xref: /openbmc/linux/fs/splice.c (revision 8fdff1dc)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 
35 /*
36  * Attempt to steal a page from a pipe buffer. This should perhaps go into
37  * a vm helper function, it's already simplified quite a bit by the
38  * addition of remove_mapping(). If success is returned, the caller may
39  * attempt to reuse this page for another destination.
40  */
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 				     struct pipe_buffer *buf)
43 {
44 	struct page *page = buf->page;
45 	struct address_space *mapping;
46 
47 	lock_page(page);
48 
49 	mapping = page_mapping(page);
50 	if (mapping) {
51 		WARN_ON(!PageUptodate(page));
52 
53 		/*
54 		 * At least for ext2 with nobh option, we need to wait on
55 		 * writeback completing on this page, since we'll remove it
56 		 * from the pagecache.  Otherwise truncate wont wait on the
57 		 * page, allowing the disk blocks to be reused by someone else
58 		 * before we actually wrote our data to them. fs corruption
59 		 * ensues.
60 		 */
61 		wait_on_page_writeback(page);
62 
63 		if (page_has_private(page) &&
64 		    !try_to_release_page(page, GFP_KERNEL))
65 			goto out_unlock;
66 
67 		/*
68 		 * If we succeeded in removing the mapping, set LRU flag
69 		 * and return good.
70 		 */
71 		if (remove_mapping(mapping, page)) {
72 			buf->flags |= PIPE_BUF_FLAG_LRU;
73 			return 0;
74 		}
75 	}
76 
77 	/*
78 	 * Raced with truncate or failed to remove page from current
79 	 * address space, unlock and return failure.
80 	 */
81 out_unlock:
82 	unlock_page(page);
83 	return 1;
84 }
85 
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 					struct pipe_buffer *buf)
88 {
89 	page_cache_release(buf->page);
90 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 }
92 
93 /*
94  * Check whether the contents of buf is OK to access. Since the content
95  * is a page cache page, IO may be in flight.
96  */
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 				       struct pipe_buffer *buf)
99 {
100 	struct page *page = buf->page;
101 	int err;
102 
103 	if (!PageUptodate(page)) {
104 		lock_page(page);
105 
106 		/*
107 		 * Page got truncated/unhashed. This will cause a 0-byte
108 		 * splice, if this is the first page.
109 		 */
110 		if (!page->mapping) {
111 			err = -ENODATA;
112 			goto error;
113 		}
114 
115 		/*
116 		 * Uh oh, read-error from disk.
117 		 */
118 		if (!PageUptodate(page)) {
119 			err = -EIO;
120 			goto error;
121 		}
122 
123 		/*
124 		 * Page is ok afterall, we are done.
125 		 */
126 		unlock_page(page);
127 	}
128 
129 	return 0;
130 error:
131 	unlock_page(page);
132 	return err;
133 }
134 
135 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 	.can_merge = 0,
137 	.map = generic_pipe_buf_map,
138 	.unmap = generic_pipe_buf_unmap,
139 	.confirm = page_cache_pipe_buf_confirm,
140 	.release = page_cache_pipe_buf_release,
141 	.steal = page_cache_pipe_buf_steal,
142 	.get = generic_pipe_buf_get,
143 };
144 
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 				    struct pipe_buffer *buf)
147 {
148 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 		return 1;
150 
151 	buf->flags |= PIPE_BUF_FLAG_LRU;
152 	return generic_pipe_buf_steal(pipe, buf);
153 }
154 
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 	.can_merge = 0,
157 	.map = generic_pipe_buf_map,
158 	.unmap = generic_pipe_buf_unmap,
159 	.confirm = generic_pipe_buf_confirm,
160 	.release = page_cache_pipe_buf_release,
161 	.steal = user_page_pipe_buf_steal,
162 	.get = generic_pipe_buf_get,
163 };
164 
165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166 {
167 	smp_mb();
168 	if (waitqueue_active(&pipe->wait))
169 		wake_up_interruptible(&pipe->wait);
170 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
171 }
172 
173 /**
174  * splice_to_pipe - fill passed data into a pipe
175  * @pipe:	pipe to fill
176  * @spd:	data to fill
177  *
178  * Description:
179  *    @spd contains a map of pages and len/offset tuples, along with
180  *    the struct pipe_buf_operations associated with these pages. This
181  *    function will link that data to the pipe.
182  *
183  */
184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185 		       struct splice_pipe_desc *spd)
186 {
187 	unsigned int spd_pages = spd->nr_pages;
188 	int ret, do_wakeup, page_nr;
189 
190 	ret = 0;
191 	do_wakeup = 0;
192 	page_nr = 0;
193 
194 	pipe_lock(pipe);
195 
196 	for (;;) {
197 		if (!pipe->readers) {
198 			send_sig(SIGPIPE, current, 0);
199 			if (!ret)
200 				ret = -EPIPE;
201 			break;
202 		}
203 
204 		if (pipe->nrbufs < pipe->buffers) {
205 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
206 			struct pipe_buffer *buf = pipe->bufs + newbuf;
207 
208 			buf->page = spd->pages[page_nr];
209 			buf->offset = spd->partial[page_nr].offset;
210 			buf->len = spd->partial[page_nr].len;
211 			buf->private = spd->partial[page_nr].private;
212 			buf->ops = spd->ops;
213 			if (spd->flags & SPLICE_F_GIFT)
214 				buf->flags |= PIPE_BUF_FLAG_GIFT;
215 
216 			pipe->nrbufs++;
217 			page_nr++;
218 			ret += buf->len;
219 
220 			if (pipe->inode)
221 				do_wakeup = 1;
222 
223 			if (!--spd->nr_pages)
224 				break;
225 			if (pipe->nrbufs < pipe->buffers)
226 				continue;
227 
228 			break;
229 		}
230 
231 		if (spd->flags & SPLICE_F_NONBLOCK) {
232 			if (!ret)
233 				ret = -EAGAIN;
234 			break;
235 		}
236 
237 		if (signal_pending(current)) {
238 			if (!ret)
239 				ret = -ERESTARTSYS;
240 			break;
241 		}
242 
243 		if (do_wakeup) {
244 			smp_mb();
245 			if (waitqueue_active(&pipe->wait))
246 				wake_up_interruptible_sync(&pipe->wait);
247 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
248 			do_wakeup = 0;
249 		}
250 
251 		pipe->waiting_writers++;
252 		pipe_wait(pipe);
253 		pipe->waiting_writers--;
254 	}
255 
256 	pipe_unlock(pipe);
257 
258 	if (do_wakeup)
259 		wakeup_pipe_readers(pipe);
260 
261 	while (page_nr < spd_pages)
262 		spd->spd_release(spd, page_nr++);
263 
264 	return ret;
265 }
266 
267 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268 {
269 	page_cache_release(spd->pages[i]);
270 }
271 
272 /*
273  * Check if we need to grow the arrays holding pages and partial page
274  * descriptions.
275  */
276 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277 {
278 	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
279 
280 	spd->nr_pages_max = buffers;
281 	if (buffers <= PIPE_DEF_BUFFERS)
282 		return 0;
283 
284 	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
285 	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
286 
287 	if (spd->pages && spd->partial)
288 		return 0;
289 
290 	kfree(spd->pages);
291 	kfree(spd->partial);
292 	return -ENOMEM;
293 }
294 
295 void splice_shrink_spd(struct splice_pipe_desc *spd)
296 {
297 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
298 		return;
299 
300 	kfree(spd->pages);
301 	kfree(spd->partial);
302 }
303 
304 static int
305 __generic_file_splice_read(struct file *in, loff_t *ppos,
306 			   struct pipe_inode_info *pipe, size_t len,
307 			   unsigned int flags)
308 {
309 	struct address_space *mapping = in->f_mapping;
310 	unsigned int loff, nr_pages, req_pages;
311 	struct page *pages[PIPE_DEF_BUFFERS];
312 	struct partial_page partial[PIPE_DEF_BUFFERS];
313 	struct page *page;
314 	pgoff_t index, end_index;
315 	loff_t isize;
316 	int error, page_nr;
317 	struct splice_pipe_desc spd = {
318 		.pages = pages,
319 		.partial = partial,
320 		.nr_pages_max = PIPE_DEF_BUFFERS,
321 		.flags = flags,
322 		.ops = &page_cache_pipe_buf_ops,
323 		.spd_release = spd_release_page,
324 	};
325 
326 	if (splice_grow_spd(pipe, &spd))
327 		return -ENOMEM;
328 
329 	index = *ppos >> PAGE_CACHE_SHIFT;
330 	loff = *ppos & ~PAGE_CACHE_MASK;
331 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
332 	nr_pages = min(req_pages, spd.nr_pages_max);
333 
334 	/*
335 	 * Lookup the (hopefully) full range of pages we need.
336 	 */
337 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
338 	index += spd.nr_pages;
339 
340 	/*
341 	 * If find_get_pages_contig() returned fewer pages than we needed,
342 	 * readahead/allocate the rest and fill in the holes.
343 	 */
344 	if (spd.nr_pages < nr_pages)
345 		page_cache_sync_readahead(mapping, &in->f_ra, in,
346 				index, req_pages - spd.nr_pages);
347 
348 	error = 0;
349 	while (spd.nr_pages < nr_pages) {
350 		/*
351 		 * Page could be there, find_get_pages_contig() breaks on
352 		 * the first hole.
353 		 */
354 		page = find_get_page(mapping, index);
355 		if (!page) {
356 			/*
357 			 * page didn't exist, allocate one.
358 			 */
359 			page = page_cache_alloc_cold(mapping);
360 			if (!page)
361 				break;
362 
363 			error = add_to_page_cache_lru(page, mapping, index,
364 						GFP_KERNEL);
365 			if (unlikely(error)) {
366 				page_cache_release(page);
367 				if (error == -EEXIST)
368 					continue;
369 				break;
370 			}
371 			/*
372 			 * add_to_page_cache() locks the page, unlock it
373 			 * to avoid convoluting the logic below even more.
374 			 */
375 			unlock_page(page);
376 		}
377 
378 		spd.pages[spd.nr_pages++] = page;
379 		index++;
380 	}
381 
382 	/*
383 	 * Now loop over the map and see if we need to start IO on any
384 	 * pages, fill in the partial map, etc.
385 	 */
386 	index = *ppos >> PAGE_CACHE_SHIFT;
387 	nr_pages = spd.nr_pages;
388 	spd.nr_pages = 0;
389 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
390 		unsigned int this_len;
391 
392 		if (!len)
393 			break;
394 
395 		/*
396 		 * this_len is the max we'll use from this page
397 		 */
398 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
399 		page = spd.pages[page_nr];
400 
401 		if (PageReadahead(page))
402 			page_cache_async_readahead(mapping, &in->f_ra, in,
403 					page, index, req_pages - page_nr);
404 
405 		/*
406 		 * If the page isn't uptodate, we may need to start io on it
407 		 */
408 		if (!PageUptodate(page)) {
409 			lock_page(page);
410 
411 			/*
412 			 * Page was truncated, or invalidated by the
413 			 * filesystem.  Redo the find/create, but this time the
414 			 * page is kept locked, so there's no chance of another
415 			 * race with truncate/invalidate.
416 			 */
417 			if (!page->mapping) {
418 				unlock_page(page);
419 				page = find_or_create_page(mapping, index,
420 						mapping_gfp_mask(mapping));
421 
422 				if (!page) {
423 					error = -ENOMEM;
424 					break;
425 				}
426 				page_cache_release(spd.pages[page_nr]);
427 				spd.pages[page_nr] = page;
428 			}
429 			/*
430 			 * page was already under io and is now done, great
431 			 */
432 			if (PageUptodate(page)) {
433 				unlock_page(page);
434 				goto fill_it;
435 			}
436 
437 			/*
438 			 * need to read in the page
439 			 */
440 			error = mapping->a_ops->readpage(in, page);
441 			if (unlikely(error)) {
442 				/*
443 				 * We really should re-lookup the page here,
444 				 * but it complicates things a lot. Instead
445 				 * lets just do what we already stored, and
446 				 * we'll get it the next time we are called.
447 				 */
448 				if (error == AOP_TRUNCATED_PAGE)
449 					error = 0;
450 
451 				break;
452 			}
453 		}
454 fill_it:
455 		/*
456 		 * i_size must be checked after PageUptodate.
457 		 */
458 		isize = i_size_read(mapping->host);
459 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
460 		if (unlikely(!isize || index > end_index))
461 			break;
462 
463 		/*
464 		 * if this is the last page, see if we need to shrink
465 		 * the length and stop
466 		 */
467 		if (end_index == index) {
468 			unsigned int plen;
469 
470 			/*
471 			 * max good bytes in this page
472 			 */
473 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
474 			if (plen <= loff)
475 				break;
476 
477 			/*
478 			 * force quit after adding this page
479 			 */
480 			this_len = min(this_len, plen - loff);
481 			len = this_len;
482 		}
483 
484 		spd.partial[page_nr].offset = loff;
485 		spd.partial[page_nr].len = this_len;
486 		len -= this_len;
487 		loff = 0;
488 		spd.nr_pages++;
489 		index++;
490 	}
491 
492 	/*
493 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
494 	 * we got, 'nr_pages' is how many pages are in the map.
495 	 */
496 	while (page_nr < nr_pages)
497 		page_cache_release(spd.pages[page_nr++]);
498 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
499 
500 	if (spd.nr_pages)
501 		error = splice_to_pipe(pipe, &spd);
502 
503 	splice_shrink_spd(&spd);
504 	return error;
505 }
506 
507 /**
508  * generic_file_splice_read - splice data from file to a pipe
509  * @in:		file to splice from
510  * @ppos:	position in @in
511  * @pipe:	pipe to splice to
512  * @len:	number of bytes to splice
513  * @flags:	splice modifier flags
514  *
515  * Description:
516  *    Will read pages from given file and fill them into a pipe. Can be
517  *    used as long as the address_space operations for the source implements
518  *    a readpage() hook.
519  *
520  */
521 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
522 				 struct pipe_inode_info *pipe, size_t len,
523 				 unsigned int flags)
524 {
525 	loff_t isize, left;
526 	int ret;
527 
528 	isize = i_size_read(in->f_mapping->host);
529 	if (unlikely(*ppos >= isize))
530 		return 0;
531 
532 	left = isize - *ppos;
533 	if (unlikely(left < len))
534 		len = left;
535 
536 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
537 	if (ret > 0) {
538 		*ppos += ret;
539 		file_accessed(in);
540 	}
541 
542 	return ret;
543 }
544 EXPORT_SYMBOL(generic_file_splice_read);
545 
546 static const struct pipe_buf_operations default_pipe_buf_ops = {
547 	.can_merge = 0,
548 	.map = generic_pipe_buf_map,
549 	.unmap = generic_pipe_buf_unmap,
550 	.confirm = generic_pipe_buf_confirm,
551 	.release = generic_pipe_buf_release,
552 	.steal = generic_pipe_buf_steal,
553 	.get = generic_pipe_buf_get,
554 };
555 
556 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
557 			    unsigned long vlen, loff_t offset)
558 {
559 	mm_segment_t old_fs;
560 	loff_t pos = offset;
561 	ssize_t res;
562 
563 	old_fs = get_fs();
564 	set_fs(get_ds());
565 	/* The cast to a user pointer is valid due to the set_fs() */
566 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
567 	set_fs(old_fs);
568 
569 	return res;
570 }
571 
572 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
573 			    loff_t pos)
574 {
575 	mm_segment_t old_fs;
576 	ssize_t res;
577 
578 	old_fs = get_fs();
579 	set_fs(get_ds());
580 	/* The cast to a user pointer is valid due to the set_fs() */
581 	res = vfs_write(file, (const char __user *)buf, count, &pos);
582 	set_fs(old_fs);
583 
584 	return res;
585 }
586 
587 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
588 				 struct pipe_inode_info *pipe, size_t len,
589 				 unsigned int flags)
590 {
591 	unsigned int nr_pages;
592 	unsigned int nr_freed;
593 	size_t offset;
594 	struct page *pages[PIPE_DEF_BUFFERS];
595 	struct partial_page partial[PIPE_DEF_BUFFERS];
596 	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
597 	ssize_t res;
598 	size_t this_len;
599 	int error;
600 	int i;
601 	struct splice_pipe_desc spd = {
602 		.pages = pages,
603 		.partial = partial,
604 		.nr_pages_max = PIPE_DEF_BUFFERS,
605 		.flags = flags,
606 		.ops = &default_pipe_buf_ops,
607 		.spd_release = spd_release_page,
608 	};
609 
610 	if (splice_grow_spd(pipe, &spd))
611 		return -ENOMEM;
612 
613 	res = -ENOMEM;
614 	vec = __vec;
615 	if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
616 		vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
617 		if (!vec)
618 			goto shrink_ret;
619 	}
620 
621 	offset = *ppos & ~PAGE_CACHE_MASK;
622 	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
623 
624 	for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
625 		struct page *page;
626 
627 		page = alloc_page(GFP_USER);
628 		error = -ENOMEM;
629 		if (!page)
630 			goto err;
631 
632 		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
633 		vec[i].iov_base = (void __user *) page_address(page);
634 		vec[i].iov_len = this_len;
635 		spd.pages[i] = page;
636 		spd.nr_pages++;
637 		len -= this_len;
638 		offset = 0;
639 	}
640 
641 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
642 	if (res < 0) {
643 		error = res;
644 		goto err;
645 	}
646 
647 	error = 0;
648 	if (!res)
649 		goto err;
650 
651 	nr_freed = 0;
652 	for (i = 0; i < spd.nr_pages; i++) {
653 		this_len = min_t(size_t, vec[i].iov_len, res);
654 		spd.partial[i].offset = 0;
655 		spd.partial[i].len = this_len;
656 		if (!this_len) {
657 			__free_page(spd.pages[i]);
658 			spd.pages[i] = NULL;
659 			nr_freed++;
660 		}
661 		res -= this_len;
662 	}
663 	spd.nr_pages -= nr_freed;
664 
665 	res = splice_to_pipe(pipe, &spd);
666 	if (res > 0)
667 		*ppos += res;
668 
669 shrink_ret:
670 	if (vec != __vec)
671 		kfree(vec);
672 	splice_shrink_spd(&spd);
673 	return res;
674 
675 err:
676 	for (i = 0; i < spd.nr_pages; i++)
677 		__free_page(spd.pages[i]);
678 
679 	res = error;
680 	goto shrink_ret;
681 }
682 EXPORT_SYMBOL(default_file_splice_read);
683 
684 /*
685  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
686  * using sendpage(). Return the number of bytes sent.
687  */
688 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
689 			    struct pipe_buffer *buf, struct splice_desc *sd)
690 {
691 	struct file *file = sd->u.file;
692 	loff_t pos = sd->pos;
693 	int more;
694 
695 	if (!likely(file->f_op && file->f_op->sendpage))
696 		return -EINVAL;
697 
698 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
699 
700 	if (sd->len < sd->total_len && pipe->nrbufs > 1)
701 		more |= MSG_SENDPAGE_NOTLAST;
702 
703 	return file->f_op->sendpage(file, buf->page, buf->offset,
704 				    sd->len, &pos, more);
705 }
706 
707 /*
708  * This is a little more tricky than the file -> pipe splicing. There are
709  * basically three cases:
710  *
711  *	- Destination page already exists in the address space and there
712  *	  are users of it. For that case we have no other option that
713  *	  copying the data. Tough luck.
714  *	- Destination page already exists in the address space, but there
715  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
716  *	  through to last case.
717  *	- Destination page does not exist, we can add the pipe page to
718  *	  the page cache and avoid the copy.
719  *
720  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
721  * sd->flags), we attempt to migrate pages from the pipe to the output
722  * file address space page cache. This is possible if no one else has
723  * the pipe page referenced outside of the pipe and page cache. If
724  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
725  * a new page in the output file page cache and fill/dirty that.
726  */
727 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
728 		 struct splice_desc *sd)
729 {
730 	struct file *file = sd->u.file;
731 	struct address_space *mapping = file->f_mapping;
732 	unsigned int offset, this_len;
733 	struct page *page;
734 	void *fsdata;
735 	int ret;
736 
737 	offset = sd->pos & ~PAGE_CACHE_MASK;
738 
739 	this_len = sd->len;
740 	if (this_len + offset > PAGE_CACHE_SIZE)
741 		this_len = PAGE_CACHE_SIZE - offset;
742 
743 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
744 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
745 	if (unlikely(ret))
746 		goto out;
747 
748 	if (buf->page != page) {
749 		char *src = buf->ops->map(pipe, buf, 1);
750 		char *dst = kmap_atomic(page);
751 
752 		memcpy(dst + offset, src + buf->offset, this_len);
753 		flush_dcache_page(page);
754 		kunmap_atomic(dst);
755 		buf->ops->unmap(pipe, buf, src);
756 	}
757 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
758 				page, fsdata);
759 out:
760 	return ret;
761 }
762 EXPORT_SYMBOL(pipe_to_file);
763 
764 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
765 {
766 	smp_mb();
767 	if (waitqueue_active(&pipe->wait))
768 		wake_up_interruptible(&pipe->wait);
769 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
770 }
771 
772 /**
773  * splice_from_pipe_feed - feed available data from a pipe to a file
774  * @pipe:	pipe to splice from
775  * @sd:		information to @actor
776  * @actor:	handler that splices the data
777  *
778  * Description:
779  *    This function loops over the pipe and calls @actor to do the
780  *    actual moving of a single struct pipe_buffer to the desired
781  *    destination.  It returns when there's no more buffers left in
782  *    the pipe or if the requested number of bytes (@sd->total_len)
783  *    have been copied.  It returns a positive number (one) if the
784  *    pipe needs to be filled with more data, zero if the required
785  *    number of bytes have been copied and -errno on error.
786  *
787  *    This, together with splice_from_pipe_{begin,end,next}, may be
788  *    used to implement the functionality of __splice_from_pipe() when
789  *    locking is required around copying the pipe buffers to the
790  *    destination.
791  */
792 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
793 			  splice_actor *actor)
794 {
795 	int ret;
796 
797 	while (pipe->nrbufs) {
798 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
799 		const struct pipe_buf_operations *ops = buf->ops;
800 
801 		sd->len = buf->len;
802 		if (sd->len > sd->total_len)
803 			sd->len = sd->total_len;
804 
805 		ret = buf->ops->confirm(pipe, buf);
806 		if (unlikely(ret)) {
807 			if (ret == -ENODATA)
808 				ret = 0;
809 			return ret;
810 		}
811 
812 		ret = actor(pipe, buf, sd);
813 		if (ret <= 0)
814 			return ret;
815 
816 		buf->offset += ret;
817 		buf->len -= ret;
818 
819 		sd->num_spliced += ret;
820 		sd->len -= ret;
821 		sd->pos += ret;
822 		sd->total_len -= ret;
823 
824 		if (!buf->len) {
825 			buf->ops = NULL;
826 			ops->release(pipe, buf);
827 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
828 			pipe->nrbufs--;
829 			if (pipe->inode)
830 				sd->need_wakeup = true;
831 		}
832 
833 		if (!sd->total_len)
834 			return 0;
835 	}
836 
837 	return 1;
838 }
839 EXPORT_SYMBOL(splice_from_pipe_feed);
840 
841 /**
842  * splice_from_pipe_next - wait for some data to splice from
843  * @pipe:	pipe to splice from
844  * @sd:		information about the splice operation
845  *
846  * Description:
847  *    This function will wait for some data and return a positive
848  *    value (one) if pipe buffers are available.  It will return zero
849  *    or -errno if no more data needs to be spliced.
850  */
851 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
852 {
853 	while (!pipe->nrbufs) {
854 		if (!pipe->writers)
855 			return 0;
856 
857 		if (!pipe->waiting_writers && sd->num_spliced)
858 			return 0;
859 
860 		if (sd->flags & SPLICE_F_NONBLOCK)
861 			return -EAGAIN;
862 
863 		if (signal_pending(current))
864 			return -ERESTARTSYS;
865 
866 		if (sd->need_wakeup) {
867 			wakeup_pipe_writers(pipe);
868 			sd->need_wakeup = false;
869 		}
870 
871 		pipe_wait(pipe);
872 	}
873 
874 	return 1;
875 }
876 EXPORT_SYMBOL(splice_from_pipe_next);
877 
878 /**
879  * splice_from_pipe_begin - start splicing from pipe
880  * @sd:		information about the splice operation
881  *
882  * Description:
883  *    This function should be called before a loop containing
884  *    splice_from_pipe_next() and splice_from_pipe_feed() to
885  *    initialize the necessary fields of @sd.
886  */
887 void splice_from_pipe_begin(struct splice_desc *sd)
888 {
889 	sd->num_spliced = 0;
890 	sd->need_wakeup = false;
891 }
892 EXPORT_SYMBOL(splice_from_pipe_begin);
893 
894 /**
895  * splice_from_pipe_end - finish splicing from pipe
896  * @pipe:	pipe to splice from
897  * @sd:		information about the splice operation
898  *
899  * Description:
900  *    This function will wake up pipe writers if necessary.  It should
901  *    be called after a loop containing splice_from_pipe_next() and
902  *    splice_from_pipe_feed().
903  */
904 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
905 {
906 	if (sd->need_wakeup)
907 		wakeup_pipe_writers(pipe);
908 }
909 EXPORT_SYMBOL(splice_from_pipe_end);
910 
911 /**
912  * __splice_from_pipe - splice data from a pipe to given actor
913  * @pipe:	pipe to splice from
914  * @sd:		information to @actor
915  * @actor:	handler that splices the data
916  *
917  * Description:
918  *    This function does little more than loop over the pipe and call
919  *    @actor to do the actual moving of a single struct pipe_buffer to
920  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
921  *    pipe_to_user.
922  *
923  */
924 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
925 			   splice_actor *actor)
926 {
927 	int ret;
928 
929 	splice_from_pipe_begin(sd);
930 	do {
931 		ret = splice_from_pipe_next(pipe, sd);
932 		if (ret > 0)
933 			ret = splice_from_pipe_feed(pipe, sd, actor);
934 	} while (ret > 0);
935 	splice_from_pipe_end(pipe, sd);
936 
937 	return sd->num_spliced ? sd->num_spliced : ret;
938 }
939 EXPORT_SYMBOL(__splice_from_pipe);
940 
941 /**
942  * splice_from_pipe - splice data from a pipe to a file
943  * @pipe:	pipe to splice from
944  * @out:	file to splice to
945  * @ppos:	position in @out
946  * @len:	how many bytes to splice
947  * @flags:	splice modifier flags
948  * @actor:	handler that splices the data
949  *
950  * Description:
951  *    See __splice_from_pipe. This function locks the pipe inode,
952  *    otherwise it's identical to __splice_from_pipe().
953  *
954  */
955 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
956 			 loff_t *ppos, size_t len, unsigned int flags,
957 			 splice_actor *actor)
958 {
959 	ssize_t ret;
960 	struct splice_desc sd = {
961 		.total_len = len,
962 		.flags = flags,
963 		.pos = *ppos,
964 		.u.file = out,
965 	};
966 
967 	pipe_lock(pipe);
968 	ret = __splice_from_pipe(pipe, &sd, actor);
969 	pipe_unlock(pipe);
970 
971 	return ret;
972 }
973 
974 /**
975  * generic_file_splice_write - splice data from a pipe to a file
976  * @pipe:	pipe info
977  * @out:	file to write to
978  * @ppos:	position in @out
979  * @len:	number of bytes to splice
980  * @flags:	splice modifier flags
981  *
982  * Description:
983  *    Will either move or copy pages (determined by @flags options) from
984  *    the given pipe inode to the given file.
985  *
986  */
987 ssize_t
988 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
989 			  loff_t *ppos, size_t len, unsigned int flags)
990 {
991 	struct address_space *mapping = out->f_mapping;
992 	struct inode *inode = mapping->host;
993 	struct splice_desc sd = {
994 		.total_len = len,
995 		.flags = flags,
996 		.pos = *ppos,
997 		.u.file = out,
998 	};
999 	ssize_t ret;
1000 
1001 	sb_start_write(inode->i_sb);
1002 
1003 	pipe_lock(pipe);
1004 
1005 	splice_from_pipe_begin(&sd);
1006 	do {
1007 		ret = splice_from_pipe_next(pipe, &sd);
1008 		if (ret <= 0)
1009 			break;
1010 
1011 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1012 		ret = file_remove_suid(out);
1013 		if (!ret) {
1014 			ret = file_update_time(out);
1015 			if (!ret)
1016 				ret = splice_from_pipe_feed(pipe, &sd,
1017 							    pipe_to_file);
1018 		}
1019 		mutex_unlock(&inode->i_mutex);
1020 	} while (ret > 0);
1021 	splice_from_pipe_end(pipe, &sd);
1022 
1023 	pipe_unlock(pipe);
1024 
1025 	if (sd.num_spliced)
1026 		ret = sd.num_spliced;
1027 
1028 	if (ret > 0) {
1029 		int err;
1030 
1031 		err = generic_write_sync(out, *ppos, ret);
1032 		if (err)
1033 			ret = err;
1034 		else
1035 			*ppos += ret;
1036 		balance_dirty_pages_ratelimited(mapping);
1037 	}
1038 	sb_end_write(inode->i_sb);
1039 
1040 	return ret;
1041 }
1042 
1043 EXPORT_SYMBOL(generic_file_splice_write);
1044 
1045 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1046 			  struct splice_desc *sd)
1047 {
1048 	int ret;
1049 	void *data;
1050 
1051 	data = buf->ops->map(pipe, buf, 0);
1052 	ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1053 	buf->ops->unmap(pipe, buf, data);
1054 
1055 	return ret;
1056 }
1057 
1058 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1059 					 struct file *out, loff_t *ppos,
1060 					 size_t len, unsigned int flags)
1061 {
1062 	ssize_t ret;
1063 
1064 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1065 	if (ret > 0)
1066 		*ppos += ret;
1067 
1068 	return ret;
1069 }
1070 
1071 /**
1072  * generic_splice_sendpage - splice data from a pipe to a socket
1073  * @pipe:	pipe to splice from
1074  * @out:	socket to write to
1075  * @ppos:	position in @out
1076  * @len:	number of bytes to splice
1077  * @flags:	splice modifier flags
1078  *
1079  * Description:
1080  *    Will send @len bytes from the pipe to a network socket. No data copying
1081  *    is involved.
1082  *
1083  */
1084 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1085 				loff_t *ppos, size_t len, unsigned int flags)
1086 {
1087 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1088 }
1089 
1090 EXPORT_SYMBOL(generic_splice_sendpage);
1091 
1092 /*
1093  * Attempt to initiate a splice from pipe to file.
1094  */
1095 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1096 			   loff_t *ppos, size_t len, unsigned int flags)
1097 {
1098 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1099 				loff_t *, size_t, unsigned int);
1100 	int ret;
1101 
1102 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1103 		return -EBADF;
1104 
1105 	if (unlikely(out->f_flags & O_APPEND))
1106 		return -EINVAL;
1107 
1108 	ret = rw_verify_area(WRITE, out, ppos, len);
1109 	if (unlikely(ret < 0))
1110 		return ret;
1111 
1112 	if (out->f_op && out->f_op->splice_write)
1113 		splice_write = out->f_op->splice_write;
1114 	else
1115 		splice_write = default_file_splice_write;
1116 
1117 	return splice_write(pipe, out, ppos, len, flags);
1118 }
1119 
1120 /*
1121  * Attempt to initiate a splice from a file to a pipe.
1122  */
1123 static long do_splice_to(struct file *in, loff_t *ppos,
1124 			 struct pipe_inode_info *pipe, size_t len,
1125 			 unsigned int flags)
1126 {
1127 	ssize_t (*splice_read)(struct file *, loff_t *,
1128 			       struct pipe_inode_info *, size_t, unsigned int);
1129 	int ret;
1130 
1131 	if (unlikely(!(in->f_mode & FMODE_READ)))
1132 		return -EBADF;
1133 
1134 	ret = rw_verify_area(READ, in, ppos, len);
1135 	if (unlikely(ret < 0))
1136 		return ret;
1137 
1138 	if (in->f_op && in->f_op->splice_read)
1139 		splice_read = in->f_op->splice_read;
1140 	else
1141 		splice_read = default_file_splice_read;
1142 
1143 	return splice_read(in, ppos, pipe, len, flags);
1144 }
1145 
1146 /**
1147  * splice_direct_to_actor - splices data directly between two non-pipes
1148  * @in:		file to splice from
1149  * @sd:		actor information on where to splice to
1150  * @actor:	handles the data splicing
1151  *
1152  * Description:
1153  *    This is a special case helper to splice directly between two
1154  *    points, without requiring an explicit pipe. Internally an allocated
1155  *    pipe is cached in the process, and reused during the lifetime of
1156  *    that process.
1157  *
1158  */
1159 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1160 			       splice_direct_actor *actor)
1161 {
1162 	struct pipe_inode_info *pipe;
1163 	long ret, bytes;
1164 	umode_t i_mode;
1165 	size_t len;
1166 	int i, flags;
1167 
1168 	/*
1169 	 * We require the input being a regular file, as we don't want to
1170 	 * randomly drop data for eg socket -> socket splicing. Use the
1171 	 * piped splicing for that!
1172 	 */
1173 	i_mode = in->f_path.dentry->d_inode->i_mode;
1174 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1175 		return -EINVAL;
1176 
1177 	/*
1178 	 * neither in nor out is a pipe, setup an internal pipe attached to
1179 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1180 	 */
1181 	pipe = current->splice_pipe;
1182 	if (unlikely(!pipe)) {
1183 		pipe = alloc_pipe_info(NULL);
1184 		if (!pipe)
1185 			return -ENOMEM;
1186 
1187 		/*
1188 		 * We don't have an immediate reader, but we'll read the stuff
1189 		 * out of the pipe right after the splice_to_pipe(). So set
1190 		 * PIPE_READERS appropriately.
1191 		 */
1192 		pipe->readers = 1;
1193 
1194 		current->splice_pipe = pipe;
1195 	}
1196 
1197 	/*
1198 	 * Do the splice.
1199 	 */
1200 	ret = 0;
1201 	bytes = 0;
1202 	len = sd->total_len;
1203 	flags = sd->flags;
1204 
1205 	/*
1206 	 * Don't block on output, we have to drain the direct pipe.
1207 	 */
1208 	sd->flags &= ~SPLICE_F_NONBLOCK;
1209 
1210 	while (len) {
1211 		size_t read_len;
1212 		loff_t pos = sd->pos, prev_pos = pos;
1213 
1214 		ret = do_splice_to(in, &pos, pipe, len, flags);
1215 		if (unlikely(ret <= 0))
1216 			goto out_release;
1217 
1218 		read_len = ret;
1219 		sd->total_len = read_len;
1220 
1221 		/*
1222 		 * NOTE: nonblocking mode only applies to the input. We
1223 		 * must not do the output in nonblocking mode as then we
1224 		 * could get stuck data in the internal pipe:
1225 		 */
1226 		ret = actor(pipe, sd);
1227 		if (unlikely(ret <= 0)) {
1228 			sd->pos = prev_pos;
1229 			goto out_release;
1230 		}
1231 
1232 		bytes += ret;
1233 		len -= ret;
1234 		sd->pos = pos;
1235 
1236 		if (ret < read_len) {
1237 			sd->pos = prev_pos + ret;
1238 			goto out_release;
1239 		}
1240 	}
1241 
1242 done:
1243 	pipe->nrbufs = pipe->curbuf = 0;
1244 	file_accessed(in);
1245 	return bytes;
1246 
1247 out_release:
1248 	/*
1249 	 * If we did an incomplete transfer we must release
1250 	 * the pipe buffers in question:
1251 	 */
1252 	for (i = 0; i < pipe->buffers; i++) {
1253 		struct pipe_buffer *buf = pipe->bufs + i;
1254 
1255 		if (buf->ops) {
1256 			buf->ops->release(pipe, buf);
1257 			buf->ops = NULL;
1258 		}
1259 	}
1260 
1261 	if (!bytes)
1262 		bytes = ret;
1263 
1264 	goto done;
1265 }
1266 EXPORT_SYMBOL(splice_direct_to_actor);
1267 
1268 static int direct_splice_actor(struct pipe_inode_info *pipe,
1269 			       struct splice_desc *sd)
1270 {
1271 	struct file *file = sd->u.file;
1272 
1273 	return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1274 			      sd->flags);
1275 }
1276 
1277 /**
1278  * do_splice_direct - splices data directly between two files
1279  * @in:		file to splice from
1280  * @ppos:	input file offset
1281  * @out:	file to splice to
1282  * @len:	number of bytes to splice
1283  * @flags:	splice modifier flags
1284  *
1285  * Description:
1286  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1287  *    doing it in the application would incur an extra system call
1288  *    (splice in + splice out, as compared to just sendfile()). So this helper
1289  *    can splice directly through a process-private pipe.
1290  *
1291  */
1292 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1293 		      size_t len, unsigned int flags)
1294 {
1295 	struct splice_desc sd = {
1296 		.len		= len,
1297 		.total_len	= len,
1298 		.flags		= flags,
1299 		.pos		= *ppos,
1300 		.u.file		= out,
1301 	};
1302 	long ret;
1303 
1304 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1305 	if (ret > 0)
1306 		*ppos = sd.pos;
1307 
1308 	return ret;
1309 }
1310 
1311 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1312 			       struct pipe_inode_info *opipe,
1313 			       size_t len, unsigned int flags);
1314 
1315 /*
1316  * Determine where to splice to/from.
1317  */
1318 static long do_splice(struct file *in, loff_t __user *off_in,
1319 		      struct file *out, loff_t __user *off_out,
1320 		      size_t len, unsigned int flags)
1321 {
1322 	struct pipe_inode_info *ipipe;
1323 	struct pipe_inode_info *opipe;
1324 	loff_t offset, *off;
1325 	long ret;
1326 
1327 	ipipe = get_pipe_info(in);
1328 	opipe = get_pipe_info(out);
1329 
1330 	if (ipipe && opipe) {
1331 		if (off_in || off_out)
1332 			return -ESPIPE;
1333 
1334 		if (!(in->f_mode & FMODE_READ))
1335 			return -EBADF;
1336 
1337 		if (!(out->f_mode & FMODE_WRITE))
1338 			return -EBADF;
1339 
1340 		/* Splicing to self would be fun, but... */
1341 		if (ipipe == opipe)
1342 			return -EINVAL;
1343 
1344 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1345 	}
1346 
1347 	if (ipipe) {
1348 		if (off_in)
1349 			return -ESPIPE;
1350 		if (off_out) {
1351 			if (!(out->f_mode & FMODE_PWRITE))
1352 				return -EINVAL;
1353 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1354 				return -EFAULT;
1355 			off = &offset;
1356 		} else
1357 			off = &out->f_pos;
1358 
1359 		ret = do_splice_from(ipipe, out, off, len, flags);
1360 
1361 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1362 			ret = -EFAULT;
1363 
1364 		return ret;
1365 	}
1366 
1367 	if (opipe) {
1368 		if (off_out)
1369 			return -ESPIPE;
1370 		if (off_in) {
1371 			if (!(in->f_mode & FMODE_PREAD))
1372 				return -EINVAL;
1373 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1374 				return -EFAULT;
1375 			off = &offset;
1376 		} else
1377 			off = &in->f_pos;
1378 
1379 		ret = do_splice_to(in, off, opipe, len, flags);
1380 
1381 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1382 			ret = -EFAULT;
1383 
1384 		return ret;
1385 	}
1386 
1387 	return -EINVAL;
1388 }
1389 
1390 /*
1391  * Map an iov into an array of pages and offset/length tupples. With the
1392  * partial_page structure, we can map several non-contiguous ranges into
1393  * our ones pages[] map instead of splitting that operation into pieces.
1394  * Could easily be exported as a generic helper for other users, in which
1395  * case one would probably want to add a 'max_nr_pages' parameter as well.
1396  */
1397 static int get_iovec_page_array(const struct iovec __user *iov,
1398 				unsigned int nr_vecs, struct page **pages,
1399 				struct partial_page *partial, bool aligned,
1400 				unsigned int pipe_buffers)
1401 {
1402 	int buffers = 0, error = 0;
1403 
1404 	while (nr_vecs) {
1405 		unsigned long off, npages;
1406 		struct iovec entry;
1407 		void __user *base;
1408 		size_t len;
1409 		int i;
1410 
1411 		error = -EFAULT;
1412 		if (copy_from_user(&entry, iov, sizeof(entry)))
1413 			break;
1414 
1415 		base = entry.iov_base;
1416 		len = entry.iov_len;
1417 
1418 		/*
1419 		 * Sanity check this iovec. 0 read succeeds.
1420 		 */
1421 		error = 0;
1422 		if (unlikely(!len))
1423 			break;
1424 		error = -EFAULT;
1425 		if (!access_ok(VERIFY_READ, base, len))
1426 			break;
1427 
1428 		/*
1429 		 * Get this base offset and number of pages, then map
1430 		 * in the user pages.
1431 		 */
1432 		off = (unsigned long) base & ~PAGE_MASK;
1433 
1434 		/*
1435 		 * If asked for alignment, the offset must be zero and the
1436 		 * length a multiple of the PAGE_SIZE.
1437 		 */
1438 		error = -EINVAL;
1439 		if (aligned && (off || len & ~PAGE_MASK))
1440 			break;
1441 
1442 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1443 		if (npages > pipe_buffers - buffers)
1444 			npages = pipe_buffers - buffers;
1445 
1446 		error = get_user_pages_fast((unsigned long)base, npages,
1447 					0, &pages[buffers]);
1448 
1449 		if (unlikely(error <= 0))
1450 			break;
1451 
1452 		/*
1453 		 * Fill this contiguous range into the partial page map.
1454 		 */
1455 		for (i = 0; i < error; i++) {
1456 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1457 
1458 			partial[buffers].offset = off;
1459 			partial[buffers].len = plen;
1460 
1461 			off = 0;
1462 			len -= plen;
1463 			buffers++;
1464 		}
1465 
1466 		/*
1467 		 * We didn't complete this iov, stop here since it probably
1468 		 * means we have to move some of this into a pipe to
1469 		 * be able to continue.
1470 		 */
1471 		if (len)
1472 			break;
1473 
1474 		/*
1475 		 * Don't continue if we mapped fewer pages than we asked for,
1476 		 * or if we mapped the max number of pages that we have
1477 		 * room for.
1478 		 */
1479 		if (error < npages || buffers == pipe_buffers)
1480 			break;
1481 
1482 		nr_vecs--;
1483 		iov++;
1484 	}
1485 
1486 	if (buffers)
1487 		return buffers;
1488 
1489 	return error;
1490 }
1491 
1492 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1493 			struct splice_desc *sd)
1494 {
1495 	char *src;
1496 	int ret;
1497 
1498 	/*
1499 	 * See if we can use the atomic maps, by prefaulting in the
1500 	 * pages and doing an atomic copy
1501 	 */
1502 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1503 		src = buf->ops->map(pipe, buf, 1);
1504 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1505 							sd->len);
1506 		buf->ops->unmap(pipe, buf, src);
1507 		if (!ret) {
1508 			ret = sd->len;
1509 			goto out;
1510 		}
1511 	}
1512 
1513 	/*
1514 	 * No dice, use slow non-atomic map and copy
1515  	 */
1516 	src = buf->ops->map(pipe, buf, 0);
1517 
1518 	ret = sd->len;
1519 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1520 		ret = -EFAULT;
1521 
1522 	buf->ops->unmap(pipe, buf, src);
1523 out:
1524 	if (ret > 0)
1525 		sd->u.userptr += ret;
1526 	return ret;
1527 }
1528 
1529 /*
1530  * For lack of a better implementation, implement vmsplice() to userspace
1531  * as a simple copy of the pipes pages to the user iov.
1532  */
1533 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1534 			     unsigned long nr_segs, unsigned int flags)
1535 {
1536 	struct pipe_inode_info *pipe;
1537 	struct splice_desc sd;
1538 	ssize_t size;
1539 	int error;
1540 	long ret;
1541 
1542 	pipe = get_pipe_info(file);
1543 	if (!pipe)
1544 		return -EBADF;
1545 
1546 	pipe_lock(pipe);
1547 
1548 	error = ret = 0;
1549 	while (nr_segs) {
1550 		void __user *base;
1551 		size_t len;
1552 
1553 		/*
1554 		 * Get user address base and length for this iovec.
1555 		 */
1556 		error = get_user(base, &iov->iov_base);
1557 		if (unlikely(error))
1558 			break;
1559 		error = get_user(len, &iov->iov_len);
1560 		if (unlikely(error))
1561 			break;
1562 
1563 		/*
1564 		 * Sanity check this iovec. 0 read succeeds.
1565 		 */
1566 		if (unlikely(!len))
1567 			break;
1568 		if (unlikely(!base)) {
1569 			error = -EFAULT;
1570 			break;
1571 		}
1572 
1573 		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1574 			error = -EFAULT;
1575 			break;
1576 		}
1577 
1578 		sd.len = 0;
1579 		sd.total_len = len;
1580 		sd.flags = flags;
1581 		sd.u.userptr = base;
1582 		sd.pos = 0;
1583 
1584 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1585 		if (size < 0) {
1586 			if (!ret)
1587 				ret = size;
1588 
1589 			break;
1590 		}
1591 
1592 		ret += size;
1593 
1594 		if (size < len)
1595 			break;
1596 
1597 		nr_segs--;
1598 		iov++;
1599 	}
1600 
1601 	pipe_unlock(pipe);
1602 
1603 	if (!ret)
1604 		ret = error;
1605 
1606 	return ret;
1607 }
1608 
1609 /*
1610  * vmsplice splices a user address range into a pipe. It can be thought of
1611  * as splice-from-memory, where the regular splice is splice-from-file (or
1612  * to file). In both cases the output is a pipe, naturally.
1613  */
1614 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1615 			     unsigned long nr_segs, unsigned int flags)
1616 {
1617 	struct pipe_inode_info *pipe;
1618 	struct page *pages[PIPE_DEF_BUFFERS];
1619 	struct partial_page partial[PIPE_DEF_BUFFERS];
1620 	struct splice_pipe_desc spd = {
1621 		.pages = pages,
1622 		.partial = partial,
1623 		.nr_pages_max = PIPE_DEF_BUFFERS,
1624 		.flags = flags,
1625 		.ops = &user_page_pipe_buf_ops,
1626 		.spd_release = spd_release_page,
1627 	};
1628 	long ret;
1629 
1630 	pipe = get_pipe_info(file);
1631 	if (!pipe)
1632 		return -EBADF;
1633 
1634 	if (splice_grow_spd(pipe, &spd))
1635 		return -ENOMEM;
1636 
1637 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1638 					    spd.partial, false,
1639 					    spd.nr_pages_max);
1640 	if (spd.nr_pages <= 0)
1641 		ret = spd.nr_pages;
1642 	else
1643 		ret = splice_to_pipe(pipe, &spd);
1644 
1645 	splice_shrink_spd(&spd);
1646 	return ret;
1647 }
1648 
1649 /*
1650  * Note that vmsplice only really supports true splicing _from_ user memory
1651  * to a pipe, not the other way around. Splicing from user memory is a simple
1652  * operation that can be supported without any funky alignment restrictions
1653  * or nasty vm tricks. We simply map in the user memory and fill them into
1654  * a pipe. The reverse isn't quite as easy, though. There are two possible
1655  * solutions for that:
1656  *
1657  *	- memcpy() the data internally, at which point we might as well just
1658  *	  do a regular read() on the buffer anyway.
1659  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1660  *	  has restriction limitations on both ends of the pipe).
1661  *
1662  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1663  *
1664  */
1665 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1666 		unsigned long, nr_segs, unsigned int, flags)
1667 {
1668 	struct fd f;
1669 	long error;
1670 
1671 	if (unlikely(nr_segs > UIO_MAXIOV))
1672 		return -EINVAL;
1673 	else if (unlikely(!nr_segs))
1674 		return 0;
1675 
1676 	error = -EBADF;
1677 	f = fdget(fd);
1678 	if (f.file) {
1679 		if (f.file->f_mode & FMODE_WRITE)
1680 			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1681 		else if (f.file->f_mode & FMODE_READ)
1682 			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1683 
1684 		fdput(f);
1685 	}
1686 
1687 	return error;
1688 }
1689 
1690 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1691 		int, fd_out, loff_t __user *, off_out,
1692 		size_t, len, unsigned int, flags)
1693 {
1694 	struct fd in, out;
1695 	long error;
1696 
1697 	if (unlikely(!len))
1698 		return 0;
1699 
1700 	error = -EBADF;
1701 	in = fdget(fd_in);
1702 	if (in.file) {
1703 		if (in.file->f_mode & FMODE_READ) {
1704 			out = fdget(fd_out);
1705 			if (out.file) {
1706 				if (out.file->f_mode & FMODE_WRITE)
1707 					error = do_splice(in.file, off_in,
1708 							  out.file, off_out,
1709 							  len, flags);
1710 				fdput(out);
1711 			}
1712 		}
1713 		fdput(in);
1714 	}
1715 	return error;
1716 }
1717 
1718 /*
1719  * Make sure there's data to read. Wait for input if we can, otherwise
1720  * return an appropriate error.
1721  */
1722 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1723 {
1724 	int ret;
1725 
1726 	/*
1727 	 * Check ->nrbufs without the inode lock first. This function
1728 	 * is speculative anyways, so missing one is ok.
1729 	 */
1730 	if (pipe->nrbufs)
1731 		return 0;
1732 
1733 	ret = 0;
1734 	pipe_lock(pipe);
1735 
1736 	while (!pipe->nrbufs) {
1737 		if (signal_pending(current)) {
1738 			ret = -ERESTARTSYS;
1739 			break;
1740 		}
1741 		if (!pipe->writers)
1742 			break;
1743 		if (!pipe->waiting_writers) {
1744 			if (flags & SPLICE_F_NONBLOCK) {
1745 				ret = -EAGAIN;
1746 				break;
1747 			}
1748 		}
1749 		pipe_wait(pipe);
1750 	}
1751 
1752 	pipe_unlock(pipe);
1753 	return ret;
1754 }
1755 
1756 /*
1757  * Make sure there's writeable room. Wait for room if we can, otherwise
1758  * return an appropriate error.
1759  */
1760 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1761 {
1762 	int ret;
1763 
1764 	/*
1765 	 * Check ->nrbufs without the inode lock first. This function
1766 	 * is speculative anyways, so missing one is ok.
1767 	 */
1768 	if (pipe->nrbufs < pipe->buffers)
1769 		return 0;
1770 
1771 	ret = 0;
1772 	pipe_lock(pipe);
1773 
1774 	while (pipe->nrbufs >= pipe->buffers) {
1775 		if (!pipe->readers) {
1776 			send_sig(SIGPIPE, current, 0);
1777 			ret = -EPIPE;
1778 			break;
1779 		}
1780 		if (flags & SPLICE_F_NONBLOCK) {
1781 			ret = -EAGAIN;
1782 			break;
1783 		}
1784 		if (signal_pending(current)) {
1785 			ret = -ERESTARTSYS;
1786 			break;
1787 		}
1788 		pipe->waiting_writers++;
1789 		pipe_wait(pipe);
1790 		pipe->waiting_writers--;
1791 	}
1792 
1793 	pipe_unlock(pipe);
1794 	return ret;
1795 }
1796 
1797 /*
1798  * Splice contents of ipipe to opipe.
1799  */
1800 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1801 			       struct pipe_inode_info *opipe,
1802 			       size_t len, unsigned int flags)
1803 {
1804 	struct pipe_buffer *ibuf, *obuf;
1805 	int ret = 0, nbuf;
1806 	bool input_wakeup = false;
1807 
1808 
1809 retry:
1810 	ret = ipipe_prep(ipipe, flags);
1811 	if (ret)
1812 		return ret;
1813 
1814 	ret = opipe_prep(opipe, flags);
1815 	if (ret)
1816 		return ret;
1817 
1818 	/*
1819 	 * Potential ABBA deadlock, work around it by ordering lock
1820 	 * grabbing by pipe info address. Otherwise two different processes
1821 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1822 	 */
1823 	pipe_double_lock(ipipe, opipe);
1824 
1825 	do {
1826 		if (!opipe->readers) {
1827 			send_sig(SIGPIPE, current, 0);
1828 			if (!ret)
1829 				ret = -EPIPE;
1830 			break;
1831 		}
1832 
1833 		if (!ipipe->nrbufs && !ipipe->writers)
1834 			break;
1835 
1836 		/*
1837 		 * Cannot make any progress, because either the input
1838 		 * pipe is empty or the output pipe is full.
1839 		 */
1840 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1841 			/* Already processed some buffers, break */
1842 			if (ret)
1843 				break;
1844 
1845 			if (flags & SPLICE_F_NONBLOCK) {
1846 				ret = -EAGAIN;
1847 				break;
1848 			}
1849 
1850 			/*
1851 			 * We raced with another reader/writer and haven't
1852 			 * managed to process any buffers.  A zero return
1853 			 * value means EOF, so retry instead.
1854 			 */
1855 			pipe_unlock(ipipe);
1856 			pipe_unlock(opipe);
1857 			goto retry;
1858 		}
1859 
1860 		ibuf = ipipe->bufs + ipipe->curbuf;
1861 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1862 		obuf = opipe->bufs + nbuf;
1863 
1864 		if (len >= ibuf->len) {
1865 			/*
1866 			 * Simply move the whole buffer from ipipe to opipe
1867 			 */
1868 			*obuf = *ibuf;
1869 			ibuf->ops = NULL;
1870 			opipe->nrbufs++;
1871 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1872 			ipipe->nrbufs--;
1873 			input_wakeup = true;
1874 		} else {
1875 			/*
1876 			 * Get a reference to this pipe buffer,
1877 			 * so we can copy the contents over.
1878 			 */
1879 			ibuf->ops->get(ipipe, ibuf);
1880 			*obuf = *ibuf;
1881 
1882 			/*
1883 			 * Don't inherit the gift flag, we need to
1884 			 * prevent multiple steals of this page.
1885 			 */
1886 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1887 
1888 			obuf->len = len;
1889 			opipe->nrbufs++;
1890 			ibuf->offset += obuf->len;
1891 			ibuf->len -= obuf->len;
1892 		}
1893 		ret += obuf->len;
1894 		len -= obuf->len;
1895 	} while (len);
1896 
1897 	pipe_unlock(ipipe);
1898 	pipe_unlock(opipe);
1899 
1900 	/*
1901 	 * If we put data in the output pipe, wakeup any potential readers.
1902 	 */
1903 	if (ret > 0)
1904 		wakeup_pipe_readers(opipe);
1905 
1906 	if (input_wakeup)
1907 		wakeup_pipe_writers(ipipe);
1908 
1909 	return ret;
1910 }
1911 
1912 /*
1913  * Link contents of ipipe to opipe.
1914  */
1915 static int link_pipe(struct pipe_inode_info *ipipe,
1916 		     struct pipe_inode_info *opipe,
1917 		     size_t len, unsigned int flags)
1918 {
1919 	struct pipe_buffer *ibuf, *obuf;
1920 	int ret = 0, i = 0, nbuf;
1921 
1922 	/*
1923 	 * Potential ABBA deadlock, work around it by ordering lock
1924 	 * grabbing by pipe info address. Otherwise two different processes
1925 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1926 	 */
1927 	pipe_double_lock(ipipe, opipe);
1928 
1929 	do {
1930 		if (!opipe->readers) {
1931 			send_sig(SIGPIPE, current, 0);
1932 			if (!ret)
1933 				ret = -EPIPE;
1934 			break;
1935 		}
1936 
1937 		/*
1938 		 * If we have iterated all input buffers or ran out of
1939 		 * output room, break.
1940 		 */
1941 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1942 			break;
1943 
1944 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1945 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1946 
1947 		/*
1948 		 * Get a reference to this pipe buffer,
1949 		 * so we can copy the contents over.
1950 		 */
1951 		ibuf->ops->get(ipipe, ibuf);
1952 
1953 		obuf = opipe->bufs + nbuf;
1954 		*obuf = *ibuf;
1955 
1956 		/*
1957 		 * Don't inherit the gift flag, we need to
1958 		 * prevent multiple steals of this page.
1959 		 */
1960 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1961 
1962 		if (obuf->len > len)
1963 			obuf->len = len;
1964 
1965 		opipe->nrbufs++;
1966 		ret += obuf->len;
1967 		len -= obuf->len;
1968 		i++;
1969 	} while (len);
1970 
1971 	/*
1972 	 * return EAGAIN if we have the potential of some data in the
1973 	 * future, otherwise just return 0
1974 	 */
1975 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1976 		ret = -EAGAIN;
1977 
1978 	pipe_unlock(ipipe);
1979 	pipe_unlock(opipe);
1980 
1981 	/*
1982 	 * If we put data in the output pipe, wakeup any potential readers.
1983 	 */
1984 	if (ret > 0)
1985 		wakeup_pipe_readers(opipe);
1986 
1987 	return ret;
1988 }
1989 
1990 /*
1991  * This is a tee(1) implementation that works on pipes. It doesn't copy
1992  * any data, it simply references the 'in' pages on the 'out' pipe.
1993  * The 'flags' used are the SPLICE_F_* variants, currently the only
1994  * applicable one is SPLICE_F_NONBLOCK.
1995  */
1996 static long do_tee(struct file *in, struct file *out, size_t len,
1997 		   unsigned int flags)
1998 {
1999 	struct pipe_inode_info *ipipe = get_pipe_info(in);
2000 	struct pipe_inode_info *opipe = get_pipe_info(out);
2001 	int ret = -EINVAL;
2002 
2003 	/*
2004 	 * Duplicate the contents of ipipe to opipe without actually
2005 	 * copying the data.
2006 	 */
2007 	if (ipipe && opipe && ipipe != opipe) {
2008 		/*
2009 		 * Keep going, unless we encounter an error. The ipipe/opipe
2010 		 * ordering doesn't really matter.
2011 		 */
2012 		ret = ipipe_prep(ipipe, flags);
2013 		if (!ret) {
2014 			ret = opipe_prep(opipe, flags);
2015 			if (!ret)
2016 				ret = link_pipe(ipipe, opipe, len, flags);
2017 		}
2018 	}
2019 
2020 	return ret;
2021 }
2022 
2023 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2024 {
2025 	struct fd in;
2026 	int error;
2027 
2028 	if (unlikely(!len))
2029 		return 0;
2030 
2031 	error = -EBADF;
2032 	in = fdget(fdin);
2033 	if (in.file) {
2034 		if (in.file->f_mode & FMODE_READ) {
2035 			struct fd out = fdget(fdout);
2036 			if (out.file) {
2037 				if (out.file->f_mode & FMODE_WRITE)
2038 					error = do_tee(in.file, out.file,
2039 							len, flags);
2040 				fdput(out);
2041 			}
2042 		}
2043  		fdput(in);
2044  	}
2045 
2046 	return error;
2047 }
2048