xref: /openbmc/linux/fs/splice.c (revision 8e9356c6)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36 
37 /*
38  * Attempt to steal a page from a pipe buffer. This should perhaps go into
39  * a vm helper function, it's already simplified quite a bit by the
40  * addition of remove_mapping(). If success is returned, the caller may
41  * attempt to reuse this page for another destination.
42  */
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 				     struct pipe_buffer *buf)
45 {
46 	struct page *page = buf->page;
47 	struct address_space *mapping;
48 
49 	lock_page(page);
50 
51 	mapping = page_mapping(page);
52 	if (mapping) {
53 		WARN_ON(!PageUptodate(page));
54 
55 		/*
56 		 * At least for ext2 with nobh option, we need to wait on
57 		 * writeback completing on this page, since we'll remove it
58 		 * from the pagecache.  Otherwise truncate wont wait on the
59 		 * page, allowing the disk blocks to be reused by someone else
60 		 * before we actually wrote our data to them. fs corruption
61 		 * ensues.
62 		 */
63 		wait_on_page_writeback(page);
64 
65 		if (page_has_private(page) &&
66 		    !try_to_release_page(page, GFP_KERNEL))
67 			goto out_unlock;
68 
69 		/*
70 		 * If we succeeded in removing the mapping, set LRU flag
71 		 * and return good.
72 		 */
73 		if (remove_mapping(mapping, page)) {
74 			buf->flags |= PIPE_BUF_FLAG_LRU;
75 			return 0;
76 		}
77 	}
78 
79 	/*
80 	 * Raced with truncate or failed to remove page from current
81 	 * address space, unlock and return failure.
82 	 */
83 out_unlock:
84 	unlock_page(page);
85 	return 1;
86 }
87 
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 					struct pipe_buffer *buf)
90 {
91 	page_cache_release(buf->page);
92 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94 
95 /*
96  * Check whether the contents of buf is OK to access. Since the content
97  * is a page cache page, IO may be in flight.
98  */
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 				       struct pipe_buffer *buf)
101 {
102 	struct page *page = buf->page;
103 	int err;
104 
105 	if (!PageUptodate(page)) {
106 		lock_page(page);
107 
108 		/*
109 		 * Page got truncated/unhashed. This will cause a 0-byte
110 		 * splice, if this is the first page.
111 		 */
112 		if (!page->mapping) {
113 			err = -ENODATA;
114 			goto error;
115 		}
116 
117 		/*
118 		 * Uh oh, read-error from disk.
119 		 */
120 		if (!PageUptodate(page)) {
121 			err = -EIO;
122 			goto error;
123 		}
124 
125 		/*
126 		 * Page is ok afterall, we are done.
127 		 */
128 		unlock_page(page);
129 	}
130 
131 	return 0;
132 error:
133 	unlock_page(page);
134 	return err;
135 }
136 
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 	.can_merge = 0,
139 	.map = generic_pipe_buf_map,
140 	.unmap = generic_pipe_buf_unmap,
141 	.confirm = page_cache_pipe_buf_confirm,
142 	.release = page_cache_pipe_buf_release,
143 	.steal = page_cache_pipe_buf_steal,
144 	.get = generic_pipe_buf_get,
145 };
146 
147 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
148 				    struct pipe_buffer *buf)
149 {
150 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
151 		return 1;
152 
153 	buf->flags |= PIPE_BUF_FLAG_LRU;
154 	return generic_pipe_buf_steal(pipe, buf);
155 }
156 
157 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
158 	.can_merge = 0,
159 	.map = generic_pipe_buf_map,
160 	.unmap = generic_pipe_buf_unmap,
161 	.confirm = generic_pipe_buf_confirm,
162 	.release = page_cache_pipe_buf_release,
163 	.steal = user_page_pipe_buf_steal,
164 	.get = generic_pipe_buf_get,
165 };
166 
167 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
168 {
169 	smp_mb();
170 	if (waitqueue_active(&pipe->wait))
171 		wake_up_interruptible(&pipe->wait);
172 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
173 }
174 
175 /**
176  * splice_to_pipe - fill passed data into a pipe
177  * @pipe:	pipe to fill
178  * @spd:	data to fill
179  *
180  * Description:
181  *    @spd contains a map of pages and len/offset tuples, along with
182  *    the struct pipe_buf_operations associated with these pages. This
183  *    function will link that data to the pipe.
184  *
185  */
186 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
187 		       struct splice_pipe_desc *spd)
188 {
189 	unsigned int spd_pages = spd->nr_pages;
190 	int ret, do_wakeup, page_nr;
191 
192 	ret = 0;
193 	do_wakeup = 0;
194 	page_nr = 0;
195 
196 	pipe_lock(pipe);
197 
198 	for (;;) {
199 		if (!pipe->readers) {
200 			send_sig(SIGPIPE, current, 0);
201 			if (!ret)
202 				ret = -EPIPE;
203 			break;
204 		}
205 
206 		if (pipe->nrbufs < pipe->buffers) {
207 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
208 			struct pipe_buffer *buf = pipe->bufs + newbuf;
209 
210 			buf->page = spd->pages[page_nr];
211 			buf->offset = spd->partial[page_nr].offset;
212 			buf->len = spd->partial[page_nr].len;
213 			buf->private = spd->partial[page_nr].private;
214 			buf->ops = spd->ops;
215 			if (spd->flags & SPLICE_F_GIFT)
216 				buf->flags |= PIPE_BUF_FLAG_GIFT;
217 
218 			pipe->nrbufs++;
219 			page_nr++;
220 			ret += buf->len;
221 
222 			if (pipe->files)
223 				do_wakeup = 1;
224 
225 			if (!--spd->nr_pages)
226 				break;
227 			if (pipe->nrbufs < pipe->buffers)
228 				continue;
229 
230 			break;
231 		}
232 
233 		if (spd->flags & SPLICE_F_NONBLOCK) {
234 			if (!ret)
235 				ret = -EAGAIN;
236 			break;
237 		}
238 
239 		if (signal_pending(current)) {
240 			if (!ret)
241 				ret = -ERESTARTSYS;
242 			break;
243 		}
244 
245 		if (do_wakeup) {
246 			smp_mb();
247 			if (waitqueue_active(&pipe->wait))
248 				wake_up_interruptible_sync(&pipe->wait);
249 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
250 			do_wakeup = 0;
251 		}
252 
253 		pipe->waiting_writers++;
254 		pipe_wait(pipe);
255 		pipe->waiting_writers--;
256 	}
257 
258 	pipe_unlock(pipe);
259 
260 	if (do_wakeup)
261 		wakeup_pipe_readers(pipe);
262 
263 	while (page_nr < spd_pages)
264 		spd->spd_release(spd, page_nr++);
265 
266 	return ret;
267 }
268 
269 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
270 {
271 	page_cache_release(spd->pages[i]);
272 }
273 
274 /*
275  * Check if we need to grow the arrays holding pages and partial page
276  * descriptions.
277  */
278 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
279 {
280 	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
281 
282 	spd->nr_pages_max = buffers;
283 	if (buffers <= PIPE_DEF_BUFFERS)
284 		return 0;
285 
286 	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
287 	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
288 
289 	if (spd->pages && spd->partial)
290 		return 0;
291 
292 	kfree(spd->pages);
293 	kfree(spd->partial);
294 	return -ENOMEM;
295 }
296 
297 void splice_shrink_spd(struct splice_pipe_desc *spd)
298 {
299 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
300 		return;
301 
302 	kfree(spd->pages);
303 	kfree(spd->partial);
304 }
305 
306 static int
307 __generic_file_splice_read(struct file *in, loff_t *ppos,
308 			   struct pipe_inode_info *pipe, size_t len,
309 			   unsigned int flags)
310 {
311 	struct address_space *mapping = in->f_mapping;
312 	unsigned int loff, nr_pages, req_pages;
313 	struct page *pages[PIPE_DEF_BUFFERS];
314 	struct partial_page partial[PIPE_DEF_BUFFERS];
315 	struct page *page;
316 	pgoff_t index, end_index;
317 	loff_t isize;
318 	int error, page_nr;
319 	struct splice_pipe_desc spd = {
320 		.pages = pages,
321 		.partial = partial,
322 		.nr_pages_max = PIPE_DEF_BUFFERS,
323 		.flags = flags,
324 		.ops = &page_cache_pipe_buf_ops,
325 		.spd_release = spd_release_page,
326 	};
327 
328 	if (splice_grow_spd(pipe, &spd))
329 		return -ENOMEM;
330 
331 	index = *ppos >> PAGE_CACHE_SHIFT;
332 	loff = *ppos & ~PAGE_CACHE_MASK;
333 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
334 	nr_pages = min(req_pages, spd.nr_pages_max);
335 
336 	/*
337 	 * Lookup the (hopefully) full range of pages we need.
338 	 */
339 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
340 	index += spd.nr_pages;
341 
342 	/*
343 	 * If find_get_pages_contig() returned fewer pages than we needed,
344 	 * readahead/allocate the rest and fill in the holes.
345 	 */
346 	if (spd.nr_pages < nr_pages)
347 		page_cache_sync_readahead(mapping, &in->f_ra, in,
348 				index, req_pages - spd.nr_pages);
349 
350 	error = 0;
351 	while (spd.nr_pages < nr_pages) {
352 		/*
353 		 * Page could be there, find_get_pages_contig() breaks on
354 		 * the first hole.
355 		 */
356 		page = find_get_page(mapping, index);
357 		if (!page) {
358 			/*
359 			 * page didn't exist, allocate one.
360 			 */
361 			page = page_cache_alloc_cold(mapping);
362 			if (!page)
363 				break;
364 
365 			error = add_to_page_cache_lru(page, mapping, index,
366 						GFP_KERNEL);
367 			if (unlikely(error)) {
368 				page_cache_release(page);
369 				if (error == -EEXIST)
370 					continue;
371 				break;
372 			}
373 			/*
374 			 * add_to_page_cache() locks the page, unlock it
375 			 * to avoid convoluting the logic below even more.
376 			 */
377 			unlock_page(page);
378 		}
379 
380 		spd.pages[spd.nr_pages++] = page;
381 		index++;
382 	}
383 
384 	/*
385 	 * Now loop over the map and see if we need to start IO on any
386 	 * pages, fill in the partial map, etc.
387 	 */
388 	index = *ppos >> PAGE_CACHE_SHIFT;
389 	nr_pages = spd.nr_pages;
390 	spd.nr_pages = 0;
391 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
392 		unsigned int this_len;
393 
394 		if (!len)
395 			break;
396 
397 		/*
398 		 * this_len is the max we'll use from this page
399 		 */
400 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
401 		page = spd.pages[page_nr];
402 
403 		if (PageReadahead(page))
404 			page_cache_async_readahead(mapping, &in->f_ra, in,
405 					page, index, req_pages - page_nr);
406 
407 		/*
408 		 * If the page isn't uptodate, we may need to start io on it
409 		 */
410 		if (!PageUptodate(page)) {
411 			lock_page(page);
412 
413 			/*
414 			 * Page was truncated, or invalidated by the
415 			 * filesystem.  Redo the find/create, but this time the
416 			 * page is kept locked, so there's no chance of another
417 			 * race with truncate/invalidate.
418 			 */
419 			if (!page->mapping) {
420 				unlock_page(page);
421 				page = find_or_create_page(mapping, index,
422 						mapping_gfp_mask(mapping));
423 
424 				if (!page) {
425 					error = -ENOMEM;
426 					break;
427 				}
428 				page_cache_release(spd.pages[page_nr]);
429 				spd.pages[page_nr] = page;
430 			}
431 			/*
432 			 * page was already under io and is now done, great
433 			 */
434 			if (PageUptodate(page)) {
435 				unlock_page(page);
436 				goto fill_it;
437 			}
438 
439 			/*
440 			 * need to read in the page
441 			 */
442 			error = mapping->a_ops->readpage(in, page);
443 			if (unlikely(error)) {
444 				/*
445 				 * We really should re-lookup the page here,
446 				 * but it complicates things a lot. Instead
447 				 * lets just do what we already stored, and
448 				 * we'll get it the next time we are called.
449 				 */
450 				if (error == AOP_TRUNCATED_PAGE)
451 					error = 0;
452 
453 				break;
454 			}
455 		}
456 fill_it:
457 		/*
458 		 * i_size must be checked after PageUptodate.
459 		 */
460 		isize = i_size_read(mapping->host);
461 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
462 		if (unlikely(!isize || index > end_index))
463 			break;
464 
465 		/*
466 		 * if this is the last page, see if we need to shrink
467 		 * the length and stop
468 		 */
469 		if (end_index == index) {
470 			unsigned int plen;
471 
472 			/*
473 			 * max good bytes in this page
474 			 */
475 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
476 			if (plen <= loff)
477 				break;
478 
479 			/*
480 			 * force quit after adding this page
481 			 */
482 			this_len = min(this_len, plen - loff);
483 			len = this_len;
484 		}
485 
486 		spd.partial[page_nr].offset = loff;
487 		spd.partial[page_nr].len = this_len;
488 		len -= this_len;
489 		loff = 0;
490 		spd.nr_pages++;
491 		index++;
492 	}
493 
494 	/*
495 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
496 	 * we got, 'nr_pages' is how many pages are in the map.
497 	 */
498 	while (page_nr < nr_pages)
499 		page_cache_release(spd.pages[page_nr++]);
500 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
501 
502 	if (spd.nr_pages)
503 		error = splice_to_pipe(pipe, &spd);
504 
505 	splice_shrink_spd(&spd);
506 	return error;
507 }
508 
509 /**
510  * generic_file_splice_read - splice data from file to a pipe
511  * @in:		file to splice from
512  * @ppos:	position in @in
513  * @pipe:	pipe to splice to
514  * @len:	number of bytes to splice
515  * @flags:	splice modifier flags
516  *
517  * Description:
518  *    Will read pages from given file and fill them into a pipe. Can be
519  *    used as long as the address_space operations for the source implements
520  *    a readpage() hook.
521  *
522  */
523 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
524 				 struct pipe_inode_info *pipe, size_t len,
525 				 unsigned int flags)
526 {
527 	loff_t isize, left;
528 	int ret;
529 
530 	isize = i_size_read(in->f_mapping->host);
531 	if (unlikely(*ppos >= isize))
532 		return 0;
533 
534 	left = isize - *ppos;
535 	if (unlikely(left < len))
536 		len = left;
537 
538 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
539 	if (ret > 0) {
540 		*ppos += ret;
541 		file_accessed(in);
542 	}
543 
544 	return ret;
545 }
546 EXPORT_SYMBOL(generic_file_splice_read);
547 
548 static const struct pipe_buf_operations default_pipe_buf_ops = {
549 	.can_merge = 0,
550 	.map = generic_pipe_buf_map,
551 	.unmap = generic_pipe_buf_unmap,
552 	.confirm = generic_pipe_buf_confirm,
553 	.release = generic_pipe_buf_release,
554 	.steal = generic_pipe_buf_steal,
555 	.get = generic_pipe_buf_get,
556 };
557 
558 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
559 				    struct pipe_buffer *buf)
560 {
561 	return 1;
562 }
563 
564 /* Pipe buffer operations for a socket and similar. */
565 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
566 	.can_merge = 0,
567 	.map = generic_pipe_buf_map,
568 	.unmap = generic_pipe_buf_unmap,
569 	.confirm = generic_pipe_buf_confirm,
570 	.release = generic_pipe_buf_release,
571 	.steal = generic_pipe_buf_nosteal,
572 	.get = generic_pipe_buf_get,
573 };
574 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
575 
576 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
577 			    unsigned long vlen, loff_t offset)
578 {
579 	mm_segment_t old_fs;
580 	loff_t pos = offset;
581 	ssize_t res;
582 
583 	old_fs = get_fs();
584 	set_fs(get_ds());
585 	/* The cast to a user pointer is valid due to the set_fs() */
586 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
587 	set_fs(old_fs);
588 
589 	return res;
590 }
591 
592 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
593 			    loff_t pos)
594 {
595 	mm_segment_t old_fs;
596 	ssize_t res;
597 
598 	old_fs = get_fs();
599 	set_fs(get_ds());
600 	/* The cast to a user pointer is valid due to the set_fs() */
601 	res = vfs_write(file, (__force const char __user *)buf, count, &pos);
602 	set_fs(old_fs);
603 
604 	return res;
605 }
606 EXPORT_SYMBOL(kernel_write);
607 
608 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
609 				 struct pipe_inode_info *pipe, size_t len,
610 				 unsigned int flags)
611 {
612 	unsigned int nr_pages;
613 	unsigned int nr_freed;
614 	size_t offset;
615 	struct page *pages[PIPE_DEF_BUFFERS];
616 	struct partial_page partial[PIPE_DEF_BUFFERS];
617 	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
618 	ssize_t res;
619 	size_t this_len;
620 	int error;
621 	int i;
622 	struct splice_pipe_desc spd = {
623 		.pages = pages,
624 		.partial = partial,
625 		.nr_pages_max = PIPE_DEF_BUFFERS,
626 		.flags = flags,
627 		.ops = &default_pipe_buf_ops,
628 		.spd_release = spd_release_page,
629 	};
630 
631 	if (splice_grow_spd(pipe, &spd))
632 		return -ENOMEM;
633 
634 	res = -ENOMEM;
635 	vec = __vec;
636 	if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
637 		vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
638 		if (!vec)
639 			goto shrink_ret;
640 	}
641 
642 	offset = *ppos & ~PAGE_CACHE_MASK;
643 	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
644 
645 	for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
646 		struct page *page;
647 
648 		page = alloc_page(GFP_USER);
649 		error = -ENOMEM;
650 		if (!page)
651 			goto err;
652 
653 		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
654 		vec[i].iov_base = (void __user *) page_address(page);
655 		vec[i].iov_len = this_len;
656 		spd.pages[i] = page;
657 		spd.nr_pages++;
658 		len -= this_len;
659 		offset = 0;
660 	}
661 
662 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
663 	if (res < 0) {
664 		error = res;
665 		goto err;
666 	}
667 
668 	error = 0;
669 	if (!res)
670 		goto err;
671 
672 	nr_freed = 0;
673 	for (i = 0; i < spd.nr_pages; i++) {
674 		this_len = min_t(size_t, vec[i].iov_len, res);
675 		spd.partial[i].offset = 0;
676 		spd.partial[i].len = this_len;
677 		if (!this_len) {
678 			__free_page(spd.pages[i]);
679 			spd.pages[i] = NULL;
680 			nr_freed++;
681 		}
682 		res -= this_len;
683 	}
684 	spd.nr_pages -= nr_freed;
685 
686 	res = splice_to_pipe(pipe, &spd);
687 	if (res > 0)
688 		*ppos += res;
689 
690 shrink_ret:
691 	if (vec != __vec)
692 		kfree(vec);
693 	splice_shrink_spd(&spd);
694 	return res;
695 
696 err:
697 	for (i = 0; i < spd.nr_pages; i++)
698 		__free_page(spd.pages[i]);
699 
700 	res = error;
701 	goto shrink_ret;
702 }
703 EXPORT_SYMBOL(default_file_splice_read);
704 
705 /*
706  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
707  * using sendpage(). Return the number of bytes sent.
708  */
709 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
710 			    struct pipe_buffer *buf, struct splice_desc *sd)
711 {
712 	struct file *file = sd->u.file;
713 	loff_t pos = sd->pos;
714 	int more;
715 
716 	if (!likely(file->f_op->sendpage))
717 		return -EINVAL;
718 
719 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
720 
721 	if (sd->len < sd->total_len && pipe->nrbufs > 1)
722 		more |= MSG_SENDPAGE_NOTLAST;
723 
724 	return file->f_op->sendpage(file, buf->page, buf->offset,
725 				    sd->len, &pos, more);
726 }
727 
728 /*
729  * This is a little more tricky than the file -> pipe splicing. There are
730  * basically three cases:
731  *
732  *	- Destination page already exists in the address space and there
733  *	  are users of it. For that case we have no other option that
734  *	  copying the data. Tough luck.
735  *	- Destination page already exists in the address space, but there
736  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
737  *	  through to last case.
738  *	- Destination page does not exist, we can add the pipe page to
739  *	  the page cache and avoid the copy.
740  *
741  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
742  * sd->flags), we attempt to migrate pages from the pipe to the output
743  * file address space page cache. This is possible if no one else has
744  * the pipe page referenced outside of the pipe and page cache. If
745  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
746  * a new page in the output file page cache and fill/dirty that.
747  */
748 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
749 		 struct splice_desc *sd)
750 {
751 	struct file *file = sd->u.file;
752 	struct address_space *mapping = file->f_mapping;
753 	unsigned int offset, this_len;
754 	struct page *page;
755 	void *fsdata;
756 	int ret;
757 
758 	offset = sd->pos & ~PAGE_CACHE_MASK;
759 
760 	this_len = sd->len;
761 	if (this_len + offset > PAGE_CACHE_SIZE)
762 		this_len = PAGE_CACHE_SIZE - offset;
763 
764 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
765 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
766 	if (unlikely(ret))
767 		goto out;
768 
769 	if (buf->page != page) {
770 		char *src = buf->ops->map(pipe, buf, 1);
771 		char *dst = kmap_atomic(page);
772 
773 		memcpy(dst + offset, src + buf->offset, this_len);
774 		flush_dcache_page(page);
775 		kunmap_atomic(dst);
776 		buf->ops->unmap(pipe, buf, src);
777 	}
778 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
779 				page, fsdata);
780 out:
781 	return ret;
782 }
783 EXPORT_SYMBOL(pipe_to_file);
784 
785 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
786 {
787 	smp_mb();
788 	if (waitqueue_active(&pipe->wait))
789 		wake_up_interruptible(&pipe->wait);
790 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
791 }
792 
793 /**
794  * splice_from_pipe_feed - feed available data from a pipe to a file
795  * @pipe:	pipe to splice from
796  * @sd:		information to @actor
797  * @actor:	handler that splices the data
798  *
799  * Description:
800  *    This function loops over the pipe and calls @actor to do the
801  *    actual moving of a single struct pipe_buffer to the desired
802  *    destination.  It returns when there's no more buffers left in
803  *    the pipe or if the requested number of bytes (@sd->total_len)
804  *    have been copied.  It returns a positive number (one) if the
805  *    pipe needs to be filled with more data, zero if the required
806  *    number of bytes have been copied and -errno on error.
807  *
808  *    This, together with splice_from_pipe_{begin,end,next}, may be
809  *    used to implement the functionality of __splice_from_pipe() when
810  *    locking is required around copying the pipe buffers to the
811  *    destination.
812  */
813 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
814 			  splice_actor *actor)
815 {
816 	int ret;
817 
818 	while (pipe->nrbufs) {
819 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
820 		const struct pipe_buf_operations *ops = buf->ops;
821 
822 		sd->len = buf->len;
823 		if (sd->len > sd->total_len)
824 			sd->len = sd->total_len;
825 
826 		ret = buf->ops->confirm(pipe, buf);
827 		if (unlikely(ret)) {
828 			if (ret == -ENODATA)
829 				ret = 0;
830 			return ret;
831 		}
832 
833 		ret = actor(pipe, buf, sd);
834 		if (ret <= 0)
835 			return ret;
836 
837 		buf->offset += ret;
838 		buf->len -= ret;
839 
840 		sd->num_spliced += ret;
841 		sd->len -= ret;
842 		sd->pos += ret;
843 		sd->total_len -= ret;
844 
845 		if (!buf->len) {
846 			buf->ops = NULL;
847 			ops->release(pipe, buf);
848 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
849 			pipe->nrbufs--;
850 			if (pipe->files)
851 				sd->need_wakeup = true;
852 		}
853 
854 		if (!sd->total_len)
855 			return 0;
856 	}
857 
858 	return 1;
859 }
860 EXPORT_SYMBOL(splice_from_pipe_feed);
861 
862 /**
863  * splice_from_pipe_next - wait for some data to splice from
864  * @pipe:	pipe to splice from
865  * @sd:		information about the splice operation
866  *
867  * Description:
868  *    This function will wait for some data and return a positive
869  *    value (one) if pipe buffers are available.  It will return zero
870  *    or -errno if no more data needs to be spliced.
871  */
872 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
873 {
874 	while (!pipe->nrbufs) {
875 		if (!pipe->writers)
876 			return 0;
877 
878 		if (!pipe->waiting_writers && sd->num_spliced)
879 			return 0;
880 
881 		if (sd->flags & SPLICE_F_NONBLOCK)
882 			return -EAGAIN;
883 
884 		if (signal_pending(current))
885 			return -ERESTARTSYS;
886 
887 		if (sd->need_wakeup) {
888 			wakeup_pipe_writers(pipe);
889 			sd->need_wakeup = false;
890 		}
891 
892 		pipe_wait(pipe);
893 	}
894 
895 	return 1;
896 }
897 EXPORT_SYMBOL(splice_from_pipe_next);
898 
899 /**
900  * splice_from_pipe_begin - start splicing from pipe
901  * @sd:		information about the splice operation
902  *
903  * Description:
904  *    This function should be called before a loop containing
905  *    splice_from_pipe_next() and splice_from_pipe_feed() to
906  *    initialize the necessary fields of @sd.
907  */
908 void splice_from_pipe_begin(struct splice_desc *sd)
909 {
910 	sd->num_spliced = 0;
911 	sd->need_wakeup = false;
912 }
913 EXPORT_SYMBOL(splice_from_pipe_begin);
914 
915 /**
916  * splice_from_pipe_end - finish splicing from pipe
917  * @pipe:	pipe to splice from
918  * @sd:		information about the splice operation
919  *
920  * Description:
921  *    This function will wake up pipe writers if necessary.  It should
922  *    be called after a loop containing splice_from_pipe_next() and
923  *    splice_from_pipe_feed().
924  */
925 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
926 {
927 	if (sd->need_wakeup)
928 		wakeup_pipe_writers(pipe);
929 }
930 EXPORT_SYMBOL(splice_from_pipe_end);
931 
932 /**
933  * __splice_from_pipe - splice data from a pipe to given actor
934  * @pipe:	pipe to splice from
935  * @sd:		information to @actor
936  * @actor:	handler that splices the data
937  *
938  * Description:
939  *    This function does little more than loop over the pipe and call
940  *    @actor to do the actual moving of a single struct pipe_buffer to
941  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
942  *    pipe_to_user.
943  *
944  */
945 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
946 			   splice_actor *actor)
947 {
948 	int ret;
949 
950 	splice_from_pipe_begin(sd);
951 	do {
952 		ret = splice_from_pipe_next(pipe, sd);
953 		if (ret > 0)
954 			ret = splice_from_pipe_feed(pipe, sd, actor);
955 	} while (ret > 0);
956 	splice_from_pipe_end(pipe, sd);
957 
958 	return sd->num_spliced ? sd->num_spliced : ret;
959 }
960 EXPORT_SYMBOL(__splice_from_pipe);
961 
962 /**
963  * splice_from_pipe - splice data from a pipe to a file
964  * @pipe:	pipe to splice from
965  * @out:	file to splice to
966  * @ppos:	position in @out
967  * @len:	how many bytes to splice
968  * @flags:	splice modifier flags
969  * @actor:	handler that splices the data
970  *
971  * Description:
972  *    See __splice_from_pipe. This function locks the pipe inode,
973  *    otherwise it's identical to __splice_from_pipe().
974  *
975  */
976 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
977 			 loff_t *ppos, size_t len, unsigned int flags,
978 			 splice_actor *actor)
979 {
980 	ssize_t ret;
981 	struct splice_desc sd = {
982 		.total_len = len,
983 		.flags = flags,
984 		.pos = *ppos,
985 		.u.file = out,
986 	};
987 
988 	pipe_lock(pipe);
989 	ret = __splice_from_pipe(pipe, &sd, actor);
990 	pipe_unlock(pipe);
991 
992 	return ret;
993 }
994 
995 /**
996  * generic_file_splice_write - splice data from a pipe to a file
997  * @pipe:	pipe info
998  * @out:	file to write to
999  * @ppos:	position in @out
1000  * @len:	number of bytes to splice
1001  * @flags:	splice modifier flags
1002  *
1003  * Description:
1004  *    Will either move or copy pages (determined by @flags options) from
1005  *    the given pipe inode to the given file.
1006  *
1007  */
1008 ssize_t
1009 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
1010 			  loff_t *ppos, size_t len, unsigned int flags)
1011 {
1012 	struct address_space *mapping = out->f_mapping;
1013 	struct inode *inode = mapping->host;
1014 	struct splice_desc sd = {
1015 		.total_len = len,
1016 		.flags = flags,
1017 		.pos = *ppos,
1018 		.u.file = out,
1019 	};
1020 	ssize_t ret;
1021 
1022 	pipe_lock(pipe);
1023 
1024 	splice_from_pipe_begin(&sd);
1025 	do {
1026 		ret = splice_from_pipe_next(pipe, &sd);
1027 		if (ret <= 0)
1028 			break;
1029 
1030 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1031 		ret = file_remove_suid(out);
1032 		if (!ret) {
1033 			ret = file_update_time(out);
1034 			if (!ret)
1035 				ret = splice_from_pipe_feed(pipe, &sd,
1036 							    pipe_to_file);
1037 		}
1038 		mutex_unlock(&inode->i_mutex);
1039 	} while (ret > 0);
1040 	splice_from_pipe_end(pipe, &sd);
1041 
1042 	pipe_unlock(pipe);
1043 
1044 	if (sd.num_spliced)
1045 		ret = sd.num_spliced;
1046 
1047 	if (ret > 0) {
1048 		int err;
1049 
1050 		err = generic_write_sync(out, *ppos, ret);
1051 		if (err)
1052 			ret = err;
1053 		else
1054 			*ppos += ret;
1055 		balance_dirty_pages_ratelimited(mapping);
1056 	}
1057 
1058 	return ret;
1059 }
1060 
1061 EXPORT_SYMBOL(generic_file_splice_write);
1062 
1063 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1064 			  struct splice_desc *sd)
1065 {
1066 	int ret;
1067 	void *data;
1068 	loff_t tmp = sd->pos;
1069 
1070 	data = buf->ops->map(pipe, buf, 0);
1071 	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1072 	buf->ops->unmap(pipe, buf, data);
1073 
1074 	return ret;
1075 }
1076 
1077 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1078 					 struct file *out, loff_t *ppos,
1079 					 size_t len, unsigned int flags)
1080 {
1081 	ssize_t ret;
1082 
1083 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1084 	if (ret > 0)
1085 		*ppos += ret;
1086 
1087 	return ret;
1088 }
1089 
1090 /**
1091  * generic_splice_sendpage - splice data from a pipe to a socket
1092  * @pipe:	pipe to splice from
1093  * @out:	socket to write to
1094  * @ppos:	position in @out
1095  * @len:	number of bytes to splice
1096  * @flags:	splice modifier flags
1097  *
1098  * Description:
1099  *    Will send @len bytes from the pipe to a network socket. No data copying
1100  *    is involved.
1101  *
1102  */
1103 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1104 				loff_t *ppos, size_t len, unsigned int flags)
1105 {
1106 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1107 }
1108 
1109 EXPORT_SYMBOL(generic_splice_sendpage);
1110 
1111 /*
1112  * Attempt to initiate a splice from pipe to file.
1113  */
1114 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1115 			   loff_t *ppos, size_t len, unsigned int flags)
1116 {
1117 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1118 				loff_t *, size_t, unsigned int);
1119 
1120 	if (out->f_op->splice_write)
1121 		splice_write = out->f_op->splice_write;
1122 	else
1123 		splice_write = default_file_splice_write;
1124 
1125 	return splice_write(pipe, out, ppos, len, flags);
1126 }
1127 
1128 /*
1129  * Attempt to initiate a splice from a file to a pipe.
1130  */
1131 static long do_splice_to(struct file *in, loff_t *ppos,
1132 			 struct pipe_inode_info *pipe, size_t len,
1133 			 unsigned int flags)
1134 {
1135 	ssize_t (*splice_read)(struct file *, loff_t *,
1136 			       struct pipe_inode_info *, size_t, unsigned int);
1137 	int ret;
1138 
1139 	if (unlikely(!(in->f_mode & FMODE_READ)))
1140 		return -EBADF;
1141 
1142 	ret = rw_verify_area(READ, in, ppos, len);
1143 	if (unlikely(ret < 0))
1144 		return ret;
1145 
1146 	if (in->f_op->splice_read)
1147 		splice_read = in->f_op->splice_read;
1148 	else
1149 		splice_read = default_file_splice_read;
1150 
1151 	return splice_read(in, ppos, pipe, len, flags);
1152 }
1153 
1154 /**
1155  * splice_direct_to_actor - splices data directly between two non-pipes
1156  * @in:		file to splice from
1157  * @sd:		actor information on where to splice to
1158  * @actor:	handles the data splicing
1159  *
1160  * Description:
1161  *    This is a special case helper to splice directly between two
1162  *    points, without requiring an explicit pipe. Internally an allocated
1163  *    pipe is cached in the process, and reused during the lifetime of
1164  *    that process.
1165  *
1166  */
1167 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1168 			       splice_direct_actor *actor)
1169 {
1170 	struct pipe_inode_info *pipe;
1171 	long ret, bytes;
1172 	umode_t i_mode;
1173 	size_t len;
1174 	int i, flags;
1175 
1176 	/*
1177 	 * We require the input being a regular file, as we don't want to
1178 	 * randomly drop data for eg socket -> socket splicing. Use the
1179 	 * piped splicing for that!
1180 	 */
1181 	i_mode = file_inode(in)->i_mode;
1182 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1183 		return -EINVAL;
1184 
1185 	/*
1186 	 * neither in nor out is a pipe, setup an internal pipe attached to
1187 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1188 	 */
1189 	pipe = current->splice_pipe;
1190 	if (unlikely(!pipe)) {
1191 		pipe = alloc_pipe_info();
1192 		if (!pipe)
1193 			return -ENOMEM;
1194 
1195 		/*
1196 		 * We don't have an immediate reader, but we'll read the stuff
1197 		 * out of the pipe right after the splice_to_pipe(). So set
1198 		 * PIPE_READERS appropriately.
1199 		 */
1200 		pipe->readers = 1;
1201 
1202 		current->splice_pipe = pipe;
1203 	}
1204 
1205 	/*
1206 	 * Do the splice.
1207 	 */
1208 	ret = 0;
1209 	bytes = 0;
1210 	len = sd->total_len;
1211 	flags = sd->flags;
1212 
1213 	/*
1214 	 * Don't block on output, we have to drain the direct pipe.
1215 	 */
1216 	sd->flags &= ~SPLICE_F_NONBLOCK;
1217 
1218 	while (len) {
1219 		size_t read_len;
1220 		loff_t pos = sd->pos, prev_pos = pos;
1221 
1222 		ret = do_splice_to(in, &pos, pipe, len, flags);
1223 		if (unlikely(ret <= 0))
1224 			goto out_release;
1225 
1226 		read_len = ret;
1227 		sd->total_len = read_len;
1228 
1229 		/*
1230 		 * NOTE: nonblocking mode only applies to the input. We
1231 		 * must not do the output in nonblocking mode as then we
1232 		 * could get stuck data in the internal pipe:
1233 		 */
1234 		ret = actor(pipe, sd);
1235 		if (unlikely(ret <= 0)) {
1236 			sd->pos = prev_pos;
1237 			goto out_release;
1238 		}
1239 
1240 		bytes += ret;
1241 		len -= ret;
1242 		sd->pos = pos;
1243 
1244 		if (ret < read_len) {
1245 			sd->pos = prev_pos + ret;
1246 			goto out_release;
1247 		}
1248 	}
1249 
1250 done:
1251 	pipe->nrbufs = pipe->curbuf = 0;
1252 	file_accessed(in);
1253 	return bytes;
1254 
1255 out_release:
1256 	/*
1257 	 * If we did an incomplete transfer we must release
1258 	 * the pipe buffers in question:
1259 	 */
1260 	for (i = 0; i < pipe->buffers; i++) {
1261 		struct pipe_buffer *buf = pipe->bufs + i;
1262 
1263 		if (buf->ops) {
1264 			buf->ops->release(pipe, buf);
1265 			buf->ops = NULL;
1266 		}
1267 	}
1268 
1269 	if (!bytes)
1270 		bytes = ret;
1271 
1272 	goto done;
1273 }
1274 EXPORT_SYMBOL(splice_direct_to_actor);
1275 
1276 static int direct_splice_actor(struct pipe_inode_info *pipe,
1277 			       struct splice_desc *sd)
1278 {
1279 	struct file *file = sd->u.file;
1280 
1281 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1282 			      sd->flags);
1283 }
1284 
1285 /**
1286  * do_splice_direct - splices data directly between two files
1287  * @in:		file to splice from
1288  * @ppos:	input file offset
1289  * @out:	file to splice to
1290  * @opos:	output file offset
1291  * @len:	number of bytes to splice
1292  * @flags:	splice modifier flags
1293  *
1294  * Description:
1295  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1296  *    doing it in the application would incur an extra system call
1297  *    (splice in + splice out, as compared to just sendfile()). So this helper
1298  *    can splice directly through a process-private pipe.
1299  *
1300  */
1301 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1302 		      loff_t *opos, size_t len, unsigned int flags)
1303 {
1304 	struct splice_desc sd = {
1305 		.len		= len,
1306 		.total_len	= len,
1307 		.flags		= flags,
1308 		.pos		= *ppos,
1309 		.u.file		= out,
1310 		.opos		= opos,
1311 	};
1312 	long ret;
1313 
1314 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1315 		return -EBADF;
1316 
1317 	if (unlikely(out->f_flags & O_APPEND))
1318 		return -EINVAL;
1319 
1320 	ret = rw_verify_area(WRITE, out, opos, len);
1321 	if (unlikely(ret < 0))
1322 		return ret;
1323 
1324 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1325 	if (ret > 0)
1326 		*ppos = sd.pos;
1327 
1328 	return ret;
1329 }
1330 
1331 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1332 			       struct pipe_inode_info *opipe,
1333 			       size_t len, unsigned int flags);
1334 
1335 /*
1336  * Determine where to splice to/from.
1337  */
1338 static long do_splice(struct file *in, loff_t __user *off_in,
1339 		      struct file *out, loff_t __user *off_out,
1340 		      size_t len, unsigned int flags)
1341 {
1342 	struct pipe_inode_info *ipipe;
1343 	struct pipe_inode_info *opipe;
1344 	loff_t offset;
1345 	long ret;
1346 
1347 	ipipe = get_pipe_info(in);
1348 	opipe = get_pipe_info(out);
1349 
1350 	if (ipipe && opipe) {
1351 		if (off_in || off_out)
1352 			return -ESPIPE;
1353 
1354 		if (!(in->f_mode & FMODE_READ))
1355 			return -EBADF;
1356 
1357 		if (!(out->f_mode & FMODE_WRITE))
1358 			return -EBADF;
1359 
1360 		/* Splicing to self would be fun, but... */
1361 		if (ipipe == opipe)
1362 			return -EINVAL;
1363 
1364 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1365 	}
1366 
1367 	if (ipipe) {
1368 		if (off_in)
1369 			return -ESPIPE;
1370 		if (off_out) {
1371 			if (!(out->f_mode & FMODE_PWRITE))
1372 				return -EINVAL;
1373 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1374 				return -EFAULT;
1375 		} else {
1376 			offset = out->f_pos;
1377 		}
1378 
1379 		if (unlikely(!(out->f_mode & FMODE_WRITE)))
1380 			return -EBADF;
1381 
1382 		if (unlikely(out->f_flags & O_APPEND))
1383 			return -EINVAL;
1384 
1385 		ret = rw_verify_area(WRITE, out, &offset, len);
1386 		if (unlikely(ret < 0))
1387 			return ret;
1388 
1389 		file_start_write(out);
1390 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1391 		file_end_write(out);
1392 
1393 		if (!off_out)
1394 			out->f_pos = offset;
1395 		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1396 			ret = -EFAULT;
1397 
1398 		return ret;
1399 	}
1400 
1401 	if (opipe) {
1402 		if (off_out)
1403 			return -ESPIPE;
1404 		if (off_in) {
1405 			if (!(in->f_mode & FMODE_PREAD))
1406 				return -EINVAL;
1407 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1408 				return -EFAULT;
1409 		} else {
1410 			offset = in->f_pos;
1411 		}
1412 
1413 		ret = do_splice_to(in, &offset, opipe, len, flags);
1414 
1415 		if (!off_in)
1416 			in->f_pos = offset;
1417 		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1418 			ret = -EFAULT;
1419 
1420 		return ret;
1421 	}
1422 
1423 	return -EINVAL;
1424 }
1425 
1426 /*
1427  * Map an iov into an array of pages and offset/length tupples. With the
1428  * partial_page structure, we can map several non-contiguous ranges into
1429  * our ones pages[] map instead of splitting that operation into pieces.
1430  * Could easily be exported as a generic helper for other users, in which
1431  * case one would probably want to add a 'max_nr_pages' parameter as well.
1432  */
1433 static int get_iovec_page_array(const struct iovec __user *iov,
1434 				unsigned int nr_vecs, struct page **pages,
1435 				struct partial_page *partial, bool aligned,
1436 				unsigned int pipe_buffers)
1437 {
1438 	int buffers = 0, error = 0;
1439 
1440 	while (nr_vecs) {
1441 		unsigned long off, npages;
1442 		struct iovec entry;
1443 		void __user *base;
1444 		size_t len;
1445 		int i;
1446 
1447 		error = -EFAULT;
1448 		if (copy_from_user(&entry, iov, sizeof(entry)))
1449 			break;
1450 
1451 		base = entry.iov_base;
1452 		len = entry.iov_len;
1453 
1454 		/*
1455 		 * Sanity check this iovec. 0 read succeeds.
1456 		 */
1457 		error = 0;
1458 		if (unlikely(!len))
1459 			break;
1460 		error = -EFAULT;
1461 		if (!access_ok(VERIFY_READ, base, len))
1462 			break;
1463 
1464 		/*
1465 		 * Get this base offset and number of pages, then map
1466 		 * in the user pages.
1467 		 */
1468 		off = (unsigned long) base & ~PAGE_MASK;
1469 
1470 		/*
1471 		 * If asked for alignment, the offset must be zero and the
1472 		 * length a multiple of the PAGE_SIZE.
1473 		 */
1474 		error = -EINVAL;
1475 		if (aligned && (off || len & ~PAGE_MASK))
1476 			break;
1477 
1478 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1479 		if (npages > pipe_buffers - buffers)
1480 			npages = pipe_buffers - buffers;
1481 
1482 		error = get_user_pages_fast((unsigned long)base, npages,
1483 					0, &pages[buffers]);
1484 
1485 		if (unlikely(error <= 0))
1486 			break;
1487 
1488 		/*
1489 		 * Fill this contiguous range into the partial page map.
1490 		 */
1491 		for (i = 0; i < error; i++) {
1492 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1493 
1494 			partial[buffers].offset = off;
1495 			partial[buffers].len = plen;
1496 
1497 			off = 0;
1498 			len -= plen;
1499 			buffers++;
1500 		}
1501 
1502 		/*
1503 		 * We didn't complete this iov, stop here since it probably
1504 		 * means we have to move some of this into a pipe to
1505 		 * be able to continue.
1506 		 */
1507 		if (len)
1508 			break;
1509 
1510 		/*
1511 		 * Don't continue if we mapped fewer pages than we asked for,
1512 		 * or if we mapped the max number of pages that we have
1513 		 * room for.
1514 		 */
1515 		if (error < npages || buffers == pipe_buffers)
1516 			break;
1517 
1518 		nr_vecs--;
1519 		iov++;
1520 	}
1521 
1522 	if (buffers)
1523 		return buffers;
1524 
1525 	return error;
1526 }
1527 
1528 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1529 			struct splice_desc *sd)
1530 {
1531 	char *src;
1532 	int ret;
1533 
1534 	/*
1535 	 * See if we can use the atomic maps, by prefaulting in the
1536 	 * pages and doing an atomic copy
1537 	 */
1538 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1539 		src = buf->ops->map(pipe, buf, 1);
1540 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1541 							sd->len);
1542 		buf->ops->unmap(pipe, buf, src);
1543 		if (!ret) {
1544 			ret = sd->len;
1545 			goto out;
1546 		}
1547 	}
1548 
1549 	/*
1550 	 * No dice, use slow non-atomic map and copy
1551  	 */
1552 	src = buf->ops->map(pipe, buf, 0);
1553 
1554 	ret = sd->len;
1555 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1556 		ret = -EFAULT;
1557 
1558 	buf->ops->unmap(pipe, buf, src);
1559 out:
1560 	if (ret > 0)
1561 		sd->u.userptr += ret;
1562 	return ret;
1563 }
1564 
1565 /*
1566  * For lack of a better implementation, implement vmsplice() to userspace
1567  * as a simple copy of the pipes pages to the user iov.
1568  */
1569 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1570 			     unsigned long nr_segs, unsigned int flags)
1571 {
1572 	struct pipe_inode_info *pipe;
1573 	struct splice_desc sd;
1574 	ssize_t size;
1575 	int error;
1576 	long ret;
1577 
1578 	pipe = get_pipe_info(file);
1579 	if (!pipe)
1580 		return -EBADF;
1581 
1582 	pipe_lock(pipe);
1583 
1584 	error = ret = 0;
1585 	while (nr_segs) {
1586 		void __user *base;
1587 		size_t len;
1588 
1589 		/*
1590 		 * Get user address base and length for this iovec.
1591 		 */
1592 		error = get_user(base, &iov->iov_base);
1593 		if (unlikely(error))
1594 			break;
1595 		error = get_user(len, &iov->iov_len);
1596 		if (unlikely(error))
1597 			break;
1598 
1599 		/*
1600 		 * Sanity check this iovec. 0 read succeeds.
1601 		 */
1602 		if (unlikely(!len))
1603 			break;
1604 		if (unlikely(!base)) {
1605 			error = -EFAULT;
1606 			break;
1607 		}
1608 
1609 		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1610 			error = -EFAULT;
1611 			break;
1612 		}
1613 
1614 		sd.len = 0;
1615 		sd.total_len = len;
1616 		sd.flags = flags;
1617 		sd.u.userptr = base;
1618 		sd.pos = 0;
1619 
1620 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1621 		if (size < 0) {
1622 			if (!ret)
1623 				ret = size;
1624 
1625 			break;
1626 		}
1627 
1628 		ret += size;
1629 
1630 		if (size < len)
1631 			break;
1632 
1633 		nr_segs--;
1634 		iov++;
1635 	}
1636 
1637 	pipe_unlock(pipe);
1638 
1639 	if (!ret)
1640 		ret = error;
1641 
1642 	return ret;
1643 }
1644 
1645 /*
1646  * vmsplice splices a user address range into a pipe. It can be thought of
1647  * as splice-from-memory, where the regular splice is splice-from-file (or
1648  * to file). In both cases the output is a pipe, naturally.
1649  */
1650 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1651 			     unsigned long nr_segs, unsigned int flags)
1652 {
1653 	struct pipe_inode_info *pipe;
1654 	struct page *pages[PIPE_DEF_BUFFERS];
1655 	struct partial_page partial[PIPE_DEF_BUFFERS];
1656 	struct splice_pipe_desc spd = {
1657 		.pages = pages,
1658 		.partial = partial,
1659 		.nr_pages_max = PIPE_DEF_BUFFERS,
1660 		.flags = flags,
1661 		.ops = &user_page_pipe_buf_ops,
1662 		.spd_release = spd_release_page,
1663 	};
1664 	long ret;
1665 
1666 	pipe = get_pipe_info(file);
1667 	if (!pipe)
1668 		return -EBADF;
1669 
1670 	if (splice_grow_spd(pipe, &spd))
1671 		return -ENOMEM;
1672 
1673 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1674 					    spd.partial, false,
1675 					    spd.nr_pages_max);
1676 	if (spd.nr_pages <= 0)
1677 		ret = spd.nr_pages;
1678 	else
1679 		ret = splice_to_pipe(pipe, &spd);
1680 
1681 	splice_shrink_spd(&spd);
1682 	return ret;
1683 }
1684 
1685 /*
1686  * Note that vmsplice only really supports true splicing _from_ user memory
1687  * to a pipe, not the other way around. Splicing from user memory is a simple
1688  * operation that can be supported without any funky alignment restrictions
1689  * or nasty vm tricks. We simply map in the user memory and fill them into
1690  * a pipe. The reverse isn't quite as easy, though. There are two possible
1691  * solutions for that:
1692  *
1693  *	- memcpy() the data internally, at which point we might as well just
1694  *	  do a regular read() on the buffer anyway.
1695  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1696  *	  has restriction limitations on both ends of the pipe).
1697  *
1698  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1699  *
1700  */
1701 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1702 		unsigned long, nr_segs, unsigned int, flags)
1703 {
1704 	struct fd f;
1705 	long error;
1706 
1707 	if (unlikely(nr_segs > UIO_MAXIOV))
1708 		return -EINVAL;
1709 	else if (unlikely(!nr_segs))
1710 		return 0;
1711 
1712 	error = -EBADF;
1713 	f = fdget(fd);
1714 	if (f.file) {
1715 		if (f.file->f_mode & FMODE_WRITE)
1716 			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1717 		else if (f.file->f_mode & FMODE_READ)
1718 			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1719 
1720 		fdput(f);
1721 	}
1722 
1723 	return error;
1724 }
1725 
1726 #ifdef CONFIG_COMPAT
1727 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1728 		    unsigned int, nr_segs, unsigned int, flags)
1729 {
1730 	unsigned i;
1731 	struct iovec __user *iov;
1732 	if (nr_segs > UIO_MAXIOV)
1733 		return -EINVAL;
1734 	iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1735 	for (i = 0; i < nr_segs; i++) {
1736 		struct compat_iovec v;
1737 		if (get_user(v.iov_base, &iov32[i].iov_base) ||
1738 		    get_user(v.iov_len, &iov32[i].iov_len) ||
1739 		    put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1740 		    put_user(v.iov_len, &iov[i].iov_len))
1741 			return -EFAULT;
1742 	}
1743 	return sys_vmsplice(fd, iov, nr_segs, flags);
1744 }
1745 #endif
1746 
1747 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1748 		int, fd_out, loff_t __user *, off_out,
1749 		size_t, len, unsigned int, flags)
1750 {
1751 	struct fd in, out;
1752 	long error;
1753 
1754 	if (unlikely(!len))
1755 		return 0;
1756 
1757 	error = -EBADF;
1758 	in = fdget(fd_in);
1759 	if (in.file) {
1760 		if (in.file->f_mode & FMODE_READ) {
1761 			out = fdget(fd_out);
1762 			if (out.file) {
1763 				if (out.file->f_mode & FMODE_WRITE)
1764 					error = do_splice(in.file, off_in,
1765 							  out.file, off_out,
1766 							  len, flags);
1767 				fdput(out);
1768 			}
1769 		}
1770 		fdput(in);
1771 	}
1772 	return error;
1773 }
1774 
1775 /*
1776  * Make sure there's data to read. Wait for input if we can, otherwise
1777  * return an appropriate error.
1778  */
1779 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1780 {
1781 	int ret;
1782 
1783 	/*
1784 	 * Check ->nrbufs without the inode lock first. This function
1785 	 * is speculative anyways, so missing one is ok.
1786 	 */
1787 	if (pipe->nrbufs)
1788 		return 0;
1789 
1790 	ret = 0;
1791 	pipe_lock(pipe);
1792 
1793 	while (!pipe->nrbufs) {
1794 		if (signal_pending(current)) {
1795 			ret = -ERESTARTSYS;
1796 			break;
1797 		}
1798 		if (!pipe->writers)
1799 			break;
1800 		if (!pipe->waiting_writers) {
1801 			if (flags & SPLICE_F_NONBLOCK) {
1802 				ret = -EAGAIN;
1803 				break;
1804 			}
1805 		}
1806 		pipe_wait(pipe);
1807 	}
1808 
1809 	pipe_unlock(pipe);
1810 	return ret;
1811 }
1812 
1813 /*
1814  * Make sure there's writeable room. Wait for room if we can, otherwise
1815  * return an appropriate error.
1816  */
1817 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1818 {
1819 	int ret;
1820 
1821 	/*
1822 	 * Check ->nrbufs without the inode lock first. This function
1823 	 * is speculative anyways, so missing one is ok.
1824 	 */
1825 	if (pipe->nrbufs < pipe->buffers)
1826 		return 0;
1827 
1828 	ret = 0;
1829 	pipe_lock(pipe);
1830 
1831 	while (pipe->nrbufs >= pipe->buffers) {
1832 		if (!pipe->readers) {
1833 			send_sig(SIGPIPE, current, 0);
1834 			ret = -EPIPE;
1835 			break;
1836 		}
1837 		if (flags & SPLICE_F_NONBLOCK) {
1838 			ret = -EAGAIN;
1839 			break;
1840 		}
1841 		if (signal_pending(current)) {
1842 			ret = -ERESTARTSYS;
1843 			break;
1844 		}
1845 		pipe->waiting_writers++;
1846 		pipe_wait(pipe);
1847 		pipe->waiting_writers--;
1848 	}
1849 
1850 	pipe_unlock(pipe);
1851 	return ret;
1852 }
1853 
1854 /*
1855  * Splice contents of ipipe to opipe.
1856  */
1857 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1858 			       struct pipe_inode_info *opipe,
1859 			       size_t len, unsigned int flags)
1860 {
1861 	struct pipe_buffer *ibuf, *obuf;
1862 	int ret = 0, nbuf;
1863 	bool input_wakeup = false;
1864 
1865 
1866 retry:
1867 	ret = ipipe_prep(ipipe, flags);
1868 	if (ret)
1869 		return ret;
1870 
1871 	ret = opipe_prep(opipe, flags);
1872 	if (ret)
1873 		return ret;
1874 
1875 	/*
1876 	 * Potential ABBA deadlock, work around it by ordering lock
1877 	 * grabbing by pipe info address. Otherwise two different processes
1878 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1879 	 */
1880 	pipe_double_lock(ipipe, opipe);
1881 
1882 	do {
1883 		if (!opipe->readers) {
1884 			send_sig(SIGPIPE, current, 0);
1885 			if (!ret)
1886 				ret = -EPIPE;
1887 			break;
1888 		}
1889 
1890 		if (!ipipe->nrbufs && !ipipe->writers)
1891 			break;
1892 
1893 		/*
1894 		 * Cannot make any progress, because either the input
1895 		 * pipe is empty or the output pipe is full.
1896 		 */
1897 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1898 			/* Already processed some buffers, break */
1899 			if (ret)
1900 				break;
1901 
1902 			if (flags & SPLICE_F_NONBLOCK) {
1903 				ret = -EAGAIN;
1904 				break;
1905 			}
1906 
1907 			/*
1908 			 * We raced with another reader/writer and haven't
1909 			 * managed to process any buffers.  A zero return
1910 			 * value means EOF, so retry instead.
1911 			 */
1912 			pipe_unlock(ipipe);
1913 			pipe_unlock(opipe);
1914 			goto retry;
1915 		}
1916 
1917 		ibuf = ipipe->bufs + ipipe->curbuf;
1918 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1919 		obuf = opipe->bufs + nbuf;
1920 
1921 		if (len >= ibuf->len) {
1922 			/*
1923 			 * Simply move the whole buffer from ipipe to opipe
1924 			 */
1925 			*obuf = *ibuf;
1926 			ibuf->ops = NULL;
1927 			opipe->nrbufs++;
1928 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1929 			ipipe->nrbufs--;
1930 			input_wakeup = true;
1931 		} else {
1932 			/*
1933 			 * Get a reference to this pipe buffer,
1934 			 * so we can copy the contents over.
1935 			 */
1936 			ibuf->ops->get(ipipe, ibuf);
1937 			*obuf = *ibuf;
1938 
1939 			/*
1940 			 * Don't inherit the gift flag, we need to
1941 			 * prevent multiple steals of this page.
1942 			 */
1943 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1944 
1945 			obuf->len = len;
1946 			opipe->nrbufs++;
1947 			ibuf->offset += obuf->len;
1948 			ibuf->len -= obuf->len;
1949 		}
1950 		ret += obuf->len;
1951 		len -= obuf->len;
1952 	} while (len);
1953 
1954 	pipe_unlock(ipipe);
1955 	pipe_unlock(opipe);
1956 
1957 	/*
1958 	 * If we put data in the output pipe, wakeup any potential readers.
1959 	 */
1960 	if (ret > 0)
1961 		wakeup_pipe_readers(opipe);
1962 
1963 	if (input_wakeup)
1964 		wakeup_pipe_writers(ipipe);
1965 
1966 	return ret;
1967 }
1968 
1969 /*
1970  * Link contents of ipipe to opipe.
1971  */
1972 static int link_pipe(struct pipe_inode_info *ipipe,
1973 		     struct pipe_inode_info *opipe,
1974 		     size_t len, unsigned int flags)
1975 {
1976 	struct pipe_buffer *ibuf, *obuf;
1977 	int ret = 0, i = 0, nbuf;
1978 
1979 	/*
1980 	 * Potential ABBA deadlock, work around it by ordering lock
1981 	 * grabbing by pipe info address. Otherwise two different processes
1982 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1983 	 */
1984 	pipe_double_lock(ipipe, opipe);
1985 
1986 	do {
1987 		if (!opipe->readers) {
1988 			send_sig(SIGPIPE, current, 0);
1989 			if (!ret)
1990 				ret = -EPIPE;
1991 			break;
1992 		}
1993 
1994 		/*
1995 		 * If we have iterated all input buffers or ran out of
1996 		 * output room, break.
1997 		 */
1998 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1999 			break;
2000 
2001 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
2002 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
2003 
2004 		/*
2005 		 * Get a reference to this pipe buffer,
2006 		 * so we can copy the contents over.
2007 		 */
2008 		ibuf->ops->get(ipipe, ibuf);
2009 
2010 		obuf = opipe->bufs + nbuf;
2011 		*obuf = *ibuf;
2012 
2013 		/*
2014 		 * Don't inherit the gift flag, we need to
2015 		 * prevent multiple steals of this page.
2016 		 */
2017 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
2018 
2019 		if (obuf->len > len)
2020 			obuf->len = len;
2021 
2022 		opipe->nrbufs++;
2023 		ret += obuf->len;
2024 		len -= obuf->len;
2025 		i++;
2026 	} while (len);
2027 
2028 	/*
2029 	 * return EAGAIN if we have the potential of some data in the
2030 	 * future, otherwise just return 0
2031 	 */
2032 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
2033 		ret = -EAGAIN;
2034 
2035 	pipe_unlock(ipipe);
2036 	pipe_unlock(opipe);
2037 
2038 	/*
2039 	 * If we put data in the output pipe, wakeup any potential readers.
2040 	 */
2041 	if (ret > 0)
2042 		wakeup_pipe_readers(opipe);
2043 
2044 	return ret;
2045 }
2046 
2047 /*
2048  * This is a tee(1) implementation that works on pipes. It doesn't copy
2049  * any data, it simply references the 'in' pages on the 'out' pipe.
2050  * The 'flags' used are the SPLICE_F_* variants, currently the only
2051  * applicable one is SPLICE_F_NONBLOCK.
2052  */
2053 static long do_tee(struct file *in, struct file *out, size_t len,
2054 		   unsigned int flags)
2055 {
2056 	struct pipe_inode_info *ipipe = get_pipe_info(in);
2057 	struct pipe_inode_info *opipe = get_pipe_info(out);
2058 	int ret = -EINVAL;
2059 
2060 	/*
2061 	 * Duplicate the contents of ipipe to opipe without actually
2062 	 * copying the data.
2063 	 */
2064 	if (ipipe && opipe && ipipe != opipe) {
2065 		/*
2066 		 * Keep going, unless we encounter an error. The ipipe/opipe
2067 		 * ordering doesn't really matter.
2068 		 */
2069 		ret = ipipe_prep(ipipe, flags);
2070 		if (!ret) {
2071 			ret = opipe_prep(opipe, flags);
2072 			if (!ret)
2073 				ret = link_pipe(ipipe, opipe, len, flags);
2074 		}
2075 	}
2076 
2077 	return ret;
2078 }
2079 
2080 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2081 {
2082 	struct fd in;
2083 	int error;
2084 
2085 	if (unlikely(!len))
2086 		return 0;
2087 
2088 	error = -EBADF;
2089 	in = fdget(fdin);
2090 	if (in.file) {
2091 		if (in.file->f_mode & FMODE_READ) {
2092 			struct fd out = fdget(fdout);
2093 			if (out.file) {
2094 				if (out.file->f_mode & FMODE_WRITE)
2095 					error = do_tee(in.file, out.file,
2096 							len, flags);
2097 				fdput(out);
2098 			}
2099 		}
2100  		fdput(in);
2101  	}
2102 
2103 	return error;
2104 }
2105