xref: /openbmc/linux/fs/splice.c (revision 93d90ad7)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include "internal.h"
37 
38 /*
39  * Attempt to steal a page from a pipe buffer. This should perhaps go into
40  * a vm helper function, it's already simplified quite a bit by the
41  * addition of remove_mapping(). If success is returned, the caller may
42  * attempt to reuse this page for another destination.
43  */
44 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
45 				     struct pipe_buffer *buf)
46 {
47 	struct page *page = buf->page;
48 	struct address_space *mapping;
49 
50 	lock_page(page);
51 
52 	mapping = page_mapping(page);
53 	if (mapping) {
54 		WARN_ON(!PageUptodate(page));
55 
56 		/*
57 		 * At least for ext2 with nobh option, we need to wait on
58 		 * writeback completing on this page, since we'll remove it
59 		 * from the pagecache.  Otherwise truncate wont wait on the
60 		 * page, allowing the disk blocks to be reused by someone else
61 		 * before we actually wrote our data to them. fs corruption
62 		 * ensues.
63 		 */
64 		wait_on_page_writeback(page);
65 
66 		if (page_has_private(page) &&
67 		    !try_to_release_page(page, GFP_KERNEL))
68 			goto out_unlock;
69 
70 		/*
71 		 * If we succeeded in removing the mapping, set LRU flag
72 		 * and return good.
73 		 */
74 		if (remove_mapping(mapping, page)) {
75 			buf->flags |= PIPE_BUF_FLAG_LRU;
76 			return 0;
77 		}
78 	}
79 
80 	/*
81 	 * Raced with truncate or failed to remove page from current
82 	 * address space, unlock and return failure.
83 	 */
84 out_unlock:
85 	unlock_page(page);
86 	return 1;
87 }
88 
89 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
90 					struct pipe_buffer *buf)
91 {
92 	page_cache_release(buf->page);
93 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
94 }
95 
96 /*
97  * Check whether the contents of buf is OK to access. Since the content
98  * is a page cache page, IO may be in flight.
99  */
100 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
101 				       struct pipe_buffer *buf)
102 {
103 	struct page *page = buf->page;
104 	int err;
105 
106 	if (!PageUptodate(page)) {
107 		lock_page(page);
108 
109 		/*
110 		 * Page got truncated/unhashed. This will cause a 0-byte
111 		 * splice, if this is the first page.
112 		 */
113 		if (!page->mapping) {
114 			err = -ENODATA;
115 			goto error;
116 		}
117 
118 		/*
119 		 * Uh oh, read-error from disk.
120 		 */
121 		if (!PageUptodate(page)) {
122 			err = -EIO;
123 			goto error;
124 		}
125 
126 		/*
127 		 * Page is ok afterall, we are done.
128 		 */
129 		unlock_page(page);
130 	}
131 
132 	return 0;
133 error:
134 	unlock_page(page);
135 	return err;
136 }
137 
138 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
139 	.can_merge = 0,
140 	.confirm = page_cache_pipe_buf_confirm,
141 	.release = page_cache_pipe_buf_release,
142 	.steal = page_cache_pipe_buf_steal,
143 	.get = generic_pipe_buf_get,
144 };
145 
146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147 				    struct pipe_buffer *buf)
148 {
149 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150 		return 1;
151 
152 	buf->flags |= PIPE_BUF_FLAG_LRU;
153 	return generic_pipe_buf_steal(pipe, buf);
154 }
155 
156 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157 	.can_merge = 0,
158 	.confirm = generic_pipe_buf_confirm,
159 	.release = page_cache_pipe_buf_release,
160 	.steal = user_page_pipe_buf_steal,
161 	.get = generic_pipe_buf_get,
162 };
163 
164 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
165 {
166 	smp_mb();
167 	if (waitqueue_active(&pipe->wait))
168 		wake_up_interruptible(&pipe->wait);
169 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
170 }
171 
172 /**
173  * splice_to_pipe - fill passed data into a pipe
174  * @pipe:	pipe to fill
175  * @spd:	data to fill
176  *
177  * Description:
178  *    @spd contains a map of pages and len/offset tuples, along with
179  *    the struct pipe_buf_operations associated with these pages. This
180  *    function will link that data to the pipe.
181  *
182  */
183 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
184 		       struct splice_pipe_desc *spd)
185 {
186 	unsigned int spd_pages = spd->nr_pages;
187 	int ret, do_wakeup, page_nr;
188 
189 	ret = 0;
190 	do_wakeup = 0;
191 	page_nr = 0;
192 
193 	pipe_lock(pipe);
194 
195 	for (;;) {
196 		if (!pipe->readers) {
197 			send_sig(SIGPIPE, current, 0);
198 			if (!ret)
199 				ret = -EPIPE;
200 			break;
201 		}
202 
203 		if (pipe->nrbufs < pipe->buffers) {
204 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
205 			struct pipe_buffer *buf = pipe->bufs + newbuf;
206 
207 			buf->page = spd->pages[page_nr];
208 			buf->offset = spd->partial[page_nr].offset;
209 			buf->len = spd->partial[page_nr].len;
210 			buf->private = spd->partial[page_nr].private;
211 			buf->ops = spd->ops;
212 			if (spd->flags & SPLICE_F_GIFT)
213 				buf->flags |= PIPE_BUF_FLAG_GIFT;
214 
215 			pipe->nrbufs++;
216 			page_nr++;
217 			ret += buf->len;
218 
219 			if (pipe->files)
220 				do_wakeup = 1;
221 
222 			if (!--spd->nr_pages)
223 				break;
224 			if (pipe->nrbufs < pipe->buffers)
225 				continue;
226 
227 			break;
228 		}
229 
230 		if (spd->flags & SPLICE_F_NONBLOCK) {
231 			if (!ret)
232 				ret = -EAGAIN;
233 			break;
234 		}
235 
236 		if (signal_pending(current)) {
237 			if (!ret)
238 				ret = -ERESTARTSYS;
239 			break;
240 		}
241 
242 		if (do_wakeup) {
243 			smp_mb();
244 			if (waitqueue_active(&pipe->wait))
245 				wake_up_interruptible_sync(&pipe->wait);
246 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
247 			do_wakeup = 0;
248 		}
249 
250 		pipe->waiting_writers++;
251 		pipe_wait(pipe);
252 		pipe->waiting_writers--;
253 	}
254 
255 	pipe_unlock(pipe);
256 
257 	if (do_wakeup)
258 		wakeup_pipe_readers(pipe);
259 
260 	while (page_nr < spd_pages)
261 		spd->spd_release(spd, page_nr++);
262 
263 	return ret;
264 }
265 
266 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
267 {
268 	page_cache_release(spd->pages[i]);
269 }
270 
271 /*
272  * Check if we need to grow the arrays holding pages and partial page
273  * descriptions.
274  */
275 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
276 {
277 	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
278 
279 	spd->nr_pages_max = buffers;
280 	if (buffers <= PIPE_DEF_BUFFERS)
281 		return 0;
282 
283 	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
284 	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
285 
286 	if (spd->pages && spd->partial)
287 		return 0;
288 
289 	kfree(spd->pages);
290 	kfree(spd->partial);
291 	return -ENOMEM;
292 }
293 
294 void splice_shrink_spd(struct splice_pipe_desc *spd)
295 {
296 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
297 		return;
298 
299 	kfree(spd->pages);
300 	kfree(spd->partial);
301 }
302 
303 static int
304 __generic_file_splice_read(struct file *in, loff_t *ppos,
305 			   struct pipe_inode_info *pipe, size_t len,
306 			   unsigned int flags)
307 {
308 	struct address_space *mapping = in->f_mapping;
309 	unsigned int loff, nr_pages, req_pages;
310 	struct page *pages[PIPE_DEF_BUFFERS];
311 	struct partial_page partial[PIPE_DEF_BUFFERS];
312 	struct page *page;
313 	pgoff_t index, end_index;
314 	loff_t isize;
315 	int error, page_nr;
316 	struct splice_pipe_desc spd = {
317 		.pages = pages,
318 		.partial = partial,
319 		.nr_pages_max = PIPE_DEF_BUFFERS,
320 		.flags = flags,
321 		.ops = &page_cache_pipe_buf_ops,
322 		.spd_release = spd_release_page,
323 	};
324 
325 	if (splice_grow_spd(pipe, &spd))
326 		return -ENOMEM;
327 
328 	index = *ppos >> PAGE_CACHE_SHIFT;
329 	loff = *ppos & ~PAGE_CACHE_MASK;
330 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
331 	nr_pages = min(req_pages, spd.nr_pages_max);
332 
333 	/*
334 	 * Lookup the (hopefully) full range of pages we need.
335 	 */
336 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
337 	index += spd.nr_pages;
338 
339 	/*
340 	 * If find_get_pages_contig() returned fewer pages than we needed,
341 	 * readahead/allocate the rest and fill in the holes.
342 	 */
343 	if (spd.nr_pages < nr_pages)
344 		page_cache_sync_readahead(mapping, &in->f_ra, in,
345 				index, req_pages - spd.nr_pages);
346 
347 	error = 0;
348 	while (spd.nr_pages < nr_pages) {
349 		/*
350 		 * Page could be there, find_get_pages_contig() breaks on
351 		 * the first hole.
352 		 */
353 		page = find_get_page(mapping, index);
354 		if (!page) {
355 			/*
356 			 * page didn't exist, allocate one.
357 			 */
358 			page = page_cache_alloc_cold(mapping);
359 			if (!page)
360 				break;
361 
362 			error = add_to_page_cache_lru(page, mapping, index,
363 						GFP_KERNEL);
364 			if (unlikely(error)) {
365 				page_cache_release(page);
366 				if (error == -EEXIST)
367 					continue;
368 				break;
369 			}
370 			/*
371 			 * add_to_page_cache() locks the page, unlock it
372 			 * to avoid convoluting the logic below even more.
373 			 */
374 			unlock_page(page);
375 		}
376 
377 		spd.pages[spd.nr_pages++] = page;
378 		index++;
379 	}
380 
381 	/*
382 	 * Now loop over the map and see if we need to start IO on any
383 	 * pages, fill in the partial map, etc.
384 	 */
385 	index = *ppos >> PAGE_CACHE_SHIFT;
386 	nr_pages = spd.nr_pages;
387 	spd.nr_pages = 0;
388 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
389 		unsigned int this_len;
390 
391 		if (!len)
392 			break;
393 
394 		/*
395 		 * this_len is the max we'll use from this page
396 		 */
397 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
398 		page = spd.pages[page_nr];
399 
400 		if (PageReadahead(page))
401 			page_cache_async_readahead(mapping, &in->f_ra, in,
402 					page, index, req_pages - page_nr);
403 
404 		/*
405 		 * If the page isn't uptodate, we may need to start io on it
406 		 */
407 		if (!PageUptodate(page)) {
408 			lock_page(page);
409 
410 			/*
411 			 * Page was truncated, or invalidated by the
412 			 * filesystem.  Redo the find/create, but this time the
413 			 * page is kept locked, so there's no chance of another
414 			 * race with truncate/invalidate.
415 			 */
416 			if (!page->mapping) {
417 				unlock_page(page);
418 				page = find_or_create_page(mapping, index,
419 						mapping_gfp_mask(mapping));
420 
421 				if (!page) {
422 					error = -ENOMEM;
423 					break;
424 				}
425 				page_cache_release(spd.pages[page_nr]);
426 				spd.pages[page_nr] = page;
427 			}
428 			/*
429 			 * page was already under io and is now done, great
430 			 */
431 			if (PageUptodate(page)) {
432 				unlock_page(page);
433 				goto fill_it;
434 			}
435 
436 			/*
437 			 * need to read in the page
438 			 */
439 			error = mapping->a_ops->readpage(in, page);
440 			if (unlikely(error)) {
441 				/*
442 				 * We really should re-lookup the page here,
443 				 * but it complicates things a lot. Instead
444 				 * lets just do what we already stored, and
445 				 * we'll get it the next time we are called.
446 				 */
447 				if (error == AOP_TRUNCATED_PAGE)
448 					error = 0;
449 
450 				break;
451 			}
452 		}
453 fill_it:
454 		/*
455 		 * i_size must be checked after PageUptodate.
456 		 */
457 		isize = i_size_read(mapping->host);
458 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
459 		if (unlikely(!isize || index > end_index))
460 			break;
461 
462 		/*
463 		 * if this is the last page, see if we need to shrink
464 		 * the length and stop
465 		 */
466 		if (end_index == index) {
467 			unsigned int plen;
468 
469 			/*
470 			 * max good bytes in this page
471 			 */
472 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
473 			if (plen <= loff)
474 				break;
475 
476 			/*
477 			 * force quit after adding this page
478 			 */
479 			this_len = min(this_len, plen - loff);
480 			len = this_len;
481 		}
482 
483 		spd.partial[page_nr].offset = loff;
484 		spd.partial[page_nr].len = this_len;
485 		len -= this_len;
486 		loff = 0;
487 		spd.nr_pages++;
488 		index++;
489 	}
490 
491 	/*
492 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
493 	 * we got, 'nr_pages' is how many pages are in the map.
494 	 */
495 	while (page_nr < nr_pages)
496 		page_cache_release(spd.pages[page_nr++]);
497 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
498 
499 	if (spd.nr_pages)
500 		error = splice_to_pipe(pipe, &spd);
501 
502 	splice_shrink_spd(&spd);
503 	return error;
504 }
505 
506 /**
507  * generic_file_splice_read - splice data from file to a pipe
508  * @in:		file to splice from
509  * @ppos:	position in @in
510  * @pipe:	pipe to splice to
511  * @len:	number of bytes to splice
512  * @flags:	splice modifier flags
513  *
514  * Description:
515  *    Will read pages from given file and fill them into a pipe. Can be
516  *    used as long as the address_space operations for the source implements
517  *    a readpage() hook.
518  *
519  */
520 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
521 				 struct pipe_inode_info *pipe, size_t len,
522 				 unsigned int flags)
523 {
524 	loff_t isize, left;
525 	int ret;
526 
527 	isize = i_size_read(in->f_mapping->host);
528 	if (unlikely(*ppos >= isize))
529 		return 0;
530 
531 	left = isize - *ppos;
532 	if (unlikely(left < len))
533 		len = left;
534 
535 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
536 	if (ret > 0) {
537 		*ppos += ret;
538 		file_accessed(in);
539 	}
540 
541 	return ret;
542 }
543 EXPORT_SYMBOL(generic_file_splice_read);
544 
545 static const struct pipe_buf_operations default_pipe_buf_ops = {
546 	.can_merge = 0,
547 	.confirm = generic_pipe_buf_confirm,
548 	.release = generic_pipe_buf_release,
549 	.steal = generic_pipe_buf_steal,
550 	.get = generic_pipe_buf_get,
551 };
552 
553 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
554 				    struct pipe_buffer *buf)
555 {
556 	return 1;
557 }
558 
559 /* Pipe buffer operations for a socket and similar. */
560 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
561 	.can_merge = 0,
562 	.confirm = generic_pipe_buf_confirm,
563 	.release = generic_pipe_buf_release,
564 	.steal = generic_pipe_buf_nosteal,
565 	.get = generic_pipe_buf_get,
566 };
567 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
568 
569 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
570 			    unsigned long vlen, loff_t offset)
571 {
572 	mm_segment_t old_fs;
573 	loff_t pos = offset;
574 	ssize_t res;
575 
576 	old_fs = get_fs();
577 	set_fs(get_ds());
578 	/* The cast to a user pointer is valid due to the set_fs() */
579 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
580 	set_fs(old_fs);
581 
582 	return res;
583 }
584 
585 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
586 			    loff_t pos)
587 {
588 	mm_segment_t old_fs;
589 	ssize_t res;
590 
591 	old_fs = get_fs();
592 	set_fs(get_ds());
593 	/* The cast to a user pointer is valid due to the set_fs() */
594 	res = vfs_write(file, (__force const char __user *)buf, count, &pos);
595 	set_fs(old_fs);
596 
597 	return res;
598 }
599 EXPORT_SYMBOL(kernel_write);
600 
601 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
602 				 struct pipe_inode_info *pipe, size_t len,
603 				 unsigned int flags)
604 {
605 	unsigned int nr_pages;
606 	unsigned int nr_freed;
607 	size_t offset;
608 	struct page *pages[PIPE_DEF_BUFFERS];
609 	struct partial_page partial[PIPE_DEF_BUFFERS];
610 	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
611 	ssize_t res;
612 	size_t this_len;
613 	int error;
614 	int i;
615 	struct splice_pipe_desc spd = {
616 		.pages = pages,
617 		.partial = partial,
618 		.nr_pages_max = PIPE_DEF_BUFFERS,
619 		.flags = flags,
620 		.ops = &default_pipe_buf_ops,
621 		.spd_release = spd_release_page,
622 	};
623 
624 	if (splice_grow_spd(pipe, &spd))
625 		return -ENOMEM;
626 
627 	res = -ENOMEM;
628 	vec = __vec;
629 	if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
630 		vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
631 		if (!vec)
632 			goto shrink_ret;
633 	}
634 
635 	offset = *ppos & ~PAGE_CACHE_MASK;
636 	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
637 
638 	for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
639 		struct page *page;
640 
641 		page = alloc_page(GFP_USER);
642 		error = -ENOMEM;
643 		if (!page)
644 			goto err;
645 
646 		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
647 		vec[i].iov_base = (void __user *) page_address(page);
648 		vec[i].iov_len = this_len;
649 		spd.pages[i] = page;
650 		spd.nr_pages++;
651 		len -= this_len;
652 		offset = 0;
653 	}
654 
655 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
656 	if (res < 0) {
657 		error = res;
658 		goto err;
659 	}
660 
661 	error = 0;
662 	if (!res)
663 		goto err;
664 
665 	nr_freed = 0;
666 	for (i = 0; i < spd.nr_pages; i++) {
667 		this_len = min_t(size_t, vec[i].iov_len, res);
668 		spd.partial[i].offset = 0;
669 		spd.partial[i].len = this_len;
670 		if (!this_len) {
671 			__free_page(spd.pages[i]);
672 			spd.pages[i] = NULL;
673 			nr_freed++;
674 		}
675 		res -= this_len;
676 	}
677 	spd.nr_pages -= nr_freed;
678 
679 	res = splice_to_pipe(pipe, &spd);
680 	if (res > 0)
681 		*ppos += res;
682 
683 shrink_ret:
684 	if (vec != __vec)
685 		kfree(vec);
686 	splice_shrink_spd(&spd);
687 	return res;
688 
689 err:
690 	for (i = 0; i < spd.nr_pages; i++)
691 		__free_page(spd.pages[i]);
692 
693 	res = error;
694 	goto shrink_ret;
695 }
696 EXPORT_SYMBOL(default_file_splice_read);
697 
698 /*
699  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
700  * using sendpage(). Return the number of bytes sent.
701  */
702 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
703 			    struct pipe_buffer *buf, struct splice_desc *sd)
704 {
705 	struct file *file = sd->u.file;
706 	loff_t pos = sd->pos;
707 	int more;
708 
709 	if (!likely(file->f_op->sendpage))
710 		return -EINVAL;
711 
712 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
713 
714 	if (sd->len < sd->total_len && pipe->nrbufs > 1)
715 		more |= MSG_SENDPAGE_NOTLAST;
716 
717 	return file->f_op->sendpage(file, buf->page, buf->offset,
718 				    sd->len, &pos, more);
719 }
720 
721 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
722 {
723 	smp_mb();
724 	if (waitqueue_active(&pipe->wait))
725 		wake_up_interruptible(&pipe->wait);
726 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
727 }
728 
729 /**
730  * splice_from_pipe_feed - feed available data from a pipe to a file
731  * @pipe:	pipe to splice from
732  * @sd:		information to @actor
733  * @actor:	handler that splices the data
734  *
735  * Description:
736  *    This function loops over the pipe and calls @actor to do the
737  *    actual moving of a single struct pipe_buffer to the desired
738  *    destination.  It returns when there's no more buffers left in
739  *    the pipe or if the requested number of bytes (@sd->total_len)
740  *    have been copied.  It returns a positive number (one) if the
741  *    pipe needs to be filled with more data, zero if the required
742  *    number of bytes have been copied and -errno on error.
743  *
744  *    This, together with splice_from_pipe_{begin,end,next}, may be
745  *    used to implement the functionality of __splice_from_pipe() when
746  *    locking is required around copying the pipe buffers to the
747  *    destination.
748  */
749 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
750 			  splice_actor *actor)
751 {
752 	int ret;
753 
754 	while (pipe->nrbufs) {
755 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
756 		const struct pipe_buf_operations *ops = buf->ops;
757 
758 		sd->len = buf->len;
759 		if (sd->len > sd->total_len)
760 			sd->len = sd->total_len;
761 
762 		ret = buf->ops->confirm(pipe, buf);
763 		if (unlikely(ret)) {
764 			if (ret == -ENODATA)
765 				ret = 0;
766 			return ret;
767 		}
768 
769 		ret = actor(pipe, buf, sd);
770 		if (ret <= 0)
771 			return ret;
772 
773 		buf->offset += ret;
774 		buf->len -= ret;
775 
776 		sd->num_spliced += ret;
777 		sd->len -= ret;
778 		sd->pos += ret;
779 		sd->total_len -= ret;
780 
781 		if (!buf->len) {
782 			buf->ops = NULL;
783 			ops->release(pipe, buf);
784 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
785 			pipe->nrbufs--;
786 			if (pipe->files)
787 				sd->need_wakeup = true;
788 		}
789 
790 		if (!sd->total_len)
791 			return 0;
792 	}
793 
794 	return 1;
795 }
796 
797 /**
798  * splice_from_pipe_next - wait for some data to splice from
799  * @pipe:	pipe to splice from
800  * @sd:		information about the splice operation
801  *
802  * Description:
803  *    This function will wait for some data and return a positive
804  *    value (one) if pipe buffers are available.  It will return zero
805  *    or -errno if no more data needs to be spliced.
806  */
807 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
808 {
809 	while (!pipe->nrbufs) {
810 		if (!pipe->writers)
811 			return 0;
812 
813 		if (!pipe->waiting_writers && sd->num_spliced)
814 			return 0;
815 
816 		if (sd->flags & SPLICE_F_NONBLOCK)
817 			return -EAGAIN;
818 
819 		if (signal_pending(current))
820 			return -ERESTARTSYS;
821 
822 		if (sd->need_wakeup) {
823 			wakeup_pipe_writers(pipe);
824 			sd->need_wakeup = false;
825 		}
826 
827 		pipe_wait(pipe);
828 	}
829 
830 	return 1;
831 }
832 
833 /**
834  * splice_from_pipe_begin - start splicing from pipe
835  * @sd:		information about the splice operation
836  *
837  * Description:
838  *    This function should be called before a loop containing
839  *    splice_from_pipe_next() and splice_from_pipe_feed() to
840  *    initialize the necessary fields of @sd.
841  */
842 static void splice_from_pipe_begin(struct splice_desc *sd)
843 {
844 	sd->num_spliced = 0;
845 	sd->need_wakeup = false;
846 }
847 
848 /**
849  * splice_from_pipe_end - finish splicing from pipe
850  * @pipe:	pipe to splice from
851  * @sd:		information about the splice operation
852  *
853  * Description:
854  *    This function will wake up pipe writers if necessary.  It should
855  *    be called after a loop containing splice_from_pipe_next() and
856  *    splice_from_pipe_feed().
857  */
858 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
859 {
860 	if (sd->need_wakeup)
861 		wakeup_pipe_writers(pipe);
862 }
863 
864 /**
865  * __splice_from_pipe - splice data from a pipe to given actor
866  * @pipe:	pipe to splice from
867  * @sd:		information to @actor
868  * @actor:	handler that splices the data
869  *
870  * Description:
871  *    This function does little more than loop over the pipe and call
872  *    @actor to do the actual moving of a single struct pipe_buffer to
873  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
874  *    pipe_to_user.
875  *
876  */
877 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
878 			   splice_actor *actor)
879 {
880 	int ret;
881 
882 	splice_from_pipe_begin(sd);
883 	do {
884 		ret = splice_from_pipe_next(pipe, sd);
885 		if (ret > 0)
886 			ret = splice_from_pipe_feed(pipe, sd, actor);
887 	} while (ret > 0);
888 	splice_from_pipe_end(pipe, sd);
889 
890 	return sd->num_spliced ? sd->num_spliced : ret;
891 }
892 EXPORT_SYMBOL(__splice_from_pipe);
893 
894 /**
895  * splice_from_pipe - splice data from a pipe to a file
896  * @pipe:	pipe to splice from
897  * @out:	file to splice to
898  * @ppos:	position in @out
899  * @len:	how many bytes to splice
900  * @flags:	splice modifier flags
901  * @actor:	handler that splices the data
902  *
903  * Description:
904  *    See __splice_from_pipe. This function locks the pipe inode,
905  *    otherwise it's identical to __splice_from_pipe().
906  *
907  */
908 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
909 			 loff_t *ppos, size_t len, unsigned int flags,
910 			 splice_actor *actor)
911 {
912 	ssize_t ret;
913 	struct splice_desc sd = {
914 		.total_len = len,
915 		.flags = flags,
916 		.pos = *ppos,
917 		.u.file = out,
918 	};
919 
920 	pipe_lock(pipe);
921 	ret = __splice_from_pipe(pipe, &sd, actor);
922 	pipe_unlock(pipe);
923 
924 	return ret;
925 }
926 
927 /**
928  * iter_file_splice_write - splice data from a pipe to a file
929  * @pipe:	pipe info
930  * @out:	file to write to
931  * @ppos:	position in @out
932  * @len:	number of bytes to splice
933  * @flags:	splice modifier flags
934  *
935  * Description:
936  *    Will either move or copy pages (determined by @flags options) from
937  *    the given pipe inode to the given file.
938  *    This one is ->write_iter-based.
939  *
940  */
941 ssize_t
942 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
943 			  loff_t *ppos, size_t len, unsigned int flags)
944 {
945 	struct splice_desc sd = {
946 		.total_len = len,
947 		.flags = flags,
948 		.pos = *ppos,
949 		.u.file = out,
950 	};
951 	int nbufs = pipe->buffers;
952 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
953 					GFP_KERNEL);
954 	ssize_t ret;
955 
956 	if (unlikely(!array))
957 		return -ENOMEM;
958 
959 	pipe_lock(pipe);
960 
961 	splice_from_pipe_begin(&sd);
962 	while (sd.total_len) {
963 		struct iov_iter from;
964 		struct kiocb kiocb;
965 		size_t left;
966 		int n, idx;
967 
968 		ret = splice_from_pipe_next(pipe, &sd);
969 		if (ret <= 0)
970 			break;
971 
972 		if (unlikely(nbufs < pipe->buffers)) {
973 			kfree(array);
974 			nbufs = pipe->buffers;
975 			array = kcalloc(nbufs, sizeof(struct bio_vec),
976 					GFP_KERNEL);
977 			if (!array) {
978 				ret = -ENOMEM;
979 				break;
980 			}
981 		}
982 
983 		/* build the vector */
984 		left = sd.total_len;
985 		for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
986 			struct pipe_buffer *buf = pipe->bufs + idx;
987 			size_t this_len = buf->len;
988 
989 			if (this_len > left)
990 				this_len = left;
991 
992 			if (idx == pipe->buffers - 1)
993 				idx = -1;
994 
995 			ret = buf->ops->confirm(pipe, buf);
996 			if (unlikely(ret)) {
997 				if (ret == -ENODATA)
998 					ret = 0;
999 				goto done;
1000 			}
1001 
1002 			array[n].bv_page = buf->page;
1003 			array[n].bv_len = this_len;
1004 			array[n].bv_offset = buf->offset;
1005 			left -= this_len;
1006 		}
1007 
1008 		/* ... iov_iter */
1009 		from.type = ITER_BVEC | WRITE;
1010 		from.bvec = array;
1011 		from.nr_segs = n;
1012 		from.count = sd.total_len - left;
1013 		from.iov_offset = 0;
1014 
1015 		/* ... and iocb */
1016 		init_sync_kiocb(&kiocb, out);
1017 		kiocb.ki_pos = sd.pos;
1018 		kiocb.ki_nbytes = sd.total_len - left;
1019 
1020 		/* now, send it */
1021 		ret = out->f_op->write_iter(&kiocb, &from);
1022 		if (-EIOCBQUEUED == ret)
1023 			ret = wait_on_sync_kiocb(&kiocb);
1024 
1025 		if (ret <= 0)
1026 			break;
1027 
1028 		sd.num_spliced += ret;
1029 		sd.total_len -= ret;
1030 		*ppos = sd.pos = kiocb.ki_pos;
1031 
1032 		/* dismiss the fully eaten buffers, adjust the partial one */
1033 		while (ret) {
1034 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1035 			if (ret >= buf->len) {
1036 				const struct pipe_buf_operations *ops = buf->ops;
1037 				ret -= buf->len;
1038 				buf->len = 0;
1039 				buf->ops = NULL;
1040 				ops->release(pipe, buf);
1041 				pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1042 				pipe->nrbufs--;
1043 				if (pipe->files)
1044 					sd.need_wakeup = true;
1045 			} else {
1046 				buf->offset += ret;
1047 				buf->len -= ret;
1048 				ret = 0;
1049 			}
1050 		}
1051 	}
1052 done:
1053 	kfree(array);
1054 	splice_from_pipe_end(pipe, &sd);
1055 
1056 	pipe_unlock(pipe);
1057 
1058 	if (sd.num_spliced)
1059 		ret = sd.num_spliced;
1060 
1061 	return ret;
1062 }
1063 
1064 EXPORT_SYMBOL(iter_file_splice_write);
1065 
1066 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1067 			  struct splice_desc *sd)
1068 {
1069 	int ret;
1070 	void *data;
1071 	loff_t tmp = sd->pos;
1072 
1073 	data = kmap(buf->page);
1074 	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1075 	kunmap(buf->page);
1076 
1077 	return ret;
1078 }
1079 
1080 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1081 					 struct file *out, loff_t *ppos,
1082 					 size_t len, unsigned int flags)
1083 {
1084 	ssize_t ret;
1085 
1086 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1087 	if (ret > 0)
1088 		*ppos += ret;
1089 
1090 	return ret;
1091 }
1092 
1093 /**
1094  * generic_splice_sendpage - splice data from a pipe to a socket
1095  * @pipe:	pipe to splice from
1096  * @out:	socket to write to
1097  * @ppos:	position in @out
1098  * @len:	number of bytes to splice
1099  * @flags:	splice modifier flags
1100  *
1101  * Description:
1102  *    Will send @len bytes from the pipe to a network socket. No data copying
1103  *    is involved.
1104  *
1105  */
1106 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1107 				loff_t *ppos, size_t len, unsigned int flags)
1108 {
1109 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1110 }
1111 
1112 EXPORT_SYMBOL(generic_splice_sendpage);
1113 
1114 /*
1115  * Attempt to initiate a splice from pipe to file.
1116  */
1117 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1118 			   loff_t *ppos, size_t len, unsigned int flags)
1119 {
1120 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1121 				loff_t *, size_t, unsigned int);
1122 
1123 	if (out->f_op->splice_write)
1124 		splice_write = out->f_op->splice_write;
1125 	else
1126 		splice_write = default_file_splice_write;
1127 
1128 	return splice_write(pipe, out, ppos, len, flags);
1129 }
1130 
1131 /*
1132  * Attempt to initiate a splice from a file to a pipe.
1133  */
1134 static long do_splice_to(struct file *in, loff_t *ppos,
1135 			 struct pipe_inode_info *pipe, size_t len,
1136 			 unsigned int flags)
1137 {
1138 	ssize_t (*splice_read)(struct file *, loff_t *,
1139 			       struct pipe_inode_info *, size_t, unsigned int);
1140 	int ret;
1141 
1142 	if (unlikely(!(in->f_mode & FMODE_READ)))
1143 		return -EBADF;
1144 
1145 	ret = rw_verify_area(READ, in, ppos, len);
1146 	if (unlikely(ret < 0))
1147 		return ret;
1148 
1149 	if (in->f_op->splice_read)
1150 		splice_read = in->f_op->splice_read;
1151 	else
1152 		splice_read = default_file_splice_read;
1153 
1154 	return splice_read(in, ppos, pipe, len, flags);
1155 }
1156 
1157 /**
1158  * splice_direct_to_actor - splices data directly between two non-pipes
1159  * @in:		file to splice from
1160  * @sd:		actor information on where to splice to
1161  * @actor:	handles the data splicing
1162  *
1163  * Description:
1164  *    This is a special case helper to splice directly between two
1165  *    points, without requiring an explicit pipe. Internally an allocated
1166  *    pipe is cached in the process, and reused during the lifetime of
1167  *    that process.
1168  *
1169  */
1170 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1171 			       splice_direct_actor *actor)
1172 {
1173 	struct pipe_inode_info *pipe;
1174 	long ret, bytes;
1175 	umode_t i_mode;
1176 	size_t len;
1177 	int i, flags;
1178 
1179 	/*
1180 	 * We require the input being a regular file, as we don't want to
1181 	 * randomly drop data for eg socket -> socket splicing. Use the
1182 	 * piped splicing for that!
1183 	 */
1184 	i_mode = file_inode(in)->i_mode;
1185 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1186 		return -EINVAL;
1187 
1188 	/*
1189 	 * neither in nor out is a pipe, setup an internal pipe attached to
1190 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1191 	 */
1192 	pipe = current->splice_pipe;
1193 	if (unlikely(!pipe)) {
1194 		pipe = alloc_pipe_info();
1195 		if (!pipe)
1196 			return -ENOMEM;
1197 
1198 		/*
1199 		 * We don't have an immediate reader, but we'll read the stuff
1200 		 * out of the pipe right after the splice_to_pipe(). So set
1201 		 * PIPE_READERS appropriately.
1202 		 */
1203 		pipe->readers = 1;
1204 
1205 		current->splice_pipe = pipe;
1206 	}
1207 
1208 	/*
1209 	 * Do the splice.
1210 	 */
1211 	ret = 0;
1212 	bytes = 0;
1213 	len = sd->total_len;
1214 	flags = sd->flags;
1215 
1216 	/*
1217 	 * Don't block on output, we have to drain the direct pipe.
1218 	 */
1219 	sd->flags &= ~SPLICE_F_NONBLOCK;
1220 
1221 	while (len) {
1222 		size_t read_len;
1223 		loff_t pos = sd->pos, prev_pos = pos;
1224 
1225 		ret = do_splice_to(in, &pos, pipe, len, flags);
1226 		if (unlikely(ret <= 0))
1227 			goto out_release;
1228 
1229 		read_len = ret;
1230 		sd->total_len = read_len;
1231 
1232 		/*
1233 		 * NOTE: nonblocking mode only applies to the input. We
1234 		 * must not do the output in nonblocking mode as then we
1235 		 * could get stuck data in the internal pipe:
1236 		 */
1237 		ret = actor(pipe, sd);
1238 		if (unlikely(ret <= 0)) {
1239 			sd->pos = prev_pos;
1240 			goto out_release;
1241 		}
1242 
1243 		bytes += ret;
1244 		len -= ret;
1245 		sd->pos = pos;
1246 
1247 		if (ret < read_len) {
1248 			sd->pos = prev_pos + ret;
1249 			goto out_release;
1250 		}
1251 	}
1252 
1253 done:
1254 	pipe->nrbufs = pipe->curbuf = 0;
1255 	file_accessed(in);
1256 	return bytes;
1257 
1258 out_release:
1259 	/*
1260 	 * If we did an incomplete transfer we must release
1261 	 * the pipe buffers in question:
1262 	 */
1263 	for (i = 0; i < pipe->buffers; i++) {
1264 		struct pipe_buffer *buf = pipe->bufs + i;
1265 
1266 		if (buf->ops) {
1267 			buf->ops->release(pipe, buf);
1268 			buf->ops = NULL;
1269 		}
1270 	}
1271 
1272 	if (!bytes)
1273 		bytes = ret;
1274 
1275 	goto done;
1276 }
1277 EXPORT_SYMBOL(splice_direct_to_actor);
1278 
1279 static int direct_splice_actor(struct pipe_inode_info *pipe,
1280 			       struct splice_desc *sd)
1281 {
1282 	struct file *file = sd->u.file;
1283 
1284 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1285 			      sd->flags);
1286 }
1287 
1288 /**
1289  * do_splice_direct - splices data directly between two files
1290  * @in:		file to splice from
1291  * @ppos:	input file offset
1292  * @out:	file to splice to
1293  * @opos:	output file offset
1294  * @len:	number of bytes to splice
1295  * @flags:	splice modifier flags
1296  *
1297  * Description:
1298  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1299  *    doing it in the application would incur an extra system call
1300  *    (splice in + splice out, as compared to just sendfile()). So this helper
1301  *    can splice directly through a process-private pipe.
1302  *
1303  */
1304 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1305 		      loff_t *opos, size_t len, unsigned int flags)
1306 {
1307 	struct splice_desc sd = {
1308 		.len		= len,
1309 		.total_len	= len,
1310 		.flags		= flags,
1311 		.pos		= *ppos,
1312 		.u.file		= out,
1313 		.opos		= opos,
1314 	};
1315 	long ret;
1316 
1317 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1318 		return -EBADF;
1319 
1320 	if (unlikely(out->f_flags & O_APPEND))
1321 		return -EINVAL;
1322 
1323 	ret = rw_verify_area(WRITE, out, opos, len);
1324 	if (unlikely(ret < 0))
1325 		return ret;
1326 
1327 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1328 	if (ret > 0)
1329 		*ppos = sd.pos;
1330 
1331 	return ret;
1332 }
1333 EXPORT_SYMBOL(do_splice_direct);
1334 
1335 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1336 			       struct pipe_inode_info *opipe,
1337 			       size_t len, unsigned int flags);
1338 
1339 /*
1340  * Determine where to splice to/from.
1341  */
1342 static long do_splice(struct file *in, loff_t __user *off_in,
1343 		      struct file *out, loff_t __user *off_out,
1344 		      size_t len, unsigned int flags)
1345 {
1346 	struct pipe_inode_info *ipipe;
1347 	struct pipe_inode_info *opipe;
1348 	loff_t offset;
1349 	long ret;
1350 
1351 	ipipe = get_pipe_info(in);
1352 	opipe = get_pipe_info(out);
1353 
1354 	if (ipipe && opipe) {
1355 		if (off_in || off_out)
1356 			return -ESPIPE;
1357 
1358 		if (!(in->f_mode & FMODE_READ))
1359 			return -EBADF;
1360 
1361 		if (!(out->f_mode & FMODE_WRITE))
1362 			return -EBADF;
1363 
1364 		/* Splicing to self would be fun, but... */
1365 		if (ipipe == opipe)
1366 			return -EINVAL;
1367 
1368 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1369 	}
1370 
1371 	if (ipipe) {
1372 		if (off_in)
1373 			return -ESPIPE;
1374 		if (off_out) {
1375 			if (!(out->f_mode & FMODE_PWRITE))
1376 				return -EINVAL;
1377 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1378 				return -EFAULT;
1379 		} else {
1380 			offset = out->f_pos;
1381 		}
1382 
1383 		if (unlikely(!(out->f_mode & FMODE_WRITE)))
1384 			return -EBADF;
1385 
1386 		if (unlikely(out->f_flags & O_APPEND))
1387 			return -EINVAL;
1388 
1389 		ret = rw_verify_area(WRITE, out, &offset, len);
1390 		if (unlikely(ret < 0))
1391 			return ret;
1392 
1393 		file_start_write(out);
1394 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1395 		file_end_write(out);
1396 
1397 		if (!off_out)
1398 			out->f_pos = offset;
1399 		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1400 			ret = -EFAULT;
1401 
1402 		return ret;
1403 	}
1404 
1405 	if (opipe) {
1406 		if (off_out)
1407 			return -ESPIPE;
1408 		if (off_in) {
1409 			if (!(in->f_mode & FMODE_PREAD))
1410 				return -EINVAL;
1411 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1412 				return -EFAULT;
1413 		} else {
1414 			offset = in->f_pos;
1415 		}
1416 
1417 		ret = do_splice_to(in, &offset, opipe, len, flags);
1418 
1419 		if (!off_in)
1420 			in->f_pos = offset;
1421 		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1422 			ret = -EFAULT;
1423 
1424 		return ret;
1425 	}
1426 
1427 	return -EINVAL;
1428 }
1429 
1430 /*
1431  * Map an iov into an array of pages and offset/length tupples. With the
1432  * partial_page structure, we can map several non-contiguous ranges into
1433  * our ones pages[] map instead of splitting that operation into pieces.
1434  * Could easily be exported as a generic helper for other users, in which
1435  * case one would probably want to add a 'max_nr_pages' parameter as well.
1436  */
1437 static int get_iovec_page_array(const struct iovec __user *iov,
1438 				unsigned int nr_vecs, struct page **pages,
1439 				struct partial_page *partial, bool aligned,
1440 				unsigned int pipe_buffers)
1441 {
1442 	int buffers = 0, error = 0;
1443 
1444 	while (nr_vecs) {
1445 		unsigned long off, npages;
1446 		struct iovec entry;
1447 		void __user *base;
1448 		size_t len;
1449 		int i;
1450 
1451 		error = -EFAULT;
1452 		if (copy_from_user(&entry, iov, sizeof(entry)))
1453 			break;
1454 
1455 		base = entry.iov_base;
1456 		len = entry.iov_len;
1457 
1458 		/*
1459 		 * Sanity check this iovec. 0 read succeeds.
1460 		 */
1461 		error = 0;
1462 		if (unlikely(!len))
1463 			break;
1464 		error = -EFAULT;
1465 		if (!access_ok(VERIFY_READ, base, len))
1466 			break;
1467 
1468 		/*
1469 		 * Get this base offset and number of pages, then map
1470 		 * in the user pages.
1471 		 */
1472 		off = (unsigned long) base & ~PAGE_MASK;
1473 
1474 		/*
1475 		 * If asked for alignment, the offset must be zero and the
1476 		 * length a multiple of the PAGE_SIZE.
1477 		 */
1478 		error = -EINVAL;
1479 		if (aligned && (off || len & ~PAGE_MASK))
1480 			break;
1481 
1482 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1483 		if (npages > pipe_buffers - buffers)
1484 			npages = pipe_buffers - buffers;
1485 
1486 		error = get_user_pages_fast((unsigned long)base, npages,
1487 					0, &pages[buffers]);
1488 
1489 		if (unlikely(error <= 0))
1490 			break;
1491 
1492 		/*
1493 		 * Fill this contiguous range into the partial page map.
1494 		 */
1495 		for (i = 0; i < error; i++) {
1496 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1497 
1498 			partial[buffers].offset = off;
1499 			partial[buffers].len = plen;
1500 
1501 			off = 0;
1502 			len -= plen;
1503 			buffers++;
1504 		}
1505 
1506 		/*
1507 		 * We didn't complete this iov, stop here since it probably
1508 		 * means we have to move some of this into a pipe to
1509 		 * be able to continue.
1510 		 */
1511 		if (len)
1512 			break;
1513 
1514 		/*
1515 		 * Don't continue if we mapped fewer pages than we asked for,
1516 		 * or if we mapped the max number of pages that we have
1517 		 * room for.
1518 		 */
1519 		if (error < npages || buffers == pipe_buffers)
1520 			break;
1521 
1522 		nr_vecs--;
1523 		iov++;
1524 	}
1525 
1526 	if (buffers)
1527 		return buffers;
1528 
1529 	return error;
1530 }
1531 
1532 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1533 			struct splice_desc *sd)
1534 {
1535 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1536 	return n == sd->len ? n : -EFAULT;
1537 }
1538 
1539 /*
1540  * For lack of a better implementation, implement vmsplice() to userspace
1541  * as a simple copy of the pipes pages to the user iov.
1542  */
1543 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1544 			     unsigned long nr_segs, unsigned int flags)
1545 {
1546 	struct pipe_inode_info *pipe;
1547 	struct splice_desc sd;
1548 	long ret;
1549 	struct iovec iovstack[UIO_FASTIOV];
1550 	struct iovec *iov = iovstack;
1551 	struct iov_iter iter;
1552 	ssize_t count;
1553 
1554 	pipe = get_pipe_info(file);
1555 	if (!pipe)
1556 		return -EBADF;
1557 
1558 	ret = rw_copy_check_uvector(READ, uiov, nr_segs,
1559 				    ARRAY_SIZE(iovstack), iovstack, &iov);
1560 	if (ret <= 0)
1561 		goto out;
1562 
1563 	count = ret;
1564 	iov_iter_init(&iter, READ, iov, nr_segs, count);
1565 
1566 	sd.len = 0;
1567 	sd.total_len = count;
1568 	sd.flags = flags;
1569 	sd.u.data = &iter;
1570 	sd.pos = 0;
1571 
1572 	pipe_lock(pipe);
1573 	ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1574 	pipe_unlock(pipe);
1575 
1576 out:
1577 	if (iov != iovstack)
1578 		kfree(iov);
1579 
1580 	return ret;
1581 }
1582 
1583 /*
1584  * vmsplice splices a user address range into a pipe. It can be thought of
1585  * as splice-from-memory, where the regular splice is splice-from-file (or
1586  * to file). In both cases the output is a pipe, naturally.
1587  */
1588 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1589 			     unsigned long nr_segs, unsigned int flags)
1590 {
1591 	struct pipe_inode_info *pipe;
1592 	struct page *pages[PIPE_DEF_BUFFERS];
1593 	struct partial_page partial[PIPE_DEF_BUFFERS];
1594 	struct splice_pipe_desc spd = {
1595 		.pages = pages,
1596 		.partial = partial,
1597 		.nr_pages_max = PIPE_DEF_BUFFERS,
1598 		.flags = flags,
1599 		.ops = &user_page_pipe_buf_ops,
1600 		.spd_release = spd_release_page,
1601 	};
1602 	long ret;
1603 
1604 	pipe = get_pipe_info(file);
1605 	if (!pipe)
1606 		return -EBADF;
1607 
1608 	if (splice_grow_spd(pipe, &spd))
1609 		return -ENOMEM;
1610 
1611 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1612 					    spd.partial, false,
1613 					    spd.nr_pages_max);
1614 	if (spd.nr_pages <= 0)
1615 		ret = spd.nr_pages;
1616 	else
1617 		ret = splice_to_pipe(pipe, &spd);
1618 
1619 	splice_shrink_spd(&spd);
1620 	return ret;
1621 }
1622 
1623 /*
1624  * Note that vmsplice only really supports true splicing _from_ user memory
1625  * to a pipe, not the other way around. Splicing from user memory is a simple
1626  * operation that can be supported without any funky alignment restrictions
1627  * or nasty vm tricks. We simply map in the user memory and fill them into
1628  * a pipe. The reverse isn't quite as easy, though. There are two possible
1629  * solutions for that:
1630  *
1631  *	- memcpy() the data internally, at which point we might as well just
1632  *	  do a regular read() on the buffer anyway.
1633  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1634  *	  has restriction limitations on both ends of the pipe).
1635  *
1636  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1637  *
1638  */
1639 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1640 		unsigned long, nr_segs, unsigned int, flags)
1641 {
1642 	struct fd f;
1643 	long error;
1644 
1645 	if (unlikely(nr_segs > UIO_MAXIOV))
1646 		return -EINVAL;
1647 	else if (unlikely(!nr_segs))
1648 		return 0;
1649 
1650 	error = -EBADF;
1651 	f = fdget(fd);
1652 	if (f.file) {
1653 		if (f.file->f_mode & FMODE_WRITE)
1654 			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1655 		else if (f.file->f_mode & FMODE_READ)
1656 			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1657 
1658 		fdput(f);
1659 	}
1660 
1661 	return error;
1662 }
1663 
1664 #ifdef CONFIG_COMPAT
1665 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1666 		    unsigned int, nr_segs, unsigned int, flags)
1667 {
1668 	unsigned i;
1669 	struct iovec __user *iov;
1670 	if (nr_segs > UIO_MAXIOV)
1671 		return -EINVAL;
1672 	iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1673 	for (i = 0; i < nr_segs; i++) {
1674 		struct compat_iovec v;
1675 		if (get_user(v.iov_base, &iov32[i].iov_base) ||
1676 		    get_user(v.iov_len, &iov32[i].iov_len) ||
1677 		    put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1678 		    put_user(v.iov_len, &iov[i].iov_len))
1679 			return -EFAULT;
1680 	}
1681 	return sys_vmsplice(fd, iov, nr_segs, flags);
1682 }
1683 #endif
1684 
1685 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1686 		int, fd_out, loff_t __user *, off_out,
1687 		size_t, len, unsigned int, flags)
1688 {
1689 	struct fd in, out;
1690 	long error;
1691 
1692 	if (unlikely(!len))
1693 		return 0;
1694 
1695 	error = -EBADF;
1696 	in = fdget(fd_in);
1697 	if (in.file) {
1698 		if (in.file->f_mode & FMODE_READ) {
1699 			out = fdget(fd_out);
1700 			if (out.file) {
1701 				if (out.file->f_mode & FMODE_WRITE)
1702 					error = do_splice(in.file, off_in,
1703 							  out.file, off_out,
1704 							  len, flags);
1705 				fdput(out);
1706 			}
1707 		}
1708 		fdput(in);
1709 	}
1710 	return error;
1711 }
1712 
1713 /*
1714  * Make sure there's data to read. Wait for input if we can, otherwise
1715  * return an appropriate error.
1716  */
1717 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1718 {
1719 	int ret;
1720 
1721 	/*
1722 	 * Check ->nrbufs without the inode lock first. This function
1723 	 * is speculative anyways, so missing one is ok.
1724 	 */
1725 	if (pipe->nrbufs)
1726 		return 0;
1727 
1728 	ret = 0;
1729 	pipe_lock(pipe);
1730 
1731 	while (!pipe->nrbufs) {
1732 		if (signal_pending(current)) {
1733 			ret = -ERESTARTSYS;
1734 			break;
1735 		}
1736 		if (!pipe->writers)
1737 			break;
1738 		if (!pipe->waiting_writers) {
1739 			if (flags & SPLICE_F_NONBLOCK) {
1740 				ret = -EAGAIN;
1741 				break;
1742 			}
1743 		}
1744 		pipe_wait(pipe);
1745 	}
1746 
1747 	pipe_unlock(pipe);
1748 	return ret;
1749 }
1750 
1751 /*
1752  * Make sure there's writeable room. Wait for room if we can, otherwise
1753  * return an appropriate error.
1754  */
1755 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1756 {
1757 	int ret;
1758 
1759 	/*
1760 	 * Check ->nrbufs without the inode lock first. This function
1761 	 * is speculative anyways, so missing one is ok.
1762 	 */
1763 	if (pipe->nrbufs < pipe->buffers)
1764 		return 0;
1765 
1766 	ret = 0;
1767 	pipe_lock(pipe);
1768 
1769 	while (pipe->nrbufs >= pipe->buffers) {
1770 		if (!pipe->readers) {
1771 			send_sig(SIGPIPE, current, 0);
1772 			ret = -EPIPE;
1773 			break;
1774 		}
1775 		if (flags & SPLICE_F_NONBLOCK) {
1776 			ret = -EAGAIN;
1777 			break;
1778 		}
1779 		if (signal_pending(current)) {
1780 			ret = -ERESTARTSYS;
1781 			break;
1782 		}
1783 		pipe->waiting_writers++;
1784 		pipe_wait(pipe);
1785 		pipe->waiting_writers--;
1786 	}
1787 
1788 	pipe_unlock(pipe);
1789 	return ret;
1790 }
1791 
1792 /*
1793  * Splice contents of ipipe to opipe.
1794  */
1795 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1796 			       struct pipe_inode_info *opipe,
1797 			       size_t len, unsigned int flags)
1798 {
1799 	struct pipe_buffer *ibuf, *obuf;
1800 	int ret = 0, nbuf;
1801 	bool input_wakeup = false;
1802 
1803 
1804 retry:
1805 	ret = ipipe_prep(ipipe, flags);
1806 	if (ret)
1807 		return ret;
1808 
1809 	ret = opipe_prep(opipe, flags);
1810 	if (ret)
1811 		return ret;
1812 
1813 	/*
1814 	 * Potential ABBA deadlock, work around it by ordering lock
1815 	 * grabbing by pipe info address. Otherwise two different processes
1816 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1817 	 */
1818 	pipe_double_lock(ipipe, opipe);
1819 
1820 	do {
1821 		if (!opipe->readers) {
1822 			send_sig(SIGPIPE, current, 0);
1823 			if (!ret)
1824 				ret = -EPIPE;
1825 			break;
1826 		}
1827 
1828 		if (!ipipe->nrbufs && !ipipe->writers)
1829 			break;
1830 
1831 		/*
1832 		 * Cannot make any progress, because either the input
1833 		 * pipe is empty or the output pipe is full.
1834 		 */
1835 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1836 			/* Already processed some buffers, break */
1837 			if (ret)
1838 				break;
1839 
1840 			if (flags & SPLICE_F_NONBLOCK) {
1841 				ret = -EAGAIN;
1842 				break;
1843 			}
1844 
1845 			/*
1846 			 * We raced with another reader/writer and haven't
1847 			 * managed to process any buffers.  A zero return
1848 			 * value means EOF, so retry instead.
1849 			 */
1850 			pipe_unlock(ipipe);
1851 			pipe_unlock(opipe);
1852 			goto retry;
1853 		}
1854 
1855 		ibuf = ipipe->bufs + ipipe->curbuf;
1856 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1857 		obuf = opipe->bufs + nbuf;
1858 
1859 		if (len >= ibuf->len) {
1860 			/*
1861 			 * Simply move the whole buffer from ipipe to opipe
1862 			 */
1863 			*obuf = *ibuf;
1864 			ibuf->ops = NULL;
1865 			opipe->nrbufs++;
1866 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1867 			ipipe->nrbufs--;
1868 			input_wakeup = true;
1869 		} else {
1870 			/*
1871 			 * Get a reference to this pipe buffer,
1872 			 * so we can copy the contents over.
1873 			 */
1874 			ibuf->ops->get(ipipe, ibuf);
1875 			*obuf = *ibuf;
1876 
1877 			/*
1878 			 * Don't inherit the gift flag, we need to
1879 			 * prevent multiple steals of this page.
1880 			 */
1881 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1882 
1883 			obuf->len = len;
1884 			opipe->nrbufs++;
1885 			ibuf->offset += obuf->len;
1886 			ibuf->len -= obuf->len;
1887 		}
1888 		ret += obuf->len;
1889 		len -= obuf->len;
1890 	} while (len);
1891 
1892 	pipe_unlock(ipipe);
1893 	pipe_unlock(opipe);
1894 
1895 	/*
1896 	 * If we put data in the output pipe, wakeup any potential readers.
1897 	 */
1898 	if (ret > 0)
1899 		wakeup_pipe_readers(opipe);
1900 
1901 	if (input_wakeup)
1902 		wakeup_pipe_writers(ipipe);
1903 
1904 	return ret;
1905 }
1906 
1907 /*
1908  * Link contents of ipipe to opipe.
1909  */
1910 static int link_pipe(struct pipe_inode_info *ipipe,
1911 		     struct pipe_inode_info *opipe,
1912 		     size_t len, unsigned int flags)
1913 {
1914 	struct pipe_buffer *ibuf, *obuf;
1915 	int ret = 0, i = 0, nbuf;
1916 
1917 	/*
1918 	 * Potential ABBA deadlock, work around it by ordering lock
1919 	 * grabbing by pipe info address. Otherwise two different processes
1920 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1921 	 */
1922 	pipe_double_lock(ipipe, opipe);
1923 
1924 	do {
1925 		if (!opipe->readers) {
1926 			send_sig(SIGPIPE, current, 0);
1927 			if (!ret)
1928 				ret = -EPIPE;
1929 			break;
1930 		}
1931 
1932 		/*
1933 		 * If we have iterated all input buffers or ran out of
1934 		 * output room, break.
1935 		 */
1936 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1937 			break;
1938 
1939 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1940 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1941 
1942 		/*
1943 		 * Get a reference to this pipe buffer,
1944 		 * so we can copy the contents over.
1945 		 */
1946 		ibuf->ops->get(ipipe, ibuf);
1947 
1948 		obuf = opipe->bufs + nbuf;
1949 		*obuf = *ibuf;
1950 
1951 		/*
1952 		 * Don't inherit the gift flag, we need to
1953 		 * prevent multiple steals of this page.
1954 		 */
1955 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1956 
1957 		if (obuf->len > len)
1958 			obuf->len = len;
1959 
1960 		opipe->nrbufs++;
1961 		ret += obuf->len;
1962 		len -= obuf->len;
1963 		i++;
1964 	} while (len);
1965 
1966 	/*
1967 	 * return EAGAIN if we have the potential of some data in the
1968 	 * future, otherwise just return 0
1969 	 */
1970 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1971 		ret = -EAGAIN;
1972 
1973 	pipe_unlock(ipipe);
1974 	pipe_unlock(opipe);
1975 
1976 	/*
1977 	 * If we put data in the output pipe, wakeup any potential readers.
1978 	 */
1979 	if (ret > 0)
1980 		wakeup_pipe_readers(opipe);
1981 
1982 	return ret;
1983 }
1984 
1985 /*
1986  * This is a tee(1) implementation that works on pipes. It doesn't copy
1987  * any data, it simply references the 'in' pages on the 'out' pipe.
1988  * The 'flags' used are the SPLICE_F_* variants, currently the only
1989  * applicable one is SPLICE_F_NONBLOCK.
1990  */
1991 static long do_tee(struct file *in, struct file *out, size_t len,
1992 		   unsigned int flags)
1993 {
1994 	struct pipe_inode_info *ipipe = get_pipe_info(in);
1995 	struct pipe_inode_info *opipe = get_pipe_info(out);
1996 	int ret = -EINVAL;
1997 
1998 	/*
1999 	 * Duplicate the contents of ipipe to opipe without actually
2000 	 * copying the data.
2001 	 */
2002 	if (ipipe && opipe && ipipe != opipe) {
2003 		/*
2004 		 * Keep going, unless we encounter an error. The ipipe/opipe
2005 		 * ordering doesn't really matter.
2006 		 */
2007 		ret = ipipe_prep(ipipe, flags);
2008 		if (!ret) {
2009 			ret = opipe_prep(opipe, flags);
2010 			if (!ret)
2011 				ret = link_pipe(ipipe, opipe, len, flags);
2012 		}
2013 	}
2014 
2015 	return ret;
2016 }
2017 
2018 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2019 {
2020 	struct fd in;
2021 	int error;
2022 
2023 	if (unlikely(!len))
2024 		return 0;
2025 
2026 	error = -EBADF;
2027 	in = fdget(fdin);
2028 	if (in.file) {
2029 		if (in.file->f_mode & FMODE_READ) {
2030 			struct fd out = fdget(fdout);
2031 			if (out.file) {
2032 				if (out.file->f_mode & FMODE_WRITE)
2033 					error = do_tee(in.file, out.file,
2034 							len, flags);
2035 				fdput(out);
2036 			}
2037 		}
2038  		fdput(in);
2039  	}
2040 
2041 	return error;
2042 }
2043