xref: /openbmc/linux/fs/splice.c (revision 82003e04)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36 
37 /*
38  * Attempt to steal a page from a pipe buffer. This should perhaps go into
39  * a vm helper function, it's already simplified quite a bit by the
40  * addition of remove_mapping(). If success is returned, the caller may
41  * attempt to reuse this page for another destination.
42  */
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 				     struct pipe_buffer *buf)
45 {
46 	struct page *page = buf->page;
47 	struct address_space *mapping;
48 
49 	lock_page(page);
50 
51 	mapping = page_mapping(page);
52 	if (mapping) {
53 		WARN_ON(!PageUptodate(page));
54 
55 		/*
56 		 * At least for ext2 with nobh option, we need to wait on
57 		 * writeback completing on this page, since we'll remove it
58 		 * from the pagecache.  Otherwise truncate wont wait on the
59 		 * page, allowing the disk blocks to be reused by someone else
60 		 * before we actually wrote our data to them. fs corruption
61 		 * ensues.
62 		 */
63 		wait_on_page_writeback(page);
64 
65 		if (page_has_private(page) &&
66 		    !try_to_release_page(page, GFP_KERNEL))
67 			goto out_unlock;
68 
69 		/*
70 		 * If we succeeded in removing the mapping, set LRU flag
71 		 * and return good.
72 		 */
73 		if (remove_mapping(mapping, page)) {
74 			buf->flags |= PIPE_BUF_FLAG_LRU;
75 			return 0;
76 		}
77 	}
78 
79 	/*
80 	 * Raced with truncate or failed to remove page from current
81 	 * address space, unlock and return failure.
82 	 */
83 out_unlock:
84 	unlock_page(page);
85 	return 1;
86 }
87 
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 					struct pipe_buffer *buf)
90 {
91 	put_page(buf->page);
92 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94 
95 /*
96  * Check whether the contents of buf is OK to access. Since the content
97  * is a page cache page, IO may be in flight.
98  */
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 				       struct pipe_buffer *buf)
101 {
102 	struct page *page = buf->page;
103 	int err;
104 
105 	if (!PageUptodate(page)) {
106 		lock_page(page);
107 
108 		/*
109 		 * Page got truncated/unhashed. This will cause a 0-byte
110 		 * splice, if this is the first page.
111 		 */
112 		if (!page->mapping) {
113 			err = -ENODATA;
114 			goto error;
115 		}
116 
117 		/*
118 		 * Uh oh, read-error from disk.
119 		 */
120 		if (!PageUptodate(page)) {
121 			err = -EIO;
122 			goto error;
123 		}
124 
125 		/*
126 		 * Page is ok afterall, we are done.
127 		 */
128 		unlock_page(page);
129 	}
130 
131 	return 0;
132 error:
133 	unlock_page(page);
134 	return err;
135 }
136 
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 	.can_merge = 0,
139 	.confirm = page_cache_pipe_buf_confirm,
140 	.release = page_cache_pipe_buf_release,
141 	.steal = page_cache_pipe_buf_steal,
142 	.get = generic_pipe_buf_get,
143 };
144 
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 				    struct pipe_buffer *buf)
147 {
148 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 		return 1;
150 
151 	buf->flags |= PIPE_BUF_FLAG_LRU;
152 	return generic_pipe_buf_steal(pipe, buf);
153 }
154 
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 	.can_merge = 0,
157 	.confirm = generic_pipe_buf_confirm,
158 	.release = page_cache_pipe_buf_release,
159 	.steal = user_page_pipe_buf_steal,
160 	.get = generic_pipe_buf_get,
161 };
162 
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165 	smp_mb();
166 	if (waitqueue_active(&pipe->wait))
167 		wake_up_interruptible(&pipe->wait);
168 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170 
171 /**
172  * splice_to_pipe - fill passed data into a pipe
173  * @pipe:	pipe to fill
174  * @spd:	data to fill
175  *
176  * Description:
177  *    @spd contains a map of pages and len/offset tuples, along with
178  *    the struct pipe_buf_operations associated with these pages. This
179  *    function will link that data to the pipe.
180  *
181  */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 		       struct splice_pipe_desc *spd)
184 {
185 	unsigned int spd_pages = spd->nr_pages;
186 	int ret = 0, page_nr = 0;
187 
188 	if (!spd_pages)
189 		return 0;
190 
191 	if (unlikely(!pipe->readers)) {
192 		send_sig(SIGPIPE, current, 0);
193 		ret = -EPIPE;
194 		goto out;
195 	}
196 
197 	while (pipe->nrbufs < pipe->buffers) {
198 		int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
199 		struct pipe_buffer *buf = pipe->bufs + newbuf;
200 
201 		buf->page = spd->pages[page_nr];
202 		buf->offset = spd->partial[page_nr].offset;
203 		buf->len = spd->partial[page_nr].len;
204 		buf->private = spd->partial[page_nr].private;
205 		buf->ops = spd->ops;
206 
207 		pipe->nrbufs++;
208 		page_nr++;
209 		ret += buf->len;
210 
211 		if (!--spd->nr_pages)
212 			break;
213 	}
214 
215 	if (!ret)
216 		ret = -EAGAIN;
217 
218 out:
219 	while (page_nr < spd_pages)
220 		spd->spd_release(spd, page_nr++);
221 
222 	return ret;
223 }
224 EXPORT_SYMBOL_GPL(splice_to_pipe);
225 
226 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
227 {
228 	int ret;
229 
230 	if (unlikely(!pipe->readers)) {
231 		send_sig(SIGPIPE, current, 0);
232 		ret = -EPIPE;
233 	} else if (pipe->nrbufs == pipe->buffers) {
234 		ret = -EAGAIN;
235 	} else {
236 		int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
237 		pipe->bufs[newbuf] = *buf;
238 		pipe->nrbufs++;
239 		return buf->len;
240 	}
241 	pipe_buf_release(pipe, buf);
242 	return ret;
243 }
244 EXPORT_SYMBOL(add_to_pipe);
245 
246 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
247 {
248 	put_page(spd->pages[i]);
249 }
250 
251 /*
252  * Check if we need to grow the arrays holding pages and partial page
253  * descriptions.
254  */
255 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
256 {
257 	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
258 
259 	spd->nr_pages_max = buffers;
260 	if (buffers <= PIPE_DEF_BUFFERS)
261 		return 0;
262 
263 	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
264 	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
265 
266 	if (spd->pages && spd->partial)
267 		return 0;
268 
269 	kfree(spd->pages);
270 	kfree(spd->partial);
271 	return -ENOMEM;
272 }
273 
274 void splice_shrink_spd(struct splice_pipe_desc *spd)
275 {
276 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
277 		return;
278 
279 	kfree(spd->pages);
280 	kfree(spd->partial);
281 }
282 
283 /**
284  * generic_file_splice_read - splice data from file to a pipe
285  * @in:		file to splice from
286  * @ppos:	position in @in
287  * @pipe:	pipe to splice to
288  * @len:	number of bytes to splice
289  * @flags:	splice modifier flags
290  *
291  * Description:
292  *    Will read pages from given file and fill them into a pipe. Can be
293  *    used as long as it has more or less sane ->read_iter().
294  *
295  */
296 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
297 				 struct pipe_inode_info *pipe, size_t len,
298 				 unsigned int flags)
299 {
300 	struct iov_iter to;
301 	struct kiocb kiocb;
302 	int idx, ret;
303 
304 	iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len);
305 	idx = to.idx;
306 	init_sync_kiocb(&kiocb, in);
307 	kiocb.ki_pos = *ppos;
308 	ret = in->f_op->read_iter(&kiocb, &to);
309 	if (ret > 0) {
310 		*ppos = kiocb.ki_pos;
311 		file_accessed(in);
312 	} else if (ret < 0) {
313 		to.idx = idx;
314 		to.iov_offset = 0;
315 		iov_iter_advance(&to, 0); /* to free what was emitted */
316 		/*
317 		 * callers of ->splice_read() expect -EAGAIN on
318 		 * "can't put anything in there", rather than -EFAULT.
319 		 */
320 		if (ret == -EFAULT)
321 			ret = -EAGAIN;
322 	}
323 
324 	return ret;
325 }
326 EXPORT_SYMBOL(generic_file_splice_read);
327 
328 const struct pipe_buf_operations default_pipe_buf_ops = {
329 	.can_merge = 0,
330 	.confirm = generic_pipe_buf_confirm,
331 	.release = generic_pipe_buf_release,
332 	.steal = generic_pipe_buf_steal,
333 	.get = generic_pipe_buf_get,
334 };
335 
336 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
337 				    struct pipe_buffer *buf)
338 {
339 	return 1;
340 }
341 
342 /* Pipe buffer operations for a socket and similar. */
343 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
344 	.can_merge = 0,
345 	.confirm = generic_pipe_buf_confirm,
346 	.release = generic_pipe_buf_release,
347 	.steal = generic_pipe_buf_nosteal,
348 	.get = generic_pipe_buf_get,
349 };
350 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
351 
352 static ssize_t kernel_readv(struct file *file, const struct kvec *vec,
353 			    unsigned long vlen, loff_t offset)
354 {
355 	mm_segment_t old_fs;
356 	loff_t pos = offset;
357 	ssize_t res;
358 
359 	old_fs = get_fs();
360 	set_fs(get_ds());
361 	/* The cast to a user pointer is valid due to the set_fs() */
362 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
363 	set_fs(old_fs);
364 
365 	return res;
366 }
367 
368 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
369 			    loff_t pos)
370 {
371 	mm_segment_t old_fs;
372 	ssize_t res;
373 
374 	old_fs = get_fs();
375 	set_fs(get_ds());
376 	/* The cast to a user pointer is valid due to the set_fs() */
377 	res = vfs_write(file, (__force const char __user *)buf, count, &pos);
378 	set_fs(old_fs);
379 
380 	return res;
381 }
382 EXPORT_SYMBOL(kernel_write);
383 
384 static ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
385 				 struct pipe_inode_info *pipe, size_t len,
386 				 unsigned int flags)
387 {
388 	struct kvec *vec, __vec[PIPE_DEF_BUFFERS];
389 	struct iov_iter to;
390 	struct page **pages;
391 	unsigned int nr_pages;
392 	size_t offset, dummy, copied = 0;
393 	ssize_t res;
394 	int i;
395 
396 	if (pipe->nrbufs == pipe->buffers)
397 		return -EAGAIN;
398 
399 	/*
400 	 * Try to keep page boundaries matching to source pagecache ones -
401 	 * it probably won't be much help, but...
402 	 */
403 	offset = *ppos & ~PAGE_MASK;
404 
405 	iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len + offset);
406 
407 	res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &dummy);
408 	if (res <= 0)
409 		return -ENOMEM;
410 
411 	nr_pages = res / PAGE_SIZE;
412 
413 	vec = __vec;
414 	if (nr_pages > PIPE_DEF_BUFFERS) {
415 		vec = kmalloc(nr_pages * sizeof(struct kvec), GFP_KERNEL);
416 		if (unlikely(!vec)) {
417 			res = -ENOMEM;
418 			goto out;
419 		}
420 	}
421 
422 	pipe->bufs[to.idx].offset = offset;
423 	pipe->bufs[to.idx].len -= offset;
424 
425 	for (i = 0; i < nr_pages; i++) {
426 		size_t this_len = min_t(size_t, len, PAGE_SIZE - offset);
427 		vec[i].iov_base = page_address(pages[i]) + offset;
428 		vec[i].iov_len = this_len;
429 		len -= this_len;
430 		offset = 0;
431 	}
432 
433 	res = kernel_readv(in, vec, nr_pages, *ppos);
434 	if (res > 0) {
435 		copied = res;
436 		*ppos += res;
437 	}
438 
439 	if (vec != __vec)
440 		kfree(vec);
441 out:
442 	for (i = 0; i < nr_pages; i++)
443 		put_page(pages[i]);
444 	kvfree(pages);
445 	iov_iter_advance(&to, copied);	/* truncates and discards */
446 	return res;
447 }
448 
449 /*
450  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
451  * using sendpage(). Return the number of bytes sent.
452  */
453 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
454 			    struct pipe_buffer *buf, struct splice_desc *sd)
455 {
456 	struct file *file = sd->u.file;
457 	loff_t pos = sd->pos;
458 	int more;
459 
460 	if (!likely(file->f_op->sendpage))
461 		return -EINVAL;
462 
463 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
464 
465 	if (sd->len < sd->total_len && pipe->nrbufs > 1)
466 		more |= MSG_SENDPAGE_NOTLAST;
467 
468 	return file->f_op->sendpage(file, buf->page, buf->offset,
469 				    sd->len, &pos, more);
470 }
471 
472 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
473 {
474 	smp_mb();
475 	if (waitqueue_active(&pipe->wait))
476 		wake_up_interruptible(&pipe->wait);
477 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
478 }
479 
480 /**
481  * splice_from_pipe_feed - feed available data from a pipe to a file
482  * @pipe:	pipe to splice from
483  * @sd:		information to @actor
484  * @actor:	handler that splices the data
485  *
486  * Description:
487  *    This function loops over the pipe and calls @actor to do the
488  *    actual moving of a single struct pipe_buffer to the desired
489  *    destination.  It returns when there's no more buffers left in
490  *    the pipe or if the requested number of bytes (@sd->total_len)
491  *    have been copied.  It returns a positive number (one) if the
492  *    pipe needs to be filled with more data, zero if the required
493  *    number of bytes have been copied and -errno on error.
494  *
495  *    This, together with splice_from_pipe_{begin,end,next}, may be
496  *    used to implement the functionality of __splice_from_pipe() when
497  *    locking is required around copying the pipe buffers to the
498  *    destination.
499  */
500 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
501 			  splice_actor *actor)
502 {
503 	int ret;
504 
505 	while (pipe->nrbufs) {
506 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
507 
508 		sd->len = buf->len;
509 		if (sd->len > sd->total_len)
510 			sd->len = sd->total_len;
511 
512 		ret = pipe_buf_confirm(pipe, buf);
513 		if (unlikely(ret)) {
514 			if (ret == -ENODATA)
515 				ret = 0;
516 			return ret;
517 		}
518 
519 		ret = actor(pipe, buf, sd);
520 		if (ret <= 0)
521 			return ret;
522 
523 		buf->offset += ret;
524 		buf->len -= ret;
525 
526 		sd->num_spliced += ret;
527 		sd->len -= ret;
528 		sd->pos += ret;
529 		sd->total_len -= ret;
530 
531 		if (!buf->len) {
532 			pipe_buf_release(pipe, buf);
533 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
534 			pipe->nrbufs--;
535 			if (pipe->files)
536 				sd->need_wakeup = true;
537 		}
538 
539 		if (!sd->total_len)
540 			return 0;
541 	}
542 
543 	return 1;
544 }
545 
546 /**
547  * splice_from_pipe_next - wait for some data to splice from
548  * @pipe:	pipe to splice from
549  * @sd:		information about the splice operation
550  *
551  * Description:
552  *    This function will wait for some data and return a positive
553  *    value (one) if pipe buffers are available.  It will return zero
554  *    or -errno if no more data needs to be spliced.
555  */
556 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
557 {
558 	/*
559 	 * Check for signal early to make process killable when there are
560 	 * always buffers available
561 	 */
562 	if (signal_pending(current))
563 		return -ERESTARTSYS;
564 
565 	while (!pipe->nrbufs) {
566 		if (!pipe->writers)
567 			return 0;
568 
569 		if (!pipe->waiting_writers && sd->num_spliced)
570 			return 0;
571 
572 		if (sd->flags & SPLICE_F_NONBLOCK)
573 			return -EAGAIN;
574 
575 		if (signal_pending(current))
576 			return -ERESTARTSYS;
577 
578 		if (sd->need_wakeup) {
579 			wakeup_pipe_writers(pipe);
580 			sd->need_wakeup = false;
581 		}
582 
583 		pipe_wait(pipe);
584 	}
585 
586 	return 1;
587 }
588 
589 /**
590  * splice_from_pipe_begin - start splicing from pipe
591  * @sd:		information about the splice operation
592  *
593  * Description:
594  *    This function should be called before a loop containing
595  *    splice_from_pipe_next() and splice_from_pipe_feed() to
596  *    initialize the necessary fields of @sd.
597  */
598 static void splice_from_pipe_begin(struct splice_desc *sd)
599 {
600 	sd->num_spliced = 0;
601 	sd->need_wakeup = false;
602 }
603 
604 /**
605  * splice_from_pipe_end - finish splicing from pipe
606  * @pipe:	pipe to splice from
607  * @sd:		information about the splice operation
608  *
609  * Description:
610  *    This function will wake up pipe writers if necessary.  It should
611  *    be called after a loop containing splice_from_pipe_next() and
612  *    splice_from_pipe_feed().
613  */
614 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
615 {
616 	if (sd->need_wakeup)
617 		wakeup_pipe_writers(pipe);
618 }
619 
620 /**
621  * __splice_from_pipe - splice data from a pipe to given actor
622  * @pipe:	pipe to splice from
623  * @sd:		information to @actor
624  * @actor:	handler that splices the data
625  *
626  * Description:
627  *    This function does little more than loop over the pipe and call
628  *    @actor to do the actual moving of a single struct pipe_buffer to
629  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
630  *    pipe_to_user.
631  *
632  */
633 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
634 			   splice_actor *actor)
635 {
636 	int ret;
637 
638 	splice_from_pipe_begin(sd);
639 	do {
640 		cond_resched();
641 		ret = splice_from_pipe_next(pipe, sd);
642 		if (ret > 0)
643 			ret = splice_from_pipe_feed(pipe, sd, actor);
644 	} while (ret > 0);
645 	splice_from_pipe_end(pipe, sd);
646 
647 	return sd->num_spliced ? sd->num_spliced : ret;
648 }
649 EXPORT_SYMBOL(__splice_from_pipe);
650 
651 /**
652  * splice_from_pipe - splice data from a pipe to a file
653  * @pipe:	pipe to splice from
654  * @out:	file to splice to
655  * @ppos:	position in @out
656  * @len:	how many bytes to splice
657  * @flags:	splice modifier flags
658  * @actor:	handler that splices the data
659  *
660  * Description:
661  *    See __splice_from_pipe. This function locks the pipe inode,
662  *    otherwise it's identical to __splice_from_pipe().
663  *
664  */
665 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
666 			 loff_t *ppos, size_t len, unsigned int flags,
667 			 splice_actor *actor)
668 {
669 	ssize_t ret;
670 	struct splice_desc sd = {
671 		.total_len = len,
672 		.flags = flags,
673 		.pos = *ppos,
674 		.u.file = out,
675 	};
676 
677 	pipe_lock(pipe);
678 	ret = __splice_from_pipe(pipe, &sd, actor);
679 	pipe_unlock(pipe);
680 
681 	return ret;
682 }
683 
684 /**
685  * iter_file_splice_write - splice data from a pipe to a file
686  * @pipe:	pipe info
687  * @out:	file to write to
688  * @ppos:	position in @out
689  * @len:	number of bytes to splice
690  * @flags:	splice modifier flags
691  *
692  * Description:
693  *    Will either move or copy pages (determined by @flags options) from
694  *    the given pipe inode to the given file.
695  *    This one is ->write_iter-based.
696  *
697  */
698 ssize_t
699 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
700 			  loff_t *ppos, size_t len, unsigned int flags)
701 {
702 	struct splice_desc sd = {
703 		.total_len = len,
704 		.flags = flags,
705 		.pos = *ppos,
706 		.u.file = out,
707 	};
708 	int nbufs = pipe->buffers;
709 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
710 					GFP_KERNEL);
711 	ssize_t ret;
712 
713 	if (unlikely(!array))
714 		return -ENOMEM;
715 
716 	pipe_lock(pipe);
717 
718 	splice_from_pipe_begin(&sd);
719 	while (sd.total_len) {
720 		struct iov_iter from;
721 		size_t left;
722 		int n, idx;
723 
724 		ret = splice_from_pipe_next(pipe, &sd);
725 		if (ret <= 0)
726 			break;
727 
728 		if (unlikely(nbufs < pipe->buffers)) {
729 			kfree(array);
730 			nbufs = pipe->buffers;
731 			array = kcalloc(nbufs, sizeof(struct bio_vec),
732 					GFP_KERNEL);
733 			if (!array) {
734 				ret = -ENOMEM;
735 				break;
736 			}
737 		}
738 
739 		/* build the vector */
740 		left = sd.total_len;
741 		for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
742 			struct pipe_buffer *buf = pipe->bufs + idx;
743 			size_t this_len = buf->len;
744 
745 			if (this_len > left)
746 				this_len = left;
747 
748 			if (idx == pipe->buffers - 1)
749 				idx = -1;
750 
751 			ret = pipe_buf_confirm(pipe, buf);
752 			if (unlikely(ret)) {
753 				if (ret == -ENODATA)
754 					ret = 0;
755 				goto done;
756 			}
757 
758 			array[n].bv_page = buf->page;
759 			array[n].bv_len = this_len;
760 			array[n].bv_offset = buf->offset;
761 			left -= this_len;
762 		}
763 
764 		iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
765 			      sd.total_len - left);
766 		ret = vfs_iter_write(out, &from, &sd.pos);
767 		if (ret <= 0)
768 			break;
769 
770 		sd.num_spliced += ret;
771 		sd.total_len -= ret;
772 		*ppos = sd.pos;
773 
774 		/* dismiss the fully eaten buffers, adjust the partial one */
775 		while (ret) {
776 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
777 			if (ret >= buf->len) {
778 				ret -= buf->len;
779 				buf->len = 0;
780 				pipe_buf_release(pipe, buf);
781 				pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
782 				pipe->nrbufs--;
783 				if (pipe->files)
784 					sd.need_wakeup = true;
785 			} else {
786 				buf->offset += ret;
787 				buf->len -= ret;
788 				ret = 0;
789 			}
790 		}
791 	}
792 done:
793 	kfree(array);
794 	splice_from_pipe_end(pipe, &sd);
795 
796 	pipe_unlock(pipe);
797 
798 	if (sd.num_spliced)
799 		ret = sd.num_spliced;
800 
801 	return ret;
802 }
803 
804 EXPORT_SYMBOL(iter_file_splice_write);
805 
806 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
807 			  struct splice_desc *sd)
808 {
809 	int ret;
810 	void *data;
811 	loff_t tmp = sd->pos;
812 
813 	data = kmap(buf->page);
814 	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
815 	kunmap(buf->page);
816 
817 	return ret;
818 }
819 
820 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
821 					 struct file *out, loff_t *ppos,
822 					 size_t len, unsigned int flags)
823 {
824 	ssize_t ret;
825 
826 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
827 	if (ret > 0)
828 		*ppos += ret;
829 
830 	return ret;
831 }
832 
833 /**
834  * generic_splice_sendpage - splice data from a pipe to a socket
835  * @pipe:	pipe to splice from
836  * @out:	socket to write to
837  * @ppos:	position in @out
838  * @len:	number of bytes to splice
839  * @flags:	splice modifier flags
840  *
841  * Description:
842  *    Will send @len bytes from the pipe to a network socket. No data copying
843  *    is involved.
844  *
845  */
846 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
847 				loff_t *ppos, size_t len, unsigned int flags)
848 {
849 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
850 }
851 
852 EXPORT_SYMBOL(generic_splice_sendpage);
853 
854 /*
855  * Attempt to initiate a splice from pipe to file.
856  */
857 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
858 			   loff_t *ppos, size_t len, unsigned int flags)
859 {
860 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
861 				loff_t *, size_t, unsigned int);
862 
863 	if (out->f_op->splice_write)
864 		splice_write = out->f_op->splice_write;
865 	else
866 		splice_write = default_file_splice_write;
867 
868 	return splice_write(pipe, out, ppos, len, flags);
869 }
870 
871 /*
872  * Attempt to initiate a splice from a file to a pipe.
873  */
874 static long do_splice_to(struct file *in, loff_t *ppos,
875 			 struct pipe_inode_info *pipe, size_t len,
876 			 unsigned int flags)
877 {
878 	ssize_t (*splice_read)(struct file *, loff_t *,
879 			       struct pipe_inode_info *, size_t, unsigned int);
880 	int ret;
881 
882 	if (unlikely(!(in->f_mode & FMODE_READ)))
883 		return -EBADF;
884 
885 	ret = rw_verify_area(READ, in, ppos, len);
886 	if (unlikely(ret < 0))
887 		return ret;
888 
889 	if (unlikely(len > MAX_RW_COUNT))
890 		len = MAX_RW_COUNT;
891 
892 	if (in->f_op->splice_read)
893 		splice_read = in->f_op->splice_read;
894 	else
895 		splice_read = default_file_splice_read;
896 
897 	return splice_read(in, ppos, pipe, len, flags);
898 }
899 
900 /**
901  * splice_direct_to_actor - splices data directly between two non-pipes
902  * @in:		file to splice from
903  * @sd:		actor information on where to splice to
904  * @actor:	handles the data splicing
905  *
906  * Description:
907  *    This is a special case helper to splice directly between two
908  *    points, without requiring an explicit pipe. Internally an allocated
909  *    pipe is cached in the process, and reused during the lifetime of
910  *    that process.
911  *
912  */
913 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
914 			       splice_direct_actor *actor)
915 {
916 	struct pipe_inode_info *pipe;
917 	long ret, bytes;
918 	umode_t i_mode;
919 	size_t len;
920 	int i, flags, more;
921 
922 	/*
923 	 * We require the input being a regular file, as we don't want to
924 	 * randomly drop data for eg socket -> socket splicing. Use the
925 	 * piped splicing for that!
926 	 */
927 	i_mode = file_inode(in)->i_mode;
928 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
929 		return -EINVAL;
930 
931 	/*
932 	 * neither in nor out is a pipe, setup an internal pipe attached to
933 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
934 	 */
935 	pipe = current->splice_pipe;
936 	if (unlikely(!pipe)) {
937 		pipe = alloc_pipe_info();
938 		if (!pipe)
939 			return -ENOMEM;
940 
941 		/*
942 		 * We don't have an immediate reader, but we'll read the stuff
943 		 * out of the pipe right after the splice_to_pipe(). So set
944 		 * PIPE_READERS appropriately.
945 		 */
946 		pipe->readers = 1;
947 
948 		current->splice_pipe = pipe;
949 	}
950 
951 	/*
952 	 * Do the splice.
953 	 */
954 	ret = 0;
955 	bytes = 0;
956 	len = sd->total_len;
957 	flags = sd->flags;
958 
959 	/*
960 	 * Don't block on output, we have to drain the direct pipe.
961 	 */
962 	sd->flags &= ~SPLICE_F_NONBLOCK;
963 	more = sd->flags & SPLICE_F_MORE;
964 
965 	while (len) {
966 		size_t read_len;
967 		loff_t pos = sd->pos, prev_pos = pos;
968 
969 		ret = do_splice_to(in, &pos, pipe, len, flags);
970 		if (unlikely(ret <= 0))
971 			goto out_release;
972 
973 		read_len = ret;
974 		sd->total_len = read_len;
975 
976 		/*
977 		 * If more data is pending, set SPLICE_F_MORE
978 		 * If this is the last data and SPLICE_F_MORE was not set
979 		 * initially, clears it.
980 		 */
981 		if (read_len < len)
982 			sd->flags |= SPLICE_F_MORE;
983 		else if (!more)
984 			sd->flags &= ~SPLICE_F_MORE;
985 		/*
986 		 * NOTE: nonblocking mode only applies to the input. We
987 		 * must not do the output in nonblocking mode as then we
988 		 * could get stuck data in the internal pipe:
989 		 */
990 		ret = actor(pipe, sd);
991 		if (unlikely(ret <= 0)) {
992 			sd->pos = prev_pos;
993 			goto out_release;
994 		}
995 
996 		bytes += ret;
997 		len -= ret;
998 		sd->pos = pos;
999 
1000 		if (ret < read_len) {
1001 			sd->pos = prev_pos + ret;
1002 			goto out_release;
1003 		}
1004 	}
1005 
1006 done:
1007 	pipe->nrbufs = pipe->curbuf = 0;
1008 	file_accessed(in);
1009 	return bytes;
1010 
1011 out_release:
1012 	/*
1013 	 * If we did an incomplete transfer we must release
1014 	 * the pipe buffers in question:
1015 	 */
1016 	for (i = 0; i < pipe->buffers; i++) {
1017 		struct pipe_buffer *buf = pipe->bufs + i;
1018 
1019 		if (buf->ops)
1020 			pipe_buf_release(pipe, buf);
1021 	}
1022 
1023 	if (!bytes)
1024 		bytes = ret;
1025 
1026 	goto done;
1027 }
1028 EXPORT_SYMBOL(splice_direct_to_actor);
1029 
1030 static int direct_splice_actor(struct pipe_inode_info *pipe,
1031 			       struct splice_desc *sd)
1032 {
1033 	struct file *file = sd->u.file;
1034 
1035 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1036 			      sd->flags);
1037 }
1038 
1039 /**
1040  * do_splice_direct - splices data directly between two files
1041  * @in:		file to splice from
1042  * @ppos:	input file offset
1043  * @out:	file to splice to
1044  * @opos:	output file offset
1045  * @len:	number of bytes to splice
1046  * @flags:	splice modifier flags
1047  *
1048  * Description:
1049  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1050  *    doing it in the application would incur an extra system call
1051  *    (splice in + splice out, as compared to just sendfile()). So this helper
1052  *    can splice directly through a process-private pipe.
1053  *
1054  */
1055 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1056 		      loff_t *opos, size_t len, unsigned int flags)
1057 {
1058 	struct splice_desc sd = {
1059 		.len		= len,
1060 		.total_len	= len,
1061 		.flags		= flags,
1062 		.pos		= *ppos,
1063 		.u.file		= out,
1064 		.opos		= opos,
1065 	};
1066 	long ret;
1067 
1068 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1069 		return -EBADF;
1070 
1071 	if (unlikely(out->f_flags & O_APPEND))
1072 		return -EINVAL;
1073 
1074 	ret = rw_verify_area(WRITE, out, opos, len);
1075 	if (unlikely(ret < 0))
1076 		return ret;
1077 
1078 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1079 	if (ret > 0)
1080 		*ppos = sd.pos;
1081 
1082 	return ret;
1083 }
1084 EXPORT_SYMBOL(do_splice_direct);
1085 
1086 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1087 {
1088 	while (pipe->nrbufs == pipe->buffers) {
1089 		if (flags & SPLICE_F_NONBLOCK)
1090 			return -EAGAIN;
1091 		if (signal_pending(current))
1092 			return -ERESTARTSYS;
1093 		pipe->waiting_writers++;
1094 		pipe_wait(pipe);
1095 		pipe->waiting_writers--;
1096 	}
1097 	return 0;
1098 }
1099 
1100 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1101 			       struct pipe_inode_info *opipe,
1102 			       size_t len, unsigned int flags);
1103 
1104 /*
1105  * Determine where to splice to/from.
1106  */
1107 static long do_splice(struct file *in, loff_t __user *off_in,
1108 		      struct file *out, loff_t __user *off_out,
1109 		      size_t len, unsigned int flags)
1110 {
1111 	struct pipe_inode_info *ipipe;
1112 	struct pipe_inode_info *opipe;
1113 	loff_t offset;
1114 	long ret;
1115 
1116 	ipipe = get_pipe_info(in);
1117 	opipe = get_pipe_info(out);
1118 
1119 	if (ipipe && opipe) {
1120 		if (off_in || off_out)
1121 			return -ESPIPE;
1122 
1123 		if (!(in->f_mode & FMODE_READ))
1124 			return -EBADF;
1125 
1126 		if (!(out->f_mode & FMODE_WRITE))
1127 			return -EBADF;
1128 
1129 		/* Splicing to self would be fun, but... */
1130 		if (ipipe == opipe)
1131 			return -EINVAL;
1132 
1133 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1134 	}
1135 
1136 	if (ipipe) {
1137 		if (off_in)
1138 			return -ESPIPE;
1139 		if (off_out) {
1140 			if (!(out->f_mode & FMODE_PWRITE))
1141 				return -EINVAL;
1142 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1143 				return -EFAULT;
1144 		} else {
1145 			offset = out->f_pos;
1146 		}
1147 
1148 		if (unlikely(!(out->f_mode & FMODE_WRITE)))
1149 			return -EBADF;
1150 
1151 		if (unlikely(out->f_flags & O_APPEND))
1152 			return -EINVAL;
1153 
1154 		ret = rw_verify_area(WRITE, out, &offset, len);
1155 		if (unlikely(ret < 0))
1156 			return ret;
1157 
1158 		file_start_write(out);
1159 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1160 		file_end_write(out);
1161 
1162 		if (!off_out)
1163 			out->f_pos = offset;
1164 		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1165 			ret = -EFAULT;
1166 
1167 		return ret;
1168 	}
1169 
1170 	if (opipe) {
1171 		if (off_out)
1172 			return -ESPIPE;
1173 		if (off_in) {
1174 			if (!(in->f_mode & FMODE_PREAD))
1175 				return -EINVAL;
1176 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1177 				return -EFAULT;
1178 		} else {
1179 			offset = in->f_pos;
1180 		}
1181 
1182 		pipe_lock(opipe);
1183 		ret = wait_for_space(opipe, flags);
1184 		if (!ret)
1185 			ret = do_splice_to(in, &offset, opipe, len, flags);
1186 		pipe_unlock(opipe);
1187 		if (ret > 0)
1188 			wakeup_pipe_readers(opipe);
1189 		if (!off_in)
1190 			in->f_pos = offset;
1191 		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1192 			ret = -EFAULT;
1193 
1194 		return ret;
1195 	}
1196 
1197 	return -EINVAL;
1198 }
1199 
1200 static int iter_to_pipe(struct iov_iter *from,
1201 			struct pipe_inode_info *pipe,
1202 			unsigned flags)
1203 {
1204 	struct pipe_buffer buf = {
1205 		.ops = &user_page_pipe_buf_ops,
1206 		.flags = flags
1207 	};
1208 	size_t total = 0;
1209 	int ret = 0;
1210 	bool failed = false;
1211 
1212 	while (iov_iter_count(from) && !failed) {
1213 		struct page *pages[16];
1214 		ssize_t copied;
1215 		size_t start;
1216 		int n;
1217 
1218 		copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start);
1219 		if (copied <= 0) {
1220 			ret = copied;
1221 			break;
1222 		}
1223 
1224 		for (n = 0; copied; n++, start = 0) {
1225 			int size = min_t(int, copied, PAGE_SIZE - start);
1226 			if (!failed) {
1227 				buf.page = pages[n];
1228 				buf.offset = start;
1229 				buf.len = size;
1230 				ret = add_to_pipe(pipe, &buf);
1231 				if (unlikely(ret < 0)) {
1232 					failed = true;
1233 				} else {
1234 					iov_iter_advance(from, ret);
1235 					total += ret;
1236 				}
1237 			} else {
1238 				put_page(pages[n]);
1239 			}
1240 			copied -= size;
1241 		}
1242 	}
1243 	return total ? total : ret;
1244 }
1245 
1246 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1247 			struct splice_desc *sd)
1248 {
1249 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1250 	return n == sd->len ? n : -EFAULT;
1251 }
1252 
1253 /*
1254  * For lack of a better implementation, implement vmsplice() to userspace
1255  * as a simple copy of the pipes pages to the user iov.
1256  */
1257 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1258 			     unsigned long nr_segs, unsigned int flags)
1259 {
1260 	struct pipe_inode_info *pipe;
1261 	struct splice_desc sd;
1262 	long ret;
1263 	struct iovec iovstack[UIO_FASTIOV];
1264 	struct iovec *iov = iovstack;
1265 	struct iov_iter iter;
1266 
1267 	pipe = get_pipe_info(file);
1268 	if (!pipe)
1269 		return -EBADF;
1270 
1271 	ret = import_iovec(READ, uiov, nr_segs,
1272 			   ARRAY_SIZE(iovstack), &iov, &iter);
1273 	if (ret < 0)
1274 		return ret;
1275 
1276 	sd.total_len = iov_iter_count(&iter);
1277 	sd.len = 0;
1278 	sd.flags = flags;
1279 	sd.u.data = &iter;
1280 	sd.pos = 0;
1281 
1282 	if (sd.total_len) {
1283 		pipe_lock(pipe);
1284 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1285 		pipe_unlock(pipe);
1286 	}
1287 
1288 	kfree(iov);
1289 	return ret;
1290 }
1291 
1292 /*
1293  * vmsplice splices a user address range into a pipe. It can be thought of
1294  * as splice-from-memory, where the regular splice is splice-from-file (or
1295  * to file). In both cases the output is a pipe, naturally.
1296  */
1297 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *uiov,
1298 			     unsigned long nr_segs, unsigned int flags)
1299 {
1300 	struct pipe_inode_info *pipe;
1301 	struct iovec iovstack[UIO_FASTIOV];
1302 	struct iovec *iov = iovstack;
1303 	struct iov_iter from;
1304 	long ret;
1305 	unsigned buf_flag = 0;
1306 
1307 	if (flags & SPLICE_F_GIFT)
1308 		buf_flag = PIPE_BUF_FLAG_GIFT;
1309 
1310 	pipe = get_pipe_info(file);
1311 	if (!pipe)
1312 		return -EBADF;
1313 
1314 	ret = import_iovec(WRITE, uiov, nr_segs,
1315 			   ARRAY_SIZE(iovstack), &iov, &from);
1316 	if (ret < 0)
1317 		return ret;
1318 
1319 	pipe_lock(pipe);
1320 	ret = wait_for_space(pipe, flags);
1321 	if (!ret)
1322 		ret = iter_to_pipe(&from, pipe, buf_flag);
1323 	pipe_unlock(pipe);
1324 	if (ret > 0)
1325 		wakeup_pipe_readers(pipe);
1326 	kfree(iov);
1327 	return ret;
1328 }
1329 
1330 /*
1331  * Note that vmsplice only really supports true splicing _from_ user memory
1332  * to a pipe, not the other way around. Splicing from user memory is a simple
1333  * operation that can be supported without any funky alignment restrictions
1334  * or nasty vm tricks. We simply map in the user memory and fill them into
1335  * a pipe. The reverse isn't quite as easy, though. There are two possible
1336  * solutions for that:
1337  *
1338  *	- memcpy() the data internally, at which point we might as well just
1339  *	  do a regular read() on the buffer anyway.
1340  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1341  *	  has restriction limitations on both ends of the pipe).
1342  *
1343  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1344  *
1345  */
1346 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1347 		unsigned long, nr_segs, unsigned int, flags)
1348 {
1349 	struct fd f;
1350 	long error;
1351 
1352 	if (unlikely(nr_segs > UIO_MAXIOV))
1353 		return -EINVAL;
1354 	else if (unlikely(!nr_segs))
1355 		return 0;
1356 
1357 	error = -EBADF;
1358 	f = fdget(fd);
1359 	if (f.file) {
1360 		if (f.file->f_mode & FMODE_WRITE)
1361 			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1362 		else if (f.file->f_mode & FMODE_READ)
1363 			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1364 
1365 		fdput(f);
1366 	}
1367 
1368 	return error;
1369 }
1370 
1371 #ifdef CONFIG_COMPAT
1372 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1373 		    unsigned int, nr_segs, unsigned int, flags)
1374 {
1375 	unsigned i;
1376 	struct iovec __user *iov;
1377 	if (nr_segs > UIO_MAXIOV)
1378 		return -EINVAL;
1379 	iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1380 	for (i = 0; i < nr_segs; i++) {
1381 		struct compat_iovec v;
1382 		if (get_user(v.iov_base, &iov32[i].iov_base) ||
1383 		    get_user(v.iov_len, &iov32[i].iov_len) ||
1384 		    put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1385 		    put_user(v.iov_len, &iov[i].iov_len))
1386 			return -EFAULT;
1387 	}
1388 	return sys_vmsplice(fd, iov, nr_segs, flags);
1389 }
1390 #endif
1391 
1392 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1393 		int, fd_out, loff_t __user *, off_out,
1394 		size_t, len, unsigned int, flags)
1395 {
1396 	struct fd in, out;
1397 	long error;
1398 
1399 	if (unlikely(!len))
1400 		return 0;
1401 
1402 	error = -EBADF;
1403 	in = fdget(fd_in);
1404 	if (in.file) {
1405 		if (in.file->f_mode & FMODE_READ) {
1406 			out = fdget(fd_out);
1407 			if (out.file) {
1408 				if (out.file->f_mode & FMODE_WRITE)
1409 					error = do_splice(in.file, off_in,
1410 							  out.file, off_out,
1411 							  len, flags);
1412 				fdput(out);
1413 			}
1414 		}
1415 		fdput(in);
1416 	}
1417 	return error;
1418 }
1419 
1420 /*
1421  * Make sure there's data to read. Wait for input if we can, otherwise
1422  * return an appropriate error.
1423  */
1424 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1425 {
1426 	int ret;
1427 
1428 	/*
1429 	 * Check ->nrbufs without the inode lock first. This function
1430 	 * is speculative anyways, so missing one is ok.
1431 	 */
1432 	if (pipe->nrbufs)
1433 		return 0;
1434 
1435 	ret = 0;
1436 	pipe_lock(pipe);
1437 
1438 	while (!pipe->nrbufs) {
1439 		if (signal_pending(current)) {
1440 			ret = -ERESTARTSYS;
1441 			break;
1442 		}
1443 		if (!pipe->writers)
1444 			break;
1445 		if (!pipe->waiting_writers) {
1446 			if (flags & SPLICE_F_NONBLOCK) {
1447 				ret = -EAGAIN;
1448 				break;
1449 			}
1450 		}
1451 		pipe_wait(pipe);
1452 	}
1453 
1454 	pipe_unlock(pipe);
1455 	return ret;
1456 }
1457 
1458 /*
1459  * Make sure there's writeable room. Wait for room if we can, otherwise
1460  * return an appropriate error.
1461  */
1462 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1463 {
1464 	int ret;
1465 
1466 	/*
1467 	 * Check ->nrbufs without the inode lock first. This function
1468 	 * is speculative anyways, so missing one is ok.
1469 	 */
1470 	if (pipe->nrbufs < pipe->buffers)
1471 		return 0;
1472 
1473 	ret = 0;
1474 	pipe_lock(pipe);
1475 
1476 	while (pipe->nrbufs >= pipe->buffers) {
1477 		if (!pipe->readers) {
1478 			send_sig(SIGPIPE, current, 0);
1479 			ret = -EPIPE;
1480 			break;
1481 		}
1482 		if (flags & SPLICE_F_NONBLOCK) {
1483 			ret = -EAGAIN;
1484 			break;
1485 		}
1486 		if (signal_pending(current)) {
1487 			ret = -ERESTARTSYS;
1488 			break;
1489 		}
1490 		pipe->waiting_writers++;
1491 		pipe_wait(pipe);
1492 		pipe->waiting_writers--;
1493 	}
1494 
1495 	pipe_unlock(pipe);
1496 	return ret;
1497 }
1498 
1499 /*
1500  * Splice contents of ipipe to opipe.
1501  */
1502 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1503 			       struct pipe_inode_info *opipe,
1504 			       size_t len, unsigned int flags)
1505 {
1506 	struct pipe_buffer *ibuf, *obuf;
1507 	int ret = 0, nbuf;
1508 	bool input_wakeup = false;
1509 
1510 
1511 retry:
1512 	ret = ipipe_prep(ipipe, flags);
1513 	if (ret)
1514 		return ret;
1515 
1516 	ret = opipe_prep(opipe, flags);
1517 	if (ret)
1518 		return ret;
1519 
1520 	/*
1521 	 * Potential ABBA deadlock, work around it by ordering lock
1522 	 * grabbing by pipe info address. Otherwise two different processes
1523 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1524 	 */
1525 	pipe_double_lock(ipipe, opipe);
1526 
1527 	do {
1528 		if (!opipe->readers) {
1529 			send_sig(SIGPIPE, current, 0);
1530 			if (!ret)
1531 				ret = -EPIPE;
1532 			break;
1533 		}
1534 
1535 		if (!ipipe->nrbufs && !ipipe->writers)
1536 			break;
1537 
1538 		/*
1539 		 * Cannot make any progress, because either the input
1540 		 * pipe is empty or the output pipe is full.
1541 		 */
1542 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1543 			/* Already processed some buffers, break */
1544 			if (ret)
1545 				break;
1546 
1547 			if (flags & SPLICE_F_NONBLOCK) {
1548 				ret = -EAGAIN;
1549 				break;
1550 			}
1551 
1552 			/*
1553 			 * We raced with another reader/writer and haven't
1554 			 * managed to process any buffers.  A zero return
1555 			 * value means EOF, so retry instead.
1556 			 */
1557 			pipe_unlock(ipipe);
1558 			pipe_unlock(opipe);
1559 			goto retry;
1560 		}
1561 
1562 		ibuf = ipipe->bufs + ipipe->curbuf;
1563 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1564 		obuf = opipe->bufs + nbuf;
1565 
1566 		if (len >= ibuf->len) {
1567 			/*
1568 			 * Simply move the whole buffer from ipipe to opipe
1569 			 */
1570 			*obuf = *ibuf;
1571 			ibuf->ops = NULL;
1572 			opipe->nrbufs++;
1573 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1574 			ipipe->nrbufs--;
1575 			input_wakeup = true;
1576 		} else {
1577 			/*
1578 			 * Get a reference to this pipe buffer,
1579 			 * so we can copy the contents over.
1580 			 */
1581 			pipe_buf_get(ipipe, ibuf);
1582 			*obuf = *ibuf;
1583 
1584 			/*
1585 			 * Don't inherit the gift flag, we need to
1586 			 * prevent multiple steals of this page.
1587 			 */
1588 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1589 
1590 			obuf->len = len;
1591 			opipe->nrbufs++;
1592 			ibuf->offset += obuf->len;
1593 			ibuf->len -= obuf->len;
1594 		}
1595 		ret += obuf->len;
1596 		len -= obuf->len;
1597 	} while (len);
1598 
1599 	pipe_unlock(ipipe);
1600 	pipe_unlock(opipe);
1601 
1602 	/*
1603 	 * If we put data in the output pipe, wakeup any potential readers.
1604 	 */
1605 	if (ret > 0)
1606 		wakeup_pipe_readers(opipe);
1607 
1608 	if (input_wakeup)
1609 		wakeup_pipe_writers(ipipe);
1610 
1611 	return ret;
1612 }
1613 
1614 /*
1615  * Link contents of ipipe to opipe.
1616  */
1617 static int link_pipe(struct pipe_inode_info *ipipe,
1618 		     struct pipe_inode_info *opipe,
1619 		     size_t len, unsigned int flags)
1620 {
1621 	struct pipe_buffer *ibuf, *obuf;
1622 	int ret = 0, i = 0, nbuf;
1623 
1624 	/*
1625 	 * Potential ABBA deadlock, work around it by ordering lock
1626 	 * grabbing by pipe info address. Otherwise two different processes
1627 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1628 	 */
1629 	pipe_double_lock(ipipe, opipe);
1630 
1631 	do {
1632 		if (!opipe->readers) {
1633 			send_sig(SIGPIPE, current, 0);
1634 			if (!ret)
1635 				ret = -EPIPE;
1636 			break;
1637 		}
1638 
1639 		/*
1640 		 * If we have iterated all input buffers or ran out of
1641 		 * output room, break.
1642 		 */
1643 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1644 			break;
1645 
1646 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1647 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1648 
1649 		/*
1650 		 * Get a reference to this pipe buffer,
1651 		 * so we can copy the contents over.
1652 		 */
1653 		pipe_buf_get(ipipe, ibuf);
1654 
1655 		obuf = opipe->bufs + nbuf;
1656 		*obuf = *ibuf;
1657 
1658 		/*
1659 		 * Don't inherit the gift flag, we need to
1660 		 * prevent multiple steals of this page.
1661 		 */
1662 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1663 
1664 		if (obuf->len > len)
1665 			obuf->len = len;
1666 
1667 		opipe->nrbufs++;
1668 		ret += obuf->len;
1669 		len -= obuf->len;
1670 		i++;
1671 	} while (len);
1672 
1673 	/*
1674 	 * return EAGAIN if we have the potential of some data in the
1675 	 * future, otherwise just return 0
1676 	 */
1677 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1678 		ret = -EAGAIN;
1679 
1680 	pipe_unlock(ipipe);
1681 	pipe_unlock(opipe);
1682 
1683 	/*
1684 	 * If we put data in the output pipe, wakeup any potential readers.
1685 	 */
1686 	if (ret > 0)
1687 		wakeup_pipe_readers(opipe);
1688 
1689 	return ret;
1690 }
1691 
1692 /*
1693  * This is a tee(1) implementation that works on pipes. It doesn't copy
1694  * any data, it simply references the 'in' pages on the 'out' pipe.
1695  * The 'flags' used are the SPLICE_F_* variants, currently the only
1696  * applicable one is SPLICE_F_NONBLOCK.
1697  */
1698 static long do_tee(struct file *in, struct file *out, size_t len,
1699 		   unsigned int flags)
1700 {
1701 	struct pipe_inode_info *ipipe = get_pipe_info(in);
1702 	struct pipe_inode_info *opipe = get_pipe_info(out);
1703 	int ret = -EINVAL;
1704 
1705 	/*
1706 	 * Duplicate the contents of ipipe to opipe without actually
1707 	 * copying the data.
1708 	 */
1709 	if (ipipe && opipe && ipipe != opipe) {
1710 		/*
1711 		 * Keep going, unless we encounter an error. The ipipe/opipe
1712 		 * ordering doesn't really matter.
1713 		 */
1714 		ret = ipipe_prep(ipipe, flags);
1715 		if (!ret) {
1716 			ret = opipe_prep(opipe, flags);
1717 			if (!ret)
1718 				ret = link_pipe(ipipe, opipe, len, flags);
1719 		}
1720 	}
1721 
1722 	return ret;
1723 }
1724 
1725 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1726 {
1727 	struct fd in;
1728 	int error;
1729 
1730 	if (unlikely(!len))
1731 		return 0;
1732 
1733 	error = -EBADF;
1734 	in = fdget(fdin);
1735 	if (in.file) {
1736 		if (in.file->f_mode & FMODE_READ) {
1737 			struct fd out = fdget(fdout);
1738 			if (out.file) {
1739 				if (out.file->f_mode & FMODE_WRITE)
1740 					error = do_tee(in.file, out.file,
1741 							len, flags);
1742 				fdput(out);
1743 			}
1744 		}
1745  		fdput(in);
1746  	}
1747 
1748 	return error;
1749 }
1750