xref: /openbmc/linux/fs/splice.c (revision 906a76cc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * "splice": joining two ropes together by interweaving their strands.
4  *
5  * This is the "extended pipe" functionality, where a pipe is used as
6  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7  * buffer that you can use to transfer data from one end to the other.
8  *
9  * The traditional unix read/write is extended with a "splice()" operation
10  * that transfers data buffers to or from a pipe buffer.
11  *
12  * Named by Larry McVoy, original implementation from Linus, extended by
13  * Jens to support splicing to files, network, direct splicing, etc and
14  * fixing lots of bugs.
15  *
16  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19  *
20  */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/fsnotify.h>
34 #include <linux/security.h>
35 #include <linux/gfp.h>
36 #include <linux/net.h>
37 #include <linux/socket.h>
38 #include <linux/sched/signal.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
44  * indicate they support non-blocking reads or writes, we must clear it
45  * here if set to avoid blocking other users of this pipe if splice is
46  * being done on it.
47  */
48 static noinline void noinline pipe_clear_nowait(struct file *file)
49 {
50 	fmode_t fmode = READ_ONCE(file->f_mode);
51 
52 	do {
53 		if (!(fmode & FMODE_NOWAIT))
54 			break;
55 	} while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
56 }
57 
58 /*
59  * Attempt to steal a page from a pipe buffer. This should perhaps go into
60  * a vm helper function, it's already simplified quite a bit by the
61  * addition of remove_mapping(). If success is returned, the caller may
62  * attempt to reuse this page for another destination.
63  */
64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
65 		struct pipe_buffer *buf)
66 {
67 	struct folio *folio = page_folio(buf->page);
68 	struct address_space *mapping;
69 
70 	folio_lock(folio);
71 
72 	mapping = folio_mapping(folio);
73 	if (mapping) {
74 		WARN_ON(!folio_test_uptodate(folio));
75 
76 		/*
77 		 * At least for ext2 with nobh option, we need to wait on
78 		 * writeback completing on this folio, since we'll remove it
79 		 * from the pagecache.  Otherwise truncate wont wait on the
80 		 * folio, allowing the disk blocks to be reused by someone else
81 		 * before we actually wrote our data to them. fs corruption
82 		 * ensues.
83 		 */
84 		folio_wait_writeback(folio);
85 
86 		if (folio_has_private(folio) &&
87 		    !filemap_release_folio(folio, GFP_KERNEL))
88 			goto out_unlock;
89 
90 		/*
91 		 * If we succeeded in removing the mapping, set LRU flag
92 		 * and return good.
93 		 */
94 		if (remove_mapping(mapping, folio)) {
95 			buf->flags |= PIPE_BUF_FLAG_LRU;
96 			return true;
97 		}
98 	}
99 
100 	/*
101 	 * Raced with truncate or failed to remove folio from current
102 	 * address space, unlock and return failure.
103 	 */
104 out_unlock:
105 	folio_unlock(folio);
106 	return false;
107 }
108 
109 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
110 					struct pipe_buffer *buf)
111 {
112 	put_page(buf->page);
113 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
114 }
115 
116 /*
117  * Check whether the contents of buf is OK to access. Since the content
118  * is a page cache page, IO may be in flight.
119  */
120 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
121 				       struct pipe_buffer *buf)
122 {
123 	struct page *page = buf->page;
124 	int err;
125 
126 	if (!PageUptodate(page)) {
127 		lock_page(page);
128 
129 		/*
130 		 * Page got truncated/unhashed. This will cause a 0-byte
131 		 * splice, if this is the first page.
132 		 */
133 		if (!page->mapping) {
134 			err = -ENODATA;
135 			goto error;
136 		}
137 
138 		/*
139 		 * Uh oh, read-error from disk.
140 		 */
141 		if (!PageUptodate(page)) {
142 			err = -EIO;
143 			goto error;
144 		}
145 
146 		/*
147 		 * Page is ok afterall, we are done.
148 		 */
149 		unlock_page(page);
150 	}
151 
152 	return 0;
153 error:
154 	unlock_page(page);
155 	return err;
156 }
157 
158 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
159 	.confirm	= page_cache_pipe_buf_confirm,
160 	.release	= page_cache_pipe_buf_release,
161 	.try_steal	= page_cache_pipe_buf_try_steal,
162 	.get		= generic_pipe_buf_get,
163 };
164 
165 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166 		struct pipe_buffer *buf)
167 {
168 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
169 		return false;
170 
171 	buf->flags |= PIPE_BUF_FLAG_LRU;
172 	return generic_pipe_buf_try_steal(pipe, buf);
173 }
174 
175 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
176 	.release	= page_cache_pipe_buf_release,
177 	.try_steal	= user_page_pipe_buf_try_steal,
178 	.get		= generic_pipe_buf_get,
179 };
180 
181 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
182 {
183 	smp_mb();
184 	if (waitqueue_active(&pipe->rd_wait))
185 		wake_up_interruptible(&pipe->rd_wait);
186 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
187 }
188 
189 /**
190  * splice_to_pipe - fill passed data into a pipe
191  * @pipe:	pipe to fill
192  * @spd:	data to fill
193  *
194  * Description:
195  *    @spd contains a map of pages and len/offset tuples, along with
196  *    the struct pipe_buf_operations associated with these pages. This
197  *    function will link that data to the pipe.
198  *
199  */
200 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
201 		       struct splice_pipe_desc *spd)
202 {
203 	unsigned int spd_pages = spd->nr_pages;
204 	unsigned int tail = pipe->tail;
205 	unsigned int head = pipe->head;
206 	unsigned int mask = pipe->ring_size - 1;
207 	int ret = 0, page_nr = 0;
208 
209 	if (!spd_pages)
210 		return 0;
211 
212 	if (unlikely(!pipe->readers)) {
213 		send_sig(SIGPIPE, current, 0);
214 		ret = -EPIPE;
215 		goto out;
216 	}
217 
218 	while (!pipe_full(head, tail, pipe->max_usage)) {
219 		struct pipe_buffer *buf = &pipe->bufs[head & mask];
220 
221 		buf->page = spd->pages[page_nr];
222 		buf->offset = spd->partial[page_nr].offset;
223 		buf->len = spd->partial[page_nr].len;
224 		buf->private = spd->partial[page_nr].private;
225 		buf->ops = spd->ops;
226 		buf->flags = 0;
227 
228 		head++;
229 		pipe->head = head;
230 		page_nr++;
231 		ret += buf->len;
232 
233 		if (!--spd->nr_pages)
234 			break;
235 	}
236 
237 	if (!ret)
238 		ret = -EAGAIN;
239 
240 out:
241 	while (page_nr < spd_pages)
242 		spd->spd_release(spd, page_nr++);
243 
244 	return ret;
245 }
246 EXPORT_SYMBOL_GPL(splice_to_pipe);
247 
248 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
249 {
250 	unsigned int head = pipe->head;
251 	unsigned int tail = pipe->tail;
252 	unsigned int mask = pipe->ring_size - 1;
253 	int ret;
254 
255 	if (unlikely(!pipe->readers)) {
256 		send_sig(SIGPIPE, current, 0);
257 		ret = -EPIPE;
258 	} else if (pipe_full(head, tail, pipe->max_usage)) {
259 		ret = -EAGAIN;
260 	} else {
261 		pipe->bufs[head & mask] = *buf;
262 		pipe->head = head + 1;
263 		return buf->len;
264 	}
265 	pipe_buf_release(pipe, buf);
266 	return ret;
267 }
268 EXPORT_SYMBOL(add_to_pipe);
269 
270 /*
271  * Check if we need to grow the arrays holding pages and partial page
272  * descriptions.
273  */
274 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
275 {
276 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
277 
278 	spd->nr_pages_max = max_usage;
279 	if (max_usage <= PIPE_DEF_BUFFERS)
280 		return 0;
281 
282 	spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
283 	spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
284 				     GFP_KERNEL);
285 
286 	if (spd->pages && spd->partial)
287 		return 0;
288 
289 	kfree(spd->pages);
290 	kfree(spd->partial);
291 	return -ENOMEM;
292 }
293 
294 void splice_shrink_spd(struct splice_pipe_desc *spd)
295 {
296 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
297 		return;
298 
299 	kfree(spd->pages);
300 	kfree(spd->partial);
301 }
302 
303 /*
304  * Splice data from an O_DIRECT file into pages and then add them to the output
305  * pipe.
306  */
307 ssize_t direct_splice_read(struct file *in, loff_t *ppos,
308 			   struct pipe_inode_info *pipe,
309 			   size_t len, unsigned int flags)
310 {
311 	struct iov_iter to;
312 	struct bio_vec *bv;
313 	struct kiocb kiocb;
314 	struct page **pages;
315 	ssize_t ret;
316 	size_t used, npages, chunk, remain, reclaim;
317 	int i;
318 
319 	/* Work out how much data we can actually add into the pipe */
320 	used = pipe_occupancy(pipe->head, pipe->tail);
321 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
322 	len = min_t(size_t, len, npages * PAGE_SIZE);
323 	npages = DIV_ROUND_UP(len, PAGE_SIZE);
324 
325 	bv = kzalloc(array_size(npages, sizeof(bv[0])) +
326 		     array_size(npages, sizeof(struct page *)), GFP_KERNEL);
327 	if (!bv)
328 		return -ENOMEM;
329 
330 	pages = (void *)(bv + npages);
331 	npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
332 	if (!npages) {
333 		kfree(bv);
334 		return -ENOMEM;
335 	}
336 
337 	remain = len = min_t(size_t, len, npages * PAGE_SIZE);
338 
339 	for (i = 0; i < npages; i++) {
340 		chunk = min_t(size_t, PAGE_SIZE, remain);
341 		bv[i].bv_page = pages[i];
342 		bv[i].bv_offset = 0;
343 		bv[i].bv_len = chunk;
344 		remain -= chunk;
345 	}
346 
347 	/* Do the I/O */
348 	iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
349 	init_sync_kiocb(&kiocb, in);
350 	kiocb.ki_pos = *ppos;
351 	ret = call_read_iter(in, &kiocb, &to);
352 
353 	reclaim = npages * PAGE_SIZE;
354 	remain = 0;
355 	if (ret > 0) {
356 		reclaim -= ret;
357 		remain = ret;
358 		*ppos = kiocb.ki_pos;
359 		file_accessed(in);
360 	} else if (ret < 0) {
361 		/*
362 		 * callers of ->splice_read() expect -EAGAIN on
363 		 * "can't put anything in there", rather than -EFAULT.
364 		 */
365 		if (ret == -EFAULT)
366 			ret = -EAGAIN;
367 	}
368 
369 	/* Free any pages that didn't get touched at all. */
370 	reclaim /= PAGE_SIZE;
371 	if (reclaim) {
372 		npages -= reclaim;
373 		release_pages(pages + npages, reclaim);
374 	}
375 
376 	/* Push the remaining pages into the pipe. */
377 	for (i = 0; i < npages; i++) {
378 		struct pipe_buffer *buf = pipe_head_buf(pipe);
379 
380 		chunk = min_t(size_t, remain, PAGE_SIZE);
381 		*buf = (struct pipe_buffer) {
382 			.ops	= &default_pipe_buf_ops,
383 			.page	= bv[i].bv_page,
384 			.offset	= 0,
385 			.len	= chunk,
386 		};
387 		pipe->head++;
388 		remain -= chunk;
389 	}
390 
391 	kfree(bv);
392 	return ret;
393 }
394 EXPORT_SYMBOL(direct_splice_read);
395 
396 /**
397  * generic_file_splice_read - splice data from file to a pipe
398  * @in:		file to splice from
399  * @ppos:	position in @in
400  * @pipe:	pipe to splice to
401  * @len:	number of bytes to splice
402  * @flags:	splice modifier flags
403  *
404  * Description:
405  *    Will read pages from given file and fill them into a pipe. Can be
406  *    used as long as it has more or less sane ->read_iter().
407  *
408  */
409 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
410 				 struct pipe_inode_info *pipe, size_t len,
411 				 unsigned int flags)
412 {
413 	struct iov_iter to;
414 	struct kiocb kiocb;
415 	int ret;
416 
417 	iov_iter_pipe(&to, ITER_DEST, pipe, len);
418 	init_sync_kiocb(&kiocb, in);
419 	kiocb.ki_pos = *ppos;
420 	ret = call_read_iter(in, &kiocb, &to);
421 	if (ret > 0) {
422 		*ppos = kiocb.ki_pos;
423 		file_accessed(in);
424 	} else if (ret < 0) {
425 		/* free what was emitted */
426 		pipe_discard_from(pipe, to.start_head);
427 		/*
428 		 * callers of ->splice_read() expect -EAGAIN on
429 		 * "can't put anything in there", rather than -EFAULT.
430 		 */
431 		if (ret == -EFAULT)
432 			ret = -EAGAIN;
433 	}
434 
435 	return ret;
436 }
437 EXPORT_SYMBOL(generic_file_splice_read);
438 
439 const struct pipe_buf_operations default_pipe_buf_ops = {
440 	.release	= generic_pipe_buf_release,
441 	.try_steal	= generic_pipe_buf_try_steal,
442 	.get		= generic_pipe_buf_get,
443 };
444 
445 /* Pipe buffer operations for a socket and similar. */
446 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
447 	.release	= generic_pipe_buf_release,
448 	.get		= generic_pipe_buf_get,
449 };
450 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
451 
452 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
453 {
454 	smp_mb();
455 	if (waitqueue_active(&pipe->wr_wait))
456 		wake_up_interruptible(&pipe->wr_wait);
457 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
458 }
459 
460 /**
461  * splice_from_pipe_feed - feed available data from a pipe to a file
462  * @pipe:	pipe to splice from
463  * @sd:		information to @actor
464  * @actor:	handler that splices the data
465  *
466  * Description:
467  *    This function loops over the pipe and calls @actor to do the
468  *    actual moving of a single struct pipe_buffer to the desired
469  *    destination.  It returns when there's no more buffers left in
470  *    the pipe or if the requested number of bytes (@sd->total_len)
471  *    have been copied.  It returns a positive number (one) if the
472  *    pipe needs to be filled with more data, zero if the required
473  *    number of bytes have been copied and -errno on error.
474  *
475  *    This, together with splice_from_pipe_{begin,end,next}, may be
476  *    used to implement the functionality of __splice_from_pipe() when
477  *    locking is required around copying the pipe buffers to the
478  *    destination.
479  */
480 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
481 			  splice_actor *actor)
482 {
483 	unsigned int head = pipe->head;
484 	unsigned int tail = pipe->tail;
485 	unsigned int mask = pipe->ring_size - 1;
486 	int ret;
487 
488 	while (!pipe_empty(head, tail)) {
489 		struct pipe_buffer *buf = &pipe->bufs[tail & mask];
490 
491 		sd->len = buf->len;
492 		if (sd->len > sd->total_len)
493 			sd->len = sd->total_len;
494 
495 		ret = pipe_buf_confirm(pipe, buf);
496 		if (unlikely(ret)) {
497 			if (ret == -ENODATA)
498 				ret = 0;
499 			return ret;
500 		}
501 
502 		ret = actor(pipe, buf, sd);
503 		if (ret <= 0)
504 			return ret;
505 
506 		buf->offset += ret;
507 		buf->len -= ret;
508 
509 		sd->num_spliced += ret;
510 		sd->len -= ret;
511 		sd->pos += ret;
512 		sd->total_len -= ret;
513 
514 		if (!buf->len) {
515 			pipe_buf_release(pipe, buf);
516 			tail++;
517 			pipe->tail = tail;
518 			if (pipe->files)
519 				sd->need_wakeup = true;
520 		}
521 
522 		if (!sd->total_len)
523 			return 0;
524 	}
525 
526 	return 1;
527 }
528 
529 /* We know we have a pipe buffer, but maybe it's empty? */
530 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
531 {
532 	unsigned int tail = pipe->tail;
533 	unsigned int mask = pipe->ring_size - 1;
534 	struct pipe_buffer *buf = &pipe->bufs[tail & mask];
535 
536 	if (unlikely(!buf->len)) {
537 		pipe_buf_release(pipe, buf);
538 		pipe->tail = tail+1;
539 		return true;
540 	}
541 
542 	return false;
543 }
544 
545 /**
546  * splice_from_pipe_next - wait for some data to splice from
547  * @pipe:	pipe to splice from
548  * @sd:		information about the splice operation
549  *
550  * Description:
551  *    This function will wait for some data and return a positive
552  *    value (one) if pipe buffers are available.  It will return zero
553  *    or -errno if no more data needs to be spliced.
554  */
555 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
556 {
557 	/*
558 	 * Check for signal early to make process killable when there are
559 	 * always buffers available
560 	 */
561 	if (signal_pending(current))
562 		return -ERESTARTSYS;
563 
564 repeat:
565 	while (pipe_empty(pipe->head, pipe->tail)) {
566 		if (!pipe->writers)
567 			return 0;
568 
569 		if (sd->num_spliced)
570 			return 0;
571 
572 		if (sd->flags & SPLICE_F_NONBLOCK)
573 			return -EAGAIN;
574 
575 		if (signal_pending(current))
576 			return -ERESTARTSYS;
577 
578 		if (sd->need_wakeup) {
579 			wakeup_pipe_writers(pipe);
580 			sd->need_wakeup = false;
581 		}
582 
583 		pipe_wait_readable(pipe);
584 	}
585 
586 	if (eat_empty_buffer(pipe))
587 		goto repeat;
588 
589 	return 1;
590 }
591 
592 /**
593  * splice_from_pipe_begin - start splicing from pipe
594  * @sd:		information about the splice operation
595  *
596  * Description:
597  *    This function should be called before a loop containing
598  *    splice_from_pipe_next() and splice_from_pipe_feed() to
599  *    initialize the necessary fields of @sd.
600  */
601 static void splice_from_pipe_begin(struct splice_desc *sd)
602 {
603 	sd->num_spliced = 0;
604 	sd->need_wakeup = false;
605 }
606 
607 /**
608  * splice_from_pipe_end - finish splicing from pipe
609  * @pipe:	pipe to splice from
610  * @sd:		information about the splice operation
611  *
612  * Description:
613  *    This function will wake up pipe writers if necessary.  It should
614  *    be called after a loop containing splice_from_pipe_next() and
615  *    splice_from_pipe_feed().
616  */
617 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
618 {
619 	if (sd->need_wakeup)
620 		wakeup_pipe_writers(pipe);
621 }
622 
623 /**
624  * __splice_from_pipe - splice data from a pipe to given actor
625  * @pipe:	pipe to splice from
626  * @sd:		information to @actor
627  * @actor:	handler that splices the data
628  *
629  * Description:
630  *    This function does little more than loop over the pipe and call
631  *    @actor to do the actual moving of a single struct pipe_buffer to
632  *    the desired destination. See pipe_to_file, pipe_to_sendmsg, or
633  *    pipe_to_user.
634  *
635  */
636 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
637 			   splice_actor *actor)
638 {
639 	int ret;
640 
641 	splice_from_pipe_begin(sd);
642 	do {
643 		cond_resched();
644 		ret = splice_from_pipe_next(pipe, sd);
645 		if (ret > 0)
646 			ret = splice_from_pipe_feed(pipe, sd, actor);
647 	} while (ret > 0);
648 	splice_from_pipe_end(pipe, sd);
649 
650 	return sd->num_spliced ? sd->num_spliced : ret;
651 }
652 EXPORT_SYMBOL(__splice_from_pipe);
653 
654 /**
655  * splice_from_pipe - splice data from a pipe to a file
656  * @pipe:	pipe to splice from
657  * @out:	file to splice to
658  * @ppos:	position in @out
659  * @len:	how many bytes to splice
660  * @flags:	splice modifier flags
661  * @actor:	handler that splices the data
662  *
663  * Description:
664  *    See __splice_from_pipe. This function locks the pipe inode,
665  *    otherwise it's identical to __splice_from_pipe().
666  *
667  */
668 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
669 			 loff_t *ppos, size_t len, unsigned int flags,
670 			 splice_actor *actor)
671 {
672 	ssize_t ret;
673 	struct splice_desc sd = {
674 		.total_len = len,
675 		.flags = flags,
676 		.pos = *ppos,
677 		.u.file = out,
678 	};
679 
680 	pipe_lock(pipe);
681 	ret = __splice_from_pipe(pipe, &sd, actor);
682 	pipe_unlock(pipe);
683 
684 	return ret;
685 }
686 
687 /**
688  * iter_file_splice_write - splice data from a pipe to a file
689  * @pipe:	pipe info
690  * @out:	file to write to
691  * @ppos:	position in @out
692  * @len:	number of bytes to splice
693  * @flags:	splice modifier flags
694  *
695  * Description:
696  *    Will either move or copy pages (determined by @flags options) from
697  *    the given pipe inode to the given file.
698  *    This one is ->write_iter-based.
699  *
700  */
701 ssize_t
702 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
703 			  loff_t *ppos, size_t len, unsigned int flags)
704 {
705 	struct splice_desc sd = {
706 		.total_len = len,
707 		.flags = flags,
708 		.pos = *ppos,
709 		.u.file = out,
710 	};
711 	int nbufs = pipe->max_usage;
712 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
713 					GFP_KERNEL);
714 	ssize_t ret;
715 
716 	if (unlikely(!array))
717 		return -ENOMEM;
718 
719 	pipe_lock(pipe);
720 
721 	splice_from_pipe_begin(&sd);
722 	while (sd.total_len) {
723 		struct iov_iter from;
724 		unsigned int head, tail, mask;
725 		size_t left;
726 		int n;
727 
728 		ret = splice_from_pipe_next(pipe, &sd);
729 		if (ret <= 0)
730 			break;
731 
732 		if (unlikely(nbufs < pipe->max_usage)) {
733 			kfree(array);
734 			nbufs = pipe->max_usage;
735 			array = kcalloc(nbufs, sizeof(struct bio_vec),
736 					GFP_KERNEL);
737 			if (!array) {
738 				ret = -ENOMEM;
739 				break;
740 			}
741 		}
742 
743 		head = pipe->head;
744 		tail = pipe->tail;
745 		mask = pipe->ring_size - 1;
746 
747 		/* build the vector */
748 		left = sd.total_len;
749 		for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
750 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
751 			size_t this_len = buf->len;
752 
753 			/* zero-length bvecs are not supported, skip them */
754 			if (!this_len)
755 				continue;
756 			this_len = min(this_len, left);
757 
758 			ret = pipe_buf_confirm(pipe, buf);
759 			if (unlikely(ret)) {
760 				if (ret == -ENODATA)
761 					ret = 0;
762 				goto done;
763 			}
764 
765 			bvec_set_page(&array[n], buf->page, this_len,
766 				      buf->offset);
767 			left -= this_len;
768 			n++;
769 		}
770 
771 		iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
772 		ret = vfs_iter_write(out, &from, &sd.pos, 0);
773 		if (ret <= 0)
774 			break;
775 
776 		sd.num_spliced += ret;
777 		sd.total_len -= ret;
778 		*ppos = sd.pos;
779 
780 		/* dismiss the fully eaten buffers, adjust the partial one */
781 		tail = pipe->tail;
782 		while (ret) {
783 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
784 			if (ret >= buf->len) {
785 				ret -= buf->len;
786 				buf->len = 0;
787 				pipe_buf_release(pipe, buf);
788 				tail++;
789 				pipe->tail = tail;
790 				if (pipe->files)
791 					sd.need_wakeup = true;
792 			} else {
793 				buf->offset += ret;
794 				buf->len -= ret;
795 				ret = 0;
796 			}
797 		}
798 	}
799 done:
800 	kfree(array);
801 	splice_from_pipe_end(pipe, &sd);
802 
803 	pipe_unlock(pipe);
804 
805 	if (sd.num_spliced)
806 		ret = sd.num_spliced;
807 
808 	return ret;
809 }
810 
811 EXPORT_SYMBOL(iter_file_splice_write);
812 
813 #ifdef CONFIG_NET
814 /**
815  * splice_to_socket - splice data from a pipe to a socket
816  * @pipe:	pipe to splice from
817  * @out:	socket to write to
818  * @ppos:	position in @out
819  * @len:	number of bytes to splice
820  * @flags:	splice modifier flags
821  *
822  * Description:
823  *    Will send @len bytes from the pipe to a network socket. No data copying
824  *    is involved.
825  *
826  */
827 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
828 			 loff_t *ppos, size_t len, unsigned int flags)
829 {
830 	struct socket *sock = sock_from_file(out);
831 	struct bio_vec bvec[16];
832 	struct msghdr msg = {};
833 	ssize_t ret = 0;
834 	size_t spliced = 0;
835 	bool need_wakeup = false;
836 
837 	pipe_lock(pipe);
838 
839 	while (len > 0) {
840 		unsigned int head, tail, mask, bc = 0;
841 		size_t remain = len;
842 
843 		/*
844 		 * Check for signal early to make process killable when there
845 		 * are always buffers available
846 		 */
847 		ret = -ERESTARTSYS;
848 		if (signal_pending(current))
849 			break;
850 
851 		while (pipe_empty(pipe->head, pipe->tail)) {
852 			ret = 0;
853 			if (!pipe->writers)
854 				goto out;
855 
856 			if (spliced)
857 				goto out;
858 
859 			ret = -EAGAIN;
860 			if (flags & SPLICE_F_NONBLOCK)
861 				goto out;
862 
863 			ret = -ERESTARTSYS;
864 			if (signal_pending(current))
865 				goto out;
866 
867 			if (need_wakeup) {
868 				wakeup_pipe_writers(pipe);
869 				need_wakeup = false;
870 			}
871 
872 			pipe_wait_readable(pipe);
873 		}
874 
875 		head = pipe->head;
876 		tail = pipe->tail;
877 		mask = pipe->ring_size - 1;
878 
879 		while (!pipe_empty(head, tail)) {
880 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
881 			size_t seg;
882 
883 			if (!buf->len) {
884 				tail++;
885 				continue;
886 			}
887 
888 			seg = min_t(size_t, remain, buf->len);
889 
890 			ret = pipe_buf_confirm(pipe, buf);
891 			if (unlikely(ret)) {
892 				if (ret == -ENODATA)
893 					ret = 0;
894 				break;
895 			}
896 
897 			bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
898 			remain -= seg;
899 			if (remain == 0 || bc >= ARRAY_SIZE(bvec))
900 				break;
901 			tail++;
902 		}
903 
904 		if (!bc)
905 			break;
906 
907 		msg.msg_flags = MSG_SPLICE_PAGES;
908 		if (flags & SPLICE_F_MORE)
909 			msg.msg_flags |= MSG_MORE;
910 		if (remain && pipe_occupancy(pipe->head, tail) > 0)
911 			msg.msg_flags |= MSG_MORE;
912 
913 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
914 			      len - remain);
915 		ret = sock_sendmsg(sock, &msg);
916 		if (ret <= 0)
917 			break;
918 
919 		spliced += ret;
920 		len -= ret;
921 		tail = pipe->tail;
922 		while (ret > 0) {
923 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
924 			size_t seg = min_t(size_t, ret, buf->len);
925 
926 			buf->offset += seg;
927 			buf->len -= seg;
928 			ret -= seg;
929 
930 			if (!buf->len) {
931 				pipe_buf_release(pipe, buf);
932 				tail++;
933 			}
934 		}
935 
936 		if (tail != pipe->tail) {
937 			pipe->tail = tail;
938 			if (pipe->files)
939 				need_wakeup = true;
940 		}
941 	}
942 
943 out:
944 	pipe_unlock(pipe);
945 	if (need_wakeup)
946 		wakeup_pipe_writers(pipe);
947 	return spliced ?: ret;
948 }
949 #endif
950 
951 static int warn_unsupported(struct file *file, const char *op)
952 {
953 	pr_debug_ratelimited(
954 		"splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
955 		op, file, current->pid, current->comm);
956 	return -EINVAL;
957 }
958 
959 /*
960  * Attempt to initiate a splice from pipe to file.
961  */
962 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
963 			   loff_t *ppos, size_t len, unsigned int flags)
964 {
965 	if (unlikely(!out->f_op->splice_write))
966 		return warn_unsupported(out, "write");
967 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
968 }
969 
970 /*
971  * Indicate to the caller that there was a premature EOF when reading from the
972  * source and the caller didn't indicate they would be sending more data after
973  * this.
974  */
975 static void do_splice_eof(struct splice_desc *sd)
976 {
977 	if (sd->splice_eof)
978 		sd->splice_eof(sd);
979 }
980 
981 /*
982  * Attempt to initiate a splice from a file to a pipe.
983  */
984 static long do_splice_to(struct file *in, loff_t *ppos,
985 			 struct pipe_inode_info *pipe, size_t len,
986 			 unsigned int flags)
987 {
988 	unsigned int p_space;
989 	int ret;
990 
991 	if (unlikely(!(in->f_mode & FMODE_READ)))
992 		return -EBADF;
993 
994 	/* Don't try to read more the pipe has space for. */
995 	p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
996 	len = min_t(size_t, len, p_space << PAGE_SHIFT);
997 
998 	ret = rw_verify_area(READ, in, ppos, len);
999 	if (unlikely(ret < 0))
1000 		return ret;
1001 
1002 	if (unlikely(len > MAX_RW_COUNT))
1003 		len = MAX_RW_COUNT;
1004 
1005 	if (unlikely(!in->f_op->splice_read))
1006 		return warn_unsupported(in, "read");
1007 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
1008 }
1009 
1010 /**
1011  * splice_direct_to_actor - splices data directly between two non-pipes
1012  * @in:		file to splice from
1013  * @sd:		actor information on where to splice to
1014  * @actor:	handles the data splicing
1015  *
1016  * Description:
1017  *    This is a special case helper to splice directly between two
1018  *    points, without requiring an explicit pipe. Internally an allocated
1019  *    pipe is cached in the process, and reused during the lifetime of
1020  *    that process.
1021  *
1022  */
1023 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1024 			       splice_direct_actor *actor)
1025 {
1026 	struct pipe_inode_info *pipe;
1027 	long ret, bytes;
1028 	size_t len;
1029 	int i, flags, more;
1030 
1031 	/*
1032 	 * We require the input to be seekable, as we don't want to randomly
1033 	 * drop data for eg socket -> socket splicing. Use the piped splicing
1034 	 * for that!
1035 	 */
1036 	if (unlikely(!(in->f_mode & FMODE_LSEEK)))
1037 		return -EINVAL;
1038 
1039 	/*
1040 	 * neither in nor out is a pipe, setup an internal pipe attached to
1041 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1042 	 */
1043 	pipe = current->splice_pipe;
1044 	if (unlikely(!pipe)) {
1045 		pipe = alloc_pipe_info();
1046 		if (!pipe)
1047 			return -ENOMEM;
1048 
1049 		/*
1050 		 * We don't have an immediate reader, but we'll read the stuff
1051 		 * out of the pipe right after the splice_to_pipe(). So set
1052 		 * PIPE_READERS appropriately.
1053 		 */
1054 		pipe->readers = 1;
1055 
1056 		current->splice_pipe = pipe;
1057 	}
1058 
1059 	/*
1060 	 * Do the splice.
1061 	 */
1062 	bytes = 0;
1063 	len = sd->total_len;
1064 
1065 	/* Don't block on output, we have to drain the direct pipe. */
1066 	flags = sd->flags;
1067 	sd->flags &= ~SPLICE_F_NONBLOCK;
1068 
1069 	/*
1070 	 * We signal MORE until we've read sufficient data to fulfill the
1071 	 * request and we keep signalling it if the caller set it.
1072 	 */
1073 	more = sd->flags & SPLICE_F_MORE;
1074 	sd->flags |= SPLICE_F_MORE;
1075 
1076 	WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
1077 
1078 	while (len) {
1079 		size_t read_len;
1080 		loff_t pos = sd->pos, prev_pos = pos;
1081 
1082 		ret = do_splice_to(in, &pos, pipe, len, flags);
1083 		if (unlikely(ret <= 0))
1084 			goto read_failure;
1085 
1086 		read_len = ret;
1087 		sd->total_len = read_len;
1088 
1089 		/*
1090 		 * If we now have sufficient data to fulfill the request then
1091 		 * we clear SPLICE_F_MORE if it was not set initially.
1092 		 */
1093 		if (read_len >= len && !more)
1094 			sd->flags &= ~SPLICE_F_MORE;
1095 
1096 		/*
1097 		 * NOTE: nonblocking mode only applies to the input. We
1098 		 * must not do the output in nonblocking mode as then we
1099 		 * could get stuck data in the internal pipe:
1100 		 */
1101 		ret = actor(pipe, sd);
1102 		if (unlikely(ret <= 0)) {
1103 			sd->pos = prev_pos;
1104 			goto out_release;
1105 		}
1106 
1107 		bytes += ret;
1108 		len -= ret;
1109 		sd->pos = pos;
1110 
1111 		if (ret < read_len) {
1112 			sd->pos = prev_pos + ret;
1113 			goto out_release;
1114 		}
1115 	}
1116 
1117 done:
1118 	pipe->tail = pipe->head = 0;
1119 	file_accessed(in);
1120 	return bytes;
1121 
1122 read_failure:
1123 	/*
1124 	 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
1125 	 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
1126 	 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at
1127 	 * least 1 byte *then* we will also do the ->splice_eof() call.
1128 	 */
1129 	if (ret == 0 && !more && len > 0 && bytes)
1130 		do_splice_eof(sd);
1131 out_release:
1132 	/*
1133 	 * If we did an incomplete transfer we must release
1134 	 * the pipe buffers in question:
1135 	 */
1136 	for (i = 0; i < pipe->ring_size; i++) {
1137 		struct pipe_buffer *buf = &pipe->bufs[i];
1138 
1139 		if (buf->ops)
1140 			pipe_buf_release(pipe, buf);
1141 	}
1142 
1143 	if (!bytes)
1144 		bytes = ret;
1145 
1146 	goto done;
1147 }
1148 EXPORT_SYMBOL(splice_direct_to_actor);
1149 
1150 static int direct_splice_actor(struct pipe_inode_info *pipe,
1151 			       struct splice_desc *sd)
1152 {
1153 	struct file *file = sd->u.file;
1154 
1155 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1156 			      sd->flags);
1157 }
1158 
1159 static void direct_file_splice_eof(struct splice_desc *sd)
1160 {
1161 	struct file *file = sd->u.file;
1162 
1163 	if (file->f_op->splice_eof)
1164 		file->f_op->splice_eof(file);
1165 }
1166 
1167 /**
1168  * do_splice_direct - splices data directly between two files
1169  * @in:		file to splice from
1170  * @ppos:	input file offset
1171  * @out:	file to splice to
1172  * @opos:	output file offset
1173  * @len:	number of bytes to splice
1174  * @flags:	splice modifier flags
1175  *
1176  * Description:
1177  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1178  *    doing it in the application would incur an extra system call
1179  *    (splice in + splice out, as compared to just sendfile()). So this helper
1180  *    can splice directly through a process-private pipe.
1181  *
1182  */
1183 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1184 		      loff_t *opos, size_t len, unsigned int flags)
1185 {
1186 	struct splice_desc sd = {
1187 		.len		= len,
1188 		.total_len	= len,
1189 		.flags		= flags,
1190 		.pos		= *ppos,
1191 		.u.file		= out,
1192 		.splice_eof	= direct_file_splice_eof,
1193 		.opos		= opos,
1194 	};
1195 	long ret;
1196 
1197 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1198 		return -EBADF;
1199 
1200 	if (unlikely(out->f_flags & O_APPEND))
1201 		return -EINVAL;
1202 
1203 	ret = rw_verify_area(WRITE, out, opos, len);
1204 	if (unlikely(ret < 0))
1205 		return ret;
1206 
1207 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1208 	if (ret > 0)
1209 		*ppos = sd.pos;
1210 
1211 	return ret;
1212 }
1213 EXPORT_SYMBOL(do_splice_direct);
1214 
1215 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1216 {
1217 	for (;;) {
1218 		if (unlikely(!pipe->readers)) {
1219 			send_sig(SIGPIPE, current, 0);
1220 			return -EPIPE;
1221 		}
1222 		if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1223 			return 0;
1224 		if (flags & SPLICE_F_NONBLOCK)
1225 			return -EAGAIN;
1226 		if (signal_pending(current))
1227 			return -ERESTARTSYS;
1228 		pipe_wait_writable(pipe);
1229 	}
1230 }
1231 
1232 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1233 			       struct pipe_inode_info *opipe,
1234 			       size_t len, unsigned int flags);
1235 
1236 long splice_file_to_pipe(struct file *in,
1237 			 struct pipe_inode_info *opipe,
1238 			 loff_t *offset,
1239 			 size_t len, unsigned int flags)
1240 {
1241 	long ret;
1242 
1243 	pipe_lock(opipe);
1244 	ret = wait_for_space(opipe, flags);
1245 	if (!ret)
1246 		ret = do_splice_to(in, offset, opipe, len, flags);
1247 	pipe_unlock(opipe);
1248 	if (ret > 0)
1249 		wakeup_pipe_readers(opipe);
1250 	return ret;
1251 }
1252 
1253 /*
1254  * Determine where to splice to/from.
1255  */
1256 long do_splice(struct file *in, loff_t *off_in, struct file *out,
1257 	       loff_t *off_out, size_t len, unsigned int flags)
1258 {
1259 	struct pipe_inode_info *ipipe;
1260 	struct pipe_inode_info *opipe;
1261 	loff_t offset;
1262 	long ret;
1263 
1264 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1265 		     !(out->f_mode & FMODE_WRITE)))
1266 		return -EBADF;
1267 
1268 	ipipe = get_pipe_info(in, true);
1269 	opipe = get_pipe_info(out, true);
1270 
1271 	if (ipipe && opipe) {
1272 		if (off_in || off_out)
1273 			return -ESPIPE;
1274 
1275 		/* Splicing to self would be fun, but... */
1276 		if (ipipe == opipe)
1277 			return -EINVAL;
1278 
1279 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1280 			flags |= SPLICE_F_NONBLOCK;
1281 
1282 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1283 	}
1284 
1285 	if (ipipe) {
1286 		if (off_in)
1287 			return -ESPIPE;
1288 		if (off_out) {
1289 			if (!(out->f_mode & FMODE_PWRITE))
1290 				return -EINVAL;
1291 			offset = *off_out;
1292 		} else {
1293 			offset = out->f_pos;
1294 		}
1295 
1296 		if (unlikely(out->f_flags & O_APPEND))
1297 			return -EINVAL;
1298 
1299 		ret = rw_verify_area(WRITE, out, &offset, len);
1300 		if (unlikely(ret < 0))
1301 			return ret;
1302 
1303 		if (in->f_flags & O_NONBLOCK)
1304 			flags |= SPLICE_F_NONBLOCK;
1305 
1306 		file_start_write(out);
1307 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1308 		file_end_write(out);
1309 
1310 		if (ret > 0)
1311 			fsnotify_modify(out);
1312 
1313 		if (!off_out)
1314 			out->f_pos = offset;
1315 		else
1316 			*off_out = offset;
1317 
1318 		return ret;
1319 	}
1320 
1321 	if (opipe) {
1322 		if (off_out)
1323 			return -ESPIPE;
1324 		if (off_in) {
1325 			if (!(in->f_mode & FMODE_PREAD))
1326 				return -EINVAL;
1327 			offset = *off_in;
1328 		} else {
1329 			offset = in->f_pos;
1330 		}
1331 
1332 		if (out->f_flags & O_NONBLOCK)
1333 			flags |= SPLICE_F_NONBLOCK;
1334 
1335 		ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1336 
1337 		if (ret > 0)
1338 			fsnotify_access(in);
1339 
1340 		if (!off_in)
1341 			in->f_pos = offset;
1342 		else
1343 			*off_in = offset;
1344 
1345 		return ret;
1346 	}
1347 
1348 	return -EINVAL;
1349 }
1350 
1351 static long __do_splice(struct file *in, loff_t __user *off_in,
1352 			struct file *out, loff_t __user *off_out,
1353 			size_t len, unsigned int flags)
1354 {
1355 	struct pipe_inode_info *ipipe;
1356 	struct pipe_inode_info *opipe;
1357 	loff_t offset, *__off_in = NULL, *__off_out = NULL;
1358 	long ret;
1359 
1360 	ipipe = get_pipe_info(in, true);
1361 	opipe = get_pipe_info(out, true);
1362 
1363 	if (ipipe) {
1364 		if (off_in)
1365 			return -ESPIPE;
1366 		pipe_clear_nowait(in);
1367 	}
1368 	if (opipe) {
1369 		if (off_out)
1370 			return -ESPIPE;
1371 		pipe_clear_nowait(out);
1372 	}
1373 
1374 	if (off_out) {
1375 		if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1376 			return -EFAULT;
1377 		__off_out = &offset;
1378 	}
1379 	if (off_in) {
1380 		if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1381 			return -EFAULT;
1382 		__off_in = &offset;
1383 	}
1384 
1385 	ret = do_splice(in, __off_in, out, __off_out, len, flags);
1386 	if (ret < 0)
1387 		return ret;
1388 
1389 	if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1390 		return -EFAULT;
1391 	if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1392 		return -EFAULT;
1393 
1394 	return ret;
1395 }
1396 
1397 static int iter_to_pipe(struct iov_iter *from,
1398 			struct pipe_inode_info *pipe,
1399 			unsigned flags)
1400 {
1401 	struct pipe_buffer buf = {
1402 		.ops = &user_page_pipe_buf_ops,
1403 		.flags = flags
1404 	};
1405 	size_t total = 0;
1406 	int ret = 0;
1407 
1408 	while (iov_iter_count(from)) {
1409 		struct page *pages[16];
1410 		ssize_t left;
1411 		size_t start;
1412 		int i, n;
1413 
1414 		left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1415 		if (left <= 0) {
1416 			ret = left;
1417 			break;
1418 		}
1419 
1420 		n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1421 		for (i = 0; i < n; i++) {
1422 			int size = min_t(int, left, PAGE_SIZE - start);
1423 
1424 			buf.page = pages[i];
1425 			buf.offset = start;
1426 			buf.len = size;
1427 			ret = add_to_pipe(pipe, &buf);
1428 			if (unlikely(ret < 0)) {
1429 				iov_iter_revert(from, left);
1430 				// this one got dropped by add_to_pipe()
1431 				while (++i < n)
1432 					put_page(pages[i]);
1433 				goto out;
1434 			}
1435 			total += ret;
1436 			left -= size;
1437 			start = 0;
1438 		}
1439 	}
1440 out:
1441 	return total ? total : ret;
1442 }
1443 
1444 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1445 			struct splice_desc *sd)
1446 {
1447 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1448 	return n == sd->len ? n : -EFAULT;
1449 }
1450 
1451 /*
1452  * For lack of a better implementation, implement vmsplice() to userspace
1453  * as a simple copy of the pipes pages to the user iov.
1454  */
1455 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1456 			     unsigned int flags)
1457 {
1458 	struct pipe_inode_info *pipe = get_pipe_info(file, true);
1459 	struct splice_desc sd = {
1460 		.total_len = iov_iter_count(iter),
1461 		.flags = flags,
1462 		.u.data = iter
1463 	};
1464 	long ret = 0;
1465 
1466 	if (!pipe)
1467 		return -EBADF;
1468 
1469 	pipe_clear_nowait(file);
1470 
1471 	if (sd.total_len) {
1472 		pipe_lock(pipe);
1473 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1474 		pipe_unlock(pipe);
1475 	}
1476 
1477 	return ret;
1478 }
1479 
1480 /*
1481  * vmsplice splices a user address range into a pipe. It can be thought of
1482  * as splice-from-memory, where the regular splice is splice-from-file (or
1483  * to file). In both cases the output is a pipe, naturally.
1484  */
1485 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1486 			     unsigned int flags)
1487 {
1488 	struct pipe_inode_info *pipe;
1489 	long ret = 0;
1490 	unsigned buf_flag = 0;
1491 
1492 	if (flags & SPLICE_F_GIFT)
1493 		buf_flag = PIPE_BUF_FLAG_GIFT;
1494 
1495 	pipe = get_pipe_info(file, true);
1496 	if (!pipe)
1497 		return -EBADF;
1498 
1499 	pipe_clear_nowait(file);
1500 
1501 	pipe_lock(pipe);
1502 	ret = wait_for_space(pipe, flags);
1503 	if (!ret)
1504 		ret = iter_to_pipe(iter, pipe, buf_flag);
1505 	pipe_unlock(pipe);
1506 	if (ret > 0)
1507 		wakeup_pipe_readers(pipe);
1508 	return ret;
1509 }
1510 
1511 static int vmsplice_type(struct fd f, int *type)
1512 {
1513 	if (!f.file)
1514 		return -EBADF;
1515 	if (f.file->f_mode & FMODE_WRITE) {
1516 		*type = ITER_SOURCE;
1517 	} else if (f.file->f_mode & FMODE_READ) {
1518 		*type = ITER_DEST;
1519 	} else {
1520 		fdput(f);
1521 		return -EBADF;
1522 	}
1523 	return 0;
1524 }
1525 
1526 /*
1527  * Note that vmsplice only really supports true splicing _from_ user memory
1528  * to a pipe, not the other way around. Splicing from user memory is a simple
1529  * operation that can be supported without any funky alignment restrictions
1530  * or nasty vm tricks. We simply map in the user memory and fill them into
1531  * a pipe. The reverse isn't quite as easy, though. There are two possible
1532  * solutions for that:
1533  *
1534  *	- memcpy() the data internally, at which point we might as well just
1535  *	  do a regular read() on the buffer anyway.
1536  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1537  *	  has restriction limitations on both ends of the pipe).
1538  *
1539  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1540  *
1541  */
1542 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1543 		unsigned long, nr_segs, unsigned int, flags)
1544 {
1545 	struct iovec iovstack[UIO_FASTIOV];
1546 	struct iovec *iov = iovstack;
1547 	struct iov_iter iter;
1548 	ssize_t error;
1549 	struct fd f;
1550 	int type;
1551 
1552 	if (unlikely(flags & ~SPLICE_F_ALL))
1553 		return -EINVAL;
1554 
1555 	f = fdget(fd);
1556 	error = vmsplice_type(f, &type);
1557 	if (error)
1558 		return error;
1559 
1560 	error = import_iovec(type, uiov, nr_segs,
1561 			     ARRAY_SIZE(iovstack), &iov, &iter);
1562 	if (error < 0)
1563 		goto out_fdput;
1564 
1565 	if (!iov_iter_count(&iter))
1566 		error = 0;
1567 	else if (type == ITER_SOURCE)
1568 		error = vmsplice_to_pipe(f.file, &iter, flags);
1569 	else
1570 		error = vmsplice_to_user(f.file, &iter, flags);
1571 
1572 	kfree(iov);
1573 out_fdput:
1574 	fdput(f);
1575 	return error;
1576 }
1577 
1578 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1579 		int, fd_out, loff_t __user *, off_out,
1580 		size_t, len, unsigned int, flags)
1581 {
1582 	struct fd in, out;
1583 	long error;
1584 
1585 	if (unlikely(!len))
1586 		return 0;
1587 
1588 	if (unlikely(flags & ~SPLICE_F_ALL))
1589 		return -EINVAL;
1590 
1591 	error = -EBADF;
1592 	in = fdget(fd_in);
1593 	if (in.file) {
1594 		out = fdget(fd_out);
1595 		if (out.file) {
1596 			error = __do_splice(in.file, off_in, out.file, off_out,
1597 						len, flags);
1598 			fdput(out);
1599 		}
1600 		fdput(in);
1601 	}
1602 	return error;
1603 }
1604 
1605 /*
1606  * Make sure there's data to read. Wait for input if we can, otherwise
1607  * return an appropriate error.
1608  */
1609 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1610 {
1611 	int ret;
1612 
1613 	/*
1614 	 * Check the pipe occupancy without the inode lock first. This function
1615 	 * is speculative anyways, so missing one is ok.
1616 	 */
1617 	if (!pipe_empty(pipe->head, pipe->tail))
1618 		return 0;
1619 
1620 	ret = 0;
1621 	pipe_lock(pipe);
1622 
1623 	while (pipe_empty(pipe->head, pipe->tail)) {
1624 		if (signal_pending(current)) {
1625 			ret = -ERESTARTSYS;
1626 			break;
1627 		}
1628 		if (!pipe->writers)
1629 			break;
1630 		if (flags & SPLICE_F_NONBLOCK) {
1631 			ret = -EAGAIN;
1632 			break;
1633 		}
1634 		pipe_wait_readable(pipe);
1635 	}
1636 
1637 	pipe_unlock(pipe);
1638 	return ret;
1639 }
1640 
1641 /*
1642  * Make sure there's writeable room. Wait for room if we can, otherwise
1643  * return an appropriate error.
1644  */
1645 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1646 {
1647 	int ret;
1648 
1649 	/*
1650 	 * Check pipe occupancy without the inode lock first. This function
1651 	 * is speculative anyways, so missing one is ok.
1652 	 */
1653 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1654 		return 0;
1655 
1656 	ret = 0;
1657 	pipe_lock(pipe);
1658 
1659 	while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1660 		if (!pipe->readers) {
1661 			send_sig(SIGPIPE, current, 0);
1662 			ret = -EPIPE;
1663 			break;
1664 		}
1665 		if (flags & SPLICE_F_NONBLOCK) {
1666 			ret = -EAGAIN;
1667 			break;
1668 		}
1669 		if (signal_pending(current)) {
1670 			ret = -ERESTARTSYS;
1671 			break;
1672 		}
1673 		pipe_wait_writable(pipe);
1674 	}
1675 
1676 	pipe_unlock(pipe);
1677 	return ret;
1678 }
1679 
1680 /*
1681  * Splice contents of ipipe to opipe.
1682  */
1683 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1684 			       struct pipe_inode_info *opipe,
1685 			       size_t len, unsigned int flags)
1686 {
1687 	struct pipe_buffer *ibuf, *obuf;
1688 	unsigned int i_head, o_head;
1689 	unsigned int i_tail, o_tail;
1690 	unsigned int i_mask, o_mask;
1691 	int ret = 0;
1692 	bool input_wakeup = false;
1693 
1694 
1695 retry:
1696 	ret = ipipe_prep(ipipe, flags);
1697 	if (ret)
1698 		return ret;
1699 
1700 	ret = opipe_prep(opipe, flags);
1701 	if (ret)
1702 		return ret;
1703 
1704 	/*
1705 	 * Potential ABBA deadlock, work around it by ordering lock
1706 	 * grabbing by pipe info address. Otherwise two different processes
1707 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1708 	 */
1709 	pipe_double_lock(ipipe, opipe);
1710 
1711 	i_tail = ipipe->tail;
1712 	i_mask = ipipe->ring_size - 1;
1713 	o_head = opipe->head;
1714 	o_mask = opipe->ring_size - 1;
1715 
1716 	do {
1717 		size_t o_len;
1718 
1719 		if (!opipe->readers) {
1720 			send_sig(SIGPIPE, current, 0);
1721 			if (!ret)
1722 				ret = -EPIPE;
1723 			break;
1724 		}
1725 
1726 		i_head = ipipe->head;
1727 		o_tail = opipe->tail;
1728 
1729 		if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1730 			break;
1731 
1732 		/*
1733 		 * Cannot make any progress, because either the input
1734 		 * pipe is empty or the output pipe is full.
1735 		 */
1736 		if (pipe_empty(i_head, i_tail) ||
1737 		    pipe_full(o_head, o_tail, opipe->max_usage)) {
1738 			/* Already processed some buffers, break */
1739 			if (ret)
1740 				break;
1741 
1742 			if (flags & SPLICE_F_NONBLOCK) {
1743 				ret = -EAGAIN;
1744 				break;
1745 			}
1746 
1747 			/*
1748 			 * We raced with another reader/writer and haven't
1749 			 * managed to process any buffers.  A zero return
1750 			 * value means EOF, so retry instead.
1751 			 */
1752 			pipe_unlock(ipipe);
1753 			pipe_unlock(opipe);
1754 			goto retry;
1755 		}
1756 
1757 		ibuf = &ipipe->bufs[i_tail & i_mask];
1758 		obuf = &opipe->bufs[o_head & o_mask];
1759 
1760 		if (len >= ibuf->len) {
1761 			/*
1762 			 * Simply move the whole buffer from ipipe to opipe
1763 			 */
1764 			*obuf = *ibuf;
1765 			ibuf->ops = NULL;
1766 			i_tail++;
1767 			ipipe->tail = i_tail;
1768 			input_wakeup = true;
1769 			o_len = obuf->len;
1770 			o_head++;
1771 			opipe->head = o_head;
1772 		} else {
1773 			/*
1774 			 * Get a reference to this pipe buffer,
1775 			 * so we can copy the contents over.
1776 			 */
1777 			if (!pipe_buf_get(ipipe, ibuf)) {
1778 				if (ret == 0)
1779 					ret = -EFAULT;
1780 				break;
1781 			}
1782 			*obuf = *ibuf;
1783 
1784 			/*
1785 			 * Don't inherit the gift and merge flags, we need to
1786 			 * prevent multiple steals of this page.
1787 			 */
1788 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1789 			obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1790 
1791 			obuf->len = len;
1792 			ibuf->offset += len;
1793 			ibuf->len -= len;
1794 			o_len = len;
1795 			o_head++;
1796 			opipe->head = o_head;
1797 		}
1798 		ret += o_len;
1799 		len -= o_len;
1800 	} while (len);
1801 
1802 	pipe_unlock(ipipe);
1803 	pipe_unlock(opipe);
1804 
1805 	/*
1806 	 * If we put data in the output pipe, wakeup any potential readers.
1807 	 */
1808 	if (ret > 0)
1809 		wakeup_pipe_readers(opipe);
1810 
1811 	if (input_wakeup)
1812 		wakeup_pipe_writers(ipipe);
1813 
1814 	return ret;
1815 }
1816 
1817 /*
1818  * Link contents of ipipe to opipe.
1819  */
1820 static int link_pipe(struct pipe_inode_info *ipipe,
1821 		     struct pipe_inode_info *opipe,
1822 		     size_t len, unsigned int flags)
1823 {
1824 	struct pipe_buffer *ibuf, *obuf;
1825 	unsigned int i_head, o_head;
1826 	unsigned int i_tail, o_tail;
1827 	unsigned int i_mask, o_mask;
1828 	int ret = 0;
1829 
1830 	/*
1831 	 * Potential ABBA deadlock, work around it by ordering lock
1832 	 * grabbing by pipe info address. Otherwise two different processes
1833 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1834 	 */
1835 	pipe_double_lock(ipipe, opipe);
1836 
1837 	i_tail = ipipe->tail;
1838 	i_mask = ipipe->ring_size - 1;
1839 	o_head = opipe->head;
1840 	o_mask = opipe->ring_size - 1;
1841 
1842 	do {
1843 		if (!opipe->readers) {
1844 			send_sig(SIGPIPE, current, 0);
1845 			if (!ret)
1846 				ret = -EPIPE;
1847 			break;
1848 		}
1849 
1850 		i_head = ipipe->head;
1851 		o_tail = opipe->tail;
1852 
1853 		/*
1854 		 * If we have iterated all input buffers or run out of
1855 		 * output room, break.
1856 		 */
1857 		if (pipe_empty(i_head, i_tail) ||
1858 		    pipe_full(o_head, o_tail, opipe->max_usage))
1859 			break;
1860 
1861 		ibuf = &ipipe->bufs[i_tail & i_mask];
1862 		obuf = &opipe->bufs[o_head & o_mask];
1863 
1864 		/*
1865 		 * Get a reference to this pipe buffer,
1866 		 * so we can copy the contents over.
1867 		 */
1868 		if (!pipe_buf_get(ipipe, ibuf)) {
1869 			if (ret == 0)
1870 				ret = -EFAULT;
1871 			break;
1872 		}
1873 
1874 		*obuf = *ibuf;
1875 
1876 		/*
1877 		 * Don't inherit the gift and merge flag, we need to prevent
1878 		 * multiple steals of this page.
1879 		 */
1880 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1881 		obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1882 
1883 		if (obuf->len > len)
1884 			obuf->len = len;
1885 		ret += obuf->len;
1886 		len -= obuf->len;
1887 
1888 		o_head++;
1889 		opipe->head = o_head;
1890 		i_tail++;
1891 	} while (len);
1892 
1893 	pipe_unlock(ipipe);
1894 	pipe_unlock(opipe);
1895 
1896 	/*
1897 	 * If we put data in the output pipe, wakeup any potential readers.
1898 	 */
1899 	if (ret > 0)
1900 		wakeup_pipe_readers(opipe);
1901 
1902 	return ret;
1903 }
1904 
1905 /*
1906  * This is a tee(1) implementation that works on pipes. It doesn't copy
1907  * any data, it simply references the 'in' pages on the 'out' pipe.
1908  * The 'flags' used are the SPLICE_F_* variants, currently the only
1909  * applicable one is SPLICE_F_NONBLOCK.
1910  */
1911 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1912 {
1913 	struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1914 	struct pipe_inode_info *opipe = get_pipe_info(out, true);
1915 	int ret = -EINVAL;
1916 
1917 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1918 		     !(out->f_mode & FMODE_WRITE)))
1919 		return -EBADF;
1920 
1921 	/*
1922 	 * Duplicate the contents of ipipe to opipe without actually
1923 	 * copying the data.
1924 	 */
1925 	if (ipipe && opipe && ipipe != opipe) {
1926 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1927 			flags |= SPLICE_F_NONBLOCK;
1928 
1929 		/*
1930 		 * Keep going, unless we encounter an error. The ipipe/opipe
1931 		 * ordering doesn't really matter.
1932 		 */
1933 		ret = ipipe_prep(ipipe, flags);
1934 		if (!ret) {
1935 			ret = opipe_prep(opipe, flags);
1936 			if (!ret)
1937 				ret = link_pipe(ipipe, opipe, len, flags);
1938 		}
1939 	}
1940 
1941 	return ret;
1942 }
1943 
1944 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1945 {
1946 	struct fd in, out;
1947 	int error;
1948 
1949 	if (unlikely(flags & ~SPLICE_F_ALL))
1950 		return -EINVAL;
1951 
1952 	if (unlikely(!len))
1953 		return 0;
1954 
1955 	error = -EBADF;
1956 	in = fdget(fdin);
1957 	if (in.file) {
1958 		out = fdget(fdout);
1959 		if (out.file) {
1960 			error = do_tee(in.file, out.file, len, flags);
1961 			fdput(out);
1962 		}
1963  		fdput(in);
1964  	}
1965 
1966 	return error;
1967 }
1968