len = this_len; 481 } 482 483 spd.partial[page_nr].offset = loff; 484 spd.partial[page_nr].len = this_len; 485 len -= this_len; 486 loff = 0; 487 spd.nr_pages++; 488 index++; 489 } 490 491 /* 492 * Release any pages at the end, if we quit early. 'page_nr' is how far 493 * we got, 'nr_pages' is how many pages are in the map. 494 */ 495 while (page_nr < nr_pages) 496 page_cache_release(spd.pages[page_nr++]); 497 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 498 499 if (spd.nr_pages) 500 error = splice_to_pipe(pipe, &spd); 501 502 splice_shrink_spd(&spd); 503 return error; 504 } 505 506 /** 507 * generic_file_splice_read - splice data from file to a pipe 508 * @in: file to splice from 509 * @ppos: position in @in 510 * @pipe: pipe to splice to 511 * @len: number of bytes to splice 512 * @flags: splice modifier flags 513 * 514 * Description: 515 * Will read pages from given file and fill them into a pipe. Can be 516 * used as long as the address_space operations for the source implements 517 * a readpage() hook. 518 * 519 */ 520 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 521 struct pipe_inode_info *pipe, size_t len, 522 unsigned int flags) 523 { 524 loff_t isize, left; 525 int ret; 526 527 if (IS_DAX(in->f_mapping->host)) 528 return default_file_splice_read(in, ppos, pipe, len, flags); 529 530 isize = i_size_read(in->f_mapping->host); 531 if (unlikely(*ppos >= isize)) 532 return 0; 533 534 left = isize - *ppos; 535 if (unlikely(left < len)) 536 len = left; 537 538 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 539 if (ret > 0) { 540 *ppos += ret; 541 file_accessed(in); 542 } 543 544 return ret; 545 } 546 EXPORT_SYMBOL(generic_file_splice_read); 547 548 static const struct pipe_buf_operations default_pipe_buf_ops = { 549 .can_merge = 0, 550 .confirm = generic_pipe_buf_confirm, 551 .release = generic_pipe_buf_release, 552 .steal = generic_pipe_buf_steal, 553 .get = generic_pipe_buf_get, 554 }; 555 556 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe, 557 struct pipe_buffer *buf) 558 { 559 return 1; 560 } 561 562 /* Pipe buffer operations for a socket and similar. */ 563 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 564 .can_merge = 0, 565 .confirm = generic_pipe_buf_confirm, 566 .release = generic_pipe_buf_release, 567 .steal = generic_pipe_buf_nosteal, 568 .get = generic_pipe_buf_get, 569 }; 570 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 571 572 static ssize_t kernel_readv(struct file *file, const struct iovec *vec, 573 unsigned long vlen, loff_t offset) 574 { 575 mm_segment_t old_fs; 576 loff_t pos = offset; 577 ssize_t res; 578 579 old_fs = get_fs(); 580 set_fs(get_ds()); 581 /* The cast to a user pointer is valid due to the set_fs() */ 582 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos); 583 set_fs(old_fs); 584 585 return res; 586 } 587 588 ssize_t kernel_write(struct file *file, const char *buf, size_t count, 589 loff_t pos) 590 { 591 mm_segment_t old_fs; 592 ssize_t res; 593 594 old_fs = get_fs(); 595 set_fs(get_ds()); 596 /* The cast to a user pointer is valid due to the set_fs() */ 597 res = vfs_write(file, (__force const char __user *)buf, count, &pos); 598 set_fs(old_fs); 599 600 return res; 601 } 602 EXPORT_SYMBOL(kernel_write); 603 604 ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 605 struct pipe_inode_info *pipe, size_t len, 606 unsigned int flags) 607 { 608 unsigned int nr_pages; 609 unsigned int nr_freed; 610 size_t offset; 611 struct page *pages[PIPE_DEF_BUFFERS]; 612 struct partial_page partial[PIPE_DEF_BUFFERS]; 613 struct iovec *vec, __vec[PIPE_DEF_BUFFERS]; 614 ssize_t res; 615 size_t this_len; 616 int error; 617 int i; 618 struct splice_pipe_desc spd = { 619 .pages = pages, 620 .partial = partial, 621 .nr_pages_max = PIPE_DEF_BUFFERS, 622 .flags = flags, 623 .ops = &default_pipe_buf_ops, 624 .spd_release = spd_release_page, 625 }; 626 627 if (splice_grow_spd(pipe, &spd)) 628 return -ENOMEM; 629 630 res = -ENOMEM; 631 vec = __vec; 632 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) { 633 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL); 634 if (!vec) 635 goto shrink_ret; 636 } 637 638 offset = *ppos & ~PAGE_CACHE_MASK; 639 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 640 641 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) { 642 struct page *page; 643 644 page = alloc_page(GFP_USER); 645 error = -ENOMEM; 646 if (!page) 647 goto err; 648 649 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset); 650 vec[i].iov_base = (void __user *) page_address(page); 651 vec[i].iov_len = this_len; 652 spd.pages[i] = page; 653 spd.nr_pages++; 654 len -= this_len; 655 offset = 0; 656 } 657 658 res = kernel_readv(in, vec, spd.nr_pages, *ppos); 659 if (res < 0) { 660 error = res; 661 goto err; 662 } 663 664 error = 0; 665 if (!res) 666 goto err; 667 668 nr_freed = 0; 669 for (i = 0; i < spd.nr_pages; i++) { 670 this_len = min_t(size_t, vec[i].iov_len, res); 671 spd.partial[i].offset = 0; 672 spd.partial[i].len = this_len; 673 if (!this_len) { 674 __free_page(spd.pages[i]); 675 spd.pages[i] = NULL; 676 nr_freed++; 677 } 678 res -= this_len; 679 } 680 spd.nr_pages -= nr_freed; 681 682 res = splice_to_pipe(pipe, &spd); 683 if (res > 0) 684 *ppos += res; 685 686 shrink_ret: 687 if (vec != __vec) 688 kfree(vec); 689 splice_shrink_spd(&spd); 690 return res; 691 692 err: 693 for (i = 0; i < spd.nr_pages; i++) 694 __free_page(spd.pages[i]); 695 696 res = error; 697 goto shrink_ret; 698 } 699 EXPORT_SYMBOL(default_file_splice_read); 700 701 /* 702 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 703 * using sendpage(). Return the number of bytes sent. 704 */ 705 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 706 struct pipe_buffer *buf, struct splice_desc *sd) 707 { 708 struct file *file = sd->u.file; 709 loff_t pos = sd->pos; 710 int more; 711 712 if (!likely(file->f_op->sendpage)) 713 return -EINVAL; 714 715 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0; 716 717 if (sd->len < sd->total_len && pipe->nrbufs > 1) 718 more |= MSG_SENDPAGE_NOTLAST; 719 720 return file->f_op->sendpage(file, buf->page, buf->offset, 721 sd->len, &pos, more); 722 } 723 724 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 725 { 726 smp_mb(); 727 if (waitqueue_active(&pipe->wait)) 728 wake_up_interruptible(&pipe->wait); 729 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 730 } 731 732 /** 733 * splice_from_pipe_feed - feed available data from a pipe to a file 734 * @pipe: pipe to splice from 735 * @sd: information to @actor 736 * @actor: handler that splices the data 737 * 738 * Description: 739 * This function loops over the pipe and calls @actor to do the 740 * actual moving of a single struct pipe_buffer to the desired 741 * destination. It returns when there's no more buffers left in 742 * the pipe or if the requested number of bytes (@sd->total_len) 743 * have been copied. It returns a positive number (one) if the 744 * pipe needs to be filled with more data, zero if the required 745 * number of bytes have been copied and -errno on error. 746 * 747 * This, together with splice_from_pipe_{begin,end,next}, may be 748 * used to implement the functionality of __splice_from_pipe() when 749 * locking is required around copying the pipe buffers to the 750 * destination. 751 */ 752 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 753 splice_actor *actor) 754 { 755 int ret; 756 757 while (pipe->nrbufs) { 758 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 759 const struct pipe_buf_operations *ops = buf->ops; 760 761 sd->len = buf->len; 762 if (sd->len > sd->total_len) 763 sd->len = sd->total_len; 764 765 ret = buf->ops->confirm(pipe, buf); 766 if (unlikely(ret)) { 767 if (ret == -ENODATA) 768 ret = 0; 769 return ret; 770 } 771 772 ret = actor(pipe, buf, sd); 773 if (ret <= 0) 774 return ret; 775 776 buf->offset += ret; 777 buf->len -= ret; 778 779 sd->num_spliced += ret; 780 sd->len -= ret; 781 sd->pos += ret; 782 sd->total_len -= ret; 783 784 if (!buf->len) { 785 buf->ops = NULL; 786 ops->release(pipe, buf); 787 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 788 pipe->nrbufs--; 789 if (pipe->files) 790 sd->need_wakeup = true; 791 } 792 793 if (!sd->total_len) 794 return 0; 795 } 796 797 return 1; 798 } 799 800 /** 801 * splice_from_pipe_next - wait for some data to splice from 802 * @pipe: pipe to splice from 803 * @sd: information about the splice operation 804 * 805 * Description: 806 * This function will wait for some data and return a positive 807 * value (one) if pipe buffers are available. It will return zero 808 * or -errno if no more data needs to be spliced. 809 */ 810 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 811 { 812 while (!pipe->nrbufs) { 813 if (!pipe->writers) 814 return 0; 815 816 if (!pipe->waiting_writers && sd->num_spliced) 817 return 0; 818 819 if (sd->flags & SPLICE_F_NONBLOCK) 820 return -EAGAIN; 821 822 if (signal_pending(current)) 823 return -ERESTARTSYS; 824 825 if (sd->need_wakeup) { 826 wakeup_pipe_writers(pipe); 827 sd->need_wakeup = false; 828 } 829 830 pipe_wait(pipe); 831 } 832 833 return 1; 834 } 835 836 /** 837 * splice_from_pipe_begin - start splicing from pipe 838 * @sd: information about the splice operation 839 * 840 * Description: 841 * This function should be called before a loop containing 842 * splice_from_pipe_next() and splice_from_pipe_feed() to 843 * initialize the necessary fields of @sd. 844 */ 845 static void splice_from_pipe_begin(struct splice_desc *sd) 846 { 847 sd->num_spliced = 0; 848 sd->need_wakeup = false; 849 } 850 851 /** 852 * splice_from_pipe_end - finish splicing from pipe 853 * @pipe: pipe to splice from 854 * @sd: information about the splice operation 855 * 856 * Description: 857 * This function will wake up pipe writers if necessary. It should 858 * be called after a loop containing splice_from_pipe_next() and 859 * splice_from_pipe_feed(). 860 */ 861 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 862 { 863 if (sd->need_wakeup) 864 wakeup_pipe_writers(pipe); 865 } 866 867 /** 868 * __splice_from_pipe - splice data from a pipe to given actor 869 * @pipe: pipe to splice from 870 * @sd: information to @actor 871 * @actor: handler that splices the data 872 * 873 * Description: 874 * This function does little more than loop over the pipe and call 875 * @actor to do the actual moving of a single struct pipe_buffer to 876 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 877 * pipe_to_user. 878 * 879 */ 880 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 881 splice_actor *actor) 882 { 883 int ret; 884 885 splice_from_pipe_begin(sd); 886 do { 887 ret = splice_from_pipe_next(pipe, sd); 888 if (ret > 0) 889 ret = splice_from_pipe_feed(pipe, sd, actor); 890 } while (ret > 0); 891 splice_from_pipe_end(pipe, sd); 892 893 return sd->num_spliced ? sd->num_spliced : ret; 894 } 895 EXPORT_SYMBOL(__splice_from_pipe); 896 897 /** 898 * splice_from_pipe - splice data from a pipe to a file 899 * @pipe: pipe to splice from 900 * @out: file to splice to 901 * @ppos: position in @out 902 * @len: how many bytes to splice 903 * @flags: splice modifier flags 904 * @actor: handler that splices the data 905 * 906 * Description: 907 * See __splice_from_pipe. This function locks the pipe inode, 908 * otherwise it's identical to __splice_from_pipe(). 909 * 910 */ 911 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 912 loff_t *ppos, size_t len, unsigned int flags, 913 splice_actor *actor) 914 { 915 ssize_t ret; 916 struct splice_desc sd = { 917 .total_len = len, 918 .flags = flags, 919 .pos = *ppos, 920 .u.file = out, 921 }; 922 923 pipe_lock(pipe); 924 ret = __splice_from_pipe(pipe, &sd, actor); 925 pipe_unlock(pipe); 926 927 return ret; 928 } 929 930 /** 931 * iter_file_splice_write - splice data from a pipe to a file 932 * @pipe: pipe info 933 * @out: file to write to 934 * @ppos: position in @out 935 * @len: number of bytes to splice 936 * @flags: splice modifier flags 937 * 938 * Description: 939 * Will either move or copy pages (determined by @flags options) from 940 * the given pipe inode to the given file. 941 * This one is ->write_iter-based. 942 * 943 */ 944 ssize_t 945 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 946 loff_t *ppos, size_t len, unsigned int flags) 947 { 948 struct splice_desc sd = { 949 .total_len = len, 950 .flags = flags, 951 .pos = *ppos, 952 .u.file = out, 953 }; 954 int nbufs = pipe->buffers; 955 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 956 GFP_KERNEL); 957 ssize_t ret; 958 959 if (unlikely(!array)) 960 return -ENOMEM; 961 962 pipe_lock(pipe); 963 964 splice_from_pipe_begin(&sd); 965 while (sd.total_len) { 966 struct iov_iter from; 967 size_t left; 968 int n, idx; 969 970 ret = splice_from_pipe_next(pipe, &sd); 971 if (ret <= 0) 972 break; 973 974 if (unlikely(nbufs < pipe->buffers)) { 975 kfree(array); 976 nbufs = pipe->buffers; 977 array = kcalloc(nbufs, sizeof(struct bio_vec), 978 GFP_KERNEL); 979 if (!array) { 980 ret = -ENOMEM; 981 break; 982 } 983 } 984 985 /* build the vector */ 986 left = sd.total_len; 987 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) { 988 struct pipe_buffer *buf = pipe->bufs + idx; 989 size_t this_len = buf->len; 990 991 if (this_len > left) 992 this_len = left; 993 994 if (idx == pipe->buffers - 1) 995 idx = -1; 996 997 ret = buf->ops->confirm(pipe, buf); 998 if (unlikely(ret)) { 999 if (ret == -ENODATA) 1000 ret = 0; 1001 goto done; 1002 } 1003 1004 array[n].bv_page = buf->page; 1005 array[n].bv_len = this_len; 1006 array[n].bv_offset = buf->offset; 1007 left -= this_len; 1008 } 1009 1010 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n, 1011 sd.total_len - left); 1012 ret = vfs_iter_write(out, &from, &sd.pos); 1013 if (ret <= 0) 1014 break; 1015 1016 sd.num_spliced += ret; 1017 sd.total_len -= ret; 1018 *ppos = sd.pos; 1019 1020 /* dismiss the fully eaten buffers, adjust the partial one */ 1021 while (ret) { 1022 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 1023 if (ret >= buf->len) { 1024 const struct pipe_buf_operations *ops = buf->ops; 1025 ret -= buf->len; 1026 buf->len = 0; 1027 buf->ops = NULL; 1028 ops->release(pipe, buf); 1029 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 1030 pipe->nrbufs--; 1031 if (pipe->files) 1032 sd.need_wakeup = true; 1033 } else { 1034 buf->offset += ret; 1035 buf->len -= ret; 1036 ret = 0; 1037 } 1038 } 1039 } 1040 done: 1041 kfree(array); 1042 splice_from_pipe_end(pipe, &sd); 1043 1044 pipe_unlock(pipe); 1045 1046 if (sd.num_spliced) 1047 ret = sd.num_spliced; 1048 1049 return ret; 1050 } 1051 1052 EXPORT_SYMBOL(iter_file_splice_write); 1053 1054 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1055 struct splice_desc *sd) 1056 { 1057 int ret; 1058 void *data; 1059 loff_t tmp = sd->pos; 1060 1061 data = kmap(buf->page); 1062 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp); 1063 kunmap(buf->page); 1064 1065 return ret; 1066 } 1067 1068 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 1069 struct file *out, loff_t *ppos, 1070 size_t len, unsigned int flags) 1071 { 1072 ssize_t ret; 1073 1074 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 1075 if (ret > 0) 1076 *ppos += ret; 1077 1078 return ret; 1079 } 1080 1081 /** 1082 * generic_splice_sendpage - splice data from a pipe to a socket 1083 * @pipe: pipe to splice from 1084 * @out: socket to write to 1085 * @ppos: position in @out 1086 * @len: number of bytes to splice 1087 * @flags: splice modifier flags 1088 * 1089 * Description: 1090 * Will send @len bytes from the pipe to a network socket. No data copying 1091 * is involved. 1092 * 1093 */ 1094 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 1095 loff_t *ppos, size_t len, unsigned int flags) 1096 { 1097 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 1098 } 1099 1100 EXPORT_SYMBOL(generic_splice_sendpage); 1101 1102 /* 1103 * Attempt to initiate a splice from pipe to file. 1104 */ 1105 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 1106 loff_t *ppos, size_t len, unsigned int flags) 1107 { 1108 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 1109 loff_t *, size_t, unsigned int); 1110 1111 if (out->f_op->splice_write) 1112 splice_write = out->f_op->splice_write; 1113 else 1114 splice_write = default_file_splice_write; 1115 1116 return splice_write(pipe, out, ppos, len, flags); 1117 } 1118 1119 /* 1120 * Attempt to initiate a splice from a file to a pipe. 1121 */ 1122 static long do_splice_to(struct file *in, loff_t *ppos, 1123 struct pipe_inode_info *pipe, size_t len, 1124 unsigned int flags) 1125 { 1126 ssize_t (*splice_read)(struct file *, loff_t *, 1127 struct pipe_inode_info *, size_t, unsigned int); 1128 int ret; 1129 1130 if (unlikely(!(in->f_mode & FMODE_READ))) 1131 return -EBADF; 1132 1133 ret = rw_verify_area(READ, in, ppos, len); 1134 if (unlikely(ret < 0)) 1135 return ret; 1136 1137 if (in->f_op->splice_read) 1138 splice_read = in->f_op->splice_read; 1139 else 1140 splice_read = default_file_splice_read; 1141 1142 return splice_read(in, ppos, pipe, len, flags); 1143 } 1144 1145 /** 1146 * splice_direct_to_actor - splices data directly between two non-pipes 1147 * @in: file to splice from 1148 * @sd: actor information on where to splice to 1149 * @actor: handles the data splicing 1150 * 1151 * Description: 1152 * This is a special case helper to splice directly between two 1153 * points, without requiring an explicit pipe. Internally an allocated 1154 * pipe is cached in the process, and reused during the lifetime of 1155 * that process. 1156 * 1157 */ 1158 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1159 splice_direct_actor *actor) 1160 { 1161 struct pipe_inode_info *pipe; 1162 long ret, bytes; 1163 umode_t i_mode; 1164 size_t len; 1165 int i, flags, more; 1166 1167 /* 1168 * We require the input being a regular file, as we don't want to 1169 * randomly drop data for eg socket -> socket splicing. Use the 1170 * piped splicing for that! 1171 */ 1172 i_mode = file_inode(in)->i_mode; 1173 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 1174 return -EINVAL; 1175 1176 /* 1177 * neither in nor out is a pipe, setup an internal pipe attached to 1178 * 'out' and transfer the wanted data from 'in' to 'out' through that 1179 */ 1180 pipe = current->splice_pipe; 1181 if (unlikely(!pipe)) { 1182 pipe = alloc_pipe_info(); 1183 if (!pipe) 1184 return -ENOMEM; 1185 1186 /* 1187 * We don't have an immediate reader, but we'll read the stuff 1188 * out of the pipe right after the splice_to_pipe(). So set 1189 * PIPE_READERS appropriately. 1190 */ 1191 pipe->readers = 1; 1192 1193 current->splice_pipe = pipe; 1194 } 1195 1196 /* 1197 * Do the splice. 1198 */ 1199 ret = 0; 1200 bytes = 0; 1201 len = sd->total_len; 1202 flags = sd->flags; 1203 1204 /* 1205 * Don't block on output, we have to drain the direct pipe. 1206 */ 1207 sd->flags &= ~SPLICE_F_NONBLOCK; 1208 more = sd->flags & SPLICE_F_MORE; 1209 1210 while (len) { 1211 size_t read_len; 1212 loff_t pos = sd->pos, prev_pos = pos; 1213 1214 ret = do_splice_to(in, &pos, pipe, len, flags); 1215 if (unlikely(ret <= 0)) 1216 goto out_release; 1217 1218 read_len = ret; 1219 sd->total_len = read_len; 1220 1221 /* 1222 * If more data is pending, set SPLICE_F_MORE 1223 * If this is the last data and SPLICE_F_MORE was not set 1224 * initially, clears it. 1225 */ 1226 if (read_len < len) 1227 sd->flags |= SPLICE_F_MORE; 1228 else if (!more) 1229 sd->flags &= ~SPLICE_F_MORE; 1230 /* 1231 * NOTE: nonblocking mode only applies to the input. We 1232 * must not do the output in nonblocking mode as then we 1233 * could get stuck data in the internal pipe: 1234 */ 1235 ret = actor(pipe, sd); 1236 if (unlikely(ret <= 0)) { 1237 sd->pos = prev_pos; 1238 goto out_release; 1239 } 1240 1241 bytes += ret; 1242 len -= ret; 1243 sd->pos = pos; 1244 1245 if (ret < read_len) { 1246 sd->pos = prev_pos + ret; 1247 goto out_release; 1248 } 1249 } 1250 1251 done: 1252 pipe->nrbufs = pipe->curbuf = 0; 1253 file_accessed(in); 1254 return bytes; 1255 1256 out_release: 1257 /* 1258 * If we did an incomplete transfer we must release 1259 * the pipe buffers in question: 1260 */ 1261 for (i = 0; i < pipe->buffers; i++) { 1262 struct pipe_buffer *buf = pipe->bufs + i; 1263 1264 if (buf->ops) { 1265 buf->ops->release(pipe, buf); 1266 buf->ops = NULL; 1267 } 1268 } 1269 1270 if (!bytes) 1271 bytes = ret; 1272 1273 goto done; 1274 } 1275 EXPORT_SYMBOL(splice_direct_to_actor); 1276 1277 static int direct_splice_actor(struct pipe_inode_info *pipe, 1278 struct splice_desc *sd) 1279 { 1280 struct file *file = sd->u.file; 1281 1282 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1283 sd->flags); 1284 } 1285 1286 /** 1287 * do_splice_direct - splices data directly between two files 1288 * @in: file to splice from 1289 * @ppos: input file offset 1290 * @out: file to splice to 1291 * @opos: output file offset 1292 * @len: number of bytes to splice 1293 * @flags: splice modifier flags 1294 * 1295 * Description: 1296 * For use by do_sendfile(). splice can easily emulate sendfile, but 1297 * doing it in the application would incur an extra system call 1298 * (splice in + splice out, as compared to just sendfile()). So this helper 1299 * can splice directly through a process-private pipe. 1300 * 1301 */ 1302 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1303 loff_t *opos, size_t len, unsigned int flags) 1304 { 1305 struct splice_desc sd = { 1306 .len = len, 1307 .total_len = len, 1308 .flags = flags, 1309 .pos = *ppos, 1310 .u.file = out, 1311 .opos = opos, 1312 }; 1313 long ret; 1314 1315 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1316 return -EBADF; 1317 1318 if (unlikely(out->f_flags & O_APPEND)) 1319 return -EINVAL; 1320 1321 ret = rw_verify_area(WRITE, out, opos, len); 1322 if (unlikely(ret < 0)) 1323 return ret; 1324 1325 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1326 if (ret > 0) 1327 *ppos = sd.pos; 1328 1329 return ret; 1330 } 1331 EXPORT_SYMBOL(do_splice_direct); 1332 1333 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1334 struct pipe_inode_info *opipe, 1335 size_t len, unsigned int flags); 1336 1337 /* 1338 * Determine where to splice to/from. 1339 */ 1340 static long do_splice(struct file *in, loff_t __user *off_in, 1341 struct file *out, loff_t __user *off_out, 1342 size_t len, unsigned int flags) 1343 { 1344 struct pipe_inode_info *ipipe; 1345 struct pipe_inode_info *opipe; 1346 loff_t offset; 1347 long ret; 1348 1349 ipipe = get_pipe_info(in); 1350 opipe = get_pipe_info(out); 1351 1352 if (ipipe && opipe) { 1353 if (off_in || off_out) 1354 return -ESPIPE; 1355 1356 if (!(in->f_mode & FMODE_READ)) 1357 return -EBADF; 1358 1359 if (!(out->f_mode & FMODE_WRITE)) 1360 return -EBADF; 1361 1362 /* Splicing to self would be fun, but... */ 1363 if (ipipe == opipe) 1364 return -EINVAL; 1365 1366 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1367 } 1368 1369 if (ipipe) { 1370 if (off_in) 1371 return -ESPIPE; 1372 if (off_out) { 1373 if (!(out->f_mode & FMODE_PWRITE)) 1374 return -EINVAL; 1375 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1376 return -EFAULT; 1377 } else { 1378 offset = out->f_pos; 1379 } 1380 1381 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1382 return -EBADF; 1383 1384 if (unlikely(out->f_flags & O_APPEND)) 1385 return -EINVAL; 1386 1387 ret = rw_verify_area(WRITE, out, &offset, len); 1388 if (unlikely(ret < 0)) 1389 return ret; 1390 1391 file_start_write(out); 1392 ret = do_splice_from(ipipe, out, &offset, len, flags); 1393 file_end_write(out); 1394 1395 if (!off_out) 1396 out->f_pos = offset; 1397 else if (copy_to_user(off_out, &offset, sizeof(loff_t))) 1398 ret = -EFAULT; 1399 1400 return ret; 1401 } 1402 1403 if (opipe) { 1404 if (off_out) 1405 return -ESPIPE; 1406 if (off_in) { 1407 if (!(in->f_mode & FMODE_PREAD)) 1408 return -EINVAL; 1409 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1410 return -EFAULT; 1411 } else { 1412 offset = in->f_pos; 1413 } 1414 1415 ret = do_splice_to(in, &offset, opipe, len, flags); 1416 1417 if (!off_in) 1418 in->f_pos = offset; 1419 else if (copy_to_user(off_in, &offset, sizeof(loff_t))) 1420 ret = -EFAULT; 1421 1422 return ret; 1423 } 1424 1425 return -EINVAL; 1426 } 1427 1428 /* 1429 * Map an iov into an array of pages and offset/length tupples. With the 1430 * partial_page structure, we can map several non-contiguous ranges into 1431 * our ones pages[] map instead of splitting that operation into pieces. 1432 * Could easily be exported as a generic helper for other users, in which 1433 * case one would probably want to add a 'max_nr_pages' parameter as well. 1434 */ 1435 static int get_iovec_page_array(const struct iovec __user *iov, 1436 unsigned int nr_vecs, struct page **pages, 1437 struct partial_page *partial, bool aligned, 1438 unsigned int pipe_buffers) 1439 { 1440 int buffers = 0, error = 0; 1441 1442 while (nr_vecs) { 1443 unsigned long off, npages; 1444 struct iovec entry; 1445 void __user *base; 1446 size_t len; 1447 int i; 1448 1449 error = -EFAULT; 1450 if (copy_from_user(&entry, iov, sizeof(entry))) 1451 break; 1452 1453 base = entry.iov_base; 1454 len = entry.iov_len; 1455 1456 /* 1457 * Sanity check this iovec. 0 read succeeds. 1458 */ 1459 error = 0; 1460 if (unlikely(!len)) 1461 break; 1462 error = -EFAULT; 1463 if (!access_ok(VERIFY_READ, base, len)) 1464 break; 1465 1466 /* 1467 * Get this base offset and number of pages, then map 1468 * in the user pages. 1469 */ 1470 off = (unsigned long) base & ~PAGE_MASK; 1471 1472 /* 1473 * If asked for alignment, the offset must be zero and the 1474 * length a multiple of the PAGE_SIZE. 1475 */ 1476 error = -EINVAL; 1477 if (aligned && (off || len & ~PAGE_MASK)) 1478 break; 1479 1480 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1481 if (npages > pipe_buffers - buffers) 1482 npages = pipe_buffers - buffers; 1483 1484 error = get_user_pages_fast((unsigned long)base, npages, 1485 0, &pages[buffers]); 1486 1487 if (unlikely(error <= 0)) 1488 break; 1489 1490 /* 1491 * Fill this contiguous range into the partial page map. 1492 */ 1493 for (i = 0; i < error; i++) { 1494 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1495 1496 partial[buffers].offset = off; 1497 partial[buffers].len = plen; 1498 1499 off = 0; 1500 len -= plen; 1501 buffers++; 1502 } 1503 1504 /* 1505 * We didn't complete this iov, stop here since it probably 1506 * means we have to move some of this into a pipe to 1507 * be able to continue. 1508 */ 1509 if (len) 1510 break; 1511 1512 /* 1513 * Don't continue if we mapped fewer pages than we asked for, 1514 * or if we mapped the max number of pages that we have 1515 * room for. 1516 */ 1517 if (error < npages || buffers == pipe_buffers) 1518 break; 1519 1520 nr_vecs--; 1521 iov++; 1522 } 1523 1524 if (buffers) 1525 return buffers; 1526 1527 return error; 1528 } 1529 1530 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1531 struct splice_desc *sd) 1532 { 1533 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1534 return n == sd->len ? n : -EFAULT; 1535 } 1536 1537 /* 1538 * For lack of a better implementation, implement vmsplice() to userspace 1539 * as a simple copy of the pipes pages to the user iov. 1540 */ 1541 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov, 1542 unsigned long nr_segs, unsigned int flags) 1543 { 1544 struct pipe_inode_info *pipe; 1545 struct splice_desc sd; 1546 long ret; 1547 struct iovec iovstack[UIO_FASTIOV]; 1548 struct iovec *iov = iovstack; 1549 struct iov_iter iter; 1550 1551 pipe = get_pipe_info(file); 1552 if (!pipe) 1553 return -EBADF; 1554 1555 ret = import_iovec(READ, uiov, nr_segs, 1556 ARRAY_SIZE(iovstack), &iov, &iter); 1557 if (ret < 0) 1558 return ret; 1559 1560 sd.total_len = iov_iter_count(&iter); 1561 sd.len = 0; 1562 sd.flags = flags; 1563 sd.u.data = &iter; 1564 sd.pos = 0; 1565 1566 if (sd.total_len) { 1567 pipe_lock(pipe); 1568 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1569 pipe_unlock(pipe); 1570 } 1571 1572 kfree(iov); 1573 return ret; 1574 } 1575 1576 /* 1577 * vmsplice splices a user address range into a pipe. It can be thought of 1578 * as splice-from-memory, where the regular splice is splice-from-file (or 1579 * to file). In both cases the output is a pipe, naturally. 1580 */ 1581 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1582 unsigned long nr_segs, unsigned int flags) 1583 { 1584 struct pipe_inode_info *pipe; 1585 struct page *pages[PIPE_DEF_BUFFERS]; 1586 struct partial_page partial[PIPE_DEF_BUFFERS]; 1587 struct splice_pipe_desc spd = { 1588 .pages = pages, 1589 .partial = partial, 1590 .nr_pages_max = PIPE_DEF_BUFFERS, 1591 .flags = flags, 1592 .ops = &user_page_pipe_buf_ops, 1593 .spd_release = spd_release_page, 1594 }; 1595 long ret; 1596 1597 pipe = get_pipe_info(file); 1598 if (!pipe) 1599 return -EBADF; 1600 1601 if (splice_grow_spd(pipe, &spd)) 1602 return -ENOMEM; 1603 1604 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages, 1605 spd.partial, false, 1606 spd.nr_pages_max); 1607 if (spd.nr_pages <= 0) 1608 ret = spd.nr_pages; 1609 else 1610 ret = splice_to_pipe(pipe, &spd); 1611 1612 splice_shrink_spd(&spd); 1613 return ret; 1614 } 1615 1616 /* 1617 * Note that vmsplice only really supports true splicing _from_ user memory 1618 * to a pipe, not the other way around. Splicing from user memory is a simple 1619 * operation that can be supported without any funky alignment restrictions 1620 * or nasty vm tricks. We simply map in the user memory and fill them into 1621 * a pipe. The reverse isn't quite as easy, though. There are two possible 1622 * solutions for that: 1623 * 1624 * - memcpy() the data internally, at which point we might as well just 1625 * do a regular read() on the buffer anyway. 1626 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1627 * has restriction limitations on both ends of the pipe). 1628 * 1629 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1630 * 1631 */ 1632 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1633 unsigned long, nr_segs, unsigned int, flags) 1634 { 1635 struct fd f; 1636 long error; 1637 1638 if (unlikely(nr_segs > UIO_MAXIOV)) 1639 return -EINVAL; 1640 else if (unlikely(!nr_segs)) 1641 return 0; 1642 1643 error = -EBADF; 1644 f = fdget(fd); 1645 if (f.file) { 1646 if (f.file->f_mode & FMODE_WRITE) 1647 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags); 1648 else if (f.file->f_mode & FMODE_READ) 1649 error = vmsplice_to_user(f.file, iov, nr_segs, flags); 1650 1651 fdput(f); 1652 } 1653 1654 return error; 1655 } 1656 1657 #ifdef CONFIG_COMPAT 1658 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32, 1659 unsigned int, nr_segs, unsigned int, flags) 1660 { 1661 unsigned i; 1662 struct iovec __user *iov; 1663 if (nr_segs > UIO_MAXIOV) 1664 return -EINVAL; 1665 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec)); 1666 for (i = 0; i < nr_segs; i++) { 1667 struct compat_iovec v; 1668 if (get_user(v.iov_base, &iov32[i].iov_base) || 1669 get_user(v.iov_len, &iov32[i].iov_len) || 1670 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) || 1671 put_user(v.iov_len, &iov[i].iov_len)) 1672 return -EFAULT; 1673 } 1674 return sys_vmsplice(fd, iov, nr_segs, flags); 1675 } 1676 #endif 1677 1678 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1679 int, fd_out, loff_t __user *, off_out, 1680 size_t, len, unsigned int, flags) 1681 { 1682 struct fd in, out; 1683 long error; 1684 1685 if (unlikely(!len)) 1686 return 0; 1687 1688 error = -EBADF; 1689 in = fdget(fd_in); 1690 if (in.file) { 1691 if (in.file->f_mode & FMODE_READ) { 1692 out = fdget(fd_out); 1693 if (out.file) { 1694 if (out.file->f_mode & FMODE_WRITE) 1695 error = do_splice(in.file, off_in, 1696 out.file, off_out, 1697 len, flags); 1698 fdput(out); 1699 } 1700 } 1701 fdput(in); 1702 } 1703 return error; 1704 } 1705 1706 /* 1707 * Make sure there's data to read. Wait for input if we can, otherwise 1708 * return an appropriate error. 1709 */ 1710 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1711 { 1712 int ret; 1713 1714 /* 1715 * Check ->nrbufs without the inode lock first. This function 1716 * is speculative anyways, so missing one is ok. 1717 */ 1718 if (pipe->nrbufs) 1719 return 0; 1720 1721 ret = 0; 1722 pipe_lock(pipe); 1723 1724 while (!pipe->nrbufs) { 1725 if (signal_pending(current)) { 1726 ret = -ERESTARTSYS; 1727 break; 1728 } 1729 if (!pipe->writers) 1730 break; 1731 if (!pipe->waiting_writers) { 1732 if (flags & SPLICE_F_NONBLOCK) { 1733 ret = -EAGAIN; 1734 break; 1735 } 1736 } 1737 pipe_wait(pipe); 1738 } 1739 1740 pipe_unlock(pipe); 1741 return ret; 1742 } 1743 1744 /* 1745 * Make sure there's writeable room. Wait for room if we can, otherwise 1746 * return an appropriate error. 1747 */ 1748 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1749 { 1750 int ret; 1751 1752 /* 1753 * Check ->nrbufs without the inode lock first. This function 1754 * is speculative anyways, so missing one is ok. 1755 */ 1756 if (pipe->nrbufs < pipe->buffers) 1757 return 0; 1758 1759 ret = 0; 1760 pipe_lock(pipe); 1761 1762 while (pipe->nrbufs >= pipe->buffers) { 1763 if (!pipe->readers) { 1764 send_sig(SIGPIPE, current, 0); 1765 ret = -EPIPE; 1766 break; 1767 } 1768 if (flags & SPLICE_F_NONBLOCK) { 1769 ret = -EAGAIN; 1770 break; 1771 } 1772 if (signal_pending(current)) { 1773 ret = -ERESTARTSYS; 1774 break; 1775 } 1776 pipe->waiting_writers++; 1777 pipe_wait(pipe); 1778 pipe->waiting_writers--; 1779 } 1780 1781 pipe_unlock(pipe); 1782 return ret; 1783 } 1784 1785 /* 1786 * Splice contents of ipipe to opipe. 1787 */ 1788 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1789 struct pipe_inode_info *opipe, 1790 size_t len, unsigned int flags) 1791 { 1792 struct pipe_buffer *ibuf, *obuf; 1793 int ret = 0, nbuf; 1794 bool input_wakeup = false; 1795 1796 1797 retry: 1798 ret = ipipe_prep(ipipe, flags); 1799 if (ret) 1800 return ret; 1801 1802 ret = opipe_prep(opipe, flags); 1803 if (ret) 1804 return ret; 1805 1806 /* 1807 * Potential ABBA deadlock, work around it by ordering lock 1808 * grabbing by pipe info address. Otherwise two different processes 1809 * could deadlock (one doing tee from A -> B, the other from B -> A). 1810 */ 1811 pipe_double_lock(ipipe, opipe); 1812 1813 do { 1814 if (!opipe->readers) { 1815 send_sig(SIGPIPE, current, 0); 1816 if (!ret) 1817 ret = -EPIPE; 1818 break; 1819 } 1820 1821 if (!ipipe->nrbufs && !ipipe->writers) 1822 break; 1823 1824 /* 1825 * Cannot make any progress, because either the input 1826 * pipe is empty or the output pipe is full. 1827 */ 1828 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) { 1829 /* Already processed some buffers, break */ 1830 if (ret) 1831 break; 1832 1833 if (flags & SPLICE_F_NONBLOCK) { 1834 ret = -EAGAIN; 1835 break; 1836 } 1837 1838 /* 1839 * We raced with another reader/writer and haven't 1840 * managed to process any buffers. A zero return 1841 * value means EOF, so retry instead. 1842 */ 1843 pipe_unlock(ipipe); 1844 pipe_unlock(opipe); 1845 goto retry; 1846 } 1847 1848 ibuf = ipipe->bufs + ipipe->curbuf; 1849 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1850 obuf = opipe->bufs + nbuf; 1851 1852 if (len >= ibuf->len) { 1853 /* 1854 * Simply move the whole buffer from ipipe to opipe 1855 */ 1856 *obuf = *ibuf; 1857 ibuf->ops = NULL; 1858 opipe->nrbufs++; 1859 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1); 1860 ipipe->nrbufs--; 1861 input_wakeup = true; 1862 } else { 1863 /* 1864 * Get a reference to this pipe buffer, 1865 * so we can copy the contents over. 1866 */ 1867 ibuf->ops->get(ipipe, ibuf); 1868 *obuf = *ibuf; 1869 1870 /* 1871 * Don't inherit the gift flag, we need to 1872 * prevent multiple steals of this page. 1873 */ 1874 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1875 1876 obuf->len = len; 1877 opipe->nrbufs++; 1878 ibuf->offset += obuf->len; 1879 ibuf->len -= obuf->len; 1880 } 1881 ret += obuf->len; 1882 len -= obuf->len; 1883 } while (len); 1884 1885 pipe_unlock(ipipe); 1886 pipe_unlock(opipe); 1887 1888 /* 1889 * If we put data in the output pipe, wakeup any potential readers. 1890 */ 1891 if (ret > 0) 1892 wakeup_pipe_readers(opipe); 1893 1894 if (input_wakeup) 1895 wakeup_pipe_writers(ipipe); 1896 1897 return ret; 1898 } 1899 1900 /* 1901 * Link contents of ipipe to opipe. 1902 */ 1903 static int link_pipe(struct pipe_inode_info *ipipe, 1904 struct pipe_inode_info *opipe, 1905 size_t len, unsigned int flags) 1906 { 1907 struct pipe_buffer *ibuf, *obuf; 1908 int ret = 0, i = 0, nbuf; 1909 1910 /* 1911 * Potential ABBA deadlock, work around it by ordering lock 1912 * grabbing by pipe info address. Otherwise two different processes 1913 * could deadlock (one doing tee from A -> B, the other from B -> A). 1914 */ 1915 pipe_double_lock(ipipe, opipe); 1916 1917 do { 1918 if (!opipe->readers) { 1919 send_sig(SIGPIPE, current, 0); 1920 if (!ret) 1921 ret = -EPIPE; 1922 break; 1923 } 1924 1925 /* 1926 * If we have iterated all input buffers or ran out of 1927 * output room, break. 1928 */ 1929 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) 1930 break; 1931 1932 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1)); 1933 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1934 1935 /* 1936 * Get a reference to this pipe buffer, 1937 * so we can copy the contents over. 1938 */ 1939 ibuf->ops->get(ipipe, ibuf); 1940 1941 obuf = opipe->bufs + nbuf; 1942 *obuf = *ibuf; 1943 1944 /* 1945 * Don't inherit the gift flag, we need to 1946 * prevent multiple steals of this page. 1947 */ 1948 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1949 1950 if (obuf->len > len) 1951 obuf->len = len; 1952 1953 opipe->nrbufs++; 1954 ret += obuf->len; 1955 len -= obuf->len; 1956 i++; 1957 } while (len); 1958 1959 /* 1960 * return EAGAIN if we have the potential of some data in the 1961 * future, otherwise just return 0 1962 */ 1963 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1964 ret = -EAGAIN; 1965 1966 pipe_unlock(ipipe); 1967 pipe_unlock(opipe); 1968 1969 /* 1970 * If we put data in the output pipe, wakeup any potential readers. 1971 */ 1972 if (ret > 0) 1973 wakeup_pipe_readers(opipe); 1974 1975 return ret; 1976 } 1977 1978 /* 1979 * This is a tee(1) implementation that works on pipes. It doesn't copy 1980 * any data, it simply references the 'in' pages on the 'out' pipe. 1981 * The 'flags' used are the SPLICE_F_* variants, currently the only 1982 * applicable one is SPLICE_F_NONBLOCK. 1983 */ 1984 static long do_tee(struct file *in, struct file *out, size_t len, 1985 unsigned int flags) 1986 { 1987 struct pipe_inode_info *ipipe = get_pipe_info(in); 1988 struct pipe_inode_info *opipe = get_pipe_info(out); 1989 int ret = -EINVAL; 1990 1991 /* 1992 * Duplicate the contents of ipipe to opipe without actually 1993 * copying the data. 1994 */ 1995 if (ipipe && opipe && ipipe != opipe) { 1996 /* 1997 * Keep going, unless we encounter an error. The ipipe/opipe 1998 * ordering doesn't really matter. 1999 */ 2000 ret = ipipe_prep(ipipe, flags); 2001 if (!ret) { 2002 ret = opipe_prep(opipe, flags); 2003 if (!ret) 2004 ret = link_pipe(ipipe, opipe, len, flags); 2005 } 2006 } 2007 2008 return ret; 2009 } 2010 2011 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 2012 { 2013 struct fd in; 2014 int error; 2015 2016 if (unlikely(!len)) 2017 return 0; 2018 2019 error = -EBADF; 2020 in = fdget(fdin); 2021 if (in.file) { 2022 if (in.file->f_mode & FMODE_READ) { 2023 struct fd out = fdget(fdout); 2024 if (out.file) { 2025 if (out.file->f_mode & FMODE_WRITE) 2026 error = do_tee(in.file, out.file, 2027 len, flags); 2028 fdput(out); 2029 } 2030 } 2031 fdput(in); 2032 } 2033 2034 return error; 2035 } 2036