xref: /openbmc/linux/fs/splice.c (revision 95188aaf)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 
35 /*
36  * Attempt to steal a page from a pipe buffer. This should perhaps go into
37  * a vm helper function, it's already simplified quite a bit by the
38  * addition of remove_mapping(). If success is returned, the caller may
39  * attempt to reuse this page for another destination.
40  */
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 				     struct pipe_buffer *buf)
43 {
44 	struct page *page = buf->page;
45 	struct address_space *mapping;
46 
47 	lock_page(page);
48 
49 	mapping = page_mapping(page);
50 	if (mapping) {
51 		WARN_ON(!PageUptodate(page));
52 
53 		/*
54 		 * At least for ext2 with nobh option, we need to wait on
55 		 * writeback completing on this page, since we'll remove it
56 		 * from the pagecache.  Otherwise truncate wont wait on the
57 		 * page, allowing the disk blocks to be reused by someone else
58 		 * before we actually wrote our data to them. fs corruption
59 		 * ensues.
60 		 */
61 		wait_on_page_writeback(page);
62 
63 		if (page_has_private(page) &&
64 		    !try_to_release_page(page, GFP_KERNEL))
65 			goto out_unlock;
66 
67 		/*
68 		 * If we succeeded in removing the mapping, set LRU flag
69 		 * and return good.
70 		 */
71 		if (remove_mapping(mapping, page)) {
72 			buf->flags |= PIPE_BUF_FLAG_LRU;
73 			return 0;
74 		}
75 	}
76 
77 	/*
78 	 * Raced with truncate or failed to remove page from current
79 	 * address space, unlock and return failure.
80 	 */
81 out_unlock:
82 	unlock_page(page);
83 	return 1;
84 }
85 
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 					struct pipe_buffer *buf)
88 {
89 	page_cache_release(buf->page);
90 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 }
92 
93 /*
94  * Check whether the contents of buf is OK to access. Since the content
95  * is a page cache page, IO may be in flight.
96  */
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 				       struct pipe_buffer *buf)
99 {
100 	struct page *page = buf->page;
101 	int err;
102 
103 	if (!PageUptodate(page)) {
104 		lock_page(page);
105 
106 		/*
107 		 * Page got truncated/unhashed. This will cause a 0-byte
108 		 * splice, if this is the first page.
109 		 */
110 		if (!page->mapping) {
111 			err = -ENODATA;
112 			goto error;
113 		}
114 
115 		/*
116 		 * Uh oh, read-error from disk.
117 		 */
118 		if (!PageUptodate(page)) {
119 			err = -EIO;
120 			goto error;
121 		}
122 
123 		/*
124 		 * Page is ok afterall, we are done.
125 		 */
126 		unlock_page(page);
127 	}
128 
129 	return 0;
130 error:
131 	unlock_page(page);
132 	return err;
133 }
134 
135 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 	.can_merge = 0,
137 	.map = generic_pipe_buf_map,
138 	.unmap = generic_pipe_buf_unmap,
139 	.confirm = page_cache_pipe_buf_confirm,
140 	.release = page_cache_pipe_buf_release,
141 	.steal = page_cache_pipe_buf_steal,
142 	.get = generic_pipe_buf_get,
143 };
144 
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 				    struct pipe_buffer *buf)
147 {
148 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 		return 1;
150 
151 	buf->flags |= PIPE_BUF_FLAG_LRU;
152 	return generic_pipe_buf_steal(pipe, buf);
153 }
154 
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 	.can_merge = 0,
157 	.map = generic_pipe_buf_map,
158 	.unmap = generic_pipe_buf_unmap,
159 	.confirm = generic_pipe_buf_confirm,
160 	.release = page_cache_pipe_buf_release,
161 	.steal = user_page_pipe_buf_steal,
162 	.get = generic_pipe_buf_get,
163 };
164 
165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166 {
167 	smp_mb();
168 	if (waitqueue_active(&pipe->wait))
169 		wake_up_interruptible(&pipe->wait);
170 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
171 }
172 
173 /**
174  * splice_to_pipe - fill passed data into a pipe
175  * @pipe:	pipe to fill
176  * @spd:	data to fill
177  *
178  * Description:
179  *    @spd contains a map of pages and len/offset tuples, along with
180  *    the struct pipe_buf_operations associated with these pages. This
181  *    function will link that data to the pipe.
182  *
183  */
184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185 		       struct splice_pipe_desc *spd)
186 {
187 	unsigned int spd_pages = spd->nr_pages;
188 	int ret, do_wakeup, page_nr;
189 
190 	ret = 0;
191 	do_wakeup = 0;
192 	page_nr = 0;
193 
194 	pipe_lock(pipe);
195 
196 	for (;;) {
197 		if (!pipe->readers) {
198 			send_sig(SIGPIPE, current, 0);
199 			if (!ret)
200 				ret = -EPIPE;
201 			break;
202 		}
203 
204 		if (pipe->nrbufs < pipe->buffers) {
205 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
206 			struct pipe_buffer *buf = pipe->bufs + newbuf;
207 
208 			buf->page = spd->pages[page_nr];
209 			buf->offset = spd->partial[page_nr].offset;
210 			buf->len = spd->partial[page_nr].len;
211 			buf->private = spd->partial[page_nr].private;
212 			buf->ops = spd->ops;
213 			if (spd->flags & SPLICE_F_GIFT)
214 				buf->flags |= PIPE_BUF_FLAG_GIFT;
215 
216 			pipe->nrbufs++;
217 			page_nr++;
218 			ret += buf->len;
219 
220 			if (pipe->inode)
221 				do_wakeup = 1;
222 
223 			if (!--spd->nr_pages)
224 				break;
225 			if (pipe->nrbufs < pipe->buffers)
226 				continue;
227 
228 			break;
229 		}
230 
231 		if (spd->flags & SPLICE_F_NONBLOCK) {
232 			if (!ret)
233 				ret = -EAGAIN;
234 			break;
235 		}
236 
237 		if (signal_pending(current)) {
238 			if (!ret)
239 				ret = -ERESTARTSYS;
240 			break;
241 		}
242 
243 		if (do_wakeup) {
244 			smp_mb();
245 			if (waitqueue_active(&pipe->wait))
246 				wake_up_interruptible_sync(&pipe->wait);
247 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
248 			do_wakeup = 0;
249 		}
250 
251 		pipe->waiting_writers++;
252 		pipe_wait(pipe);
253 		pipe->waiting_writers--;
254 	}
255 
256 	pipe_unlock(pipe);
257 
258 	if (do_wakeup)
259 		wakeup_pipe_readers(pipe);
260 
261 	while (page_nr < spd_pages)
262 		spd->spd_release(spd, page_nr++);
263 
264 	return ret;
265 }
266 
267 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268 {
269 	page_cache_release(spd->pages[i]);
270 }
271 
272 /*
273  * Check if we need to grow the arrays holding pages and partial page
274  * descriptions.
275  */
276 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277 {
278 	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
279 
280 	spd->nr_pages_max = buffers;
281 	if (buffers <= PIPE_DEF_BUFFERS)
282 		return 0;
283 
284 	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
285 	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
286 
287 	if (spd->pages && spd->partial)
288 		return 0;
289 
290 	kfree(spd->pages);
291 	kfree(spd->partial);
292 	return -ENOMEM;
293 }
294 
295 void splice_shrink_spd(struct splice_pipe_desc *spd)
296 {
297 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
298 		return;
299 
300 	kfree(spd->pages);
301 	kfree(spd->partial);
302 }
303 
304 static int
305 __generic_file_splice_read(struct file *in, loff_t *ppos,
306 			   struct pipe_inode_info *pipe, size_t len,
307 			   unsigned int flags)
308 {
309 	struct address_space *mapping = in->f_mapping;
310 	unsigned int loff, nr_pages, req_pages;
311 	struct page *pages[PIPE_DEF_BUFFERS];
312 	struct partial_page partial[PIPE_DEF_BUFFERS];
313 	struct page *page;
314 	pgoff_t index, end_index;
315 	loff_t isize;
316 	int error, page_nr;
317 	struct splice_pipe_desc spd = {
318 		.pages = pages,
319 		.partial = partial,
320 		.nr_pages_max = PIPE_DEF_BUFFERS,
321 		.flags = flags,
322 		.ops = &page_cache_pipe_buf_ops,
323 		.spd_release = spd_release_page,
324 	};
325 
326 	if (splice_grow_spd(pipe, &spd))
327 		return -ENOMEM;
328 
329 	index = *ppos >> PAGE_CACHE_SHIFT;
330 	loff = *ppos & ~PAGE_CACHE_MASK;
331 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
332 	nr_pages = min(req_pages, spd.nr_pages_max);
333 
334 	/*
335 	 * Lookup the (hopefully) full range of pages we need.
336 	 */
337 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
338 	index += spd.nr_pages;
339 
340 	/*
341 	 * If find_get_pages_contig() returned fewer pages than we needed,
342 	 * readahead/allocate the rest and fill in the holes.
343 	 */
344 	if (spd.nr_pages < nr_pages)
345 		page_cache_sync_readahead(mapping, &in->f_ra, in,
346 				index, req_pages - spd.nr_pages);
347 
348 	error = 0;
349 	while (spd.nr_pages < nr_pages) {
350 		/*
351 		 * Page could be there, find_get_pages_contig() breaks on
352 		 * the first hole.
353 		 */
354 		page = find_get_page(mapping, index);
355 		if (!page) {
356 			/*
357 			 * page didn't exist, allocate one.
358 			 */
359 			page = page_cache_alloc_cold(mapping);
360 			if (!page)
361 				break;
362 
363 			error = add_to_page_cache_lru(page, mapping, index,
364 						GFP_KERNEL);
365 			if (unlikely(error)) {
366 				page_cache_release(page);
367 				if (error == -EEXIST)
368 					continue;
369 				break;
370 			}
371 			/*
372 			 * add_to_page_cache() locks the page, unlock it
373 			 * to avoid convoluting the logic below even more.
374 			 */
375 			unlock_page(page);
376 		}
377 
378 		spd.pages[spd.nr_pages++] = page;
379 		index++;
380 	}
381 
382 	/*
383 	 * Now loop over the map and see if we need to start IO on any
384 	 * pages, fill in the partial map, etc.
385 	 */
386 	index = *ppos >> PAGE_CACHE_SHIFT;
387 	nr_pages = spd.nr_pages;
388 	spd.nr_pages = 0;
389 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
390 		unsigned int this_len;
391 
392 		if (!len)
393 			break;
394 
395 		/*
396 		 * this_len is the max we'll use from this page
397 		 */
398 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
399 		page = spd.pages[page_nr];
400 
401 		if (PageReadahead(page))
402 			page_cache_async_readahead(mapping, &in->f_ra, in,
403 					page, index, req_pages - page_nr);
404 
405 		/*
406 		 * If the page isn't uptodate, we may need to start io on it
407 		 */
408 		if (!PageUptodate(page)) {
409 			lock_page(page);
410 
411 			/*
412 			 * Page was truncated, or invalidated by the
413 			 * filesystem.  Redo the find/create, but this time the
414 			 * page is kept locked, so there's no chance of another
415 			 * race with truncate/invalidate.
416 			 */
417 			if (!page->mapping) {
418 				unlock_page(page);
419 				page = find_or_create_page(mapping, index,
420 						mapping_gfp_mask(mapping));
421 
422 				if (!page) {
423 					error = -ENOMEM;
424 					break;
425 				}
426 				page_cache_release(spd.pages[page_nr]);
427 				spd.pages[page_nr] = page;
428 			}
429 			/*
430 			 * page was already under io and is now done, great
431 			 */
432 			if (PageUptodate(page)) {
433 				unlock_page(page);
434 				goto fill_it;
435 			}
436 
437 			/*
438 			 * need to read in the page
439 			 */
440 			error = mapping->a_ops->readpage(in, page);
441 			if (unlikely(error)) {
442 				/*
443 				 * We really should re-lookup the page here,
444 				 * but it complicates things a lot. Instead
445 				 * lets just do what we already stored, and
446 				 * we'll get it the next time we are called.
447 				 */
448 				if (error == AOP_TRUNCATED_PAGE)
449 					error = 0;
450 
451 				break;
452 			}
453 		}
454 fill_it:
455 		/*
456 		 * i_size must be checked after PageUptodate.
457 		 */
458 		isize = i_size_read(mapping->host);
459 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
460 		if (unlikely(!isize || index > end_index))
461 			break;
462 
463 		/*
464 		 * if this is the last page, see if we need to shrink
465 		 * the length and stop
466 		 */
467 		if (end_index == index) {
468 			unsigned int plen;
469 
470 			/*
471 			 * max good bytes in this page
472 			 */
473 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
474 			if (plen <= loff)
475 				break;
476 
477 			/*
478 			 * force quit after adding this page
479 			 */
480 			this_len = min(this_len, plen - loff);
481 			len = this_len;
482 		}
483 
484 		spd.partial[page_nr].offset = loff;
485 		spd.partial[page_nr].len = this_len;
486 		len -= this_len;
487 		loff = 0;
488 		spd.nr_pages++;
489 		index++;
490 	}
491 
492 	/*
493 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
494 	 * we got, 'nr_pages' is how many pages are in the map.
495 	 */
496 	while (page_nr < nr_pages)
497 		page_cache_release(spd.pages[page_nr++]);
498 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
499 
500 	if (spd.nr_pages)
501 		error = splice_to_pipe(pipe, &spd);
502 
503 	splice_shrink_spd(&spd);
504 	return error;
505 }
506 
507 /**
508  * generic_file_splice_read - splice data from file to a pipe
509  * @in:		file to splice from
510  * @ppos:	position in @in
511  * @pipe:	pipe to splice to
512  * @len:	number of bytes to splice
513  * @flags:	splice modifier flags
514  *
515  * Description:
516  *    Will read pages from given file and fill them into a pipe. Can be
517  *    used as long as the address_space operations for the source implements
518  *    a readpage() hook.
519  *
520  */
521 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
522 				 struct pipe_inode_info *pipe, size_t len,
523 				 unsigned int flags)
524 {
525 	loff_t isize, left;
526 	int ret;
527 
528 	isize = i_size_read(in->f_mapping->host);
529 	if (unlikely(*ppos >= isize))
530 		return 0;
531 
532 	left = isize - *ppos;
533 	if (unlikely(left < len))
534 		len = left;
535 
536 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
537 	if (ret > 0) {
538 		*ppos += ret;
539 		file_accessed(in);
540 	}
541 
542 	return ret;
543 }
544 EXPORT_SYMBOL(generic_file_splice_read);
545 
546 static const struct pipe_buf_operations default_pipe_buf_ops = {
547 	.can_merge = 0,
548 	.map = generic_pipe_buf_map,
549 	.unmap = generic_pipe_buf_unmap,
550 	.confirm = generic_pipe_buf_confirm,
551 	.release = generic_pipe_buf_release,
552 	.steal = generic_pipe_buf_steal,
553 	.get = generic_pipe_buf_get,
554 };
555 
556 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
557 			    unsigned long vlen, loff_t offset)
558 {
559 	mm_segment_t old_fs;
560 	loff_t pos = offset;
561 	ssize_t res;
562 
563 	old_fs = get_fs();
564 	set_fs(get_ds());
565 	/* The cast to a user pointer is valid due to the set_fs() */
566 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
567 	set_fs(old_fs);
568 
569 	return res;
570 }
571 
572 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
573 			    loff_t pos)
574 {
575 	mm_segment_t old_fs;
576 	ssize_t res;
577 
578 	old_fs = get_fs();
579 	set_fs(get_ds());
580 	/* The cast to a user pointer is valid due to the set_fs() */
581 	res = vfs_write(file, (__force const char __user *)buf, count, &pos);
582 	set_fs(old_fs);
583 
584 	return res;
585 }
586 EXPORT_SYMBOL(kernel_write);
587 
588 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
589 				 struct pipe_inode_info *pipe, size_t len,
590 				 unsigned int flags)
591 {
592 	unsigned int nr_pages;
593 	unsigned int nr_freed;
594 	size_t offset;
595 	struct page *pages[PIPE_DEF_BUFFERS];
596 	struct partial_page partial[PIPE_DEF_BUFFERS];
597 	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
598 	ssize_t res;
599 	size_t this_len;
600 	int error;
601 	int i;
602 	struct splice_pipe_desc spd = {
603 		.pages = pages,
604 		.partial = partial,
605 		.nr_pages_max = PIPE_DEF_BUFFERS,
606 		.flags = flags,
607 		.ops = &default_pipe_buf_ops,
608 		.spd_release = spd_release_page,
609 	};
610 
611 	if (splice_grow_spd(pipe, &spd))
612 		return -ENOMEM;
613 
614 	res = -ENOMEM;
615 	vec = __vec;
616 	if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
617 		vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
618 		if (!vec)
619 			goto shrink_ret;
620 	}
621 
622 	offset = *ppos & ~PAGE_CACHE_MASK;
623 	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
624 
625 	for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
626 		struct page *page;
627 
628 		page = alloc_page(GFP_USER);
629 		error = -ENOMEM;
630 		if (!page)
631 			goto err;
632 
633 		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
634 		vec[i].iov_base = (void __user *) page_address(page);
635 		vec[i].iov_len = this_len;
636 		spd.pages[i] = page;
637 		spd.nr_pages++;
638 		len -= this_len;
639 		offset = 0;
640 	}
641 
642 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
643 	if (res < 0) {
644 		error = res;
645 		goto err;
646 	}
647 
648 	error = 0;
649 	if (!res)
650 		goto err;
651 
652 	nr_freed = 0;
653 	for (i = 0; i < spd.nr_pages; i++) {
654 		this_len = min_t(size_t, vec[i].iov_len, res);
655 		spd.partial[i].offset = 0;
656 		spd.partial[i].len = this_len;
657 		if (!this_len) {
658 			__free_page(spd.pages[i]);
659 			spd.pages[i] = NULL;
660 			nr_freed++;
661 		}
662 		res -= this_len;
663 	}
664 	spd.nr_pages -= nr_freed;
665 
666 	res = splice_to_pipe(pipe, &spd);
667 	if (res > 0)
668 		*ppos += res;
669 
670 shrink_ret:
671 	if (vec != __vec)
672 		kfree(vec);
673 	splice_shrink_spd(&spd);
674 	return res;
675 
676 err:
677 	for (i = 0; i < spd.nr_pages; i++)
678 		__free_page(spd.pages[i]);
679 
680 	res = error;
681 	goto shrink_ret;
682 }
683 EXPORT_SYMBOL(default_file_splice_read);
684 
685 /*
686  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
687  * using sendpage(). Return the number of bytes sent.
688  */
689 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
690 			    struct pipe_buffer *buf, struct splice_desc *sd)
691 {
692 	struct file *file = sd->u.file;
693 	loff_t pos = sd->pos;
694 	int more;
695 
696 	if (!likely(file->f_op && file->f_op->sendpage))
697 		return -EINVAL;
698 
699 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
700 
701 	if (sd->len < sd->total_len && pipe->nrbufs > 1)
702 		more |= MSG_SENDPAGE_NOTLAST;
703 
704 	return file->f_op->sendpage(file, buf->page, buf->offset,
705 				    sd->len, &pos, more);
706 }
707 
708 /*
709  * This is a little more tricky than the file -> pipe splicing. There are
710  * basically three cases:
711  *
712  *	- Destination page already exists in the address space and there
713  *	  are users of it. For that case we have no other option that
714  *	  copying the data. Tough luck.
715  *	- Destination page already exists in the address space, but there
716  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
717  *	  through to last case.
718  *	- Destination page does not exist, we can add the pipe page to
719  *	  the page cache and avoid the copy.
720  *
721  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
722  * sd->flags), we attempt to migrate pages from the pipe to the output
723  * file address space page cache. This is possible if no one else has
724  * the pipe page referenced outside of the pipe and page cache. If
725  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
726  * a new page in the output file page cache and fill/dirty that.
727  */
728 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
729 		 struct splice_desc *sd)
730 {
731 	struct file *file = sd->u.file;
732 	struct address_space *mapping = file->f_mapping;
733 	unsigned int offset, this_len;
734 	struct page *page;
735 	void *fsdata;
736 	int ret;
737 
738 	offset = sd->pos & ~PAGE_CACHE_MASK;
739 
740 	this_len = sd->len;
741 	if (this_len + offset > PAGE_CACHE_SIZE)
742 		this_len = PAGE_CACHE_SIZE - offset;
743 
744 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
745 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
746 	if (unlikely(ret))
747 		goto out;
748 
749 	if (buf->page != page) {
750 		char *src = buf->ops->map(pipe, buf, 1);
751 		char *dst = kmap_atomic(page);
752 
753 		memcpy(dst + offset, src + buf->offset, this_len);
754 		flush_dcache_page(page);
755 		kunmap_atomic(dst);
756 		buf->ops->unmap(pipe, buf, src);
757 	}
758 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
759 				page, fsdata);
760 out:
761 	return ret;
762 }
763 EXPORT_SYMBOL(pipe_to_file);
764 
765 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
766 {
767 	smp_mb();
768 	if (waitqueue_active(&pipe->wait))
769 		wake_up_interruptible(&pipe->wait);
770 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
771 }
772 
773 /**
774  * splice_from_pipe_feed - feed available data from a pipe to a file
775  * @pipe:	pipe to splice from
776  * @sd:		information to @actor
777  * @actor:	handler that splices the data
778  *
779  * Description:
780  *    This function loops over the pipe and calls @actor to do the
781  *    actual moving of a single struct pipe_buffer to the desired
782  *    destination.  It returns when there's no more buffers left in
783  *    the pipe or if the requested number of bytes (@sd->total_len)
784  *    have been copied.  It returns a positive number (one) if the
785  *    pipe needs to be filled with more data, zero if the required
786  *    number of bytes have been copied and -errno on error.
787  *
788  *    This, together with splice_from_pipe_{begin,end,next}, may be
789  *    used to implement the functionality of __splice_from_pipe() when
790  *    locking is required around copying the pipe buffers to the
791  *    destination.
792  */
793 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
794 			  splice_actor *actor)
795 {
796 	int ret;
797 
798 	while (pipe->nrbufs) {
799 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
800 		const struct pipe_buf_operations *ops = buf->ops;
801 
802 		sd->len = buf->len;
803 		if (sd->len > sd->total_len)
804 			sd->len = sd->total_len;
805 
806 		ret = buf->ops->confirm(pipe, buf);
807 		if (unlikely(ret)) {
808 			if (ret == -ENODATA)
809 				ret = 0;
810 			return ret;
811 		}
812 
813 		ret = actor(pipe, buf, sd);
814 		if (ret <= 0)
815 			return ret;
816 
817 		buf->offset += ret;
818 		buf->len -= ret;
819 
820 		sd->num_spliced += ret;
821 		sd->len -= ret;
822 		sd->pos += ret;
823 		sd->total_len -= ret;
824 
825 		if (!buf->len) {
826 			buf->ops = NULL;
827 			ops->release(pipe, buf);
828 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
829 			pipe->nrbufs--;
830 			if (pipe->inode)
831 				sd->need_wakeup = true;
832 		}
833 
834 		if (!sd->total_len)
835 			return 0;
836 	}
837 
838 	return 1;
839 }
840 EXPORT_SYMBOL(splice_from_pipe_feed);
841 
842 /**
843  * splice_from_pipe_next - wait for some data to splice from
844  * @pipe:	pipe to splice from
845  * @sd:		information about the splice operation
846  *
847  * Description:
848  *    This function will wait for some data and return a positive
849  *    value (one) if pipe buffers are available.  It will return zero
850  *    or -errno if no more data needs to be spliced.
851  */
852 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
853 {
854 	while (!pipe->nrbufs) {
855 		if (!pipe->writers)
856 			return 0;
857 
858 		if (!pipe->waiting_writers && sd->num_spliced)
859 			return 0;
860 
861 		if (sd->flags & SPLICE_F_NONBLOCK)
862 			return -EAGAIN;
863 
864 		if (signal_pending(current))
865 			return -ERESTARTSYS;
866 
867 		if (sd->need_wakeup) {
868 			wakeup_pipe_writers(pipe);
869 			sd->need_wakeup = false;
870 		}
871 
872 		pipe_wait(pipe);
873 	}
874 
875 	return 1;
876 }
877 EXPORT_SYMBOL(splice_from_pipe_next);
878 
879 /**
880  * splice_from_pipe_begin - start splicing from pipe
881  * @sd:		information about the splice operation
882  *
883  * Description:
884  *    This function should be called before a loop containing
885  *    splice_from_pipe_next() and splice_from_pipe_feed() to
886  *    initialize the necessary fields of @sd.
887  */
888 void splice_from_pipe_begin(struct splice_desc *sd)
889 {
890 	sd->num_spliced = 0;
891 	sd->need_wakeup = false;
892 }
893 EXPORT_SYMBOL(splice_from_pipe_begin);
894 
895 /**
896  * splice_from_pipe_end - finish splicing from pipe
897  * @pipe:	pipe to splice from
898  * @sd:		information about the splice operation
899  *
900  * Description:
901  *    This function will wake up pipe writers if necessary.  It should
902  *    be called after a loop containing splice_from_pipe_next() and
903  *    splice_from_pipe_feed().
904  */
905 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
906 {
907 	if (sd->need_wakeup)
908 		wakeup_pipe_writers(pipe);
909 }
910 EXPORT_SYMBOL(splice_from_pipe_end);
911 
912 /**
913  * __splice_from_pipe - splice data from a pipe to given actor
914  * @pipe:	pipe to splice from
915  * @sd:		information to @actor
916  * @actor:	handler that splices the data
917  *
918  * Description:
919  *    This function does little more than loop over the pipe and call
920  *    @actor to do the actual moving of a single struct pipe_buffer to
921  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
922  *    pipe_to_user.
923  *
924  */
925 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
926 			   splice_actor *actor)
927 {
928 	int ret;
929 
930 	splice_from_pipe_begin(sd);
931 	do {
932 		ret = splice_from_pipe_next(pipe, sd);
933 		if (ret > 0)
934 			ret = splice_from_pipe_feed(pipe, sd, actor);
935 	} while (ret > 0);
936 	splice_from_pipe_end(pipe, sd);
937 
938 	return sd->num_spliced ? sd->num_spliced : ret;
939 }
940 EXPORT_SYMBOL(__splice_from_pipe);
941 
942 /**
943  * splice_from_pipe - splice data from a pipe to a file
944  * @pipe:	pipe to splice from
945  * @out:	file to splice to
946  * @ppos:	position in @out
947  * @len:	how many bytes to splice
948  * @flags:	splice modifier flags
949  * @actor:	handler that splices the data
950  *
951  * Description:
952  *    See __splice_from_pipe. This function locks the pipe inode,
953  *    otherwise it's identical to __splice_from_pipe().
954  *
955  */
956 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
957 			 loff_t *ppos, size_t len, unsigned int flags,
958 			 splice_actor *actor)
959 {
960 	ssize_t ret;
961 	struct splice_desc sd = {
962 		.total_len = len,
963 		.flags = flags,
964 		.pos = *ppos,
965 		.u.file = out,
966 	};
967 
968 	pipe_lock(pipe);
969 	ret = __splice_from_pipe(pipe, &sd, actor);
970 	pipe_unlock(pipe);
971 
972 	return ret;
973 }
974 
975 /**
976  * generic_file_splice_write - splice data from a pipe to a file
977  * @pipe:	pipe info
978  * @out:	file to write to
979  * @ppos:	position in @out
980  * @len:	number of bytes to splice
981  * @flags:	splice modifier flags
982  *
983  * Description:
984  *    Will either move or copy pages (determined by @flags options) from
985  *    the given pipe inode to the given file.
986  *
987  */
988 ssize_t
989 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
990 			  loff_t *ppos, size_t len, unsigned int flags)
991 {
992 	struct address_space *mapping = out->f_mapping;
993 	struct inode *inode = mapping->host;
994 	struct splice_desc sd = {
995 		.total_len = len,
996 		.flags = flags,
997 		.pos = *ppos,
998 		.u.file = out,
999 	};
1000 	ssize_t ret;
1001 
1002 	sb_start_write(inode->i_sb);
1003 
1004 	pipe_lock(pipe);
1005 
1006 	splice_from_pipe_begin(&sd);
1007 	do {
1008 		ret = splice_from_pipe_next(pipe, &sd);
1009 		if (ret <= 0)
1010 			break;
1011 
1012 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1013 		ret = file_remove_suid(out);
1014 		if (!ret) {
1015 			ret = file_update_time(out);
1016 			if (!ret)
1017 				ret = splice_from_pipe_feed(pipe, &sd,
1018 							    pipe_to_file);
1019 		}
1020 		mutex_unlock(&inode->i_mutex);
1021 	} while (ret > 0);
1022 	splice_from_pipe_end(pipe, &sd);
1023 
1024 	pipe_unlock(pipe);
1025 
1026 	if (sd.num_spliced)
1027 		ret = sd.num_spliced;
1028 
1029 	if (ret > 0) {
1030 		int err;
1031 
1032 		err = generic_write_sync(out, *ppos, ret);
1033 		if (err)
1034 			ret = err;
1035 		else
1036 			*ppos += ret;
1037 		balance_dirty_pages_ratelimited(mapping);
1038 	}
1039 	sb_end_write(inode->i_sb);
1040 
1041 	return ret;
1042 }
1043 
1044 EXPORT_SYMBOL(generic_file_splice_write);
1045 
1046 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1047 			  struct splice_desc *sd)
1048 {
1049 	int ret;
1050 	void *data;
1051 
1052 	data = buf->ops->map(pipe, buf, 0);
1053 	ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1054 	buf->ops->unmap(pipe, buf, data);
1055 
1056 	return ret;
1057 }
1058 
1059 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1060 					 struct file *out, loff_t *ppos,
1061 					 size_t len, unsigned int flags)
1062 {
1063 	ssize_t ret;
1064 
1065 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1066 	if (ret > 0)
1067 		*ppos += ret;
1068 
1069 	return ret;
1070 }
1071 
1072 /**
1073  * generic_splice_sendpage - splice data from a pipe to a socket
1074  * @pipe:	pipe to splice from
1075  * @out:	socket to write to
1076  * @ppos:	position in @out
1077  * @len:	number of bytes to splice
1078  * @flags:	splice modifier flags
1079  *
1080  * Description:
1081  *    Will send @len bytes from the pipe to a network socket. No data copying
1082  *    is involved.
1083  *
1084  */
1085 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1086 				loff_t *ppos, size_t len, unsigned int flags)
1087 {
1088 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1089 }
1090 
1091 EXPORT_SYMBOL(generic_splice_sendpage);
1092 
1093 /*
1094  * Attempt to initiate a splice from pipe to file.
1095  */
1096 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1097 			   loff_t *ppos, size_t len, unsigned int flags)
1098 {
1099 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1100 				loff_t *, size_t, unsigned int);
1101 	int ret;
1102 
1103 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1104 		return -EBADF;
1105 
1106 	if (unlikely(out->f_flags & O_APPEND))
1107 		return -EINVAL;
1108 
1109 	ret = rw_verify_area(WRITE, out, ppos, len);
1110 	if (unlikely(ret < 0))
1111 		return ret;
1112 
1113 	if (out->f_op && out->f_op->splice_write)
1114 		splice_write = out->f_op->splice_write;
1115 	else
1116 		splice_write = default_file_splice_write;
1117 
1118 	return splice_write(pipe, out, ppos, len, flags);
1119 }
1120 
1121 /*
1122  * Attempt to initiate a splice from a file to a pipe.
1123  */
1124 static long do_splice_to(struct file *in, loff_t *ppos,
1125 			 struct pipe_inode_info *pipe, size_t len,
1126 			 unsigned int flags)
1127 {
1128 	ssize_t (*splice_read)(struct file *, loff_t *,
1129 			       struct pipe_inode_info *, size_t, unsigned int);
1130 	int ret;
1131 
1132 	if (unlikely(!(in->f_mode & FMODE_READ)))
1133 		return -EBADF;
1134 
1135 	ret = rw_verify_area(READ, in, ppos, len);
1136 	if (unlikely(ret < 0))
1137 		return ret;
1138 
1139 	if (in->f_op && in->f_op->splice_read)
1140 		splice_read = in->f_op->splice_read;
1141 	else
1142 		splice_read = default_file_splice_read;
1143 
1144 	return splice_read(in, ppos, pipe, len, flags);
1145 }
1146 
1147 /**
1148  * splice_direct_to_actor - splices data directly between two non-pipes
1149  * @in:		file to splice from
1150  * @sd:		actor information on where to splice to
1151  * @actor:	handles the data splicing
1152  *
1153  * Description:
1154  *    This is a special case helper to splice directly between two
1155  *    points, without requiring an explicit pipe. Internally an allocated
1156  *    pipe is cached in the process, and reused during the lifetime of
1157  *    that process.
1158  *
1159  */
1160 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1161 			       splice_direct_actor *actor)
1162 {
1163 	struct pipe_inode_info *pipe;
1164 	long ret, bytes;
1165 	umode_t i_mode;
1166 	size_t len;
1167 	int i, flags;
1168 
1169 	/*
1170 	 * We require the input being a regular file, as we don't want to
1171 	 * randomly drop data for eg socket -> socket splicing. Use the
1172 	 * piped splicing for that!
1173 	 */
1174 	i_mode = file_inode(in)->i_mode;
1175 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1176 		return -EINVAL;
1177 
1178 	/*
1179 	 * neither in nor out is a pipe, setup an internal pipe attached to
1180 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1181 	 */
1182 	pipe = current->splice_pipe;
1183 	if (unlikely(!pipe)) {
1184 		pipe = alloc_pipe_info(NULL);
1185 		if (!pipe)
1186 			return -ENOMEM;
1187 
1188 		/*
1189 		 * We don't have an immediate reader, but we'll read the stuff
1190 		 * out of the pipe right after the splice_to_pipe(). So set
1191 		 * PIPE_READERS appropriately.
1192 		 */
1193 		pipe->readers = 1;
1194 
1195 		current->splice_pipe = pipe;
1196 	}
1197 
1198 	/*
1199 	 * Do the splice.
1200 	 */
1201 	ret = 0;
1202 	bytes = 0;
1203 	len = sd->total_len;
1204 	flags = sd->flags;
1205 
1206 	/*
1207 	 * Don't block on output, we have to drain the direct pipe.
1208 	 */
1209 	sd->flags &= ~SPLICE_F_NONBLOCK;
1210 
1211 	while (len) {
1212 		size_t read_len;
1213 		loff_t pos = sd->pos, prev_pos = pos;
1214 
1215 		ret = do_splice_to(in, &pos, pipe, len, flags);
1216 		if (unlikely(ret <= 0))
1217 			goto out_release;
1218 
1219 		read_len = ret;
1220 		sd->total_len = read_len;
1221 
1222 		/*
1223 		 * NOTE: nonblocking mode only applies to the input. We
1224 		 * must not do the output in nonblocking mode as then we
1225 		 * could get stuck data in the internal pipe:
1226 		 */
1227 		ret = actor(pipe, sd);
1228 		if (unlikely(ret <= 0)) {
1229 			sd->pos = prev_pos;
1230 			goto out_release;
1231 		}
1232 
1233 		bytes += ret;
1234 		len -= ret;
1235 		sd->pos = pos;
1236 
1237 		if (ret < read_len) {
1238 			sd->pos = prev_pos + ret;
1239 			goto out_release;
1240 		}
1241 	}
1242 
1243 done:
1244 	pipe->nrbufs = pipe->curbuf = 0;
1245 	file_accessed(in);
1246 	return bytes;
1247 
1248 out_release:
1249 	/*
1250 	 * If we did an incomplete transfer we must release
1251 	 * the pipe buffers in question:
1252 	 */
1253 	for (i = 0; i < pipe->buffers; i++) {
1254 		struct pipe_buffer *buf = pipe->bufs + i;
1255 
1256 		if (buf->ops) {
1257 			buf->ops->release(pipe, buf);
1258 			buf->ops = NULL;
1259 		}
1260 	}
1261 
1262 	if (!bytes)
1263 		bytes = ret;
1264 
1265 	goto done;
1266 }
1267 EXPORT_SYMBOL(splice_direct_to_actor);
1268 
1269 static int direct_splice_actor(struct pipe_inode_info *pipe,
1270 			       struct splice_desc *sd)
1271 {
1272 	struct file *file = sd->u.file;
1273 
1274 	return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1275 			      sd->flags);
1276 }
1277 
1278 /**
1279  * do_splice_direct - splices data directly between two files
1280  * @in:		file to splice from
1281  * @ppos:	input file offset
1282  * @out:	file to splice to
1283  * @len:	number of bytes to splice
1284  * @flags:	splice modifier flags
1285  *
1286  * Description:
1287  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1288  *    doing it in the application would incur an extra system call
1289  *    (splice in + splice out, as compared to just sendfile()). So this helper
1290  *    can splice directly through a process-private pipe.
1291  *
1292  */
1293 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1294 		      size_t len, unsigned int flags)
1295 {
1296 	struct splice_desc sd = {
1297 		.len		= len,
1298 		.total_len	= len,
1299 		.flags		= flags,
1300 		.pos		= *ppos,
1301 		.u.file		= out,
1302 	};
1303 	long ret;
1304 
1305 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1306 	if (ret > 0)
1307 		*ppos = sd.pos;
1308 
1309 	return ret;
1310 }
1311 
1312 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1313 			       struct pipe_inode_info *opipe,
1314 			       size_t len, unsigned int flags);
1315 
1316 /*
1317  * Determine where to splice to/from.
1318  */
1319 static long do_splice(struct file *in, loff_t __user *off_in,
1320 		      struct file *out, loff_t __user *off_out,
1321 		      size_t len, unsigned int flags)
1322 {
1323 	struct pipe_inode_info *ipipe;
1324 	struct pipe_inode_info *opipe;
1325 	loff_t offset, *off;
1326 	long ret;
1327 
1328 	ipipe = get_pipe_info(in);
1329 	opipe = get_pipe_info(out);
1330 
1331 	if (ipipe && opipe) {
1332 		if (off_in || off_out)
1333 			return -ESPIPE;
1334 
1335 		if (!(in->f_mode & FMODE_READ))
1336 			return -EBADF;
1337 
1338 		if (!(out->f_mode & FMODE_WRITE))
1339 			return -EBADF;
1340 
1341 		/* Splicing to self would be fun, but... */
1342 		if (ipipe == opipe)
1343 			return -EINVAL;
1344 
1345 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1346 	}
1347 
1348 	if (ipipe) {
1349 		if (off_in)
1350 			return -ESPIPE;
1351 		if (off_out) {
1352 			if (!(out->f_mode & FMODE_PWRITE))
1353 				return -EINVAL;
1354 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1355 				return -EFAULT;
1356 			off = &offset;
1357 		} else
1358 			off = &out->f_pos;
1359 
1360 		ret = do_splice_from(ipipe, out, off, len, flags);
1361 
1362 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1363 			ret = -EFAULT;
1364 
1365 		return ret;
1366 	}
1367 
1368 	if (opipe) {
1369 		if (off_out)
1370 			return -ESPIPE;
1371 		if (off_in) {
1372 			if (!(in->f_mode & FMODE_PREAD))
1373 				return -EINVAL;
1374 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1375 				return -EFAULT;
1376 			off = &offset;
1377 		} else
1378 			off = &in->f_pos;
1379 
1380 		ret = do_splice_to(in, off, opipe, len, flags);
1381 
1382 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1383 			ret = -EFAULT;
1384 
1385 		return ret;
1386 	}
1387 
1388 	return -EINVAL;
1389 }
1390 
1391 /*
1392  * Map an iov into an array of pages and offset/length tupples. With the
1393  * partial_page structure, we can map several non-contiguous ranges into
1394  * our ones pages[] map instead of splitting that operation into pieces.
1395  * Could easily be exported as a generic helper for other users, in which
1396  * case one would probably want to add a 'max_nr_pages' parameter as well.
1397  */
1398 static int get_iovec_page_array(const struct iovec __user *iov,
1399 				unsigned int nr_vecs, struct page **pages,
1400 				struct partial_page *partial, bool aligned,
1401 				unsigned int pipe_buffers)
1402 {
1403 	int buffers = 0, error = 0;
1404 
1405 	while (nr_vecs) {
1406 		unsigned long off, npages;
1407 		struct iovec entry;
1408 		void __user *base;
1409 		size_t len;
1410 		int i;
1411 
1412 		error = -EFAULT;
1413 		if (copy_from_user(&entry, iov, sizeof(entry)))
1414 			break;
1415 
1416 		base = entry.iov_base;
1417 		len = entry.iov_len;
1418 
1419 		/*
1420 		 * Sanity check this iovec. 0 read succeeds.
1421 		 */
1422 		error = 0;
1423 		if (unlikely(!len))
1424 			break;
1425 		error = -EFAULT;
1426 		if (!access_ok(VERIFY_READ, base, len))
1427 			break;
1428 
1429 		/*
1430 		 * Get this base offset and number of pages, then map
1431 		 * in the user pages.
1432 		 */
1433 		off = (unsigned long) base & ~PAGE_MASK;
1434 
1435 		/*
1436 		 * If asked for alignment, the offset must be zero and the
1437 		 * length a multiple of the PAGE_SIZE.
1438 		 */
1439 		error = -EINVAL;
1440 		if (aligned && (off || len & ~PAGE_MASK))
1441 			break;
1442 
1443 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1444 		if (npages > pipe_buffers - buffers)
1445 			npages = pipe_buffers - buffers;
1446 
1447 		error = get_user_pages_fast((unsigned long)base, npages,
1448 					0, &pages[buffers]);
1449 
1450 		if (unlikely(error <= 0))
1451 			break;
1452 
1453 		/*
1454 		 * Fill this contiguous range into the partial page map.
1455 		 */
1456 		for (i = 0; i < error; i++) {
1457 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1458 
1459 			partial[buffers].offset = off;
1460 			partial[buffers].len = plen;
1461 
1462 			off = 0;
1463 			len -= plen;
1464 			buffers++;
1465 		}
1466 
1467 		/*
1468 		 * We didn't complete this iov, stop here since it probably
1469 		 * means we have to move some of this into a pipe to
1470 		 * be able to continue.
1471 		 */
1472 		if (len)
1473 			break;
1474 
1475 		/*
1476 		 * Don't continue if we mapped fewer pages than we asked for,
1477 		 * or if we mapped the max number of pages that we have
1478 		 * room for.
1479 		 */
1480 		if (error < npages || buffers == pipe_buffers)
1481 			break;
1482 
1483 		nr_vecs--;
1484 		iov++;
1485 	}
1486 
1487 	if (buffers)
1488 		return buffers;
1489 
1490 	return error;
1491 }
1492 
1493 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1494 			struct splice_desc *sd)
1495 {
1496 	char *src;
1497 	int ret;
1498 
1499 	/*
1500 	 * See if we can use the atomic maps, by prefaulting in the
1501 	 * pages and doing an atomic copy
1502 	 */
1503 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1504 		src = buf->ops->map(pipe, buf, 1);
1505 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1506 							sd->len);
1507 		buf->ops->unmap(pipe, buf, src);
1508 		if (!ret) {
1509 			ret = sd->len;
1510 			goto out;
1511 		}
1512 	}
1513 
1514 	/*
1515 	 * No dice, use slow non-atomic map and copy
1516  	 */
1517 	src = buf->ops->map(pipe, buf, 0);
1518 
1519 	ret = sd->len;
1520 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1521 		ret = -EFAULT;
1522 
1523 	buf->ops->unmap(pipe, buf, src);
1524 out:
1525 	if (ret > 0)
1526 		sd->u.userptr += ret;
1527 	return ret;
1528 }
1529 
1530 /*
1531  * For lack of a better implementation, implement vmsplice() to userspace
1532  * as a simple copy of the pipes pages to the user iov.
1533  */
1534 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1535 			     unsigned long nr_segs, unsigned int flags)
1536 {
1537 	struct pipe_inode_info *pipe;
1538 	struct splice_desc sd;
1539 	ssize_t size;
1540 	int error;
1541 	long ret;
1542 
1543 	pipe = get_pipe_info(file);
1544 	if (!pipe)
1545 		return -EBADF;
1546 
1547 	pipe_lock(pipe);
1548 
1549 	error = ret = 0;
1550 	while (nr_segs) {
1551 		void __user *base;
1552 		size_t len;
1553 
1554 		/*
1555 		 * Get user address base and length for this iovec.
1556 		 */
1557 		error = get_user(base, &iov->iov_base);
1558 		if (unlikely(error))
1559 			break;
1560 		error = get_user(len, &iov->iov_len);
1561 		if (unlikely(error))
1562 			break;
1563 
1564 		/*
1565 		 * Sanity check this iovec. 0 read succeeds.
1566 		 */
1567 		if (unlikely(!len))
1568 			break;
1569 		if (unlikely(!base)) {
1570 			error = -EFAULT;
1571 			break;
1572 		}
1573 
1574 		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1575 			error = -EFAULT;
1576 			break;
1577 		}
1578 
1579 		sd.len = 0;
1580 		sd.total_len = len;
1581 		sd.flags = flags;
1582 		sd.u.userptr = base;
1583 		sd.pos = 0;
1584 
1585 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1586 		if (size < 0) {
1587 			if (!ret)
1588 				ret = size;
1589 
1590 			break;
1591 		}
1592 
1593 		ret += size;
1594 
1595 		if (size < len)
1596 			break;
1597 
1598 		nr_segs--;
1599 		iov++;
1600 	}
1601 
1602 	pipe_unlock(pipe);
1603 
1604 	if (!ret)
1605 		ret = error;
1606 
1607 	return ret;
1608 }
1609 
1610 /*
1611  * vmsplice splices a user address range into a pipe. It can be thought of
1612  * as splice-from-memory, where the regular splice is splice-from-file (or
1613  * to file). In both cases the output is a pipe, naturally.
1614  */
1615 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1616 			     unsigned long nr_segs, unsigned int flags)
1617 {
1618 	struct pipe_inode_info *pipe;
1619 	struct page *pages[PIPE_DEF_BUFFERS];
1620 	struct partial_page partial[PIPE_DEF_BUFFERS];
1621 	struct splice_pipe_desc spd = {
1622 		.pages = pages,
1623 		.partial = partial,
1624 		.nr_pages_max = PIPE_DEF_BUFFERS,
1625 		.flags = flags,
1626 		.ops = &user_page_pipe_buf_ops,
1627 		.spd_release = spd_release_page,
1628 	};
1629 	long ret;
1630 
1631 	pipe = get_pipe_info(file);
1632 	if (!pipe)
1633 		return -EBADF;
1634 
1635 	if (splice_grow_spd(pipe, &spd))
1636 		return -ENOMEM;
1637 
1638 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1639 					    spd.partial, false,
1640 					    spd.nr_pages_max);
1641 	if (spd.nr_pages <= 0)
1642 		ret = spd.nr_pages;
1643 	else
1644 		ret = splice_to_pipe(pipe, &spd);
1645 
1646 	splice_shrink_spd(&spd);
1647 	return ret;
1648 }
1649 
1650 /*
1651  * Note that vmsplice only really supports true splicing _from_ user memory
1652  * to a pipe, not the other way around. Splicing from user memory is a simple
1653  * operation that can be supported without any funky alignment restrictions
1654  * or nasty vm tricks. We simply map in the user memory and fill them into
1655  * a pipe. The reverse isn't quite as easy, though. There are two possible
1656  * solutions for that:
1657  *
1658  *	- memcpy() the data internally, at which point we might as well just
1659  *	  do a regular read() on the buffer anyway.
1660  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1661  *	  has restriction limitations on both ends of the pipe).
1662  *
1663  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1664  *
1665  */
1666 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1667 		unsigned long, nr_segs, unsigned int, flags)
1668 {
1669 	struct fd f;
1670 	long error;
1671 
1672 	if (unlikely(nr_segs > UIO_MAXIOV))
1673 		return -EINVAL;
1674 	else if (unlikely(!nr_segs))
1675 		return 0;
1676 
1677 	error = -EBADF;
1678 	f = fdget(fd);
1679 	if (f.file) {
1680 		if (f.file->f_mode & FMODE_WRITE)
1681 			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1682 		else if (f.file->f_mode & FMODE_READ)
1683 			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1684 
1685 		fdput(f);
1686 	}
1687 
1688 	return error;
1689 }
1690 
1691 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1692 		int, fd_out, loff_t __user *, off_out,
1693 		size_t, len, unsigned int, flags)
1694 {
1695 	struct fd in, out;
1696 	long error;
1697 
1698 	if (unlikely(!len))
1699 		return 0;
1700 
1701 	error = -EBADF;
1702 	in = fdget(fd_in);
1703 	if (in.file) {
1704 		if (in.file->f_mode & FMODE_READ) {
1705 			out = fdget(fd_out);
1706 			if (out.file) {
1707 				if (out.file->f_mode & FMODE_WRITE)
1708 					error = do_splice(in.file, off_in,
1709 							  out.file, off_out,
1710 							  len, flags);
1711 				fdput(out);
1712 			}
1713 		}
1714 		fdput(in);
1715 	}
1716 	return error;
1717 }
1718 
1719 /*
1720  * Make sure there's data to read. Wait for input if we can, otherwise
1721  * return an appropriate error.
1722  */
1723 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1724 {
1725 	int ret;
1726 
1727 	/*
1728 	 * Check ->nrbufs without the inode lock first. This function
1729 	 * is speculative anyways, so missing one is ok.
1730 	 */
1731 	if (pipe->nrbufs)
1732 		return 0;
1733 
1734 	ret = 0;
1735 	pipe_lock(pipe);
1736 
1737 	while (!pipe->nrbufs) {
1738 		if (signal_pending(current)) {
1739 			ret = -ERESTARTSYS;
1740 			break;
1741 		}
1742 		if (!pipe->writers)
1743 			break;
1744 		if (!pipe->waiting_writers) {
1745 			if (flags & SPLICE_F_NONBLOCK) {
1746 				ret = -EAGAIN;
1747 				break;
1748 			}
1749 		}
1750 		pipe_wait(pipe);
1751 	}
1752 
1753 	pipe_unlock(pipe);
1754 	return ret;
1755 }
1756 
1757 /*
1758  * Make sure there's writeable room. Wait for room if we can, otherwise
1759  * return an appropriate error.
1760  */
1761 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1762 {
1763 	int ret;
1764 
1765 	/*
1766 	 * Check ->nrbufs without the inode lock first. This function
1767 	 * is speculative anyways, so missing one is ok.
1768 	 */
1769 	if (pipe->nrbufs < pipe->buffers)
1770 		return 0;
1771 
1772 	ret = 0;
1773 	pipe_lock(pipe);
1774 
1775 	while (pipe->nrbufs >= pipe->buffers) {
1776 		if (!pipe->readers) {
1777 			send_sig(SIGPIPE, current, 0);
1778 			ret = -EPIPE;
1779 			break;
1780 		}
1781 		if (flags & SPLICE_F_NONBLOCK) {
1782 			ret = -EAGAIN;
1783 			break;
1784 		}
1785 		if (signal_pending(current)) {
1786 			ret = -ERESTARTSYS;
1787 			break;
1788 		}
1789 		pipe->waiting_writers++;
1790 		pipe_wait(pipe);
1791 		pipe->waiting_writers--;
1792 	}
1793 
1794 	pipe_unlock(pipe);
1795 	return ret;
1796 }
1797 
1798 /*
1799  * Splice contents of ipipe to opipe.
1800  */
1801 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1802 			       struct pipe_inode_info *opipe,
1803 			       size_t len, unsigned int flags)
1804 {
1805 	struct pipe_buffer *ibuf, *obuf;
1806 	int ret = 0, nbuf;
1807 	bool input_wakeup = false;
1808 
1809 
1810 retry:
1811 	ret = ipipe_prep(ipipe, flags);
1812 	if (ret)
1813 		return ret;
1814 
1815 	ret = opipe_prep(opipe, flags);
1816 	if (ret)
1817 		return ret;
1818 
1819 	/*
1820 	 * Potential ABBA deadlock, work around it by ordering lock
1821 	 * grabbing by pipe info address. Otherwise two different processes
1822 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1823 	 */
1824 	pipe_double_lock(ipipe, opipe);
1825 
1826 	do {
1827 		if (!opipe->readers) {
1828 			send_sig(SIGPIPE, current, 0);
1829 			if (!ret)
1830 				ret = -EPIPE;
1831 			break;
1832 		}
1833 
1834 		if (!ipipe->nrbufs && !ipipe->writers)
1835 			break;
1836 
1837 		/*
1838 		 * Cannot make any progress, because either the input
1839 		 * pipe is empty or the output pipe is full.
1840 		 */
1841 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1842 			/* Already processed some buffers, break */
1843 			if (ret)
1844 				break;
1845 
1846 			if (flags & SPLICE_F_NONBLOCK) {
1847 				ret = -EAGAIN;
1848 				break;
1849 			}
1850 
1851 			/*
1852 			 * We raced with another reader/writer and haven't
1853 			 * managed to process any buffers.  A zero return
1854 			 * value means EOF, so retry instead.
1855 			 */
1856 			pipe_unlock(ipipe);
1857 			pipe_unlock(opipe);
1858 			goto retry;
1859 		}
1860 
1861 		ibuf = ipipe->bufs + ipipe->curbuf;
1862 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1863 		obuf = opipe->bufs + nbuf;
1864 
1865 		if (len >= ibuf->len) {
1866 			/*
1867 			 * Simply move the whole buffer from ipipe to opipe
1868 			 */
1869 			*obuf = *ibuf;
1870 			ibuf->ops = NULL;
1871 			opipe->nrbufs++;
1872 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1873 			ipipe->nrbufs--;
1874 			input_wakeup = true;
1875 		} else {
1876 			/*
1877 			 * Get a reference to this pipe buffer,
1878 			 * so we can copy the contents over.
1879 			 */
1880 			ibuf->ops->get(ipipe, ibuf);
1881 			*obuf = *ibuf;
1882 
1883 			/*
1884 			 * Don't inherit the gift flag, we need to
1885 			 * prevent multiple steals of this page.
1886 			 */
1887 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1888 
1889 			obuf->len = len;
1890 			opipe->nrbufs++;
1891 			ibuf->offset += obuf->len;
1892 			ibuf->len -= obuf->len;
1893 		}
1894 		ret += obuf->len;
1895 		len -= obuf->len;
1896 	} while (len);
1897 
1898 	pipe_unlock(ipipe);
1899 	pipe_unlock(opipe);
1900 
1901 	/*
1902 	 * If we put data in the output pipe, wakeup any potential readers.
1903 	 */
1904 	if (ret > 0)
1905 		wakeup_pipe_readers(opipe);
1906 
1907 	if (input_wakeup)
1908 		wakeup_pipe_writers(ipipe);
1909 
1910 	return ret;
1911 }
1912 
1913 /*
1914  * Link contents of ipipe to opipe.
1915  */
1916 static int link_pipe(struct pipe_inode_info *ipipe,
1917 		     struct pipe_inode_info *opipe,
1918 		     size_t len, unsigned int flags)
1919 {
1920 	struct pipe_buffer *ibuf, *obuf;
1921 	int ret = 0, i = 0, nbuf;
1922 
1923 	/*
1924 	 * Potential ABBA deadlock, work around it by ordering lock
1925 	 * grabbing by pipe info address. Otherwise two different processes
1926 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1927 	 */
1928 	pipe_double_lock(ipipe, opipe);
1929 
1930 	do {
1931 		if (!opipe->readers) {
1932 			send_sig(SIGPIPE, current, 0);
1933 			if (!ret)
1934 				ret = -EPIPE;
1935 			break;
1936 		}
1937 
1938 		/*
1939 		 * If we have iterated all input buffers or ran out of
1940 		 * output room, break.
1941 		 */
1942 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1943 			break;
1944 
1945 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1946 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1947 
1948 		/*
1949 		 * Get a reference to this pipe buffer,
1950 		 * so we can copy the contents over.
1951 		 */
1952 		ibuf->ops->get(ipipe, ibuf);
1953 
1954 		obuf = opipe->bufs + nbuf;
1955 		*obuf = *ibuf;
1956 
1957 		/*
1958 		 * Don't inherit the gift flag, we need to
1959 		 * prevent multiple steals of this page.
1960 		 */
1961 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1962 
1963 		if (obuf->len > len)
1964 			obuf->len = len;
1965 
1966 		opipe->nrbufs++;
1967 		ret += obuf->len;
1968 		len -= obuf->len;
1969 		i++;
1970 	} while (len);
1971 
1972 	/*
1973 	 * return EAGAIN if we have the potential of some data in the
1974 	 * future, otherwise just return 0
1975 	 */
1976 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1977 		ret = -EAGAIN;
1978 
1979 	pipe_unlock(ipipe);
1980 	pipe_unlock(opipe);
1981 
1982 	/*
1983 	 * If we put data in the output pipe, wakeup any potential readers.
1984 	 */
1985 	if (ret > 0)
1986 		wakeup_pipe_readers(opipe);
1987 
1988 	return ret;
1989 }
1990 
1991 /*
1992  * This is a tee(1) implementation that works on pipes. It doesn't copy
1993  * any data, it simply references the 'in' pages on the 'out' pipe.
1994  * The 'flags' used are the SPLICE_F_* variants, currently the only
1995  * applicable one is SPLICE_F_NONBLOCK.
1996  */
1997 static long do_tee(struct file *in, struct file *out, size_t len,
1998 		   unsigned int flags)
1999 {
2000 	struct pipe_inode_info *ipipe = get_pipe_info(in);
2001 	struct pipe_inode_info *opipe = get_pipe_info(out);
2002 	int ret = -EINVAL;
2003 
2004 	/*
2005 	 * Duplicate the contents of ipipe to opipe without actually
2006 	 * copying the data.
2007 	 */
2008 	if (ipipe && opipe && ipipe != opipe) {
2009 		/*
2010 		 * Keep going, unless we encounter an error. The ipipe/opipe
2011 		 * ordering doesn't really matter.
2012 		 */
2013 		ret = ipipe_prep(ipipe, flags);
2014 		if (!ret) {
2015 			ret = opipe_prep(opipe, flags);
2016 			if (!ret)
2017 				ret = link_pipe(ipipe, opipe, len, flags);
2018 		}
2019 	}
2020 
2021 	return ret;
2022 }
2023 
2024 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2025 {
2026 	struct fd in;
2027 	int error;
2028 
2029 	if (unlikely(!len))
2030 		return 0;
2031 
2032 	error = -EBADF;
2033 	in = fdget(fdin);
2034 	if (in.file) {
2035 		if (in.file->f_mode & FMODE_READ) {
2036 			struct fd out = fdget(fdout);
2037 			if (out.file) {
2038 				if (out.file->f_mode & FMODE_WRITE)
2039 					error = do_tee(in.file, out.file,
2040 							len, flags);
2041 				fdput(out);
2042 			}
2043 		}
2044  		fdput(in);
2045  	}
2046 
2047 	return error;
2048 }
2049