1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/export.h> 29 #include <linux/syscalls.h> 30 #include <linux/uio.h> 31 #include <linux/security.h> 32 #include <linux/gfp.h> 33 #include <linux/socket.h> 34 35 /* 36 * Attempt to steal a page from a pipe buffer. This should perhaps go into 37 * a vm helper function, it's already simplified quite a bit by the 38 * addition of remove_mapping(). If success is returned, the caller may 39 * attempt to reuse this page for another destination. 40 */ 41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 42 struct pipe_buffer *buf) 43 { 44 struct page *page = buf->page; 45 struct address_space *mapping; 46 47 lock_page(page); 48 49 mapping = page_mapping(page); 50 if (mapping) { 51 WARN_ON(!PageUptodate(page)); 52 53 /* 54 * At least for ext2 with nobh option, we need to wait on 55 * writeback completing on this page, since we'll remove it 56 * from the pagecache. Otherwise truncate wont wait on the 57 * page, allowing the disk blocks to be reused by someone else 58 * before we actually wrote our data to them. fs corruption 59 * ensues. 60 */ 61 wait_on_page_writeback(page); 62 63 if (page_has_private(page) && 64 !try_to_release_page(page, GFP_KERNEL)) 65 goto out_unlock; 66 67 /* 68 * If we succeeded in removing the mapping, set LRU flag 69 * and return good. 70 */ 71 if (remove_mapping(mapping, page)) { 72 buf->flags |= PIPE_BUF_FLAG_LRU; 73 return 0; 74 } 75 } 76 77 /* 78 * Raced with truncate or failed to remove page from current 79 * address space, unlock and return failure. 80 */ 81 out_unlock: 82 unlock_page(page); 83 return 1; 84 } 85 86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 87 struct pipe_buffer *buf) 88 { 89 page_cache_release(buf->page); 90 buf->flags &= ~PIPE_BUF_FLAG_LRU; 91 } 92 93 /* 94 * Check whether the contents of buf is OK to access. Since the content 95 * is a page cache page, IO may be in flight. 96 */ 97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 98 struct pipe_buffer *buf) 99 { 100 struct page *page = buf->page; 101 int err; 102 103 if (!PageUptodate(page)) { 104 lock_page(page); 105 106 /* 107 * Page got truncated/unhashed. This will cause a 0-byte 108 * splice, if this is the first page. 109 */ 110 if (!page->mapping) { 111 err = -ENODATA; 112 goto error; 113 } 114 115 /* 116 * Uh oh, read-error from disk. 117 */ 118 if (!PageUptodate(page)) { 119 err = -EIO; 120 goto error; 121 } 122 123 /* 124 * Page is ok afterall, we are done. 125 */ 126 unlock_page(page); 127 } 128 129 return 0; 130 error: 131 unlock_page(page); 132 return err; 133 } 134 135 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 136 .can_merge = 0, 137 .map = generic_pipe_buf_map, 138 .unmap = generic_pipe_buf_unmap, 139 .confirm = page_cache_pipe_buf_confirm, 140 .release = page_cache_pipe_buf_release, 141 .steal = page_cache_pipe_buf_steal, 142 .get = generic_pipe_buf_get, 143 }; 144 145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 146 struct pipe_buffer *buf) 147 { 148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 149 return 1; 150 151 buf->flags |= PIPE_BUF_FLAG_LRU; 152 return generic_pipe_buf_steal(pipe, buf); 153 } 154 155 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 156 .can_merge = 0, 157 .map = generic_pipe_buf_map, 158 .unmap = generic_pipe_buf_unmap, 159 .confirm = generic_pipe_buf_confirm, 160 .release = page_cache_pipe_buf_release, 161 .steal = user_page_pipe_buf_steal, 162 .get = generic_pipe_buf_get, 163 }; 164 165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 166 { 167 smp_mb(); 168 if (waitqueue_active(&pipe->wait)) 169 wake_up_interruptible(&pipe->wait); 170 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 171 } 172 173 /** 174 * splice_to_pipe - fill passed data into a pipe 175 * @pipe: pipe to fill 176 * @spd: data to fill 177 * 178 * Description: 179 * @spd contains a map of pages and len/offset tuples, along with 180 * the struct pipe_buf_operations associated with these pages. This 181 * function will link that data to the pipe. 182 * 183 */ 184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 185 struct splice_pipe_desc *spd) 186 { 187 unsigned int spd_pages = spd->nr_pages; 188 int ret, do_wakeup, page_nr; 189 190 ret = 0; 191 do_wakeup = 0; 192 page_nr = 0; 193 194 pipe_lock(pipe); 195 196 for (;;) { 197 if (!pipe->readers) { 198 send_sig(SIGPIPE, current, 0); 199 if (!ret) 200 ret = -EPIPE; 201 break; 202 } 203 204 if (pipe->nrbufs < pipe->buffers) { 205 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 206 struct pipe_buffer *buf = pipe->bufs + newbuf; 207 208 buf->page = spd->pages[page_nr]; 209 buf->offset = spd->partial[page_nr].offset; 210 buf->len = spd->partial[page_nr].len; 211 buf->private = spd->partial[page_nr].private; 212 buf->ops = spd->ops; 213 if (spd->flags & SPLICE_F_GIFT) 214 buf->flags |= PIPE_BUF_FLAG_GIFT; 215 216 pipe->nrbufs++; 217 page_nr++; 218 ret += buf->len; 219 220 if (pipe->inode) 221 do_wakeup = 1; 222 223 if (!--spd->nr_pages) 224 break; 225 if (pipe->nrbufs < pipe->buffers) 226 continue; 227 228 break; 229 } 230 231 if (spd->flags & SPLICE_F_NONBLOCK) { 232 if (!ret) 233 ret = -EAGAIN; 234 break; 235 } 236 237 if (signal_pending(current)) { 238 if (!ret) 239 ret = -ERESTARTSYS; 240 break; 241 } 242 243 if (do_wakeup) { 244 smp_mb(); 245 if (waitqueue_active(&pipe->wait)) 246 wake_up_interruptible_sync(&pipe->wait); 247 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 248 do_wakeup = 0; 249 } 250 251 pipe->waiting_writers++; 252 pipe_wait(pipe); 253 pipe->waiting_writers--; 254 } 255 256 pipe_unlock(pipe); 257 258 if (do_wakeup) 259 wakeup_pipe_readers(pipe); 260 261 while (page_nr < spd_pages) 262 spd->spd_release(spd, page_nr++); 263 264 return ret; 265 } 266 267 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 268 { 269 page_cache_release(spd->pages[i]); 270 } 271 272 /* 273 * Check if we need to grow the arrays holding pages and partial page 274 * descriptions. 275 */ 276 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 277 { 278 unsigned int buffers = ACCESS_ONCE(pipe->buffers); 279 280 spd->nr_pages_max = buffers; 281 if (buffers <= PIPE_DEF_BUFFERS) 282 return 0; 283 284 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL); 285 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL); 286 287 if (spd->pages && spd->partial) 288 return 0; 289 290 kfree(spd->pages); 291 kfree(spd->partial); 292 return -ENOMEM; 293 } 294 295 void splice_shrink_spd(struct splice_pipe_desc *spd) 296 { 297 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 298 return; 299 300 kfree(spd->pages); 301 kfree(spd->partial); 302 } 303 304 static int 305 __generic_file_splice_read(struct file *in, loff_t *ppos, 306 struct pipe_inode_info *pipe, size_t len, 307 unsigned int flags) 308 { 309 struct address_space *mapping = in->f_mapping; 310 unsigned int loff, nr_pages, req_pages; 311 struct page *pages[PIPE_DEF_BUFFERS]; 312 struct partial_page partial[PIPE_DEF_BUFFERS]; 313 struct page *page; 314 pgoff_t index, end_index; 315 loff_t isize; 316 int error, page_nr; 317 struct splice_pipe_desc spd = { 318 .pages = pages, 319 .partial = partial, 320 .nr_pages_max = PIPE_DEF_BUFFERS, 321 .flags = flags, 322 .ops = &page_cache_pipe_buf_ops, 323 .spd_release = spd_release_page, 324 }; 325 326 if (splice_grow_spd(pipe, &spd)) 327 return -ENOMEM; 328 329 index = *ppos >> PAGE_CACHE_SHIFT; 330 loff = *ppos & ~PAGE_CACHE_MASK; 331 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 332 nr_pages = min(req_pages, spd.nr_pages_max); 333 334 /* 335 * Lookup the (hopefully) full range of pages we need. 336 */ 337 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages); 338 index += spd.nr_pages; 339 340 /* 341 * If find_get_pages_contig() returned fewer pages than we needed, 342 * readahead/allocate the rest and fill in the holes. 343 */ 344 if (spd.nr_pages < nr_pages) 345 page_cache_sync_readahead(mapping, &in->f_ra, in, 346 index, req_pages - spd.nr_pages); 347 348 error = 0; 349 while (spd.nr_pages < nr_pages) { 350 /* 351 * Page could be there, find_get_pages_contig() breaks on 352 * the first hole. 353 */ 354 page = find_get_page(mapping, index); 355 if (!page) { 356 /* 357 * page didn't exist, allocate one. 358 */ 359 page = page_cache_alloc_cold(mapping); 360 if (!page) 361 break; 362 363 error = add_to_page_cache_lru(page, mapping, index, 364 GFP_KERNEL); 365 if (unlikely(error)) { 366 page_cache_release(page); 367 if (error == -EEXIST) 368 continue; 369 break; 370 } 371 /* 372 * add_to_page_cache() locks the page, unlock it 373 * to avoid convoluting the logic below even more. 374 */ 375 unlock_page(page); 376 } 377 378 spd.pages[spd.nr_pages++] = page; 379 index++; 380 } 381 382 /* 383 * Now loop over the map and see if we need to start IO on any 384 * pages, fill in the partial map, etc. 385 */ 386 index = *ppos >> PAGE_CACHE_SHIFT; 387 nr_pages = spd.nr_pages; 388 spd.nr_pages = 0; 389 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 390 unsigned int this_len; 391 392 if (!len) 393 break; 394 395 /* 396 * this_len is the max we'll use from this page 397 */ 398 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 399 page = spd.pages[page_nr]; 400 401 if (PageReadahead(page)) 402 page_cache_async_readahead(mapping, &in->f_ra, in, 403 page, index, req_pages - page_nr); 404 405 /* 406 * If the page isn't uptodate, we may need to start io on it 407 */ 408 if (!PageUptodate(page)) { 409 lock_page(page); 410 411 /* 412 * Page was truncated, or invalidated by the 413 * filesystem. Redo the find/create, but this time the 414 * page is kept locked, so there's no chance of another 415 * race with truncate/invalidate. 416 */ 417 if (!page->mapping) { 418 unlock_page(page); 419 page = find_or_create_page(mapping, index, 420 mapping_gfp_mask(mapping)); 421 422 if (!page) { 423 error = -ENOMEM; 424 break; 425 } 426 page_cache_release(spd.pages[page_nr]); 427 spd.pages[page_nr] = page; 428 } 429 /* 430 * page was already under io and is now done, great 431 */ 432 if (PageUptodate(page)) { 433 unlock_page(page); 434 goto fill_it; 435 } 436 437 /* 438 * need to read in the page 439 */ 440 error = mapping->a_ops->readpage(in, page); 441 if (unlikely(error)) { 442 /* 443 * We really should re-lookup the page here, 444 * but it complicates things a lot. Instead 445 * lets just do what we already stored, and 446 * we'll get it the next time we are called. 447 */ 448 if (error == AOP_TRUNCATED_PAGE) 449 error = 0; 450 451 break; 452 } 453 } 454 fill_it: 455 /* 456 * i_size must be checked after PageUptodate. 457 */ 458 isize = i_size_read(mapping->host); 459 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 460 if (unlikely(!isize || index > end_index)) 461 break; 462 463 /* 464 * if this is the last page, see if we need to shrink 465 * the length and stop 466 */ 467 if (end_index == index) { 468 unsigned int plen; 469 470 /* 471 * max good bytes in this page 472 */ 473 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 474 if (plen <= loff) 475 break; 476 477 /* 478 * force quit after adding this page 479 */ 480 this_len = min(this_len, plen - loff); 481 len = this_len; 482 } 483 484 spd.partial[page_nr].offset = loff; 485 spd.partial[page_nr].len = this_len; 486 len -= this_len; 487 loff = 0; 488 spd.nr_pages++; 489 index++; 490 } 491 492 /* 493 * Release any pages at the end, if we quit early. 'page_nr' is how far 494 * we got, 'nr_pages' is how many pages are in the map. 495 */ 496 while (page_nr < nr_pages) 497 page_cache_release(spd.pages[page_nr++]); 498 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 499 500 if (spd.nr_pages) 501 error = splice_to_pipe(pipe, &spd); 502 503 splice_shrink_spd(&spd); 504 return error; 505 } 506 507 /** 508 * generic_file_splice_read - splice data from file to a pipe 509 * @in: file to splice from 510 * @ppos: position in @in 511 * @pipe: pipe to splice to 512 * @len: number of bytes to splice 513 * @flags: splice modifier flags 514 * 515 * Description: 516 * Will read pages from given file and fill them into a pipe. Can be 517 * used as long as the address_space operations for the source implements 518 * a readpage() hook. 519 * 520 */ 521 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 522 struct pipe_inode_info *pipe, size_t len, 523 unsigned int flags) 524 { 525 loff_t isize, left; 526 int ret; 527 528 isize = i_size_read(in->f_mapping->host); 529 if (unlikely(*ppos >= isize)) 530 return 0; 531 532 left = isize - *ppos; 533 if (unlikely(left < len)) 534 len = left; 535 536 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 537 if (ret > 0) { 538 *ppos += ret; 539 file_accessed(in); 540 } 541 542 return ret; 543 } 544 EXPORT_SYMBOL(generic_file_splice_read); 545 546 static const struct pipe_buf_operations default_pipe_buf_ops = { 547 .can_merge = 0, 548 .map = generic_pipe_buf_map, 549 .unmap = generic_pipe_buf_unmap, 550 .confirm = generic_pipe_buf_confirm, 551 .release = generic_pipe_buf_release, 552 .steal = generic_pipe_buf_steal, 553 .get = generic_pipe_buf_get, 554 }; 555 556 static ssize_t kernel_readv(struct file *file, const struct iovec *vec, 557 unsigned long vlen, loff_t offset) 558 { 559 mm_segment_t old_fs; 560 loff_t pos = offset; 561 ssize_t res; 562 563 old_fs = get_fs(); 564 set_fs(get_ds()); 565 /* The cast to a user pointer is valid due to the set_fs() */ 566 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos); 567 set_fs(old_fs); 568 569 return res; 570 } 571 572 static ssize_t kernel_write(struct file *file, const char *buf, size_t count, 573 loff_t pos) 574 { 575 mm_segment_t old_fs; 576 ssize_t res; 577 578 old_fs = get_fs(); 579 set_fs(get_ds()); 580 /* The cast to a user pointer is valid due to the set_fs() */ 581 res = vfs_write(file, (const char __user *)buf, count, &pos); 582 set_fs(old_fs); 583 584 return res; 585 } 586 587 ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 588 struct pipe_inode_info *pipe, size_t len, 589 unsigned int flags) 590 { 591 unsigned int nr_pages; 592 unsigned int nr_freed; 593 size_t offset; 594 struct page *pages[PIPE_DEF_BUFFERS]; 595 struct partial_page partial[PIPE_DEF_BUFFERS]; 596 struct iovec *vec, __vec[PIPE_DEF_BUFFERS]; 597 ssize_t res; 598 size_t this_len; 599 int error; 600 int i; 601 struct splice_pipe_desc spd = { 602 .pages = pages, 603 .partial = partial, 604 .nr_pages_max = PIPE_DEF_BUFFERS, 605 .flags = flags, 606 .ops = &default_pipe_buf_ops, 607 .spd_release = spd_release_page, 608 }; 609 610 if (splice_grow_spd(pipe, &spd)) 611 return -ENOMEM; 612 613 res = -ENOMEM; 614 vec = __vec; 615 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) { 616 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL); 617 if (!vec) 618 goto shrink_ret; 619 } 620 621 offset = *ppos & ~PAGE_CACHE_MASK; 622 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 623 624 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) { 625 struct page *page; 626 627 page = alloc_page(GFP_USER); 628 error = -ENOMEM; 629 if (!page) 630 goto err; 631 632 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset); 633 vec[i].iov_base = (void __user *) page_address(page); 634 vec[i].iov_len = this_len; 635 spd.pages[i] = page; 636 spd.nr_pages++; 637 len -= this_len; 638 offset = 0; 639 } 640 641 res = kernel_readv(in, vec, spd.nr_pages, *ppos); 642 if (res < 0) { 643 error = res; 644 goto err; 645 } 646 647 error = 0; 648 if (!res) 649 goto err; 650 651 nr_freed = 0; 652 for (i = 0; i < spd.nr_pages; i++) { 653 this_len = min_t(size_t, vec[i].iov_len, res); 654 spd.partial[i].offset = 0; 655 spd.partial[i].len = this_len; 656 if (!this_len) { 657 __free_page(spd.pages[i]); 658 spd.pages[i] = NULL; 659 nr_freed++; 660 } 661 res -= this_len; 662 } 663 spd.nr_pages -= nr_freed; 664 665 res = splice_to_pipe(pipe, &spd); 666 if (res > 0) 667 *ppos += res; 668 669 shrink_ret: 670 if (vec != __vec) 671 kfree(vec); 672 splice_shrink_spd(&spd); 673 return res; 674 675 err: 676 for (i = 0; i < spd.nr_pages; i++) 677 __free_page(spd.pages[i]); 678 679 res = error; 680 goto shrink_ret; 681 } 682 EXPORT_SYMBOL(default_file_splice_read); 683 684 /* 685 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 686 * using sendpage(). Return the number of bytes sent. 687 */ 688 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 689 struct pipe_buffer *buf, struct splice_desc *sd) 690 { 691 struct file *file = sd->u.file; 692 loff_t pos = sd->pos; 693 int more; 694 695 if (!likely(file->f_op && file->f_op->sendpage)) 696 return -EINVAL; 697 698 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0; 699 if (sd->len < sd->total_len) 700 more |= MSG_SENDPAGE_NOTLAST; 701 return file->f_op->sendpage(file, buf->page, buf->offset, 702 sd->len, &pos, more); 703 } 704 705 /* 706 * This is a little more tricky than the file -> pipe splicing. There are 707 * basically three cases: 708 * 709 * - Destination page already exists in the address space and there 710 * are users of it. For that case we have no other option that 711 * copying the data. Tough luck. 712 * - Destination page already exists in the address space, but there 713 * are no users of it. Make sure it's uptodate, then drop it. Fall 714 * through to last case. 715 * - Destination page does not exist, we can add the pipe page to 716 * the page cache and avoid the copy. 717 * 718 * If asked to move pages to the output file (SPLICE_F_MOVE is set in 719 * sd->flags), we attempt to migrate pages from the pipe to the output 720 * file address space page cache. This is possible if no one else has 721 * the pipe page referenced outside of the pipe and page cache. If 722 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create 723 * a new page in the output file page cache and fill/dirty that. 724 */ 725 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 726 struct splice_desc *sd) 727 { 728 struct file *file = sd->u.file; 729 struct address_space *mapping = file->f_mapping; 730 unsigned int offset, this_len; 731 struct page *page; 732 void *fsdata; 733 int ret; 734 735 offset = sd->pos & ~PAGE_CACHE_MASK; 736 737 this_len = sd->len; 738 if (this_len + offset > PAGE_CACHE_SIZE) 739 this_len = PAGE_CACHE_SIZE - offset; 740 741 ret = pagecache_write_begin(file, mapping, sd->pos, this_len, 742 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 743 if (unlikely(ret)) 744 goto out; 745 746 if (buf->page != page) { 747 char *src = buf->ops->map(pipe, buf, 1); 748 char *dst = kmap_atomic(page); 749 750 memcpy(dst + offset, src + buf->offset, this_len); 751 flush_dcache_page(page); 752 kunmap_atomic(dst); 753 buf->ops->unmap(pipe, buf, src); 754 } 755 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len, 756 page, fsdata); 757 out: 758 return ret; 759 } 760 EXPORT_SYMBOL(pipe_to_file); 761 762 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 763 { 764 smp_mb(); 765 if (waitqueue_active(&pipe->wait)) 766 wake_up_interruptible(&pipe->wait); 767 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 768 } 769 770 /** 771 * splice_from_pipe_feed - feed available data from a pipe to a file 772 * @pipe: pipe to splice from 773 * @sd: information to @actor 774 * @actor: handler that splices the data 775 * 776 * Description: 777 * This function loops over the pipe and calls @actor to do the 778 * actual moving of a single struct pipe_buffer to the desired 779 * destination. It returns when there's no more buffers left in 780 * the pipe or if the requested number of bytes (@sd->total_len) 781 * have been copied. It returns a positive number (one) if the 782 * pipe needs to be filled with more data, zero if the required 783 * number of bytes have been copied and -errno on error. 784 * 785 * This, together with splice_from_pipe_{begin,end,next}, may be 786 * used to implement the functionality of __splice_from_pipe() when 787 * locking is required around copying the pipe buffers to the 788 * destination. 789 */ 790 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 791 splice_actor *actor) 792 { 793 int ret; 794 795 while (pipe->nrbufs) { 796 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 797 const struct pipe_buf_operations *ops = buf->ops; 798 799 sd->len = buf->len; 800 if (sd->len > sd->total_len) 801 sd->len = sd->total_len; 802 803 ret = buf->ops->confirm(pipe, buf); 804 if (unlikely(ret)) { 805 if (ret == -ENODATA) 806 ret = 0; 807 return ret; 808 } 809 810 ret = actor(pipe, buf, sd); 811 if (ret <= 0) 812 return ret; 813 814 buf->offset += ret; 815 buf->len -= ret; 816 817 sd->num_spliced += ret; 818 sd->len -= ret; 819 sd->pos += ret; 820 sd->total_len -= ret; 821 822 if (!buf->len) { 823 buf->ops = NULL; 824 ops->release(pipe, buf); 825 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 826 pipe->nrbufs--; 827 if (pipe->inode) 828 sd->need_wakeup = true; 829 } 830 831 if (!sd->total_len) 832 return 0; 833 } 834 835 return 1; 836 } 837 EXPORT_SYMBOL(splice_from_pipe_feed); 838 839 /** 840 * splice_from_pipe_next - wait for some data to splice from 841 * @pipe: pipe to splice from 842 * @sd: information about the splice operation 843 * 844 * Description: 845 * This function will wait for some data and return a positive 846 * value (one) if pipe buffers are available. It will return zero 847 * or -errno if no more data needs to be spliced. 848 */ 849 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 850 { 851 while (!pipe->nrbufs) { 852 if (!pipe->writers) 853 return 0; 854 855 if (!pipe->waiting_writers && sd->num_spliced) 856 return 0; 857 858 if (sd->flags & SPLICE_F_NONBLOCK) 859 return -EAGAIN; 860 861 if (signal_pending(current)) 862 return -ERESTARTSYS; 863 864 if (sd->need_wakeup) { 865 wakeup_pipe_writers(pipe); 866 sd->need_wakeup = false; 867 } 868 869 pipe_wait(pipe); 870 } 871 872 return 1; 873 } 874 EXPORT_SYMBOL(splice_from_pipe_next); 875 876 /** 877 * splice_from_pipe_begin - start splicing from pipe 878 * @sd: information about the splice operation 879 * 880 * Description: 881 * This function should be called before a loop containing 882 * splice_from_pipe_next() and splice_from_pipe_feed() to 883 * initialize the necessary fields of @sd. 884 */ 885 void splice_from_pipe_begin(struct splice_desc *sd) 886 { 887 sd->num_spliced = 0; 888 sd->need_wakeup = false; 889 } 890 EXPORT_SYMBOL(splice_from_pipe_begin); 891 892 /** 893 * splice_from_pipe_end - finish splicing from pipe 894 * @pipe: pipe to splice from 895 * @sd: information about the splice operation 896 * 897 * Description: 898 * This function will wake up pipe writers if necessary. It should 899 * be called after a loop containing splice_from_pipe_next() and 900 * splice_from_pipe_feed(). 901 */ 902 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 903 { 904 if (sd->need_wakeup) 905 wakeup_pipe_writers(pipe); 906 } 907 EXPORT_SYMBOL(splice_from_pipe_end); 908 909 /** 910 * __splice_from_pipe - splice data from a pipe to given actor 911 * @pipe: pipe to splice from 912 * @sd: information to @actor 913 * @actor: handler that splices the data 914 * 915 * Description: 916 * This function does little more than loop over the pipe and call 917 * @actor to do the actual moving of a single struct pipe_buffer to 918 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 919 * pipe_to_user. 920 * 921 */ 922 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 923 splice_actor *actor) 924 { 925 int ret; 926 927 splice_from_pipe_begin(sd); 928 do { 929 ret = splice_from_pipe_next(pipe, sd); 930 if (ret > 0) 931 ret = splice_from_pipe_feed(pipe, sd, actor); 932 } while (ret > 0); 933 splice_from_pipe_end(pipe, sd); 934 935 return sd->num_spliced ? sd->num_spliced : ret; 936 } 937 EXPORT_SYMBOL(__splice_from_pipe); 938 939 /** 940 * splice_from_pipe - splice data from a pipe to a file 941 * @pipe: pipe to splice from 942 * @out: file to splice to 943 * @ppos: position in @out 944 * @len: how many bytes to splice 945 * @flags: splice modifier flags 946 * @actor: handler that splices the data 947 * 948 * Description: 949 * See __splice_from_pipe. This function locks the pipe inode, 950 * otherwise it's identical to __splice_from_pipe(). 951 * 952 */ 953 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 954 loff_t *ppos, size_t len, unsigned int flags, 955 splice_actor *actor) 956 { 957 ssize_t ret; 958 struct splice_desc sd = { 959 .total_len = len, 960 .flags = flags, 961 .pos = *ppos, 962 .u.file = out, 963 }; 964 965 pipe_lock(pipe); 966 ret = __splice_from_pipe(pipe, &sd, actor); 967 pipe_unlock(pipe); 968 969 return ret; 970 } 971 972 /** 973 * generic_file_splice_write - splice data from a pipe to a file 974 * @pipe: pipe info 975 * @out: file to write to 976 * @ppos: position in @out 977 * @len: number of bytes to splice 978 * @flags: splice modifier flags 979 * 980 * Description: 981 * Will either move or copy pages (determined by @flags options) from 982 * the given pipe inode to the given file. 983 * 984 */ 985 ssize_t 986 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 987 loff_t *ppos, size_t len, unsigned int flags) 988 { 989 struct address_space *mapping = out->f_mapping; 990 struct inode *inode = mapping->host; 991 struct splice_desc sd = { 992 .total_len = len, 993 .flags = flags, 994 .pos = *ppos, 995 .u.file = out, 996 }; 997 ssize_t ret; 998 999 sb_start_write(inode->i_sb); 1000 1001 pipe_lock(pipe); 1002 1003 splice_from_pipe_begin(&sd); 1004 do { 1005 ret = splice_from_pipe_next(pipe, &sd); 1006 if (ret <= 0) 1007 break; 1008 1009 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 1010 ret = file_remove_suid(out); 1011 if (!ret) { 1012 ret = file_update_time(out); 1013 if (!ret) 1014 ret = splice_from_pipe_feed(pipe, &sd, 1015 pipe_to_file); 1016 } 1017 mutex_unlock(&inode->i_mutex); 1018 } while (ret > 0); 1019 splice_from_pipe_end(pipe, &sd); 1020 1021 pipe_unlock(pipe); 1022 1023 if (sd.num_spliced) 1024 ret = sd.num_spliced; 1025 1026 if (ret > 0) { 1027 unsigned long nr_pages; 1028 int err; 1029 1030 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1031 1032 err = generic_write_sync(out, *ppos, ret); 1033 if (err) 1034 ret = err; 1035 else 1036 *ppos += ret; 1037 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 1038 } 1039 sb_end_write(inode->i_sb); 1040 1041 return ret; 1042 } 1043 1044 EXPORT_SYMBOL(generic_file_splice_write); 1045 1046 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1047 struct splice_desc *sd) 1048 { 1049 int ret; 1050 void *data; 1051 1052 data = buf->ops->map(pipe, buf, 0); 1053 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos); 1054 buf->ops->unmap(pipe, buf, data); 1055 1056 return ret; 1057 } 1058 1059 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 1060 struct file *out, loff_t *ppos, 1061 size_t len, unsigned int flags) 1062 { 1063 ssize_t ret; 1064 1065 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 1066 if (ret > 0) 1067 *ppos += ret; 1068 1069 return ret; 1070 } 1071 1072 /** 1073 * generic_splice_sendpage - splice data from a pipe to a socket 1074 * @pipe: pipe to splice from 1075 * @out: socket to write to 1076 * @ppos: position in @out 1077 * @len: number of bytes to splice 1078 * @flags: splice modifier flags 1079 * 1080 * Description: 1081 * Will send @len bytes from the pipe to a network socket. No data copying 1082 * is involved. 1083 * 1084 */ 1085 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 1086 loff_t *ppos, size_t len, unsigned int flags) 1087 { 1088 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 1089 } 1090 1091 EXPORT_SYMBOL(generic_splice_sendpage); 1092 1093 /* 1094 * Attempt to initiate a splice from pipe to file. 1095 */ 1096 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 1097 loff_t *ppos, size_t len, unsigned int flags) 1098 { 1099 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 1100 loff_t *, size_t, unsigned int); 1101 int ret; 1102 1103 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1104 return -EBADF; 1105 1106 if (unlikely(out->f_flags & O_APPEND)) 1107 return -EINVAL; 1108 1109 ret = rw_verify_area(WRITE, out, ppos, len); 1110 if (unlikely(ret < 0)) 1111 return ret; 1112 1113 if (out->f_op && out->f_op->splice_write) 1114 splice_write = out->f_op->splice_write; 1115 else 1116 splice_write = default_file_splice_write; 1117 1118 return splice_write(pipe, out, ppos, len, flags); 1119 } 1120 1121 /* 1122 * Attempt to initiate a splice from a file to a pipe. 1123 */ 1124 static long do_splice_to(struct file *in, loff_t *ppos, 1125 struct pipe_inode_info *pipe, size_t len, 1126 unsigned int flags) 1127 { 1128 ssize_t (*splice_read)(struct file *, loff_t *, 1129 struct pipe_inode_info *, size_t, unsigned int); 1130 int ret; 1131 1132 if (unlikely(!(in->f_mode & FMODE_READ))) 1133 return -EBADF; 1134 1135 ret = rw_verify_area(READ, in, ppos, len); 1136 if (unlikely(ret < 0)) 1137 return ret; 1138 1139 if (in->f_op && in->f_op->splice_read) 1140 splice_read = in->f_op->splice_read; 1141 else 1142 splice_read = default_file_splice_read; 1143 1144 return splice_read(in, ppos, pipe, len, flags); 1145 } 1146 1147 /** 1148 * splice_direct_to_actor - splices data directly between two non-pipes 1149 * @in: file to splice from 1150 * @sd: actor information on where to splice to 1151 * @actor: handles the data splicing 1152 * 1153 * Description: 1154 * This is a special case helper to splice directly between two 1155 * points, without requiring an explicit pipe. Internally an allocated 1156 * pipe is cached in the process, and reused during the lifetime of 1157 * that process. 1158 * 1159 */ 1160 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1161 splice_direct_actor *actor) 1162 { 1163 struct pipe_inode_info *pipe; 1164 long ret, bytes; 1165 umode_t i_mode; 1166 size_t len; 1167 int i, flags; 1168 1169 /* 1170 * We require the input being a regular file, as we don't want to 1171 * randomly drop data for eg socket -> socket splicing. Use the 1172 * piped splicing for that! 1173 */ 1174 i_mode = in->f_path.dentry->d_inode->i_mode; 1175 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 1176 return -EINVAL; 1177 1178 /* 1179 * neither in nor out is a pipe, setup an internal pipe attached to 1180 * 'out' and transfer the wanted data from 'in' to 'out' through that 1181 */ 1182 pipe = current->splice_pipe; 1183 if (unlikely(!pipe)) { 1184 pipe = alloc_pipe_info(NULL); 1185 if (!pipe) 1186 return -ENOMEM; 1187 1188 /* 1189 * We don't have an immediate reader, but we'll read the stuff 1190 * out of the pipe right after the splice_to_pipe(). So set 1191 * PIPE_READERS appropriately. 1192 */ 1193 pipe->readers = 1; 1194 1195 current->splice_pipe = pipe; 1196 } 1197 1198 /* 1199 * Do the splice. 1200 */ 1201 ret = 0; 1202 bytes = 0; 1203 len = sd->total_len; 1204 flags = sd->flags; 1205 1206 /* 1207 * Don't block on output, we have to drain the direct pipe. 1208 */ 1209 sd->flags &= ~SPLICE_F_NONBLOCK; 1210 1211 while (len) { 1212 size_t read_len; 1213 loff_t pos = sd->pos, prev_pos = pos; 1214 1215 ret = do_splice_to(in, &pos, pipe, len, flags); 1216 if (unlikely(ret <= 0)) 1217 goto out_release; 1218 1219 read_len = ret; 1220 sd->total_len = read_len; 1221 1222 /* 1223 * NOTE: nonblocking mode only applies to the input. We 1224 * must not do the output in nonblocking mode as then we 1225 * could get stuck data in the internal pipe: 1226 */ 1227 ret = actor(pipe, sd); 1228 if (unlikely(ret <= 0)) { 1229 sd->pos = prev_pos; 1230 goto out_release; 1231 } 1232 1233 bytes += ret; 1234 len -= ret; 1235 sd->pos = pos; 1236 1237 if (ret < read_len) { 1238 sd->pos = prev_pos + ret; 1239 goto out_release; 1240 } 1241 } 1242 1243 done: 1244 pipe->nrbufs = pipe->curbuf = 0; 1245 file_accessed(in); 1246 return bytes; 1247 1248 out_release: 1249 /* 1250 * If we did an incomplete transfer we must release 1251 * the pipe buffers in question: 1252 */ 1253 for (i = 0; i < pipe->buffers; i++) { 1254 struct pipe_buffer *buf = pipe->bufs + i; 1255 1256 if (buf->ops) { 1257 buf->ops->release(pipe, buf); 1258 buf->ops = NULL; 1259 } 1260 } 1261 1262 if (!bytes) 1263 bytes = ret; 1264 1265 goto done; 1266 } 1267 EXPORT_SYMBOL(splice_direct_to_actor); 1268 1269 static int direct_splice_actor(struct pipe_inode_info *pipe, 1270 struct splice_desc *sd) 1271 { 1272 struct file *file = sd->u.file; 1273 1274 return do_splice_from(pipe, file, &file->f_pos, sd->total_len, 1275 sd->flags); 1276 } 1277 1278 /** 1279 * do_splice_direct - splices data directly between two files 1280 * @in: file to splice from 1281 * @ppos: input file offset 1282 * @out: file to splice to 1283 * @len: number of bytes to splice 1284 * @flags: splice modifier flags 1285 * 1286 * Description: 1287 * For use by do_sendfile(). splice can easily emulate sendfile, but 1288 * doing it in the application would incur an extra system call 1289 * (splice in + splice out, as compared to just sendfile()). So this helper 1290 * can splice directly through a process-private pipe. 1291 * 1292 */ 1293 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1294 size_t len, unsigned int flags) 1295 { 1296 struct splice_desc sd = { 1297 .len = len, 1298 .total_len = len, 1299 .flags = flags, 1300 .pos = *ppos, 1301 .u.file = out, 1302 }; 1303 long ret; 1304 1305 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1306 if (ret > 0) 1307 *ppos = sd.pos; 1308 1309 return ret; 1310 } 1311 1312 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1313 struct pipe_inode_info *opipe, 1314 size_t len, unsigned int flags); 1315 1316 /* 1317 * Determine where to splice to/from. 1318 */ 1319 static long do_splice(struct file *in, loff_t __user *off_in, 1320 struct file *out, loff_t __user *off_out, 1321 size_t len, unsigned int flags) 1322 { 1323 struct pipe_inode_info *ipipe; 1324 struct pipe_inode_info *opipe; 1325 loff_t offset, *off; 1326 long ret; 1327 1328 ipipe = get_pipe_info(in); 1329 opipe = get_pipe_info(out); 1330 1331 if (ipipe && opipe) { 1332 if (off_in || off_out) 1333 return -ESPIPE; 1334 1335 if (!(in->f_mode & FMODE_READ)) 1336 return -EBADF; 1337 1338 if (!(out->f_mode & FMODE_WRITE)) 1339 return -EBADF; 1340 1341 /* Splicing to self would be fun, but... */ 1342 if (ipipe == opipe) 1343 return -EINVAL; 1344 1345 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1346 } 1347 1348 if (ipipe) { 1349 if (off_in) 1350 return -ESPIPE; 1351 if (off_out) { 1352 if (!(out->f_mode & FMODE_PWRITE)) 1353 return -EINVAL; 1354 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1355 return -EFAULT; 1356 off = &offset; 1357 } else 1358 off = &out->f_pos; 1359 1360 ret = do_splice_from(ipipe, out, off, len, flags); 1361 1362 if (off_out && copy_to_user(off_out, off, sizeof(loff_t))) 1363 ret = -EFAULT; 1364 1365 return ret; 1366 } 1367 1368 if (opipe) { 1369 if (off_out) 1370 return -ESPIPE; 1371 if (off_in) { 1372 if (!(in->f_mode & FMODE_PREAD)) 1373 return -EINVAL; 1374 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1375 return -EFAULT; 1376 off = &offset; 1377 } else 1378 off = &in->f_pos; 1379 1380 ret = do_splice_to(in, off, opipe, len, flags); 1381 1382 if (off_in && copy_to_user(off_in, off, sizeof(loff_t))) 1383 ret = -EFAULT; 1384 1385 return ret; 1386 } 1387 1388 return -EINVAL; 1389 } 1390 1391 /* 1392 * Map an iov into an array of pages and offset/length tupples. With the 1393 * partial_page structure, we can map several non-contiguous ranges into 1394 * our ones pages[] map instead of splitting that operation into pieces. 1395 * Could easily be exported as a generic helper for other users, in which 1396 * case one would probably want to add a 'max_nr_pages' parameter as well. 1397 */ 1398 static int get_iovec_page_array(const struct iovec __user *iov, 1399 unsigned int nr_vecs, struct page **pages, 1400 struct partial_page *partial, bool aligned, 1401 unsigned int pipe_buffers) 1402 { 1403 int buffers = 0, error = 0; 1404 1405 while (nr_vecs) { 1406 unsigned long off, npages; 1407 struct iovec entry; 1408 void __user *base; 1409 size_t len; 1410 int i; 1411 1412 error = -EFAULT; 1413 if (copy_from_user(&entry, iov, sizeof(entry))) 1414 break; 1415 1416 base = entry.iov_base; 1417 len = entry.iov_len; 1418 1419 /* 1420 * Sanity check this iovec. 0 read succeeds. 1421 */ 1422 error = 0; 1423 if (unlikely(!len)) 1424 break; 1425 error = -EFAULT; 1426 if (!access_ok(VERIFY_READ, base, len)) 1427 break; 1428 1429 /* 1430 * Get this base offset and number of pages, then map 1431 * in the user pages. 1432 */ 1433 off = (unsigned long) base & ~PAGE_MASK; 1434 1435 /* 1436 * If asked for alignment, the offset must be zero and the 1437 * length a multiple of the PAGE_SIZE. 1438 */ 1439 error = -EINVAL; 1440 if (aligned && (off || len & ~PAGE_MASK)) 1441 break; 1442 1443 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1444 if (npages > pipe_buffers - buffers) 1445 npages = pipe_buffers - buffers; 1446 1447 error = get_user_pages_fast((unsigned long)base, npages, 1448 0, &pages[buffers]); 1449 1450 if (unlikely(error <= 0)) 1451 break; 1452 1453 /* 1454 * Fill this contiguous range into the partial page map. 1455 */ 1456 for (i = 0; i < error; i++) { 1457 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1458 1459 partial[buffers].offset = off; 1460 partial[buffers].len = plen; 1461 1462 off = 0; 1463 len -= plen; 1464 buffers++; 1465 } 1466 1467 /* 1468 * We didn't complete this iov, stop here since it probably 1469 * means we have to move some of this into a pipe to 1470 * be able to continue. 1471 */ 1472 if (len) 1473 break; 1474 1475 /* 1476 * Don't continue if we mapped fewer pages than we asked for, 1477 * or if we mapped the max number of pages that we have 1478 * room for. 1479 */ 1480 if (error < npages || buffers == pipe_buffers) 1481 break; 1482 1483 nr_vecs--; 1484 iov++; 1485 } 1486 1487 if (buffers) 1488 return buffers; 1489 1490 return error; 1491 } 1492 1493 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1494 struct splice_desc *sd) 1495 { 1496 char *src; 1497 int ret; 1498 1499 /* 1500 * See if we can use the atomic maps, by prefaulting in the 1501 * pages and doing an atomic copy 1502 */ 1503 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) { 1504 src = buf->ops->map(pipe, buf, 1); 1505 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset, 1506 sd->len); 1507 buf->ops->unmap(pipe, buf, src); 1508 if (!ret) { 1509 ret = sd->len; 1510 goto out; 1511 } 1512 } 1513 1514 /* 1515 * No dice, use slow non-atomic map and copy 1516 */ 1517 src = buf->ops->map(pipe, buf, 0); 1518 1519 ret = sd->len; 1520 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len)) 1521 ret = -EFAULT; 1522 1523 buf->ops->unmap(pipe, buf, src); 1524 out: 1525 if (ret > 0) 1526 sd->u.userptr += ret; 1527 return ret; 1528 } 1529 1530 /* 1531 * For lack of a better implementation, implement vmsplice() to userspace 1532 * as a simple copy of the pipes pages to the user iov. 1533 */ 1534 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov, 1535 unsigned long nr_segs, unsigned int flags) 1536 { 1537 struct pipe_inode_info *pipe; 1538 struct splice_desc sd; 1539 ssize_t size; 1540 int error; 1541 long ret; 1542 1543 pipe = get_pipe_info(file); 1544 if (!pipe) 1545 return -EBADF; 1546 1547 pipe_lock(pipe); 1548 1549 error = ret = 0; 1550 while (nr_segs) { 1551 void __user *base; 1552 size_t len; 1553 1554 /* 1555 * Get user address base and length for this iovec. 1556 */ 1557 error = get_user(base, &iov->iov_base); 1558 if (unlikely(error)) 1559 break; 1560 error = get_user(len, &iov->iov_len); 1561 if (unlikely(error)) 1562 break; 1563 1564 /* 1565 * Sanity check this iovec. 0 read succeeds. 1566 */ 1567 if (unlikely(!len)) 1568 break; 1569 if (unlikely(!base)) { 1570 error = -EFAULT; 1571 break; 1572 } 1573 1574 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) { 1575 error = -EFAULT; 1576 break; 1577 } 1578 1579 sd.len = 0; 1580 sd.total_len = len; 1581 sd.flags = flags; 1582 sd.u.userptr = base; 1583 sd.pos = 0; 1584 1585 size = __splice_from_pipe(pipe, &sd, pipe_to_user); 1586 if (size < 0) { 1587 if (!ret) 1588 ret = size; 1589 1590 break; 1591 } 1592 1593 ret += size; 1594 1595 if (size < len) 1596 break; 1597 1598 nr_segs--; 1599 iov++; 1600 } 1601 1602 pipe_unlock(pipe); 1603 1604 if (!ret) 1605 ret = error; 1606 1607 return ret; 1608 } 1609 1610 /* 1611 * vmsplice splices a user address range into a pipe. It can be thought of 1612 * as splice-from-memory, where the regular splice is splice-from-file (or 1613 * to file). In both cases the output is a pipe, naturally. 1614 */ 1615 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1616 unsigned long nr_segs, unsigned int flags) 1617 { 1618 struct pipe_inode_info *pipe; 1619 struct page *pages[PIPE_DEF_BUFFERS]; 1620 struct partial_page partial[PIPE_DEF_BUFFERS]; 1621 struct splice_pipe_desc spd = { 1622 .pages = pages, 1623 .partial = partial, 1624 .nr_pages_max = PIPE_DEF_BUFFERS, 1625 .flags = flags, 1626 .ops = &user_page_pipe_buf_ops, 1627 .spd_release = spd_release_page, 1628 }; 1629 long ret; 1630 1631 pipe = get_pipe_info(file); 1632 if (!pipe) 1633 return -EBADF; 1634 1635 if (splice_grow_spd(pipe, &spd)) 1636 return -ENOMEM; 1637 1638 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages, 1639 spd.partial, false, 1640 spd.nr_pages_max); 1641 if (spd.nr_pages <= 0) 1642 ret = spd.nr_pages; 1643 else 1644 ret = splice_to_pipe(pipe, &spd); 1645 1646 splice_shrink_spd(&spd); 1647 return ret; 1648 } 1649 1650 /* 1651 * Note that vmsplice only really supports true splicing _from_ user memory 1652 * to a pipe, not the other way around. Splicing from user memory is a simple 1653 * operation that can be supported without any funky alignment restrictions 1654 * or nasty vm tricks. We simply map in the user memory and fill them into 1655 * a pipe. The reverse isn't quite as easy, though. There are two possible 1656 * solutions for that: 1657 * 1658 * - memcpy() the data internally, at which point we might as well just 1659 * do a regular read() on the buffer anyway. 1660 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1661 * has restriction limitations on both ends of the pipe). 1662 * 1663 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1664 * 1665 */ 1666 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1667 unsigned long, nr_segs, unsigned int, flags) 1668 { 1669 struct file *file; 1670 long error; 1671 int fput; 1672 1673 if (unlikely(nr_segs > UIO_MAXIOV)) 1674 return -EINVAL; 1675 else if (unlikely(!nr_segs)) 1676 return 0; 1677 1678 error = -EBADF; 1679 file = fget_light(fd, &fput); 1680 if (file) { 1681 if (file->f_mode & FMODE_WRITE) 1682 error = vmsplice_to_pipe(file, iov, nr_segs, flags); 1683 else if (file->f_mode & FMODE_READ) 1684 error = vmsplice_to_user(file, iov, nr_segs, flags); 1685 1686 fput_light(file, fput); 1687 } 1688 1689 return error; 1690 } 1691 1692 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1693 int, fd_out, loff_t __user *, off_out, 1694 size_t, len, unsigned int, flags) 1695 { 1696 long error; 1697 struct file *in, *out; 1698 int fput_in, fput_out; 1699 1700 if (unlikely(!len)) 1701 return 0; 1702 1703 error = -EBADF; 1704 in = fget_light(fd_in, &fput_in); 1705 if (in) { 1706 if (in->f_mode & FMODE_READ) { 1707 out = fget_light(fd_out, &fput_out); 1708 if (out) { 1709 if (out->f_mode & FMODE_WRITE) 1710 error = do_splice(in, off_in, 1711 out, off_out, 1712 len, flags); 1713 fput_light(out, fput_out); 1714 } 1715 } 1716 1717 fput_light(in, fput_in); 1718 } 1719 1720 return error; 1721 } 1722 1723 /* 1724 * Make sure there's data to read. Wait for input if we can, otherwise 1725 * return an appropriate error. 1726 */ 1727 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1728 { 1729 int ret; 1730 1731 /* 1732 * Check ->nrbufs without the inode lock first. This function 1733 * is speculative anyways, so missing one is ok. 1734 */ 1735 if (pipe->nrbufs) 1736 return 0; 1737 1738 ret = 0; 1739 pipe_lock(pipe); 1740 1741 while (!pipe->nrbufs) { 1742 if (signal_pending(current)) { 1743 ret = -ERESTARTSYS; 1744 break; 1745 } 1746 if (!pipe->writers) 1747 break; 1748 if (!pipe->waiting_writers) { 1749 if (flags & SPLICE_F_NONBLOCK) { 1750 ret = -EAGAIN; 1751 break; 1752 } 1753 } 1754 pipe_wait(pipe); 1755 } 1756 1757 pipe_unlock(pipe); 1758 return ret; 1759 } 1760 1761 /* 1762 * Make sure there's writeable room. Wait for room if we can, otherwise 1763 * return an appropriate error. 1764 */ 1765 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1766 { 1767 int ret; 1768 1769 /* 1770 * Check ->nrbufs without the inode lock first. This function 1771 * is speculative anyways, so missing one is ok. 1772 */ 1773 if (pipe->nrbufs < pipe->buffers) 1774 return 0; 1775 1776 ret = 0; 1777 pipe_lock(pipe); 1778 1779 while (pipe->nrbufs >= pipe->buffers) { 1780 if (!pipe->readers) { 1781 send_sig(SIGPIPE, current, 0); 1782 ret = -EPIPE; 1783 break; 1784 } 1785 if (flags & SPLICE_F_NONBLOCK) { 1786 ret = -EAGAIN; 1787 break; 1788 } 1789 if (signal_pending(current)) { 1790 ret = -ERESTARTSYS; 1791 break; 1792 } 1793 pipe->waiting_writers++; 1794 pipe_wait(pipe); 1795 pipe->waiting_writers--; 1796 } 1797 1798 pipe_unlock(pipe); 1799 return ret; 1800 } 1801 1802 /* 1803 * Splice contents of ipipe to opipe. 1804 */ 1805 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1806 struct pipe_inode_info *opipe, 1807 size_t len, unsigned int flags) 1808 { 1809 struct pipe_buffer *ibuf, *obuf; 1810 int ret = 0, nbuf; 1811 bool input_wakeup = false; 1812 1813 1814 retry: 1815 ret = ipipe_prep(ipipe, flags); 1816 if (ret) 1817 return ret; 1818 1819 ret = opipe_prep(opipe, flags); 1820 if (ret) 1821 return ret; 1822 1823 /* 1824 * Potential ABBA deadlock, work around it by ordering lock 1825 * grabbing by pipe info address. Otherwise two different processes 1826 * could deadlock (one doing tee from A -> B, the other from B -> A). 1827 */ 1828 pipe_double_lock(ipipe, opipe); 1829 1830 do { 1831 if (!opipe->readers) { 1832 send_sig(SIGPIPE, current, 0); 1833 if (!ret) 1834 ret = -EPIPE; 1835 break; 1836 } 1837 1838 if (!ipipe->nrbufs && !ipipe->writers) 1839 break; 1840 1841 /* 1842 * Cannot make any progress, because either the input 1843 * pipe is empty or the output pipe is full. 1844 */ 1845 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) { 1846 /* Already processed some buffers, break */ 1847 if (ret) 1848 break; 1849 1850 if (flags & SPLICE_F_NONBLOCK) { 1851 ret = -EAGAIN; 1852 break; 1853 } 1854 1855 /* 1856 * We raced with another reader/writer and haven't 1857 * managed to process any buffers. A zero return 1858 * value means EOF, so retry instead. 1859 */ 1860 pipe_unlock(ipipe); 1861 pipe_unlock(opipe); 1862 goto retry; 1863 } 1864 1865 ibuf = ipipe->bufs + ipipe->curbuf; 1866 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1867 obuf = opipe->bufs + nbuf; 1868 1869 if (len >= ibuf->len) { 1870 /* 1871 * Simply move the whole buffer from ipipe to opipe 1872 */ 1873 *obuf = *ibuf; 1874 ibuf->ops = NULL; 1875 opipe->nrbufs++; 1876 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1); 1877 ipipe->nrbufs--; 1878 input_wakeup = true; 1879 } else { 1880 /* 1881 * Get a reference to this pipe buffer, 1882 * so we can copy the contents over. 1883 */ 1884 ibuf->ops->get(ipipe, ibuf); 1885 *obuf = *ibuf; 1886 1887 /* 1888 * Don't inherit the gift flag, we need to 1889 * prevent multiple steals of this page. 1890 */ 1891 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1892 1893 obuf->len = len; 1894 opipe->nrbufs++; 1895 ibuf->offset += obuf->len; 1896 ibuf->len -= obuf->len; 1897 } 1898 ret += obuf->len; 1899 len -= obuf->len; 1900 } while (len); 1901 1902 pipe_unlock(ipipe); 1903 pipe_unlock(opipe); 1904 1905 /* 1906 * If we put data in the output pipe, wakeup any potential readers. 1907 */ 1908 if (ret > 0) 1909 wakeup_pipe_readers(opipe); 1910 1911 if (input_wakeup) 1912 wakeup_pipe_writers(ipipe); 1913 1914 return ret; 1915 } 1916 1917 /* 1918 * Link contents of ipipe to opipe. 1919 */ 1920 static int link_pipe(struct pipe_inode_info *ipipe, 1921 struct pipe_inode_info *opipe, 1922 size_t len, unsigned int flags) 1923 { 1924 struct pipe_buffer *ibuf, *obuf; 1925 int ret = 0, i = 0, nbuf; 1926 1927 /* 1928 * Potential ABBA deadlock, work around it by ordering lock 1929 * grabbing by pipe info address. Otherwise two different processes 1930 * could deadlock (one doing tee from A -> B, the other from B -> A). 1931 */ 1932 pipe_double_lock(ipipe, opipe); 1933 1934 do { 1935 if (!opipe->readers) { 1936 send_sig(SIGPIPE, current, 0); 1937 if (!ret) 1938 ret = -EPIPE; 1939 break; 1940 } 1941 1942 /* 1943 * If we have iterated all input buffers or ran out of 1944 * output room, break. 1945 */ 1946 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) 1947 break; 1948 1949 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1)); 1950 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1951 1952 /* 1953 * Get a reference to this pipe buffer, 1954 * so we can copy the contents over. 1955 */ 1956 ibuf->ops->get(ipipe, ibuf); 1957 1958 obuf = opipe->bufs + nbuf; 1959 *obuf = *ibuf; 1960 1961 /* 1962 * Don't inherit the gift flag, we need to 1963 * prevent multiple steals of this page. 1964 */ 1965 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1966 1967 if (obuf->len > len) 1968 obuf->len = len; 1969 1970 opipe->nrbufs++; 1971 ret += obuf->len; 1972 len -= obuf->len; 1973 i++; 1974 } while (len); 1975 1976 /* 1977 * return EAGAIN if we have the potential of some data in the 1978 * future, otherwise just return 0 1979 */ 1980 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1981 ret = -EAGAIN; 1982 1983 pipe_unlock(ipipe); 1984 pipe_unlock(opipe); 1985 1986 /* 1987 * If we put data in the output pipe, wakeup any potential readers. 1988 */ 1989 if (ret > 0) 1990 wakeup_pipe_readers(opipe); 1991 1992 return ret; 1993 } 1994 1995 /* 1996 * This is a tee(1) implementation that works on pipes. It doesn't copy 1997 * any data, it simply references the 'in' pages on the 'out' pipe. 1998 * The 'flags' used are the SPLICE_F_* variants, currently the only 1999 * applicable one is SPLICE_F_NONBLOCK. 2000 */ 2001 static long do_tee(struct file *in, struct file *out, size_t len, 2002 unsigned int flags) 2003 { 2004 struct pipe_inode_info *ipipe = get_pipe_info(in); 2005 struct pipe_inode_info *opipe = get_pipe_info(out); 2006 int ret = -EINVAL; 2007 2008 /* 2009 * Duplicate the contents of ipipe to opipe without actually 2010 * copying the data. 2011 */ 2012 if (ipipe && opipe && ipipe != opipe) { 2013 /* 2014 * Keep going, unless we encounter an error. The ipipe/opipe 2015 * ordering doesn't really matter. 2016 */ 2017 ret = ipipe_prep(ipipe, flags); 2018 if (!ret) { 2019 ret = opipe_prep(opipe, flags); 2020 if (!ret) 2021 ret = link_pipe(ipipe, opipe, len, flags); 2022 } 2023 } 2024 2025 return ret; 2026 } 2027 2028 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 2029 { 2030 struct file *in; 2031 int error, fput_in; 2032 2033 if (unlikely(!len)) 2034 return 0; 2035 2036 error = -EBADF; 2037 in = fget_light(fdin, &fput_in); 2038 if (in) { 2039 if (in->f_mode & FMODE_READ) { 2040 int fput_out; 2041 struct file *out = fget_light(fdout, &fput_out); 2042 2043 if (out) { 2044 if (out->f_mode & FMODE_WRITE) 2045 error = do_tee(in, out, len, flags); 2046 fput_light(out, fput_out); 2047 } 2048 } 2049 fput_light(in, fput_in); 2050 } 2051 2052 return error; 2053 } 2054