1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/export.h> 29 #include <linux/syscalls.h> 30 #include <linux/uio.h> 31 #include <linux/security.h> 32 #include <linux/gfp.h> 33 #include <linux/socket.h> 34 #include <linux/compat.h> 35 #include "internal.h" 36 37 /* 38 * Attempt to steal a page from a pipe buffer. This should perhaps go into 39 * a vm helper function, it's already simplified quite a bit by the 40 * addition of remove_mapping(). If success is returned, the caller may 41 * attempt to reuse this page for another destination. 42 */ 43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 44 struct pipe_buffer *buf) 45 { 46 struct page *page = buf->page; 47 struct address_space *mapping; 48 49 lock_page(page); 50 51 mapping = page_mapping(page); 52 if (mapping) { 53 WARN_ON(!PageUptodate(page)); 54 55 /* 56 * At least for ext2 with nobh option, we need to wait on 57 * writeback completing on this page, since we'll remove it 58 * from the pagecache. Otherwise truncate wont wait on the 59 * page, allowing the disk blocks to be reused by someone else 60 * before we actually wrote our data to them. fs corruption 61 * ensues. 62 */ 63 wait_on_page_writeback(page); 64 65 if (page_has_private(page) && 66 !try_to_release_page(page, GFP_KERNEL)) 67 goto out_unlock; 68 69 /* 70 * If we succeeded in removing the mapping, set LRU flag 71 * and return good. 72 */ 73 if (remove_mapping(mapping, page)) { 74 buf->flags |= PIPE_BUF_FLAG_LRU; 75 return 0; 76 } 77 } 78 79 /* 80 * Raced with truncate or failed to remove page from current 81 * address space, unlock and return failure. 82 */ 83 out_unlock: 84 unlock_page(page); 85 return 1; 86 } 87 88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 89 struct pipe_buffer *buf) 90 { 91 page_cache_release(buf->page); 92 buf->flags &= ~PIPE_BUF_FLAG_LRU; 93 } 94 95 /* 96 * Check whether the contents of buf is OK to access. Since the content 97 * is a page cache page, IO may be in flight. 98 */ 99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 100 struct pipe_buffer *buf) 101 { 102 struct page *page = buf->page; 103 int err; 104 105 if (!PageUptodate(page)) { 106 lock_page(page); 107 108 /* 109 * Page got truncated/unhashed. This will cause a 0-byte 110 * splice, if this is the first page. 111 */ 112 if (!page->mapping) { 113 err = -ENODATA; 114 goto error; 115 } 116 117 /* 118 * Uh oh, read-error from disk. 119 */ 120 if (!PageUptodate(page)) { 121 err = -EIO; 122 goto error; 123 } 124 125 /* 126 * Page is ok afterall, we are done. 127 */ 128 unlock_page(page); 129 } 130 131 return 0; 132 error: 133 unlock_page(page); 134 return err; 135 } 136 137 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 138 .can_merge = 0, 139 .confirm = page_cache_pipe_buf_confirm, 140 .release = page_cache_pipe_buf_release, 141 .steal = page_cache_pipe_buf_steal, 142 .get = generic_pipe_buf_get, 143 }; 144 145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 146 struct pipe_buffer *buf) 147 { 148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 149 return 1; 150 151 buf->flags |= PIPE_BUF_FLAG_LRU; 152 return generic_pipe_buf_steal(pipe, buf); 153 } 154 155 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 156 .can_merge = 0, 157 .confirm = generic_pipe_buf_confirm, 158 .release = page_cache_pipe_buf_release, 159 .steal = user_page_pipe_buf_steal, 160 .get = generic_pipe_buf_get, 161 }; 162 163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 164 { 165 smp_mb(); 166 if (waitqueue_active(&pipe->wait)) 167 wake_up_interruptible(&pipe->wait); 168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 169 } 170 171 /** 172 * splice_to_pipe - fill passed data into a pipe 173 * @pipe: pipe to fill 174 * @spd: data to fill 175 * 176 * Description: 177 * @spd contains a map of pages and len/offset tuples, along with 178 * the struct pipe_buf_operations associated with these pages. This 179 * function will link that data to the pipe. 180 * 181 */ 182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 183 struct splice_pipe_desc *spd) 184 { 185 unsigned int spd_pages = spd->nr_pages; 186 int ret, do_wakeup, page_nr; 187 188 ret = 0; 189 do_wakeup = 0; 190 page_nr = 0; 191 192 pipe_lock(pipe); 193 194 for (;;) { 195 if (!pipe->readers) { 196 send_sig(SIGPIPE, current, 0); 197 if (!ret) 198 ret = -EPIPE; 199 break; 200 } 201 202 if (pipe->nrbufs < pipe->buffers) { 203 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 204 struct pipe_buffer *buf = pipe->bufs + newbuf; 205 206 buf->page = spd->pages[page_nr]; 207 buf->offset = spd->partial[page_nr].offset; 208 buf->len = spd->partial[page_nr].len; 209 buf->private = spd->partial[page_nr].private; 210 buf->ops = spd->ops; 211 if (spd->flags & SPLICE_F_GIFT) 212 buf->flags |= PIPE_BUF_FLAG_GIFT; 213 214 pipe->nrbufs++; 215 page_nr++; 216 ret += buf->len; 217 218 if (pipe->files) 219 do_wakeup = 1; 220 221 if (!--spd->nr_pages) 222 break; 223 if (pipe->nrbufs < pipe->buffers) 224 continue; 225 226 break; 227 } 228 229 if (spd->flags & SPLICE_F_NONBLOCK) { 230 if (!ret) 231 ret = -EAGAIN; 232 break; 233 } 234 235 if (signal_pending(current)) { 236 if (!ret) 237 ret = -ERESTARTSYS; 238 break; 239 } 240 241 if (do_wakeup) { 242 smp_mb(); 243 if (waitqueue_active(&pipe->wait)) 244 wake_up_interruptible_sync(&pipe->wait); 245 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 246 do_wakeup = 0; 247 } 248 249 pipe->waiting_writers++; 250 pipe_wait(pipe); 251 pipe->waiting_writers--; 252 } 253 254 pipe_unlock(pipe); 255 256 if (do_wakeup) 257 wakeup_pipe_readers(pipe); 258 259 while (page_nr < spd_pages) 260 spd->spd_release(spd, page_nr++); 261 262 return ret; 263 } 264 EXPORT_SYMBOL_GPL(splice_to_pipe); 265 266 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 267 { 268 page_cache_release(spd->pages[i]); 269 } 270 271 /* 272 * Check if we need to grow the arrays holding pages and partial page 273 * descriptions. 274 */ 275 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 276 { 277 unsigned int buffers = ACCESS_ONCE(pipe->buffers); 278 279 spd->nr_pages_max = buffers; 280 if (buffers <= PIPE_DEF_BUFFERS) 281 return 0; 282 283 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL); 284 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL); 285 286 if (spd->pages && spd->partial) 287 return 0; 288 289 kfree(spd->pages); 290 kfree(spd->partial); 291 return -ENOMEM; 292 } 293 294 void splice_shrink_spd(struct splice_pipe_desc *spd) 295 { 296 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 297 return; 298 299 kfree(spd->pages); 300 kfree(spd->partial); 301 } 302 303 static int 304 __generic_file_splice_read(struct file *in, loff_t *ppos, 305 struct pipe_inode_info *pipe, size_t len, 306 unsigned int flags) 307 { 308 struct address_space *mapping = in->f_mapping; 309 unsigned int loff, nr_pages, req_pages; 310 struct page *pages[PIPE_DEF_BUFFERS]; 311 struct partial_page partial[PIPE_DEF_BUFFERS]; 312 struct page *page; 313 pgoff_t index, end_index; 314 loff_t isize; 315 int error, page_nr; 316 struct splice_pipe_desc spd = { 317 .pages = pages, 318 .partial = partial, 319 .nr_pages_max = PIPE_DEF_BUFFERS, 320 .flags = flags, 321 .ops = &page_cache_pipe_buf_ops, 322 .spd_release = spd_release_page, 323 }; 324 325 if (splice_grow_spd(pipe, &spd)) 326 return -ENOMEM; 327 328 index = *ppos >> PAGE_CACHE_SHIFT; 329 loff = *ppos & ~PAGE_CACHE_MASK; 330 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 331 nr_pages = min(req_pages, spd.nr_pages_max); 332 333 /* 334 * Lookup the (hopefully) full range of pages we need. 335 */ 336 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages); 337 index += spd.nr_pages; 338 339 /* 340 * If find_get_pages_contig() returned fewer pages than we needed, 341 * readahead/allocate the rest and fill in the holes. 342 */ 343 if (spd.nr_pages < nr_pages) 344 page_cache_sync_readahead(mapping, &in->f_ra, in, 345 index, req_pages - spd.nr_pages); 346 347 error = 0; 348 while (spd.nr_pages < nr_pages) { 349 /* 350 * Page could be there, find_get_pages_contig() breaks on 351 * the first hole. 352 */ 353 page = find_get_page(mapping, index); 354 if (!page) { 355 /* 356 * page didn't exist, allocate one. 357 */ 358 page = page_cache_alloc_cold(mapping); 359 if (!page) 360 break; 361 362 error = add_to_page_cache_lru(page, mapping, index, 363 mapping_gfp_constraint(mapping, GFP_KERNEL)); 364 if (unlikely(error)) { 365 page_cache_release(page); 366 if (error == -EEXIST) 367 continue; 368 break; 369 } 370 /* 371 * add_to_page_cache() locks the page, unlock it 372 * to avoid convoluting the logic below even more. 373 */ 374 unlock_page(page); 375 } 376 377 spd.pages[spd.nr_pages++] = page; 378 index++; 379 } 380 381 /* 382 * Now loop over the map and see if we need to start IO on any 383 * pages, fill in the partial map, etc. 384 */ 385 index = *ppos >> PAGE_CACHE_SHIFT; 386 nr_pages = spd.nr_pages; 387 spd.nr_pages = 0; 388 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 389 unsigned int this_len; 390 391 if (!len) 392 break; 393 394 /* 395 * this_len is the max we'll use from this page 396 */ 397 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 398 page = spd.pages[page_nr]; 399 400 if (PageReadahead(page)) 401 page_cache_async_readahead(mapping, &in->f_ra, in, 402 page, index, req_pages - page_nr); 403 404 /* 405 * If the page isn't uptodate, we may need to start io on it 406 */ 407 if (!PageUptodate(page)) { 408 lock_page(page); 409 410 /* 411 * Page was truncated, or invalidated by the 412 * filesystem. Redo the find/create, but this time the 413 * page is kept locked, so there's no chance of another 414 * race with truncate/invalidate. 415 */ 416 if (!page->mapping) { 417 unlock_page(page); 418 retry_lookup: 419 page = find_or_create_page(mapping, index, 420 mapping_gfp_mask(mapping)); 421 422 if (!page) { 423 error = -ENOMEM; 424 break; 425 } 426 page_cache_release(spd.pages[page_nr]); 427 spd.pages[page_nr] = page; 428 } 429 /* 430 * page was already under io and is now done, great 431 */ 432 if (PageUptodate(page)) { 433 unlock_page(page); 434 goto fill_it; 435 } 436 437 /* 438 * need to read in the page 439 */ 440 error = mapping->a_ops->readpage(in, page); 441 if (unlikely(error)) { 442 /* 443 * Re-lookup the page 444 */ 445 if (error == AOP_TRUNCATED_PAGE) 446 goto retry_lookup; 447 448 break; 449 } 450 } 451 fill_it: 452 /* 453 * i_size must be checked after PageUptodate. 454 */ 455 isize = i_size_read(mapping->host); 456 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 457 if (unlikely(!isize || index > end_index)) 458 break; 459 460 /* 461 * if this is the last page, see if we need to shrink 462 * the length and stop 463 */ 464 if (end_index == index) { 465 unsigned int plen; 466 467 /* 468 * max good bytes in this page 469 */ 470 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 471 if (plen <= loff) 472 break; 473 474 /* 475 * force quit after adding this page 476 */ 477 this_len = min(this_len, plen - loff); 478 len = this_len; 479 } 480 481 spd.partial[page_nr].offset = loff; 482 spd.partial[page_nr].len = this_len; 483 len -= this_len; 484 loff = 0; 485 spd.nr_pages++; 486 index++; 487 } 488 489 /* 490 * Release any pages at the end, if we quit early. 'page_nr' is how far 491 * we got, 'nr_pages' is how many pages are in the map. 492 */ 493 while (page_nr < nr_pages) 494 page_cache_release(spd.pages[page_nr++]); 495 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 496 497 if (spd.nr_pages) 498 error = splice_to_pipe(pipe, &spd); 499 500 splice_shrink_spd(&spd); 501 return error; 502 } 503 504 /** 505 * generic_file_splice_read - splice data from file to a pipe 506 * @in: file to splice from 507 * @ppos: position in @in 508 * @pipe: pipe to splice to 509 * @len: number of bytes to splice 510 * @flags: splice modifier flags 511 * 512 * Description: 513 * Will read pages from given file and fill them into a pipe. Can be 514 * used as long as the address_space operations for the source implements 515 * a readpage() hook. 516 * 517 */ 518 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 519 struct pipe_inode_info *pipe, size_t len, 520 unsigned int flags) 521 { 522 loff_t isize, left; 523 int ret; 524 525 if (IS_DAX(in->f_mapping->host)) 526 return default_file_splice_read(in, ppos, pipe, len, flags); 527 528 isize = i_size_read(in->f_mapping->host); 529 if (unlikely(*ppos >= isize)) 530 return 0; 531 532 left = isize - *ppos; 533 if (unlikely(left < len)) 534 len = left; 535 536 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 537 if (ret > 0) { 538 *ppos += ret; 539 file_accessed(in); 540 } 541 542 return ret; 543 } 544 EXPORT_SYMBOL(generic_file_splice_read); 545 546 static const struct pipe_buf_operations default_pipe_buf_ops = { 547 .can_merge = 0, 548 .confirm = generic_pipe_buf_confirm, 549 .release = generic_pipe_buf_release, 550 .steal = generic_pipe_buf_steal, 551 .get = generic_pipe_buf_get, 552 }; 553 554 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe, 555 struct pipe_buffer *buf) 556 { 557 return 1; 558 } 559 560 /* Pipe buffer operations for a socket and similar. */ 561 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 562 .can_merge = 0, 563 .confirm = generic_pipe_buf_confirm, 564 .release = generic_pipe_buf_release, 565 .steal = generic_pipe_buf_nosteal, 566 .get = generic_pipe_buf_get, 567 }; 568 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 569 570 static ssize_t kernel_readv(struct file *file, const struct iovec *vec, 571 unsigned long vlen, loff_t offset) 572 { 573 mm_segment_t old_fs; 574 loff_t pos = offset; 575 ssize_t res; 576 577 old_fs = get_fs(); 578 set_fs(get_ds()); 579 /* The cast to a user pointer is valid due to the set_fs() */ 580 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos); 581 set_fs(old_fs); 582 583 return res; 584 } 585 586 ssize_t kernel_write(struct file *file, const char *buf, size_t count, 587 loff_t pos) 588 { 589 mm_segment_t old_fs; 590 ssize_t res; 591 592 old_fs = get_fs(); 593 set_fs(get_ds()); 594 /* The cast to a user pointer is valid due to the set_fs() */ 595 res = vfs_write(file, (__force const char __user *)buf, count, &pos); 596 set_fs(old_fs); 597 598 return res; 599 } 600 EXPORT_SYMBOL(kernel_write); 601 602 ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 603 struct pipe_inode_info *pipe, size_t len, 604 unsigned int flags) 605 { 606 unsigned int nr_pages; 607 unsigned int nr_freed; 608 size_t offset; 609 struct page *pages[PIPE_DEF_BUFFERS]; 610 struct partial_page partial[PIPE_DEF_BUFFERS]; 611 struct iovec *vec, __vec[PIPE_DEF_BUFFERS]; 612 ssize_t res; 613 size_t this_len; 614 int error; 615 int i; 616 struct splice_pipe_desc spd = { 617 .pages = pages, 618 .partial = partial, 619 .nr_pages_max = PIPE_DEF_BUFFERS, 620 .flags = flags, 621 .ops = &default_pipe_buf_ops, 622 .spd_release = spd_release_page, 623 }; 624 625 if (splice_grow_spd(pipe, &spd)) 626 return -ENOMEM; 627 628 res = -ENOMEM; 629 vec = __vec; 630 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) { 631 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL); 632 if (!vec) 633 goto shrink_ret; 634 } 635 636 offset = *ppos & ~PAGE_CACHE_MASK; 637 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 638 639 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) { 640 struct page *page; 641 642 page = alloc_page(GFP_USER); 643 error = -ENOMEM; 644 if (!page) 645 goto err; 646 647 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset); 648 vec[i].iov_base = (void __user *) page_address(page); 649 vec[i].iov_len = this_len; 650 spd.pages[i] = page; 651 spd.nr_pages++; 652 len -= this_len; 653 offset = 0; 654 } 655 656 res = kernel_readv(in, vec, spd.nr_pages, *ppos); 657 if (res < 0) { 658 error = res; 659 goto err; 660 } 661 662 error = 0; 663 if (!res) 664 goto err; 665 666 nr_freed = 0; 667 for (i = 0; i < spd.nr_pages; i++) { 668 this_len = min_t(size_t, vec[i].iov_len, res); 669 spd.partial[i].offset = 0; 670 spd.partial[i].len = this_len; 671 if (!this_len) { 672 __free_page(spd.pages[i]); 673 spd.pages[i] = NULL; 674 nr_freed++; 675 } 676 res -= this_len; 677 } 678 spd.nr_pages -= nr_freed; 679 680 res = splice_to_pipe(pipe, &spd); 681 if (res > 0) 682 *ppos += res; 683 684 shrink_ret: 685 if (vec != __vec) 686 kfree(vec); 687 splice_shrink_spd(&spd); 688 return res; 689 690 err: 691 for (i = 0; i < spd.nr_pages; i++) 692 __free_page(spd.pages[i]); 693 694 res = error; 695 goto shrink_ret; 696 } 697 EXPORT_SYMBOL(default_file_splice_read); 698 699 /* 700 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 701 * using sendpage(). Return the number of bytes sent. 702 */ 703 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 704 struct pipe_buffer *buf, struct splice_desc *sd) 705 { 706 struct file *file = sd->u.file; 707 loff_t pos = sd->pos; 708 int more; 709 710 if (!likely(file->f_op->sendpage)) 711 return -EINVAL; 712 713 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0; 714 715 if (sd->len < sd->total_len && pipe->nrbufs > 1) 716 more |= MSG_SENDPAGE_NOTLAST; 717 718 return file->f_op->sendpage(file, buf->page, buf->offset, 719 sd->len, &pos, more); 720 } 721 722 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 723 { 724 smp_mb(); 725 if (waitqueue_active(&pipe->wait)) 726 wake_up_interruptible(&pipe->wait); 727 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 728 } 729 730 /** 731 * splice_from_pipe_feed - feed available data from a pipe to a file 732 * @pipe: pipe to splice from 733 * @sd: information to @actor 734 * @actor: handler that splices the data 735 * 736 * Description: 737 * This function loops over the pipe and calls @actor to do the 738 * actual moving of a single struct pipe_buffer to the desired 739 * destination. It returns when there's no more buffers left in 740 * the pipe or if the requested number of bytes (@sd->total_len) 741 * have been copied. It returns a positive number (one) if the 742 * pipe needs to be filled with more data, zero if the required 743 * number of bytes have been copied and -errno on error. 744 * 745 * This, together with splice_from_pipe_{begin,end,next}, may be 746 * used to implement the functionality of __splice_from_pipe() when 747 * locking is required around copying the pipe buffers to the 748 * destination. 749 */ 750 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 751 splice_actor *actor) 752 { 753 int ret; 754 755 while (pipe->nrbufs) { 756 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 757 const struct pipe_buf_operations *ops = buf->ops; 758 759 sd->len = buf->len; 760 if (sd->len > sd->total_len) 761 sd->len = sd->total_len; 762 763 ret = buf->ops->confirm(pipe, buf); 764 if (unlikely(ret)) { 765 if (ret == -ENODATA) 766 ret = 0; 767 return ret; 768 } 769 770 ret = actor(pipe, buf, sd); 771 if (ret <= 0) 772 return ret; 773 774 buf->offset += ret; 775 buf->len -= ret; 776 777 sd->num_spliced += ret; 778 sd->len -= ret; 779 sd->pos += ret; 780 sd->total_len -= ret; 781 782 if (!buf->len) { 783 buf->ops = NULL; 784 ops->release(pipe, buf); 785 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 786 pipe->nrbufs--; 787 if (pipe->files) 788 sd->need_wakeup = true; 789 } 790 791 if (!sd->total_len) 792 return 0; 793 } 794 795 return 1; 796 } 797 798 /** 799 * splice_from_pipe_next - wait for some data to splice from 800 * @pipe: pipe to splice from 801 * @sd: information about the splice operation 802 * 803 * Description: 804 * This function will wait for some data and return a positive 805 * value (one) if pipe buffers are available. It will return zero 806 * or -errno if no more data needs to be spliced. 807 */ 808 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 809 { 810 /* 811 * Check for signal early to make process killable when there are 812 * always buffers available 813 */ 814 if (signal_pending(current)) 815 return -ERESTARTSYS; 816 817 while (!pipe->nrbufs) { 818 if (!pipe->writers) 819 return 0; 820 821 if (!pipe->waiting_writers && sd->num_spliced) 822 return 0; 823 824 if (sd->flags & SPLICE_F_NONBLOCK) 825 return -EAGAIN; 826 827 if (signal_pending(current)) 828 return -ERESTARTSYS; 829 830 if (sd->need_wakeup) { 831 wakeup_pipe_writers(pipe); 832 sd->need_wakeup = false; 833 } 834 835 pipe_wait(pipe); 836 } 837 838 return 1; 839 } 840 841 /** 842 * splice_from_pipe_begin - start splicing from pipe 843 * @sd: information about the splice operation 844 * 845 * Description: 846 * This function should be called before a loop containing 847 * splice_from_pipe_next() and splice_from_pipe_feed() to 848 * initialize the necessary fields of @sd. 849 */ 850 static void splice_from_pipe_begin(struct splice_desc *sd) 851 { 852 sd->num_spliced = 0; 853 sd->need_wakeup = false; 854 } 855 856 /** 857 * splice_from_pipe_end - finish splicing from pipe 858 * @pipe: pipe to splice from 859 * @sd: information about the splice operation 860 * 861 * Description: 862 * This function will wake up pipe writers if necessary. It should 863 * be called after a loop containing splice_from_pipe_next() and 864 * splice_from_pipe_feed(). 865 */ 866 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 867 { 868 if (sd->need_wakeup) 869 wakeup_pipe_writers(pipe); 870 } 871 872 /** 873 * __splice_from_pipe - splice data from a pipe to given actor 874 * @pipe: pipe to splice from 875 * @sd: information to @actor 876 * @actor: handler that splices the data 877 * 878 * Description: 879 * This function does little more than loop over the pipe and call 880 * @actor to do the actual moving of a single struct pipe_buffer to 881 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 882 * pipe_to_user. 883 * 884 */ 885 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 886 splice_actor *actor) 887 { 888 int ret; 889 890 splice_from_pipe_begin(sd); 891 do { 892 cond_resched(); 893 ret = splice_from_pipe_next(pipe, sd); 894 if (ret > 0) 895 ret = splice_from_pipe_feed(pipe, sd, actor); 896 } while (ret > 0); 897 splice_from_pipe_end(pipe, sd); 898 899 return sd->num_spliced ? sd->num_spliced : ret; 900 } 901 EXPORT_SYMBOL(__splice_from_pipe); 902 903 /** 904 * splice_from_pipe - splice data from a pipe to a file 905 * @pipe: pipe to splice from 906 * @out: file to splice to 907 * @ppos: position in @out 908 * @len: how many bytes to splice 909 * @flags: splice modifier flags 910 * @actor: handler that splices the data 911 * 912 * Description: 913 * See __splice_from_pipe. This function locks the pipe inode, 914 * otherwise it's identical to __splice_from_pipe(). 915 * 916 */ 917 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 918 loff_t *ppos, size_t len, unsigned int flags, 919 splice_actor *actor) 920 { 921 ssize_t ret; 922 struct splice_desc sd = { 923 .total_len = len, 924 .flags = flags, 925 .pos = *ppos, 926 .u.file = out, 927 }; 928 929 pipe_lock(pipe); 930 ret = __splice_from_pipe(pipe, &sd, actor); 931 pipe_unlock(pipe); 932 933 return ret; 934 } 935 936 /** 937 * iter_file_splice_write - splice data from a pipe to a file 938 * @pipe: pipe info 939 * @out: file to write to 940 * @ppos: position in @out 941 * @len: number of bytes to splice 942 * @flags: splice modifier flags 943 * 944 * Description: 945 * Will either move or copy pages (determined by @flags options) from 946 * the given pipe inode to the given file. 947 * This one is ->write_iter-based. 948 * 949 */ 950 ssize_t 951 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 952 loff_t *ppos, size_t len, unsigned int flags) 953 { 954 struct splice_desc sd = { 955 .total_len = len, 956 .flags = flags, 957 .pos = *ppos, 958 .u.file = out, 959 }; 960 int nbufs = pipe->buffers; 961 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 962 GFP_KERNEL); 963 ssize_t ret; 964 965 if (unlikely(!array)) 966 return -ENOMEM; 967 968 pipe_lock(pipe); 969 970 splice_from_pipe_begin(&sd); 971 while (sd.total_len) { 972 struct iov_iter from; 973 size_t left; 974 int n, idx; 975 976 ret = splice_from_pipe_next(pipe, &sd); 977 if (ret <= 0) 978 break; 979 980 if (unlikely(nbufs < pipe->buffers)) { 981 kfree(array); 982 nbufs = pipe->buffers; 983 array = kcalloc(nbufs, sizeof(struct bio_vec), 984 GFP_KERNEL); 985 if (!array) { 986 ret = -ENOMEM; 987 break; 988 } 989 } 990 991 /* build the vector */ 992 left = sd.total_len; 993 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) { 994 struct pipe_buffer *buf = pipe->bufs + idx; 995 size_t this_len = buf->len; 996 997 if (this_len > left) 998 this_len = left; 999 1000 if (idx == pipe->buffers - 1) 1001 idx = -1; 1002 1003 ret = buf->ops->confirm(pipe, buf); 1004 if (unlikely(ret)) { 1005 if (ret == -ENODATA) 1006 ret = 0; 1007 goto done; 1008 } 1009 1010 array[n].bv_page = buf->page; 1011 array[n].bv_len = this_len; 1012 array[n].bv_offset = buf->offset; 1013 left -= this_len; 1014 } 1015 1016 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n, 1017 sd.total_len - left); 1018 ret = vfs_iter_write(out, &from, &sd.pos); 1019 if (ret <= 0) 1020 break; 1021 1022 sd.num_spliced += ret; 1023 sd.total_len -= ret; 1024 *ppos = sd.pos; 1025 1026 /* dismiss the fully eaten buffers, adjust the partial one */ 1027 while (ret) { 1028 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 1029 if (ret >= buf->len) { 1030 const struct pipe_buf_operations *ops = buf->ops; 1031 ret -= buf->len; 1032 buf->len = 0; 1033 buf->ops = NULL; 1034 ops->release(pipe, buf); 1035 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 1036 pipe->nrbufs--; 1037 if (pipe->files) 1038 sd.need_wakeup = true; 1039 } else { 1040 buf->offset += ret; 1041 buf->len -= ret; 1042 ret = 0; 1043 } 1044 } 1045 } 1046 done: 1047 kfree(array); 1048 splice_from_pipe_end(pipe, &sd); 1049 1050 pipe_unlock(pipe); 1051 1052 if (sd.num_spliced) 1053 ret = sd.num_spliced; 1054 1055 return ret; 1056 } 1057 1058 EXPORT_SYMBOL(iter_file_splice_write); 1059 1060 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1061 struct splice_desc *sd) 1062 { 1063 int ret; 1064 void *data; 1065 loff_t tmp = sd->pos; 1066 1067 data = kmap(buf->page); 1068 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp); 1069 kunmap(buf->page); 1070 1071 return ret; 1072 } 1073 1074 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 1075 struct file *out, loff_t *ppos, 1076 size_t len, unsigned int flags) 1077 { 1078 ssize_t ret; 1079 1080 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 1081 if (ret > 0) 1082 *ppos += ret; 1083 1084 return ret; 1085 } 1086 1087 /** 1088 * generic_splice_sendpage - splice data from a pipe to a socket 1089 * @pipe: pipe to splice from 1090 * @out: socket to write to 1091 * @ppos: position in @out 1092 * @len: number of bytes to splice 1093 * @flags: splice modifier flags 1094 * 1095 * Description: 1096 * Will send @len bytes from the pipe to a network socket. No data copying 1097 * is involved. 1098 * 1099 */ 1100 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 1101 loff_t *ppos, size_t len, unsigned int flags) 1102 { 1103 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 1104 } 1105 1106 EXPORT_SYMBOL(generic_splice_sendpage); 1107 1108 /* 1109 * Attempt to initiate a splice from pipe to file. 1110 */ 1111 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 1112 loff_t *ppos, size_t len, unsigned int flags) 1113 { 1114 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 1115 loff_t *, size_t, unsigned int); 1116 1117 if (out->f_op->splice_write) 1118 splice_write = out->f_op->splice_write; 1119 else 1120 splice_write = default_file_splice_write; 1121 1122 return splice_write(pipe, out, ppos, len, flags); 1123 } 1124 1125 /* 1126 * Attempt to initiate a splice from a file to a pipe. 1127 */ 1128 static long do_splice_to(struct file *in, loff_t *ppos, 1129 struct pipe_inode_info *pipe, size_t len, 1130 unsigned int flags) 1131 { 1132 ssize_t (*splice_read)(struct file *, loff_t *, 1133 struct pipe_inode_info *, size_t, unsigned int); 1134 int ret; 1135 1136 if (unlikely(!(in->f_mode & FMODE_READ))) 1137 return -EBADF; 1138 1139 ret = rw_verify_area(READ, in, ppos, len); 1140 if (unlikely(ret < 0)) 1141 return ret; 1142 1143 if (in->f_op->splice_read) 1144 splice_read = in->f_op->splice_read; 1145 else 1146 splice_read = default_file_splice_read; 1147 1148 return splice_read(in, ppos, pipe, len, flags); 1149 } 1150 1151 /** 1152 * splice_direct_to_actor - splices data directly between two non-pipes 1153 * @in: file to splice from 1154 * @sd: actor information on where to splice to 1155 * @actor: handles the data splicing 1156 * 1157 * Description: 1158 * This is a special case helper to splice directly between two 1159 * points, without requiring an explicit pipe. Internally an allocated 1160 * pipe is cached in the process, and reused during the lifetime of 1161 * that process. 1162 * 1163 */ 1164 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1165 splice_direct_actor *actor) 1166 { 1167 struct pipe_inode_info *pipe; 1168 long ret, bytes; 1169 umode_t i_mode; 1170 size_t len; 1171 int i, flags, more; 1172 1173 /* 1174 * We require the input being a regular file, as we don't want to 1175 * randomly drop data for eg socket -> socket splicing. Use the 1176 * piped splicing for that! 1177 */ 1178 i_mode = file_inode(in)->i_mode; 1179 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 1180 return -EINVAL; 1181 1182 /* 1183 * neither in nor out is a pipe, setup an internal pipe attached to 1184 * 'out' and transfer the wanted data from 'in' to 'out' through that 1185 */ 1186 pipe = current->splice_pipe; 1187 if (unlikely(!pipe)) { 1188 pipe = alloc_pipe_info(); 1189 if (!pipe) 1190 return -ENOMEM; 1191 1192 /* 1193 * We don't have an immediate reader, but we'll read the stuff 1194 * out of the pipe right after the splice_to_pipe(). So set 1195 * PIPE_READERS appropriately. 1196 */ 1197 pipe->readers = 1; 1198 1199 current->splice_pipe = pipe; 1200 } 1201 1202 /* 1203 * Do the splice. 1204 */ 1205 ret = 0; 1206 bytes = 0; 1207 len = sd->total_len; 1208 flags = sd->flags; 1209 1210 /* 1211 * Don't block on output, we have to drain the direct pipe. 1212 */ 1213 sd->flags &= ~SPLICE_F_NONBLOCK; 1214 more = sd->flags & SPLICE_F_MORE; 1215 1216 while (len) { 1217 size_t read_len; 1218 loff_t pos = sd->pos, prev_pos = pos; 1219 1220 ret = do_splice_to(in, &pos, pipe, len, flags); 1221 if (unlikely(ret <= 0)) 1222 goto out_release; 1223 1224 read_len = ret; 1225 sd->total_len = read_len; 1226 1227 /* 1228 * If more data is pending, set SPLICE_F_MORE 1229 * If this is the last data and SPLICE_F_MORE was not set 1230 * initially, clears it. 1231 */ 1232 if (read_len < len) 1233 sd->flags |= SPLICE_F_MORE; 1234 else if (!more) 1235 sd->flags &= ~SPLICE_F_MORE; 1236 /* 1237 * NOTE: nonblocking mode only applies to the input. We 1238 * must not do the output in nonblocking mode as then we 1239 * could get stuck data in the internal pipe: 1240 */ 1241 ret = actor(pipe, sd); 1242 if (unlikely(ret <= 0)) { 1243 sd->pos = prev_pos; 1244 goto out_release; 1245 } 1246 1247 bytes += ret; 1248 len -= ret; 1249 sd->pos = pos; 1250 1251 if (ret < read_len) { 1252 sd->pos = prev_pos + ret; 1253 goto out_release; 1254 } 1255 } 1256 1257 done: 1258 pipe->nrbufs = pipe->curbuf = 0; 1259 file_accessed(in); 1260 return bytes; 1261 1262 out_release: 1263 /* 1264 * If we did an incomplete transfer we must release 1265 * the pipe buffers in question: 1266 */ 1267 for (i = 0; i < pipe->buffers; i++) { 1268 struct pipe_buffer *buf = pipe->bufs + i; 1269 1270 if (buf->ops) { 1271 buf->ops->release(pipe, buf); 1272 buf->ops = NULL; 1273 } 1274 } 1275 1276 if (!bytes) 1277 bytes = ret; 1278 1279 goto done; 1280 } 1281 EXPORT_SYMBOL(splice_direct_to_actor); 1282 1283 static int direct_splice_actor(struct pipe_inode_info *pipe, 1284 struct splice_desc *sd) 1285 { 1286 struct file *file = sd->u.file; 1287 1288 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1289 sd->flags); 1290 } 1291 1292 /** 1293 * do_splice_direct - splices data directly between two files 1294 * @in: file to splice from 1295 * @ppos: input file offset 1296 * @out: file to splice to 1297 * @opos: output file offset 1298 * @len: number of bytes to splice 1299 * @flags: splice modifier flags 1300 * 1301 * Description: 1302 * For use by do_sendfile(). splice can easily emulate sendfile, but 1303 * doing it in the application would incur an extra system call 1304 * (splice in + splice out, as compared to just sendfile()). So this helper 1305 * can splice directly through a process-private pipe. 1306 * 1307 */ 1308 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1309 loff_t *opos, size_t len, unsigned int flags) 1310 { 1311 struct splice_desc sd = { 1312 .len = len, 1313 .total_len = len, 1314 .flags = flags, 1315 .pos = *ppos, 1316 .u.file = out, 1317 .opos = opos, 1318 }; 1319 long ret; 1320 1321 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1322 return -EBADF; 1323 1324 if (unlikely(out->f_flags & O_APPEND)) 1325 return -EINVAL; 1326 1327 ret = rw_verify_area(WRITE, out, opos, len); 1328 if (unlikely(ret < 0)) 1329 return ret; 1330 1331 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1332 if (ret > 0) 1333 *ppos = sd.pos; 1334 1335 return ret; 1336 } 1337 EXPORT_SYMBOL(do_splice_direct); 1338 1339 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1340 struct pipe_inode_info *opipe, 1341 size_t len, unsigned int flags); 1342 1343 /* 1344 * Determine where to splice to/from. 1345 */ 1346 static long do_splice(struct file *in, loff_t __user *off_in, 1347 struct file *out, loff_t __user *off_out, 1348 size_t len, unsigned int flags) 1349 { 1350 struct pipe_inode_info *ipipe; 1351 struct pipe_inode_info *opipe; 1352 loff_t offset; 1353 long ret; 1354 1355 ipipe = get_pipe_info(in); 1356 opipe = get_pipe_info(out); 1357 1358 if (ipipe && opipe) { 1359 if (off_in || off_out) 1360 return -ESPIPE; 1361 1362 if (!(in->f_mode & FMODE_READ)) 1363 return -EBADF; 1364 1365 if (!(out->f_mode & FMODE_WRITE)) 1366 return -EBADF; 1367 1368 /* Splicing to self would be fun, but... */ 1369 if (ipipe == opipe) 1370 return -EINVAL; 1371 1372 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1373 } 1374 1375 if (ipipe) { 1376 if (off_in) 1377 return -ESPIPE; 1378 if (off_out) { 1379 if (!(out->f_mode & FMODE_PWRITE)) 1380 return -EINVAL; 1381 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1382 return -EFAULT; 1383 } else { 1384 offset = out->f_pos; 1385 } 1386 1387 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1388 return -EBADF; 1389 1390 if (unlikely(out->f_flags & O_APPEND)) 1391 return -EINVAL; 1392 1393 ret = rw_verify_area(WRITE, out, &offset, len); 1394 if (unlikely(ret < 0)) 1395 return ret; 1396 1397 file_start_write(out); 1398 ret = do_splice_from(ipipe, out, &offset, len, flags); 1399 file_end_write(out); 1400 1401 if (!off_out) 1402 out->f_pos = offset; 1403 else if (copy_to_user(off_out, &offset, sizeof(loff_t))) 1404 ret = -EFAULT; 1405 1406 return ret; 1407 } 1408 1409 if (opipe) { 1410 if (off_out) 1411 return -ESPIPE; 1412 if (off_in) { 1413 if (!(in->f_mode & FMODE_PREAD)) 1414 return -EINVAL; 1415 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1416 return -EFAULT; 1417 } else { 1418 offset = in->f_pos; 1419 } 1420 1421 ret = do_splice_to(in, &offset, opipe, len, flags); 1422 1423 if (!off_in) 1424 in->f_pos = offset; 1425 else if (copy_to_user(off_in, &offset, sizeof(loff_t))) 1426 ret = -EFAULT; 1427 1428 return ret; 1429 } 1430 1431 return -EINVAL; 1432 } 1433 1434 /* 1435 * Map an iov into an array of pages and offset/length tupples. With the 1436 * partial_page structure, we can map several non-contiguous ranges into 1437 * our ones pages[] map instead of splitting that operation into pieces. 1438 * Could easily be exported as a generic helper for other users, in which 1439 * case one would probably want to add a 'max_nr_pages' parameter as well. 1440 */ 1441 static int get_iovec_page_array(const struct iovec __user *iov, 1442 unsigned int nr_vecs, struct page **pages, 1443 struct partial_page *partial, bool aligned, 1444 unsigned int pipe_buffers) 1445 { 1446 int buffers = 0, error = 0; 1447 1448 while (nr_vecs) { 1449 unsigned long off, npages; 1450 struct iovec entry; 1451 void __user *base; 1452 size_t len; 1453 int i; 1454 1455 error = -EFAULT; 1456 if (copy_from_user(&entry, iov, sizeof(entry))) 1457 break; 1458 1459 base = entry.iov_base; 1460 len = entry.iov_len; 1461 1462 /* 1463 * Sanity check this iovec. 0 read succeeds. 1464 */ 1465 error = 0; 1466 if (unlikely(!len)) 1467 break; 1468 error = -EFAULT; 1469 if (!access_ok(VERIFY_READ, base, len)) 1470 break; 1471 1472 /* 1473 * Get this base offset and number of pages, then map 1474 * in the user pages. 1475 */ 1476 off = (unsigned long) base & ~PAGE_MASK; 1477 1478 /* 1479 * If asked for alignment, the offset must be zero and the 1480 * length a multiple of the PAGE_SIZE. 1481 */ 1482 error = -EINVAL; 1483 if (aligned && (off || len & ~PAGE_MASK)) 1484 break; 1485 1486 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1487 if (npages > pipe_buffers - buffers) 1488 npages = pipe_buffers - buffers; 1489 1490 error = get_user_pages_fast((unsigned long)base, npages, 1491 0, &pages[buffers]); 1492 1493 if (unlikely(error <= 0)) 1494 break; 1495 1496 /* 1497 * Fill this contiguous range into the partial page map. 1498 */ 1499 for (i = 0; i < error; i++) { 1500 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1501 1502 partial[buffers].offset = off; 1503 partial[buffers].len = plen; 1504 1505 off = 0; 1506 len -= plen; 1507 buffers++; 1508 } 1509 1510 /* 1511 * We didn't complete this iov, stop here since it probably 1512 * means we have to move some of this into a pipe to 1513 * be able to continue. 1514 */ 1515 if (len) 1516 break; 1517 1518 /* 1519 * Don't continue if we mapped fewer pages than we asked for, 1520 * or if we mapped the max number of pages that we have 1521 * room for. 1522 */ 1523 if (error < npages || buffers == pipe_buffers) 1524 break; 1525 1526 nr_vecs--; 1527 iov++; 1528 } 1529 1530 if (buffers) 1531 return buffers; 1532 1533 return error; 1534 } 1535 1536 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1537 struct splice_desc *sd) 1538 { 1539 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1540 return n == sd->len ? n : -EFAULT; 1541 } 1542 1543 /* 1544 * For lack of a better implementation, implement vmsplice() to userspace 1545 * as a simple copy of the pipes pages to the user iov. 1546 */ 1547 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov, 1548 unsigned long nr_segs, unsigned int flags) 1549 { 1550 struct pipe_inode_info *pipe; 1551 struct splice_desc sd; 1552 long ret; 1553 struct iovec iovstack[UIO_FASTIOV]; 1554 struct iovec *iov = iovstack; 1555 struct iov_iter iter; 1556 1557 pipe = get_pipe_info(file); 1558 if (!pipe) 1559 return -EBADF; 1560 1561 ret = import_iovec(READ, uiov, nr_segs, 1562 ARRAY_SIZE(iovstack), &iov, &iter); 1563 if (ret < 0) 1564 return ret; 1565 1566 sd.total_len = iov_iter_count(&iter); 1567 sd.len = 0; 1568 sd.flags = flags; 1569 sd.u.data = &iter; 1570 sd.pos = 0; 1571 1572 if (sd.total_len) { 1573 pipe_lock(pipe); 1574 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1575 pipe_unlock(pipe); 1576 } 1577 1578 kfree(iov); 1579 return ret; 1580 } 1581 1582 /* 1583 * vmsplice splices a user address range into a pipe. It can be thought of 1584 * as splice-from-memory, where the regular splice is splice-from-file (or 1585 * to file). In both cases the output is a pipe, naturally. 1586 */ 1587 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1588 unsigned long nr_segs, unsigned int flags) 1589 { 1590 struct pipe_inode_info *pipe; 1591 struct page *pages[PIPE_DEF_BUFFERS]; 1592 struct partial_page partial[PIPE_DEF_BUFFERS]; 1593 struct splice_pipe_desc spd = { 1594 .pages = pages, 1595 .partial = partial, 1596 .nr_pages_max = PIPE_DEF_BUFFERS, 1597 .flags = flags, 1598 .ops = &user_page_pipe_buf_ops, 1599 .spd_release = spd_release_page, 1600 }; 1601 long ret; 1602 1603 pipe = get_pipe_info(file); 1604 if (!pipe) 1605 return -EBADF; 1606 1607 if (splice_grow_spd(pipe, &spd)) 1608 return -ENOMEM; 1609 1610 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages, 1611 spd.partial, false, 1612 spd.nr_pages_max); 1613 if (spd.nr_pages <= 0) 1614 ret = spd.nr_pages; 1615 else 1616 ret = splice_to_pipe(pipe, &spd); 1617 1618 splice_shrink_spd(&spd); 1619 return ret; 1620 } 1621 1622 /* 1623 * Note that vmsplice only really supports true splicing _from_ user memory 1624 * to a pipe, not the other way around. Splicing from user memory is a simple 1625 * operation that can be supported without any funky alignment restrictions 1626 * or nasty vm tricks. We simply map in the user memory and fill them into 1627 * a pipe. The reverse isn't quite as easy, though. There are two possible 1628 * solutions for that: 1629 * 1630 * - memcpy() the data internally, at which point we might as well just 1631 * do a regular read() on the buffer anyway. 1632 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1633 * has restriction limitations on both ends of the pipe). 1634 * 1635 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1636 * 1637 */ 1638 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1639 unsigned long, nr_segs, unsigned int, flags) 1640 { 1641 struct fd f; 1642 long error; 1643 1644 if (unlikely(nr_segs > UIO_MAXIOV)) 1645 return -EINVAL; 1646 else if (unlikely(!nr_segs)) 1647 return 0; 1648 1649 error = -EBADF; 1650 f = fdget(fd); 1651 if (f.file) { 1652 if (f.file->f_mode & FMODE_WRITE) 1653 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags); 1654 else if (f.file->f_mode & FMODE_READ) 1655 error = vmsplice_to_user(f.file, iov, nr_segs, flags); 1656 1657 fdput(f); 1658 } 1659 1660 return error; 1661 } 1662 1663 #ifdef CONFIG_COMPAT 1664 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32, 1665 unsigned int, nr_segs, unsigned int, flags) 1666 { 1667 unsigned i; 1668 struct iovec __user *iov; 1669 if (nr_segs > UIO_MAXIOV) 1670 return -EINVAL; 1671 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec)); 1672 for (i = 0; i < nr_segs; i++) { 1673 struct compat_iovec v; 1674 if (get_user(v.iov_base, &iov32[i].iov_base) || 1675 get_user(v.iov_len, &iov32[i].iov_len) || 1676 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) || 1677 put_user(v.iov_len, &iov[i].iov_len)) 1678 return -EFAULT; 1679 } 1680 return sys_vmsplice(fd, iov, nr_segs, flags); 1681 } 1682 #endif 1683 1684 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1685 int, fd_out, loff_t __user *, off_out, 1686 size_t, len, unsigned int, flags) 1687 { 1688 struct fd in, out; 1689 long error; 1690 1691 if (unlikely(!len)) 1692 return 0; 1693 1694 error = -EBADF; 1695 in = fdget(fd_in); 1696 if (in.file) { 1697 if (in.file->f_mode & FMODE_READ) { 1698 out = fdget(fd_out); 1699 if (out.file) { 1700 if (out.file->f_mode & FMODE_WRITE) 1701 error = do_splice(in.file, off_in, 1702 out.file, off_out, 1703 len, flags); 1704 fdput(out); 1705 } 1706 } 1707 fdput(in); 1708 } 1709 return error; 1710 } 1711 1712 /* 1713 * Make sure there's data to read. Wait for input if we can, otherwise 1714 * return an appropriate error. 1715 */ 1716 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1717 { 1718 int ret; 1719 1720 /* 1721 * Check ->nrbufs without the inode lock first. This function 1722 * is speculative anyways, so missing one is ok. 1723 */ 1724 if (pipe->nrbufs) 1725 return 0; 1726 1727 ret = 0; 1728 pipe_lock(pipe); 1729 1730 while (!pipe->nrbufs) { 1731 if (signal_pending(current)) { 1732 ret = -ERESTARTSYS; 1733 break; 1734 } 1735 if (!pipe->writers) 1736 break; 1737 if (!pipe->waiting_writers) { 1738 if (flags & SPLICE_F_NONBLOCK) { 1739 ret = -EAGAIN; 1740 break; 1741 } 1742 } 1743 pipe_wait(pipe); 1744 } 1745 1746 pipe_unlock(pipe); 1747 return ret; 1748 } 1749 1750 /* 1751 * Make sure there's writeable room. Wait for room if we can, otherwise 1752 * return an appropriate error. 1753 */ 1754 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1755 { 1756 int ret; 1757 1758 /* 1759 * Check ->nrbufs without the inode lock first. This function 1760 * is speculative anyways, so missing one is ok. 1761 */ 1762 if (pipe->nrbufs < pipe->buffers) 1763 return 0; 1764 1765 ret = 0; 1766 pipe_lock(pipe); 1767 1768 while (pipe->nrbufs >= pipe->buffers) { 1769 if (!pipe->readers) { 1770 send_sig(SIGPIPE, current, 0); 1771 ret = -EPIPE; 1772 break; 1773 } 1774 if (flags & SPLICE_F_NONBLOCK) { 1775 ret = -EAGAIN; 1776 break; 1777 } 1778 if (signal_pending(current)) { 1779 ret = -ERESTARTSYS; 1780 break; 1781 } 1782 pipe->waiting_writers++; 1783 pipe_wait(pipe); 1784 pipe->waiting_writers--; 1785 } 1786 1787 pipe_unlock(pipe); 1788 return ret; 1789 } 1790 1791 /* 1792 * Splice contents of ipipe to opipe. 1793 */ 1794 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1795 struct pipe_inode_info *opipe, 1796 size_t len, unsigned int flags) 1797 { 1798 struct pipe_buffer *ibuf, *obuf; 1799 int ret = 0, nbuf; 1800 bool input_wakeup = false; 1801 1802 1803 retry: 1804 ret = ipipe_prep(ipipe, flags); 1805 if (ret) 1806 return ret; 1807 1808 ret = opipe_prep(opipe, flags); 1809 if (ret) 1810 return ret; 1811 1812 /* 1813 * Potential ABBA deadlock, work around it by ordering lock 1814 * grabbing by pipe info address. Otherwise two different processes 1815 * could deadlock (one doing tee from A -> B, the other from B -> A). 1816 */ 1817 pipe_double_lock(ipipe, opipe); 1818 1819 do { 1820 if (!opipe->readers) { 1821 send_sig(SIGPIPE, current, 0); 1822 if (!ret) 1823 ret = -EPIPE; 1824 break; 1825 } 1826 1827 if (!ipipe->nrbufs && !ipipe->writers) 1828 break; 1829 1830 /* 1831 * Cannot make any progress, because either the input 1832 * pipe is empty or the output pipe is full. 1833 */ 1834 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) { 1835 /* Already processed some buffers, break */ 1836 if (ret) 1837 break; 1838 1839 if (flags & SPLICE_F_NONBLOCK) { 1840 ret = -EAGAIN; 1841 break; 1842 } 1843 1844 /* 1845 * We raced with another reader/writer and haven't 1846 * managed to process any buffers. A zero return 1847 * value means EOF, so retry instead. 1848 */ 1849 pipe_unlock(ipipe); 1850 pipe_unlock(opipe); 1851 goto retry; 1852 } 1853 1854 ibuf = ipipe->bufs + ipipe->curbuf; 1855 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1856 obuf = opipe->bufs + nbuf; 1857 1858 if (len >= ibuf->len) { 1859 /* 1860 * Simply move the whole buffer from ipipe to opipe 1861 */ 1862 *obuf = *ibuf; 1863 ibuf->ops = NULL; 1864 opipe->nrbufs++; 1865 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1); 1866 ipipe->nrbufs--; 1867 input_wakeup = true; 1868 } else { 1869 /* 1870 * Get a reference to this pipe buffer, 1871 * so we can copy the contents over. 1872 */ 1873 ibuf->ops->get(ipipe, ibuf); 1874 *obuf = *ibuf; 1875 1876 /* 1877 * Don't inherit the gift flag, we need to 1878 * prevent multiple steals of this page. 1879 */ 1880 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1881 1882 obuf->len = len; 1883 opipe->nrbufs++; 1884 ibuf->offset += obuf->len; 1885 ibuf->len -= obuf->len; 1886 } 1887 ret += obuf->len; 1888 len -= obuf->len; 1889 } while (len); 1890 1891 pipe_unlock(ipipe); 1892 pipe_unlock(opipe); 1893 1894 /* 1895 * If we put data in the output pipe, wakeup any potential readers. 1896 */ 1897 if (ret > 0) 1898 wakeup_pipe_readers(opipe); 1899 1900 if (input_wakeup) 1901 wakeup_pipe_writers(ipipe); 1902 1903 return ret; 1904 } 1905 1906 /* 1907 * Link contents of ipipe to opipe. 1908 */ 1909 static int link_pipe(struct pipe_inode_info *ipipe, 1910 struct pipe_inode_info *opipe, 1911 size_t len, unsigned int flags) 1912 { 1913 struct pipe_buffer *ibuf, *obuf; 1914 int ret = 0, i = 0, nbuf; 1915 1916 /* 1917 * Potential ABBA deadlock, work around it by ordering lock 1918 * grabbing by pipe info address. Otherwise two different processes 1919 * could deadlock (one doing tee from A -> B, the other from B -> A). 1920 */ 1921 pipe_double_lock(ipipe, opipe); 1922 1923 do { 1924 if (!opipe->readers) { 1925 send_sig(SIGPIPE, current, 0); 1926 if (!ret) 1927 ret = -EPIPE; 1928 break; 1929 } 1930 1931 /* 1932 * If we have iterated all input buffers or ran out of 1933 * output room, break. 1934 */ 1935 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) 1936 break; 1937 1938 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1)); 1939 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1940 1941 /* 1942 * Get a reference to this pipe buffer, 1943 * so we can copy the contents over. 1944 */ 1945 ibuf->ops->get(ipipe, ibuf); 1946 1947 obuf = opipe->bufs + nbuf; 1948 *obuf = *ibuf; 1949 1950 /* 1951 * Don't inherit the gift flag, we need to 1952 * prevent multiple steals of this page. 1953 */ 1954 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1955 1956 if (obuf->len > len) 1957 obuf->len = len; 1958 1959 opipe->nrbufs++; 1960 ret += obuf->len; 1961 len -= obuf->len; 1962 i++; 1963 } while (len); 1964 1965 /* 1966 * return EAGAIN if we have the potential of some data in the 1967 * future, otherwise just return 0 1968 */ 1969 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1970 ret = -EAGAIN; 1971 1972 pipe_unlock(ipipe); 1973 pipe_unlock(opipe); 1974 1975 /* 1976 * If we put data in the output pipe, wakeup any potential readers. 1977 */ 1978 if (ret > 0) 1979 wakeup_pipe_readers(opipe); 1980 1981 return ret; 1982 } 1983 1984 /* 1985 * This is a tee(1) implementation that works on pipes. It doesn't copy 1986 * any data, it simply references the 'in' pages on the 'out' pipe. 1987 * The 'flags' used are the SPLICE_F_* variants, currently the only 1988 * applicable one is SPLICE_F_NONBLOCK. 1989 */ 1990 static long do_tee(struct file *in, struct file *out, size_t len, 1991 unsigned int flags) 1992 { 1993 struct pipe_inode_info *ipipe = get_pipe_info(in); 1994 struct pipe_inode_info *opipe = get_pipe_info(out); 1995 int ret = -EINVAL; 1996 1997 /* 1998 * Duplicate the contents of ipipe to opipe without actually 1999 * copying the data. 2000 */ 2001 if (ipipe && opipe && ipipe != opipe) { 2002 /* 2003 * Keep going, unless we encounter an error. The ipipe/opipe 2004 * ordering doesn't really matter. 2005 */ 2006 ret = ipipe_prep(ipipe, flags); 2007 if (!ret) { 2008 ret = opipe_prep(opipe, flags); 2009 if (!ret) 2010 ret = link_pipe(ipipe, opipe, len, flags); 2011 } 2012 } 2013 2014 return ret; 2015 } 2016 2017 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 2018 { 2019 struct fd in; 2020 int error; 2021 2022 if (unlikely(!len)) 2023 return 0; 2024 2025 error = -EBADF; 2026 in = fdget(fdin); 2027 if (in.file) { 2028 if (in.file->f_mode & FMODE_READ) { 2029 struct fd out = fdget(fdout); 2030 if (out.file) { 2031 if (out.file->f_mode & FMODE_WRITE) 2032 error = do_tee(in.file, out.file, 2033 len, flags); 2034 fdput(out); 2035 } 2036 } 2037 fdput(in); 2038 } 2039 2040 return error; 2041 } 2042