1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * "splice": joining two ropes together by interweaving their strands. 4 * 5 * This is the "extended pipe" functionality, where a pipe is used as 6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 7 * buffer that you can use to transfer data from one end to the other. 8 * 9 * The traditional unix read/write is extended with a "splice()" operation 10 * that transfers data buffers to or from a pipe buffer. 11 * 12 * Named by Larry McVoy, original implementation from Linus, extended by 13 * Jens to support splicing to files, network, direct splicing, etc and 14 * fixing lots of bugs. 15 * 16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 19 * 20 */ 21 #include <linux/bvec.h> 22 #include <linux/fs.h> 23 #include <linux/file.h> 24 #include <linux/pagemap.h> 25 #include <linux/splice.h> 26 #include <linux/memcontrol.h> 27 #include <linux/mm_inline.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/export.h> 31 #include <linux/syscalls.h> 32 #include <linux/uio.h> 33 #include <linux/fsnotify.h> 34 #include <linux/security.h> 35 #include <linux/gfp.h> 36 #include <linux/net.h> 37 #include <linux/socket.h> 38 #include <linux/sched/signal.h> 39 40 #include "internal.h" 41 42 /* 43 * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to 44 * indicate they support non-blocking reads or writes, we must clear it 45 * here if set to avoid blocking other users of this pipe if splice is 46 * being done on it. 47 */ 48 static noinline void noinline pipe_clear_nowait(struct file *file) 49 { 50 fmode_t fmode = READ_ONCE(file->f_mode); 51 52 do { 53 if (!(fmode & FMODE_NOWAIT)) 54 break; 55 } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT)); 56 } 57 58 /* 59 * Attempt to steal a page from a pipe buffer. This should perhaps go into 60 * a vm helper function, it's already simplified quite a bit by the 61 * addition of remove_mapping(). If success is returned, the caller may 62 * attempt to reuse this page for another destination. 63 */ 64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe, 65 struct pipe_buffer *buf) 66 { 67 struct folio *folio = page_folio(buf->page); 68 struct address_space *mapping; 69 70 folio_lock(folio); 71 72 mapping = folio_mapping(folio); 73 if (mapping) { 74 WARN_ON(!folio_test_uptodate(folio)); 75 76 /* 77 * At least for ext2 with nobh option, we need to wait on 78 * writeback completing on this folio, since we'll remove it 79 * from the pagecache. Otherwise truncate wont wait on the 80 * folio, allowing the disk blocks to be reused by someone else 81 * before we actually wrote our data to them. fs corruption 82 * ensues. 83 */ 84 folio_wait_writeback(folio); 85 86 if (folio_has_private(folio) && 87 !filemap_release_folio(folio, GFP_KERNEL)) 88 goto out_unlock; 89 90 /* 91 * If we succeeded in removing the mapping, set LRU flag 92 * and return good. 93 */ 94 if (remove_mapping(mapping, folio)) { 95 buf->flags |= PIPE_BUF_FLAG_LRU; 96 return true; 97 } 98 } 99 100 /* 101 * Raced with truncate or failed to remove folio from current 102 * address space, unlock and return failure. 103 */ 104 out_unlock: 105 folio_unlock(folio); 106 return false; 107 } 108 109 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 110 struct pipe_buffer *buf) 111 { 112 put_page(buf->page); 113 buf->flags &= ~PIPE_BUF_FLAG_LRU; 114 } 115 116 /* 117 * Check whether the contents of buf is OK to access. Since the content 118 * is a page cache page, IO may be in flight. 119 */ 120 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 121 struct pipe_buffer *buf) 122 { 123 struct page *page = buf->page; 124 int err; 125 126 if (!PageUptodate(page)) { 127 lock_page(page); 128 129 /* 130 * Page got truncated/unhashed. This will cause a 0-byte 131 * splice, if this is the first page. 132 */ 133 if (!page->mapping) { 134 err = -ENODATA; 135 goto error; 136 } 137 138 /* 139 * Uh oh, read-error from disk. 140 */ 141 if (!PageUptodate(page)) { 142 err = -EIO; 143 goto error; 144 } 145 146 /* 147 * Page is ok afterall, we are done. 148 */ 149 unlock_page(page); 150 } 151 152 return 0; 153 error: 154 unlock_page(page); 155 return err; 156 } 157 158 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 159 .confirm = page_cache_pipe_buf_confirm, 160 .release = page_cache_pipe_buf_release, 161 .try_steal = page_cache_pipe_buf_try_steal, 162 .get = generic_pipe_buf_get, 163 }; 164 165 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe, 166 struct pipe_buffer *buf) 167 { 168 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 169 return false; 170 171 buf->flags |= PIPE_BUF_FLAG_LRU; 172 return generic_pipe_buf_try_steal(pipe, buf); 173 } 174 175 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 176 .release = page_cache_pipe_buf_release, 177 .try_steal = user_page_pipe_buf_try_steal, 178 .get = generic_pipe_buf_get, 179 }; 180 181 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 182 { 183 smp_mb(); 184 if (waitqueue_active(&pipe->rd_wait)) 185 wake_up_interruptible(&pipe->rd_wait); 186 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 187 } 188 189 /** 190 * splice_to_pipe - fill passed data into a pipe 191 * @pipe: pipe to fill 192 * @spd: data to fill 193 * 194 * Description: 195 * @spd contains a map of pages and len/offset tuples, along with 196 * the struct pipe_buf_operations associated with these pages. This 197 * function will link that data to the pipe. 198 * 199 */ 200 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 201 struct splice_pipe_desc *spd) 202 { 203 unsigned int spd_pages = spd->nr_pages; 204 unsigned int tail = pipe->tail; 205 unsigned int head = pipe->head; 206 unsigned int mask = pipe->ring_size - 1; 207 int ret = 0, page_nr = 0; 208 209 if (!spd_pages) 210 return 0; 211 212 if (unlikely(!pipe->readers)) { 213 send_sig(SIGPIPE, current, 0); 214 ret = -EPIPE; 215 goto out; 216 } 217 218 while (!pipe_full(head, tail, pipe->max_usage)) { 219 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 220 221 buf->page = spd->pages[page_nr]; 222 buf->offset = spd->partial[page_nr].offset; 223 buf->len = spd->partial[page_nr].len; 224 buf->private = spd->partial[page_nr].private; 225 buf->ops = spd->ops; 226 buf->flags = 0; 227 228 head++; 229 pipe->head = head; 230 page_nr++; 231 ret += buf->len; 232 233 if (!--spd->nr_pages) 234 break; 235 } 236 237 if (!ret) 238 ret = -EAGAIN; 239 240 out: 241 while (page_nr < spd_pages) 242 spd->spd_release(spd, page_nr++); 243 244 return ret; 245 } 246 EXPORT_SYMBOL_GPL(splice_to_pipe); 247 248 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 249 { 250 unsigned int head = pipe->head; 251 unsigned int tail = pipe->tail; 252 unsigned int mask = pipe->ring_size - 1; 253 int ret; 254 255 if (unlikely(!pipe->readers)) { 256 send_sig(SIGPIPE, current, 0); 257 ret = -EPIPE; 258 } else if (pipe_full(head, tail, pipe->max_usage)) { 259 ret = -EAGAIN; 260 } else { 261 pipe->bufs[head & mask] = *buf; 262 pipe->head = head + 1; 263 return buf->len; 264 } 265 pipe_buf_release(pipe, buf); 266 return ret; 267 } 268 EXPORT_SYMBOL(add_to_pipe); 269 270 /* 271 * Check if we need to grow the arrays holding pages and partial page 272 * descriptions. 273 */ 274 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 275 { 276 unsigned int max_usage = READ_ONCE(pipe->max_usage); 277 278 spd->nr_pages_max = max_usage; 279 if (max_usage <= PIPE_DEF_BUFFERS) 280 return 0; 281 282 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL); 283 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page), 284 GFP_KERNEL); 285 286 if (spd->pages && spd->partial) 287 return 0; 288 289 kfree(spd->pages); 290 kfree(spd->partial); 291 return -ENOMEM; 292 } 293 294 void splice_shrink_spd(struct splice_pipe_desc *spd) 295 { 296 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 297 return; 298 299 kfree(spd->pages); 300 kfree(spd->partial); 301 } 302 303 /* 304 * Splice data from an O_DIRECT file into pages and then add them to the output 305 * pipe. 306 */ 307 ssize_t direct_splice_read(struct file *in, loff_t *ppos, 308 struct pipe_inode_info *pipe, 309 size_t len, unsigned int flags) 310 { 311 struct iov_iter to; 312 struct bio_vec *bv; 313 struct kiocb kiocb; 314 struct page **pages; 315 ssize_t ret; 316 size_t used, npages, chunk, remain, reclaim; 317 int i; 318 319 /* Work out how much data we can actually add into the pipe */ 320 used = pipe_occupancy(pipe->head, pipe->tail); 321 npages = max_t(ssize_t, pipe->max_usage - used, 0); 322 len = min_t(size_t, len, npages * PAGE_SIZE); 323 npages = DIV_ROUND_UP(len, PAGE_SIZE); 324 325 bv = kzalloc(array_size(npages, sizeof(bv[0])) + 326 array_size(npages, sizeof(struct page *)), GFP_KERNEL); 327 if (!bv) 328 return -ENOMEM; 329 330 pages = (void *)(bv + npages); 331 npages = alloc_pages_bulk_array(GFP_USER, npages, pages); 332 if (!npages) { 333 kfree(bv); 334 return -ENOMEM; 335 } 336 337 remain = len = min_t(size_t, len, npages * PAGE_SIZE); 338 339 for (i = 0; i < npages; i++) { 340 chunk = min_t(size_t, PAGE_SIZE, remain); 341 bv[i].bv_page = pages[i]; 342 bv[i].bv_offset = 0; 343 bv[i].bv_len = chunk; 344 remain -= chunk; 345 } 346 347 /* Do the I/O */ 348 iov_iter_bvec(&to, ITER_DEST, bv, npages, len); 349 init_sync_kiocb(&kiocb, in); 350 kiocb.ki_pos = *ppos; 351 ret = call_read_iter(in, &kiocb, &to); 352 353 reclaim = npages * PAGE_SIZE; 354 remain = 0; 355 if (ret > 0) { 356 reclaim -= ret; 357 remain = ret; 358 *ppos = kiocb.ki_pos; 359 file_accessed(in); 360 } else if (ret < 0) { 361 /* 362 * callers of ->splice_read() expect -EAGAIN on 363 * "can't put anything in there", rather than -EFAULT. 364 */ 365 if (ret == -EFAULT) 366 ret = -EAGAIN; 367 } 368 369 /* Free any pages that didn't get touched at all. */ 370 reclaim /= PAGE_SIZE; 371 if (reclaim) { 372 npages -= reclaim; 373 release_pages(pages + npages, reclaim); 374 } 375 376 /* Push the remaining pages into the pipe. */ 377 for (i = 0; i < npages; i++) { 378 struct pipe_buffer *buf = pipe_head_buf(pipe); 379 380 chunk = min_t(size_t, remain, PAGE_SIZE); 381 *buf = (struct pipe_buffer) { 382 .ops = &default_pipe_buf_ops, 383 .page = bv[i].bv_page, 384 .offset = 0, 385 .len = chunk, 386 }; 387 pipe->head++; 388 remain -= chunk; 389 } 390 391 kfree(bv); 392 return ret; 393 } 394 EXPORT_SYMBOL(direct_splice_read); 395 396 /** 397 * generic_file_splice_read - splice data from file to a pipe 398 * @in: file to splice from 399 * @ppos: position in @in 400 * @pipe: pipe to splice to 401 * @len: number of bytes to splice 402 * @flags: splice modifier flags 403 * 404 * Description: 405 * Will read pages from given file and fill them into a pipe. Can be 406 * used as long as it has more or less sane ->read_iter(). 407 * 408 */ 409 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 410 struct pipe_inode_info *pipe, size_t len, 411 unsigned int flags) 412 { 413 struct iov_iter to; 414 struct kiocb kiocb; 415 int ret; 416 417 iov_iter_pipe(&to, ITER_DEST, pipe, len); 418 init_sync_kiocb(&kiocb, in); 419 kiocb.ki_pos = *ppos; 420 ret = call_read_iter(in, &kiocb, &to); 421 if (ret > 0) { 422 *ppos = kiocb.ki_pos; 423 file_accessed(in); 424 } else if (ret < 0) { 425 /* free what was emitted */ 426 pipe_discard_from(pipe, to.start_head); 427 /* 428 * callers of ->splice_read() expect -EAGAIN on 429 * "can't put anything in there", rather than -EFAULT. 430 */ 431 if (ret == -EFAULT) 432 ret = -EAGAIN; 433 } 434 435 return ret; 436 } 437 EXPORT_SYMBOL(generic_file_splice_read); 438 439 const struct pipe_buf_operations default_pipe_buf_ops = { 440 .release = generic_pipe_buf_release, 441 .try_steal = generic_pipe_buf_try_steal, 442 .get = generic_pipe_buf_get, 443 }; 444 445 /* Pipe buffer operations for a socket and similar. */ 446 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 447 .release = generic_pipe_buf_release, 448 .get = generic_pipe_buf_get, 449 }; 450 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 451 452 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 453 { 454 smp_mb(); 455 if (waitqueue_active(&pipe->wr_wait)) 456 wake_up_interruptible(&pipe->wr_wait); 457 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 458 } 459 460 /** 461 * splice_from_pipe_feed - feed available data from a pipe to a file 462 * @pipe: pipe to splice from 463 * @sd: information to @actor 464 * @actor: handler that splices the data 465 * 466 * Description: 467 * This function loops over the pipe and calls @actor to do the 468 * actual moving of a single struct pipe_buffer to the desired 469 * destination. It returns when there's no more buffers left in 470 * the pipe or if the requested number of bytes (@sd->total_len) 471 * have been copied. It returns a positive number (one) if the 472 * pipe needs to be filled with more data, zero if the required 473 * number of bytes have been copied and -errno on error. 474 * 475 * This, together with splice_from_pipe_{begin,end,next}, may be 476 * used to implement the functionality of __splice_from_pipe() when 477 * locking is required around copying the pipe buffers to the 478 * destination. 479 */ 480 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 481 splice_actor *actor) 482 { 483 unsigned int head = pipe->head; 484 unsigned int tail = pipe->tail; 485 unsigned int mask = pipe->ring_size - 1; 486 int ret; 487 488 while (!pipe_empty(head, tail)) { 489 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 490 491 sd->len = buf->len; 492 if (sd->len > sd->total_len) 493 sd->len = sd->total_len; 494 495 ret = pipe_buf_confirm(pipe, buf); 496 if (unlikely(ret)) { 497 if (ret == -ENODATA) 498 ret = 0; 499 return ret; 500 } 501 502 ret = actor(pipe, buf, sd); 503 if (ret <= 0) 504 return ret; 505 506 buf->offset += ret; 507 buf->len -= ret; 508 509 sd->num_spliced += ret; 510 sd->len -= ret; 511 sd->pos += ret; 512 sd->total_len -= ret; 513 514 if (!buf->len) { 515 pipe_buf_release(pipe, buf); 516 tail++; 517 pipe->tail = tail; 518 if (pipe->files) 519 sd->need_wakeup = true; 520 } 521 522 if (!sd->total_len) 523 return 0; 524 } 525 526 return 1; 527 } 528 529 /* We know we have a pipe buffer, but maybe it's empty? */ 530 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe) 531 { 532 unsigned int tail = pipe->tail; 533 unsigned int mask = pipe->ring_size - 1; 534 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 535 536 if (unlikely(!buf->len)) { 537 pipe_buf_release(pipe, buf); 538 pipe->tail = tail+1; 539 return true; 540 } 541 542 return false; 543 } 544 545 /** 546 * splice_from_pipe_next - wait for some data to splice from 547 * @pipe: pipe to splice from 548 * @sd: information about the splice operation 549 * 550 * Description: 551 * This function will wait for some data and return a positive 552 * value (one) if pipe buffers are available. It will return zero 553 * or -errno if no more data needs to be spliced. 554 */ 555 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 556 { 557 /* 558 * Check for signal early to make process killable when there are 559 * always buffers available 560 */ 561 if (signal_pending(current)) 562 return -ERESTARTSYS; 563 564 repeat: 565 while (pipe_empty(pipe->head, pipe->tail)) { 566 if (!pipe->writers) 567 return 0; 568 569 if (sd->num_spliced) 570 return 0; 571 572 if (sd->flags & SPLICE_F_NONBLOCK) 573 return -EAGAIN; 574 575 if (signal_pending(current)) 576 return -ERESTARTSYS; 577 578 if (sd->need_wakeup) { 579 wakeup_pipe_writers(pipe); 580 sd->need_wakeup = false; 581 } 582 583 pipe_wait_readable(pipe); 584 } 585 586 if (eat_empty_buffer(pipe)) 587 goto repeat; 588 589 return 1; 590 } 591 592 /** 593 * splice_from_pipe_begin - start splicing from pipe 594 * @sd: information about the splice operation 595 * 596 * Description: 597 * This function should be called before a loop containing 598 * splice_from_pipe_next() and splice_from_pipe_feed() to 599 * initialize the necessary fields of @sd. 600 */ 601 static void splice_from_pipe_begin(struct splice_desc *sd) 602 { 603 sd->num_spliced = 0; 604 sd->need_wakeup = false; 605 } 606 607 /** 608 * splice_from_pipe_end - finish splicing from pipe 609 * @pipe: pipe to splice from 610 * @sd: information about the splice operation 611 * 612 * Description: 613 * This function will wake up pipe writers if necessary. It should 614 * be called after a loop containing splice_from_pipe_next() and 615 * splice_from_pipe_feed(). 616 */ 617 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 618 { 619 if (sd->need_wakeup) 620 wakeup_pipe_writers(pipe); 621 } 622 623 /** 624 * __splice_from_pipe - splice data from a pipe to given actor 625 * @pipe: pipe to splice from 626 * @sd: information to @actor 627 * @actor: handler that splices the data 628 * 629 * Description: 630 * This function does little more than loop over the pipe and call 631 * @actor to do the actual moving of a single struct pipe_buffer to 632 * the desired destination. See pipe_to_file, pipe_to_sendmsg, or 633 * pipe_to_user. 634 * 635 */ 636 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 637 splice_actor *actor) 638 { 639 int ret; 640 641 splice_from_pipe_begin(sd); 642 do { 643 cond_resched(); 644 ret = splice_from_pipe_next(pipe, sd); 645 if (ret > 0) 646 ret = splice_from_pipe_feed(pipe, sd, actor); 647 } while (ret > 0); 648 splice_from_pipe_end(pipe, sd); 649 650 return sd->num_spliced ? sd->num_spliced : ret; 651 } 652 EXPORT_SYMBOL(__splice_from_pipe); 653 654 /** 655 * splice_from_pipe - splice data from a pipe to a file 656 * @pipe: pipe to splice from 657 * @out: file to splice to 658 * @ppos: position in @out 659 * @len: how many bytes to splice 660 * @flags: splice modifier flags 661 * @actor: handler that splices the data 662 * 663 * Description: 664 * See __splice_from_pipe. This function locks the pipe inode, 665 * otherwise it's identical to __splice_from_pipe(). 666 * 667 */ 668 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 669 loff_t *ppos, size_t len, unsigned int flags, 670 splice_actor *actor) 671 { 672 ssize_t ret; 673 struct splice_desc sd = { 674 .total_len = len, 675 .flags = flags, 676 .pos = *ppos, 677 .u.file = out, 678 }; 679 680 pipe_lock(pipe); 681 ret = __splice_from_pipe(pipe, &sd, actor); 682 pipe_unlock(pipe); 683 684 return ret; 685 } 686 687 /** 688 * iter_file_splice_write - splice data from a pipe to a file 689 * @pipe: pipe info 690 * @out: file to write to 691 * @ppos: position in @out 692 * @len: number of bytes to splice 693 * @flags: splice modifier flags 694 * 695 * Description: 696 * Will either move or copy pages (determined by @flags options) from 697 * the given pipe inode to the given file. 698 * This one is ->write_iter-based. 699 * 700 */ 701 ssize_t 702 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 703 loff_t *ppos, size_t len, unsigned int flags) 704 { 705 struct splice_desc sd = { 706 .total_len = len, 707 .flags = flags, 708 .pos = *ppos, 709 .u.file = out, 710 }; 711 int nbufs = pipe->max_usage; 712 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 713 GFP_KERNEL); 714 ssize_t ret; 715 716 if (unlikely(!array)) 717 return -ENOMEM; 718 719 pipe_lock(pipe); 720 721 splice_from_pipe_begin(&sd); 722 while (sd.total_len) { 723 struct iov_iter from; 724 unsigned int head, tail, mask; 725 size_t left; 726 int n; 727 728 ret = splice_from_pipe_next(pipe, &sd); 729 if (ret <= 0) 730 break; 731 732 if (unlikely(nbufs < pipe->max_usage)) { 733 kfree(array); 734 nbufs = pipe->max_usage; 735 array = kcalloc(nbufs, sizeof(struct bio_vec), 736 GFP_KERNEL); 737 if (!array) { 738 ret = -ENOMEM; 739 break; 740 } 741 } 742 743 head = pipe->head; 744 tail = pipe->tail; 745 mask = pipe->ring_size - 1; 746 747 /* build the vector */ 748 left = sd.total_len; 749 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) { 750 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 751 size_t this_len = buf->len; 752 753 /* zero-length bvecs are not supported, skip them */ 754 if (!this_len) 755 continue; 756 this_len = min(this_len, left); 757 758 ret = pipe_buf_confirm(pipe, buf); 759 if (unlikely(ret)) { 760 if (ret == -ENODATA) 761 ret = 0; 762 goto done; 763 } 764 765 bvec_set_page(&array[n], buf->page, this_len, 766 buf->offset); 767 left -= this_len; 768 n++; 769 } 770 771 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left); 772 ret = vfs_iter_write(out, &from, &sd.pos, 0); 773 if (ret <= 0) 774 break; 775 776 sd.num_spliced += ret; 777 sd.total_len -= ret; 778 *ppos = sd.pos; 779 780 /* dismiss the fully eaten buffers, adjust the partial one */ 781 tail = pipe->tail; 782 while (ret) { 783 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 784 if (ret >= buf->len) { 785 ret -= buf->len; 786 buf->len = 0; 787 pipe_buf_release(pipe, buf); 788 tail++; 789 pipe->tail = tail; 790 if (pipe->files) 791 sd.need_wakeup = true; 792 } else { 793 buf->offset += ret; 794 buf->len -= ret; 795 ret = 0; 796 } 797 } 798 } 799 done: 800 kfree(array); 801 splice_from_pipe_end(pipe, &sd); 802 803 pipe_unlock(pipe); 804 805 if (sd.num_spliced) 806 ret = sd.num_spliced; 807 808 return ret; 809 } 810 811 EXPORT_SYMBOL(iter_file_splice_write); 812 813 #ifdef CONFIG_NET 814 /** 815 * splice_to_socket - splice data from a pipe to a socket 816 * @pipe: pipe to splice from 817 * @out: socket to write to 818 * @ppos: position in @out 819 * @len: number of bytes to splice 820 * @flags: splice modifier flags 821 * 822 * Description: 823 * Will send @len bytes from the pipe to a network socket. No data copying 824 * is involved. 825 * 826 */ 827 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out, 828 loff_t *ppos, size_t len, unsigned int flags) 829 { 830 struct socket *sock = sock_from_file(out); 831 struct bio_vec bvec[16]; 832 struct msghdr msg = {}; 833 ssize_t ret = 0; 834 size_t spliced = 0; 835 bool need_wakeup = false; 836 837 pipe_lock(pipe); 838 839 while (len > 0) { 840 unsigned int head, tail, mask, bc = 0; 841 size_t remain = len; 842 843 /* 844 * Check for signal early to make process killable when there 845 * are always buffers available 846 */ 847 ret = -ERESTARTSYS; 848 if (signal_pending(current)) 849 break; 850 851 while (pipe_empty(pipe->head, pipe->tail)) { 852 ret = 0; 853 if (!pipe->writers) 854 goto out; 855 856 if (spliced) 857 goto out; 858 859 ret = -EAGAIN; 860 if (flags & SPLICE_F_NONBLOCK) 861 goto out; 862 863 ret = -ERESTARTSYS; 864 if (signal_pending(current)) 865 goto out; 866 867 if (need_wakeup) { 868 wakeup_pipe_writers(pipe); 869 need_wakeup = false; 870 } 871 872 pipe_wait_readable(pipe); 873 } 874 875 head = pipe->head; 876 tail = pipe->tail; 877 mask = pipe->ring_size - 1; 878 879 while (!pipe_empty(head, tail)) { 880 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 881 size_t seg; 882 883 if (!buf->len) { 884 tail++; 885 continue; 886 } 887 888 seg = min_t(size_t, remain, buf->len); 889 890 ret = pipe_buf_confirm(pipe, buf); 891 if (unlikely(ret)) { 892 if (ret == -ENODATA) 893 ret = 0; 894 break; 895 } 896 897 bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset); 898 remain -= seg; 899 if (remain == 0 || bc >= ARRAY_SIZE(bvec)) 900 break; 901 tail++; 902 } 903 904 if (!bc) 905 break; 906 907 msg.msg_flags = MSG_SPLICE_PAGES; 908 if (flags & SPLICE_F_MORE) 909 msg.msg_flags |= MSG_MORE; 910 if (remain && pipe_occupancy(pipe->head, tail) > 0) 911 msg.msg_flags |= MSG_MORE; 912 913 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc, 914 len - remain); 915 ret = sock_sendmsg(sock, &msg); 916 if (ret <= 0) 917 break; 918 919 spliced += ret; 920 len -= ret; 921 tail = pipe->tail; 922 while (ret > 0) { 923 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 924 size_t seg = min_t(size_t, ret, buf->len); 925 926 buf->offset += seg; 927 buf->len -= seg; 928 ret -= seg; 929 930 if (!buf->len) { 931 pipe_buf_release(pipe, buf); 932 tail++; 933 } 934 } 935 936 if (tail != pipe->tail) { 937 pipe->tail = tail; 938 if (pipe->files) 939 need_wakeup = true; 940 } 941 } 942 943 out: 944 pipe_unlock(pipe); 945 if (need_wakeup) 946 wakeup_pipe_writers(pipe); 947 return spliced ?: ret; 948 } 949 #endif 950 951 static int warn_unsupported(struct file *file, const char *op) 952 { 953 pr_debug_ratelimited( 954 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n", 955 op, file, current->pid, current->comm); 956 return -EINVAL; 957 } 958 959 /* 960 * Attempt to initiate a splice from pipe to file. 961 */ 962 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 963 loff_t *ppos, size_t len, unsigned int flags) 964 { 965 if (unlikely(!out->f_op->splice_write)) 966 return warn_unsupported(out, "write"); 967 return out->f_op->splice_write(pipe, out, ppos, len, flags); 968 } 969 970 /* 971 * Indicate to the caller that there was a premature EOF when reading from the 972 * source and the caller didn't indicate they would be sending more data after 973 * this. 974 */ 975 static void do_splice_eof(struct splice_desc *sd) 976 { 977 if (sd->splice_eof) 978 sd->splice_eof(sd); 979 } 980 981 /* 982 * Attempt to initiate a splice from a file to a pipe. 983 */ 984 static long do_splice_to(struct file *in, loff_t *ppos, 985 struct pipe_inode_info *pipe, size_t len, 986 unsigned int flags) 987 { 988 unsigned int p_space; 989 int ret; 990 991 if (unlikely(!(in->f_mode & FMODE_READ))) 992 return -EBADF; 993 994 /* Don't try to read more the pipe has space for. */ 995 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail); 996 len = min_t(size_t, len, p_space << PAGE_SHIFT); 997 998 ret = rw_verify_area(READ, in, ppos, len); 999 if (unlikely(ret < 0)) 1000 return ret; 1001 1002 if (unlikely(len > MAX_RW_COUNT)) 1003 len = MAX_RW_COUNT; 1004 1005 if (unlikely(!in->f_op->splice_read)) 1006 return warn_unsupported(in, "read"); 1007 return in->f_op->splice_read(in, ppos, pipe, len, flags); 1008 } 1009 1010 /** 1011 * splice_direct_to_actor - splices data directly between two non-pipes 1012 * @in: file to splice from 1013 * @sd: actor information on where to splice to 1014 * @actor: handles the data splicing 1015 * 1016 * Description: 1017 * This is a special case helper to splice directly between two 1018 * points, without requiring an explicit pipe. Internally an allocated 1019 * pipe is cached in the process, and reused during the lifetime of 1020 * that process. 1021 * 1022 */ 1023 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1024 splice_direct_actor *actor) 1025 { 1026 struct pipe_inode_info *pipe; 1027 long ret, bytes; 1028 size_t len; 1029 int i, flags, more; 1030 1031 /* 1032 * We require the input to be seekable, as we don't want to randomly 1033 * drop data for eg socket -> socket splicing. Use the piped splicing 1034 * for that! 1035 */ 1036 if (unlikely(!(in->f_mode & FMODE_LSEEK))) 1037 return -EINVAL; 1038 1039 /* 1040 * neither in nor out is a pipe, setup an internal pipe attached to 1041 * 'out' and transfer the wanted data from 'in' to 'out' through that 1042 */ 1043 pipe = current->splice_pipe; 1044 if (unlikely(!pipe)) { 1045 pipe = alloc_pipe_info(); 1046 if (!pipe) 1047 return -ENOMEM; 1048 1049 /* 1050 * We don't have an immediate reader, but we'll read the stuff 1051 * out of the pipe right after the splice_to_pipe(). So set 1052 * PIPE_READERS appropriately. 1053 */ 1054 pipe->readers = 1; 1055 1056 current->splice_pipe = pipe; 1057 } 1058 1059 /* 1060 * Do the splice. 1061 */ 1062 bytes = 0; 1063 len = sd->total_len; 1064 1065 /* Don't block on output, we have to drain the direct pipe. */ 1066 flags = sd->flags; 1067 sd->flags &= ~SPLICE_F_NONBLOCK; 1068 1069 /* 1070 * We signal MORE until we've read sufficient data to fulfill the 1071 * request and we keep signalling it if the caller set it. 1072 */ 1073 more = sd->flags & SPLICE_F_MORE; 1074 sd->flags |= SPLICE_F_MORE; 1075 1076 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail)); 1077 1078 while (len) { 1079 size_t read_len; 1080 loff_t pos = sd->pos, prev_pos = pos; 1081 1082 ret = do_splice_to(in, &pos, pipe, len, flags); 1083 if (unlikely(ret <= 0)) 1084 goto read_failure; 1085 1086 read_len = ret; 1087 sd->total_len = read_len; 1088 1089 /* 1090 * If we now have sufficient data to fulfill the request then 1091 * we clear SPLICE_F_MORE if it was not set initially. 1092 */ 1093 if (read_len >= len && !more) 1094 sd->flags &= ~SPLICE_F_MORE; 1095 1096 /* 1097 * NOTE: nonblocking mode only applies to the input. We 1098 * must not do the output in nonblocking mode as then we 1099 * could get stuck data in the internal pipe: 1100 */ 1101 ret = actor(pipe, sd); 1102 if (unlikely(ret <= 0)) { 1103 sd->pos = prev_pos; 1104 goto out_release; 1105 } 1106 1107 bytes += ret; 1108 len -= ret; 1109 sd->pos = pos; 1110 1111 if (ret < read_len) { 1112 sd->pos = prev_pos + ret; 1113 goto out_release; 1114 } 1115 } 1116 1117 done: 1118 pipe->tail = pipe->head = 0; 1119 file_accessed(in); 1120 return bytes; 1121 1122 read_failure: 1123 /* 1124 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that 1125 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a 1126 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at 1127 * least 1 byte *then* we will also do the ->splice_eof() call. 1128 */ 1129 if (ret == 0 && !more && len > 0 && bytes) 1130 do_splice_eof(sd); 1131 out_release: 1132 /* 1133 * If we did an incomplete transfer we must release 1134 * the pipe buffers in question: 1135 */ 1136 for (i = 0; i < pipe->ring_size; i++) { 1137 struct pipe_buffer *buf = &pipe->bufs[i]; 1138 1139 if (buf->ops) 1140 pipe_buf_release(pipe, buf); 1141 } 1142 1143 if (!bytes) 1144 bytes = ret; 1145 1146 goto done; 1147 } 1148 EXPORT_SYMBOL(splice_direct_to_actor); 1149 1150 static int direct_splice_actor(struct pipe_inode_info *pipe, 1151 struct splice_desc *sd) 1152 { 1153 struct file *file = sd->u.file; 1154 1155 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1156 sd->flags); 1157 } 1158 1159 static void direct_file_splice_eof(struct splice_desc *sd) 1160 { 1161 struct file *file = sd->u.file; 1162 1163 if (file->f_op->splice_eof) 1164 file->f_op->splice_eof(file); 1165 } 1166 1167 /** 1168 * do_splice_direct - splices data directly between two files 1169 * @in: file to splice from 1170 * @ppos: input file offset 1171 * @out: file to splice to 1172 * @opos: output file offset 1173 * @len: number of bytes to splice 1174 * @flags: splice modifier flags 1175 * 1176 * Description: 1177 * For use by do_sendfile(). splice can easily emulate sendfile, but 1178 * doing it in the application would incur an extra system call 1179 * (splice in + splice out, as compared to just sendfile()). So this helper 1180 * can splice directly through a process-private pipe. 1181 * 1182 */ 1183 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1184 loff_t *opos, size_t len, unsigned int flags) 1185 { 1186 struct splice_desc sd = { 1187 .len = len, 1188 .total_len = len, 1189 .flags = flags, 1190 .pos = *ppos, 1191 .u.file = out, 1192 .splice_eof = direct_file_splice_eof, 1193 .opos = opos, 1194 }; 1195 long ret; 1196 1197 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1198 return -EBADF; 1199 1200 if (unlikely(out->f_flags & O_APPEND)) 1201 return -EINVAL; 1202 1203 ret = rw_verify_area(WRITE, out, opos, len); 1204 if (unlikely(ret < 0)) 1205 return ret; 1206 1207 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1208 if (ret > 0) 1209 *ppos = sd.pos; 1210 1211 return ret; 1212 } 1213 EXPORT_SYMBOL(do_splice_direct); 1214 1215 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 1216 { 1217 for (;;) { 1218 if (unlikely(!pipe->readers)) { 1219 send_sig(SIGPIPE, current, 0); 1220 return -EPIPE; 1221 } 1222 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1223 return 0; 1224 if (flags & SPLICE_F_NONBLOCK) 1225 return -EAGAIN; 1226 if (signal_pending(current)) 1227 return -ERESTARTSYS; 1228 pipe_wait_writable(pipe); 1229 } 1230 } 1231 1232 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1233 struct pipe_inode_info *opipe, 1234 size_t len, unsigned int flags); 1235 1236 long splice_file_to_pipe(struct file *in, 1237 struct pipe_inode_info *opipe, 1238 loff_t *offset, 1239 size_t len, unsigned int flags) 1240 { 1241 long ret; 1242 1243 pipe_lock(opipe); 1244 ret = wait_for_space(opipe, flags); 1245 if (!ret) 1246 ret = do_splice_to(in, offset, opipe, len, flags); 1247 pipe_unlock(opipe); 1248 if (ret > 0) 1249 wakeup_pipe_readers(opipe); 1250 return ret; 1251 } 1252 1253 /* 1254 * Determine where to splice to/from. 1255 */ 1256 long do_splice(struct file *in, loff_t *off_in, struct file *out, 1257 loff_t *off_out, size_t len, unsigned int flags) 1258 { 1259 struct pipe_inode_info *ipipe; 1260 struct pipe_inode_info *opipe; 1261 loff_t offset; 1262 long ret; 1263 1264 if (unlikely(!(in->f_mode & FMODE_READ) || 1265 !(out->f_mode & FMODE_WRITE))) 1266 return -EBADF; 1267 1268 ipipe = get_pipe_info(in, true); 1269 opipe = get_pipe_info(out, true); 1270 1271 if (ipipe && opipe) { 1272 if (off_in || off_out) 1273 return -ESPIPE; 1274 1275 /* Splicing to self would be fun, but... */ 1276 if (ipipe == opipe) 1277 return -EINVAL; 1278 1279 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1280 flags |= SPLICE_F_NONBLOCK; 1281 1282 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1283 } 1284 1285 if (ipipe) { 1286 if (off_in) 1287 return -ESPIPE; 1288 if (off_out) { 1289 if (!(out->f_mode & FMODE_PWRITE)) 1290 return -EINVAL; 1291 offset = *off_out; 1292 } else { 1293 offset = out->f_pos; 1294 } 1295 1296 if (unlikely(out->f_flags & O_APPEND)) 1297 return -EINVAL; 1298 1299 ret = rw_verify_area(WRITE, out, &offset, len); 1300 if (unlikely(ret < 0)) 1301 return ret; 1302 1303 if (in->f_flags & O_NONBLOCK) 1304 flags |= SPLICE_F_NONBLOCK; 1305 1306 file_start_write(out); 1307 ret = do_splice_from(ipipe, out, &offset, len, flags); 1308 file_end_write(out); 1309 1310 if (ret > 0) 1311 fsnotify_modify(out); 1312 1313 if (!off_out) 1314 out->f_pos = offset; 1315 else 1316 *off_out = offset; 1317 1318 return ret; 1319 } 1320 1321 if (opipe) { 1322 if (off_out) 1323 return -ESPIPE; 1324 if (off_in) { 1325 if (!(in->f_mode & FMODE_PREAD)) 1326 return -EINVAL; 1327 offset = *off_in; 1328 } else { 1329 offset = in->f_pos; 1330 } 1331 1332 if (out->f_flags & O_NONBLOCK) 1333 flags |= SPLICE_F_NONBLOCK; 1334 1335 ret = splice_file_to_pipe(in, opipe, &offset, len, flags); 1336 1337 if (ret > 0) 1338 fsnotify_access(in); 1339 1340 if (!off_in) 1341 in->f_pos = offset; 1342 else 1343 *off_in = offset; 1344 1345 return ret; 1346 } 1347 1348 return -EINVAL; 1349 } 1350 1351 static long __do_splice(struct file *in, loff_t __user *off_in, 1352 struct file *out, loff_t __user *off_out, 1353 size_t len, unsigned int flags) 1354 { 1355 struct pipe_inode_info *ipipe; 1356 struct pipe_inode_info *opipe; 1357 loff_t offset, *__off_in = NULL, *__off_out = NULL; 1358 long ret; 1359 1360 ipipe = get_pipe_info(in, true); 1361 opipe = get_pipe_info(out, true); 1362 1363 if (ipipe) { 1364 if (off_in) 1365 return -ESPIPE; 1366 pipe_clear_nowait(in); 1367 } 1368 if (opipe) { 1369 if (off_out) 1370 return -ESPIPE; 1371 pipe_clear_nowait(out); 1372 } 1373 1374 if (off_out) { 1375 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1376 return -EFAULT; 1377 __off_out = &offset; 1378 } 1379 if (off_in) { 1380 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1381 return -EFAULT; 1382 __off_in = &offset; 1383 } 1384 1385 ret = do_splice(in, __off_in, out, __off_out, len, flags); 1386 if (ret < 0) 1387 return ret; 1388 1389 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t))) 1390 return -EFAULT; 1391 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t))) 1392 return -EFAULT; 1393 1394 return ret; 1395 } 1396 1397 static int iter_to_pipe(struct iov_iter *from, 1398 struct pipe_inode_info *pipe, 1399 unsigned flags) 1400 { 1401 struct pipe_buffer buf = { 1402 .ops = &user_page_pipe_buf_ops, 1403 .flags = flags 1404 }; 1405 size_t total = 0; 1406 int ret = 0; 1407 1408 while (iov_iter_count(from)) { 1409 struct page *pages[16]; 1410 ssize_t left; 1411 size_t start; 1412 int i, n; 1413 1414 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start); 1415 if (left <= 0) { 1416 ret = left; 1417 break; 1418 } 1419 1420 n = DIV_ROUND_UP(left + start, PAGE_SIZE); 1421 for (i = 0; i < n; i++) { 1422 int size = min_t(int, left, PAGE_SIZE - start); 1423 1424 buf.page = pages[i]; 1425 buf.offset = start; 1426 buf.len = size; 1427 ret = add_to_pipe(pipe, &buf); 1428 if (unlikely(ret < 0)) { 1429 iov_iter_revert(from, left); 1430 // this one got dropped by add_to_pipe() 1431 while (++i < n) 1432 put_page(pages[i]); 1433 goto out; 1434 } 1435 total += ret; 1436 left -= size; 1437 start = 0; 1438 } 1439 } 1440 out: 1441 return total ? total : ret; 1442 } 1443 1444 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1445 struct splice_desc *sd) 1446 { 1447 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1448 return n == sd->len ? n : -EFAULT; 1449 } 1450 1451 /* 1452 * For lack of a better implementation, implement vmsplice() to userspace 1453 * as a simple copy of the pipes pages to the user iov. 1454 */ 1455 static long vmsplice_to_user(struct file *file, struct iov_iter *iter, 1456 unsigned int flags) 1457 { 1458 struct pipe_inode_info *pipe = get_pipe_info(file, true); 1459 struct splice_desc sd = { 1460 .total_len = iov_iter_count(iter), 1461 .flags = flags, 1462 .u.data = iter 1463 }; 1464 long ret = 0; 1465 1466 if (!pipe) 1467 return -EBADF; 1468 1469 pipe_clear_nowait(file); 1470 1471 if (sd.total_len) { 1472 pipe_lock(pipe); 1473 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1474 pipe_unlock(pipe); 1475 } 1476 1477 return ret; 1478 } 1479 1480 /* 1481 * vmsplice splices a user address range into a pipe. It can be thought of 1482 * as splice-from-memory, where the regular splice is splice-from-file (or 1483 * to file). In both cases the output is a pipe, naturally. 1484 */ 1485 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter, 1486 unsigned int flags) 1487 { 1488 struct pipe_inode_info *pipe; 1489 long ret = 0; 1490 unsigned buf_flag = 0; 1491 1492 if (flags & SPLICE_F_GIFT) 1493 buf_flag = PIPE_BUF_FLAG_GIFT; 1494 1495 pipe = get_pipe_info(file, true); 1496 if (!pipe) 1497 return -EBADF; 1498 1499 pipe_clear_nowait(file); 1500 1501 pipe_lock(pipe); 1502 ret = wait_for_space(pipe, flags); 1503 if (!ret) 1504 ret = iter_to_pipe(iter, pipe, buf_flag); 1505 pipe_unlock(pipe); 1506 if (ret > 0) 1507 wakeup_pipe_readers(pipe); 1508 return ret; 1509 } 1510 1511 static int vmsplice_type(struct fd f, int *type) 1512 { 1513 if (!f.file) 1514 return -EBADF; 1515 if (f.file->f_mode & FMODE_WRITE) { 1516 *type = ITER_SOURCE; 1517 } else if (f.file->f_mode & FMODE_READ) { 1518 *type = ITER_DEST; 1519 } else { 1520 fdput(f); 1521 return -EBADF; 1522 } 1523 return 0; 1524 } 1525 1526 /* 1527 * Note that vmsplice only really supports true splicing _from_ user memory 1528 * to a pipe, not the other way around. Splicing from user memory is a simple 1529 * operation that can be supported without any funky alignment restrictions 1530 * or nasty vm tricks. We simply map in the user memory and fill them into 1531 * a pipe. The reverse isn't quite as easy, though. There are two possible 1532 * solutions for that: 1533 * 1534 * - memcpy() the data internally, at which point we might as well just 1535 * do a regular read() on the buffer anyway. 1536 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1537 * has restriction limitations on both ends of the pipe). 1538 * 1539 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1540 * 1541 */ 1542 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov, 1543 unsigned long, nr_segs, unsigned int, flags) 1544 { 1545 struct iovec iovstack[UIO_FASTIOV]; 1546 struct iovec *iov = iovstack; 1547 struct iov_iter iter; 1548 ssize_t error; 1549 struct fd f; 1550 int type; 1551 1552 if (unlikely(flags & ~SPLICE_F_ALL)) 1553 return -EINVAL; 1554 1555 f = fdget(fd); 1556 error = vmsplice_type(f, &type); 1557 if (error) 1558 return error; 1559 1560 error = import_iovec(type, uiov, nr_segs, 1561 ARRAY_SIZE(iovstack), &iov, &iter); 1562 if (error < 0) 1563 goto out_fdput; 1564 1565 if (!iov_iter_count(&iter)) 1566 error = 0; 1567 else if (type == ITER_SOURCE) 1568 error = vmsplice_to_pipe(f.file, &iter, flags); 1569 else 1570 error = vmsplice_to_user(f.file, &iter, flags); 1571 1572 kfree(iov); 1573 out_fdput: 1574 fdput(f); 1575 return error; 1576 } 1577 1578 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1579 int, fd_out, loff_t __user *, off_out, 1580 size_t, len, unsigned int, flags) 1581 { 1582 struct fd in, out; 1583 long error; 1584 1585 if (unlikely(!len)) 1586 return 0; 1587 1588 if (unlikely(flags & ~SPLICE_F_ALL)) 1589 return -EINVAL; 1590 1591 error = -EBADF; 1592 in = fdget(fd_in); 1593 if (in.file) { 1594 out = fdget(fd_out); 1595 if (out.file) { 1596 error = __do_splice(in.file, off_in, out.file, off_out, 1597 len, flags); 1598 fdput(out); 1599 } 1600 fdput(in); 1601 } 1602 return error; 1603 } 1604 1605 /* 1606 * Make sure there's data to read. Wait for input if we can, otherwise 1607 * return an appropriate error. 1608 */ 1609 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1610 { 1611 int ret; 1612 1613 /* 1614 * Check the pipe occupancy without the inode lock first. This function 1615 * is speculative anyways, so missing one is ok. 1616 */ 1617 if (!pipe_empty(pipe->head, pipe->tail)) 1618 return 0; 1619 1620 ret = 0; 1621 pipe_lock(pipe); 1622 1623 while (pipe_empty(pipe->head, pipe->tail)) { 1624 if (signal_pending(current)) { 1625 ret = -ERESTARTSYS; 1626 break; 1627 } 1628 if (!pipe->writers) 1629 break; 1630 if (flags & SPLICE_F_NONBLOCK) { 1631 ret = -EAGAIN; 1632 break; 1633 } 1634 pipe_wait_readable(pipe); 1635 } 1636 1637 pipe_unlock(pipe); 1638 return ret; 1639 } 1640 1641 /* 1642 * Make sure there's writeable room. Wait for room if we can, otherwise 1643 * return an appropriate error. 1644 */ 1645 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1646 { 1647 int ret; 1648 1649 /* 1650 * Check pipe occupancy without the inode lock first. This function 1651 * is speculative anyways, so missing one is ok. 1652 */ 1653 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1654 return 0; 1655 1656 ret = 0; 1657 pipe_lock(pipe); 1658 1659 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 1660 if (!pipe->readers) { 1661 send_sig(SIGPIPE, current, 0); 1662 ret = -EPIPE; 1663 break; 1664 } 1665 if (flags & SPLICE_F_NONBLOCK) { 1666 ret = -EAGAIN; 1667 break; 1668 } 1669 if (signal_pending(current)) { 1670 ret = -ERESTARTSYS; 1671 break; 1672 } 1673 pipe_wait_writable(pipe); 1674 } 1675 1676 pipe_unlock(pipe); 1677 return ret; 1678 } 1679 1680 /* 1681 * Splice contents of ipipe to opipe. 1682 */ 1683 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1684 struct pipe_inode_info *opipe, 1685 size_t len, unsigned int flags) 1686 { 1687 struct pipe_buffer *ibuf, *obuf; 1688 unsigned int i_head, o_head; 1689 unsigned int i_tail, o_tail; 1690 unsigned int i_mask, o_mask; 1691 int ret = 0; 1692 bool input_wakeup = false; 1693 1694 1695 retry: 1696 ret = ipipe_prep(ipipe, flags); 1697 if (ret) 1698 return ret; 1699 1700 ret = opipe_prep(opipe, flags); 1701 if (ret) 1702 return ret; 1703 1704 /* 1705 * Potential ABBA deadlock, work around it by ordering lock 1706 * grabbing by pipe info address. Otherwise two different processes 1707 * could deadlock (one doing tee from A -> B, the other from B -> A). 1708 */ 1709 pipe_double_lock(ipipe, opipe); 1710 1711 i_tail = ipipe->tail; 1712 i_mask = ipipe->ring_size - 1; 1713 o_head = opipe->head; 1714 o_mask = opipe->ring_size - 1; 1715 1716 do { 1717 size_t o_len; 1718 1719 if (!opipe->readers) { 1720 send_sig(SIGPIPE, current, 0); 1721 if (!ret) 1722 ret = -EPIPE; 1723 break; 1724 } 1725 1726 i_head = ipipe->head; 1727 o_tail = opipe->tail; 1728 1729 if (pipe_empty(i_head, i_tail) && !ipipe->writers) 1730 break; 1731 1732 /* 1733 * Cannot make any progress, because either the input 1734 * pipe is empty or the output pipe is full. 1735 */ 1736 if (pipe_empty(i_head, i_tail) || 1737 pipe_full(o_head, o_tail, opipe->max_usage)) { 1738 /* Already processed some buffers, break */ 1739 if (ret) 1740 break; 1741 1742 if (flags & SPLICE_F_NONBLOCK) { 1743 ret = -EAGAIN; 1744 break; 1745 } 1746 1747 /* 1748 * We raced with another reader/writer and haven't 1749 * managed to process any buffers. A zero return 1750 * value means EOF, so retry instead. 1751 */ 1752 pipe_unlock(ipipe); 1753 pipe_unlock(opipe); 1754 goto retry; 1755 } 1756 1757 ibuf = &ipipe->bufs[i_tail & i_mask]; 1758 obuf = &opipe->bufs[o_head & o_mask]; 1759 1760 if (len >= ibuf->len) { 1761 /* 1762 * Simply move the whole buffer from ipipe to opipe 1763 */ 1764 *obuf = *ibuf; 1765 ibuf->ops = NULL; 1766 i_tail++; 1767 ipipe->tail = i_tail; 1768 input_wakeup = true; 1769 o_len = obuf->len; 1770 o_head++; 1771 opipe->head = o_head; 1772 } else { 1773 /* 1774 * Get a reference to this pipe buffer, 1775 * so we can copy the contents over. 1776 */ 1777 if (!pipe_buf_get(ipipe, ibuf)) { 1778 if (ret == 0) 1779 ret = -EFAULT; 1780 break; 1781 } 1782 *obuf = *ibuf; 1783 1784 /* 1785 * Don't inherit the gift and merge flags, we need to 1786 * prevent multiple steals of this page. 1787 */ 1788 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1789 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1790 1791 obuf->len = len; 1792 ibuf->offset += len; 1793 ibuf->len -= len; 1794 o_len = len; 1795 o_head++; 1796 opipe->head = o_head; 1797 } 1798 ret += o_len; 1799 len -= o_len; 1800 } while (len); 1801 1802 pipe_unlock(ipipe); 1803 pipe_unlock(opipe); 1804 1805 /* 1806 * If we put data in the output pipe, wakeup any potential readers. 1807 */ 1808 if (ret > 0) 1809 wakeup_pipe_readers(opipe); 1810 1811 if (input_wakeup) 1812 wakeup_pipe_writers(ipipe); 1813 1814 return ret; 1815 } 1816 1817 /* 1818 * Link contents of ipipe to opipe. 1819 */ 1820 static int link_pipe(struct pipe_inode_info *ipipe, 1821 struct pipe_inode_info *opipe, 1822 size_t len, unsigned int flags) 1823 { 1824 struct pipe_buffer *ibuf, *obuf; 1825 unsigned int i_head, o_head; 1826 unsigned int i_tail, o_tail; 1827 unsigned int i_mask, o_mask; 1828 int ret = 0; 1829 1830 /* 1831 * Potential ABBA deadlock, work around it by ordering lock 1832 * grabbing by pipe info address. Otherwise two different processes 1833 * could deadlock (one doing tee from A -> B, the other from B -> A). 1834 */ 1835 pipe_double_lock(ipipe, opipe); 1836 1837 i_tail = ipipe->tail; 1838 i_mask = ipipe->ring_size - 1; 1839 o_head = opipe->head; 1840 o_mask = opipe->ring_size - 1; 1841 1842 do { 1843 if (!opipe->readers) { 1844 send_sig(SIGPIPE, current, 0); 1845 if (!ret) 1846 ret = -EPIPE; 1847 break; 1848 } 1849 1850 i_head = ipipe->head; 1851 o_tail = opipe->tail; 1852 1853 /* 1854 * If we have iterated all input buffers or run out of 1855 * output room, break. 1856 */ 1857 if (pipe_empty(i_head, i_tail) || 1858 pipe_full(o_head, o_tail, opipe->max_usage)) 1859 break; 1860 1861 ibuf = &ipipe->bufs[i_tail & i_mask]; 1862 obuf = &opipe->bufs[o_head & o_mask]; 1863 1864 /* 1865 * Get a reference to this pipe buffer, 1866 * so we can copy the contents over. 1867 */ 1868 if (!pipe_buf_get(ipipe, ibuf)) { 1869 if (ret == 0) 1870 ret = -EFAULT; 1871 break; 1872 } 1873 1874 *obuf = *ibuf; 1875 1876 /* 1877 * Don't inherit the gift and merge flag, we need to prevent 1878 * multiple steals of this page. 1879 */ 1880 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1881 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1882 1883 if (obuf->len > len) 1884 obuf->len = len; 1885 ret += obuf->len; 1886 len -= obuf->len; 1887 1888 o_head++; 1889 opipe->head = o_head; 1890 i_tail++; 1891 } while (len); 1892 1893 pipe_unlock(ipipe); 1894 pipe_unlock(opipe); 1895 1896 /* 1897 * If we put data in the output pipe, wakeup any potential readers. 1898 */ 1899 if (ret > 0) 1900 wakeup_pipe_readers(opipe); 1901 1902 return ret; 1903 } 1904 1905 /* 1906 * This is a tee(1) implementation that works on pipes. It doesn't copy 1907 * any data, it simply references the 'in' pages on the 'out' pipe. 1908 * The 'flags' used are the SPLICE_F_* variants, currently the only 1909 * applicable one is SPLICE_F_NONBLOCK. 1910 */ 1911 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags) 1912 { 1913 struct pipe_inode_info *ipipe = get_pipe_info(in, true); 1914 struct pipe_inode_info *opipe = get_pipe_info(out, true); 1915 int ret = -EINVAL; 1916 1917 if (unlikely(!(in->f_mode & FMODE_READ) || 1918 !(out->f_mode & FMODE_WRITE))) 1919 return -EBADF; 1920 1921 /* 1922 * Duplicate the contents of ipipe to opipe without actually 1923 * copying the data. 1924 */ 1925 if (ipipe && opipe && ipipe != opipe) { 1926 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1927 flags |= SPLICE_F_NONBLOCK; 1928 1929 /* 1930 * Keep going, unless we encounter an error. The ipipe/opipe 1931 * ordering doesn't really matter. 1932 */ 1933 ret = ipipe_prep(ipipe, flags); 1934 if (!ret) { 1935 ret = opipe_prep(opipe, flags); 1936 if (!ret) 1937 ret = link_pipe(ipipe, opipe, len, flags); 1938 } 1939 } 1940 1941 return ret; 1942 } 1943 1944 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1945 { 1946 struct fd in, out; 1947 int error; 1948 1949 if (unlikely(flags & ~SPLICE_F_ALL)) 1950 return -EINVAL; 1951 1952 if (unlikely(!len)) 1953 return 0; 1954 1955 error = -EBADF; 1956 in = fdget(fdin); 1957 if (in.file) { 1958 out = fdget(fdout); 1959 if (out.file) { 1960 error = do_tee(in.file, out.file, len, flags); 1961 fdput(out); 1962 } 1963 fdput(in); 1964 } 1965 1966 return error; 1967 } 1968