1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/export.h> 29 #include <linux/syscalls.h> 30 #include <linux/uio.h> 31 #include <linux/security.h> 32 #include <linux/gfp.h> 33 #include <linux/socket.h> 34 #include <linux/compat.h> 35 #include "internal.h" 36 37 /* 38 * Attempt to steal a page from a pipe buffer. This should perhaps go into 39 * a vm helper function, it's already simplified quite a bit by the 40 * addition of remove_mapping(). If success is returned, the caller may 41 * attempt to reuse this page for another destination. 42 */ 43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 44 struct pipe_buffer *buf) 45 { 46 struct page *page = buf->page; 47 struct address_space *mapping; 48 49 lock_page(page); 50 51 mapping = page_mapping(page); 52 if (mapping) { 53 WARN_ON(!PageUptodate(page)); 54 55 /* 56 * At least for ext2 with nobh option, we need to wait on 57 * writeback completing on this page, since we'll remove it 58 * from the pagecache. Otherwise truncate wont wait on the 59 * page, allowing the disk blocks to be reused by someone else 60 * before we actually wrote our data to them. fs corruption 61 * ensues. 62 */ 63 wait_on_page_writeback(page); 64 65 if (page_has_private(page) && 66 !try_to_release_page(page, GFP_KERNEL)) 67 goto out_unlock; 68 69 /* 70 * If we succeeded in removing the mapping, set LRU flag 71 * and return good. 72 */ 73 if (remove_mapping(mapping, page)) { 74 buf->flags |= PIPE_BUF_FLAG_LRU; 75 return 0; 76 } 77 } 78 79 /* 80 * Raced with truncate or failed to remove page from current 81 * address space, unlock and return failure. 82 */ 83 out_unlock: 84 unlock_page(page); 85 return 1; 86 } 87 88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 89 struct pipe_buffer *buf) 90 { 91 put_page(buf->page); 92 buf->flags &= ~PIPE_BUF_FLAG_LRU; 93 } 94 95 /* 96 * Check whether the contents of buf is OK to access. Since the content 97 * is a page cache page, IO may be in flight. 98 */ 99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 100 struct pipe_buffer *buf) 101 { 102 struct page *page = buf->page; 103 int err; 104 105 if (!PageUptodate(page)) { 106 lock_page(page); 107 108 /* 109 * Page got truncated/unhashed. This will cause a 0-byte 110 * splice, if this is the first page. 111 */ 112 if (!page->mapping) { 113 err = -ENODATA; 114 goto error; 115 } 116 117 /* 118 * Uh oh, read-error from disk. 119 */ 120 if (!PageUptodate(page)) { 121 err = -EIO; 122 goto error; 123 } 124 125 /* 126 * Page is ok afterall, we are done. 127 */ 128 unlock_page(page); 129 } 130 131 return 0; 132 error: 133 unlock_page(page); 134 return err; 135 } 136 137 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 138 .can_merge = 0, 139 .confirm = page_cache_pipe_buf_confirm, 140 .release = page_cache_pipe_buf_release, 141 .steal = page_cache_pipe_buf_steal, 142 .get = generic_pipe_buf_get, 143 }; 144 145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 146 struct pipe_buffer *buf) 147 { 148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 149 return 1; 150 151 buf->flags |= PIPE_BUF_FLAG_LRU; 152 return generic_pipe_buf_steal(pipe, buf); 153 } 154 155 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 156 .can_merge = 0, 157 .confirm = generic_pipe_buf_confirm, 158 .release = page_cache_pipe_buf_release, 159 .steal = user_page_pipe_buf_steal, 160 .get = generic_pipe_buf_get, 161 }; 162 163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 164 { 165 smp_mb(); 166 if (waitqueue_active(&pipe->wait)) 167 wake_up_interruptible(&pipe->wait); 168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 169 } 170 171 /** 172 * splice_to_pipe - fill passed data into a pipe 173 * @pipe: pipe to fill 174 * @spd: data to fill 175 * 176 * Description: 177 * @spd contains a map of pages and len/offset tuples, along with 178 * the struct pipe_buf_operations associated with these pages. This 179 * function will link that data to the pipe. 180 * 181 */ 182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 183 struct splice_pipe_desc *spd) 184 { 185 unsigned int spd_pages = spd->nr_pages; 186 int ret = 0, page_nr = 0; 187 188 if (!spd_pages) 189 return 0; 190 191 if (unlikely(!pipe->readers)) { 192 send_sig(SIGPIPE, current, 0); 193 ret = -EPIPE; 194 goto out; 195 } 196 197 while (pipe->nrbufs < pipe->buffers) { 198 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 199 struct pipe_buffer *buf = pipe->bufs + newbuf; 200 201 buf->page = spd->pages[page_nr]; 202 buf->offset = spd->partial[page_nr].offset; 203 buf->len = spd->partial[page_nr].len; 204 buf->private = spd->partial[page_nr].private; 205 buf->ops = spd->ops; 206 207 pipe->nrbufs++; 208 page_nr++; 209 ret += buf->len; 210 211 if (!--spd->nr_pages) 212 break; 213 } 214 215 if (!ret) 216 ret = -EAGAIN; 217 218 out: 219 while (page_nr < spd_pages) 220 spd->spd_release(spd, page_nr++); 221 222 return ret; 223 } 224 EXPORT_SYMBOL_GPL(splice_to_pipe); 225 226 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 227 { 228 int ret; 229 230 if (unlikely(!pipe->readers)) { 231 send_sig(SIGPIPE, current, 0); 232 ret = -EPIPE; 233 } else if (pipe->nrbufs == pipe->buffers) { 234 ret = -EAGAIN; 235 } else { 236 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 237 pipe->bufs[newbuf] = *buf; 238 pipe->nrbufs++; 239 return buf->len; 240 } 241 pipe_buf_release(pipe, buf); 242 return ret; 243 } 244 EXPORT_SYMBOL(add_to_pipe); 245 246 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 247 { 248 put_page(spd->pages[i]); 249 } 250 251 /* 252 * Check if we need to grow the arrays holding pages and partial page 253 * descriptions. 254 */ 255 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 256 { 257 unsigned int buffers = ACCESS_ONCE(pipe->buffers); 258 259 spd->nr_pages_max = buffers; 260 if (buffers <= PIPE_DEF_BUFFERS) 261 return 0; 262 263 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL); 264 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL); 265 266 if (spd->pages && spd->partial) 267 return 0; 268 269 kfree(spd->pages); 270 kfree(spd->partial); 271 return -ENOMEM; 272 } 273 274 void splice_shrink_spd(struct splice_pipe_desc *spd) 275 { 276 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 277 return; 278 279 kfree(spd->pages); 280 kfree(spd->partial); 281 } 282 283 /** 284 * generic_file_splice_read - splice data from file to a pipe 285 * @in: file to splice from 286 * @ppos: position in @in 287 * @pipe: pipe to splice to 288 * @len: number of bytes to splice 289 * @flags: splice modifier flags 290 * 291 * Description: 292 * Will read pages from given file and fill them into a pipe. Can be 293 * used as long as it has more or less sane ->read_iter(). 294 * 295 */ 296 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 297 struct pipe_inode_info *pipe, size_t len, 298 unsigned int flags) 299 { 300 struct iov_iter to; 301 struct kiocb kiocb; 302 int idx, ret; 303 304 iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len); 305 idx = to.idx; 306 init_sync_kiocb(&kiocb, in); 307 kiocb.ki_pos = *ppos; 308 ret = in->f_op->read_iter(&kiocb, &to); 309 if (ret > 0) { 310 *ppos = kiocb.ki_pos; 311 file_accessed(in); 312 } else if (ret < 0) { 313 to.idx = idx; 314 to.iov_offset = 0; 315 iov_iter_advance(&to, 0); /* to free what was emitted */ 316 /* 317 * callers of ->splice_read() expect -EAGAIN on 318 * "can't put anything in there", rather than -EFAULT. 319 */ 320 if (ret == -EFAULT) 321 ret = -EAGAIN; 322 } 323 324 return ret; 325 } 326 EXPORT_SYMBOL(generic_file_splice_read); 327 328 const struct pipe_buf_operations default_pipe_buf_ops = { 329 .can_merge = 0, 330 .confirm = generic_pipe_buf_confirm, 331 .release = generic_pipe_buf_release, 332 .steal = generic_pipe_buf_steal, 333 .get = generic_pipe_buf_get, 334 }; 335 336 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe, 337 struct pipe_buffer *buf) 338 { 339 return 1; 340 } 341 342 /* Pipe buffer operations for a socket and similar. */ 343 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 344 .can_merge = 0, 345 .confirm = generic_pipe_buf_confirm, 346 .release = generic_pipe_buf_release, 347 .steal = generic_pipe_buf_nosteal, 348 .get = generic_pipe_buf_get, 349 }; 350 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 351 352 static ssize_t kernel_readv(struct file *file, const struct kvec *vec, 353 unsigned long vlen, loff_t offset) 354 { 355 mm_segment_t old_fs; 356 loff_t pos = offset; 357 ssize_t res; 358 359 old_fs = get_fs(); 360 set_fs(get_ds()); 361 /* The cast to a user pointer is valid due to the set_fs() */ 362 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0); 363 set_fs(old_fs); 364 365 return res; 366 } 367 368 ssize_t kernel_write(struct file *file, const char *buf, size_t count, 369 loff_t pos) 370 { 371 mm_segment_t old_fs; 372 ssize_t res; 373 374 old_fs = get_fs(); 375 set_fs(get_ds()); 376 /* The cast to a user pointer is valid due to the set_fs() */ 377 res = vfs_write(file, (__force const char __user *)buf, count, &pos); 378 set_fs(old_fs); 379 380 return res; 381 } 382 EXPORT_SYMBOL(kernel_write); 383 384 static ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 385 struct pipe_inode_info *pipe, size_t len, 386 unsigned int flags) 387 { 388 struct kvec *vec, __vec[PIPE_DEF_BUFFERS]; 389 struct iov_iter to; 390 struct page **pages; 391 unsigned int nr_pages; 392 size_t offset, dummy, copied = 0; 393 ssize_t res; 394 int i; 395 396 if (pipe->nrbufs == pipe->buffers) 397 return -EAGAIN; 398 399 /* 400 * Try to keep page boundaries matching to source pagecache ones - 401 * it probably won't be much help, but... 402 */ 403 offset = *ppos & ~PAGE_MASK; 404 405 iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len + offset); 406 407 res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &dummy); 408 if (res <= 0) 409 return -ENOMEM; 410 411 nr_pages = res / PAGE_SIZE; 412 413 vec = __vec; 414 if (nr_pages > PIPE_DEF_BUFFERS) { 415 vec = kmalloc(nr_pages * sizeof(struct kvec), GFP_KERNEL); 416 if (unlikely(!vec)) { 417 res = -ENOMEM; 418 goto out; 419 } 420 } 421 422 pipe->bufs[to.idx].offset = offset; 423 pipe->bufs[to.idx].len -= offset; 424 425 for (i = 0; i < nr_pages; i++) { 426 size_t this_len = min_t(size_t, len, PAGE_SIZE - offset); 427 vec[i].iov_base = page_address(pages[i]) + offset; 428 vec[i].iov_len = this_len; 429 len -= this_len; 430 offset = 0; 431 } 432 433 res = kernel_readv(in, vec, nr_pages, *ppos); 434 if (res > 0) { 435 copied = res; 436 *ppos += res; 437 } 438 439 if (vec != __vec) 440 kfree(vec); 441 out: 442 for (i = 0; i < nr_pages; i++) 443 put_page(pages[i]); 444 kvfree(pages); 445 iov_iter_advance(&to, copied); /* truncates and discards */ 446 return res; 447 } 448 449 /* 450 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 451 * using sendpage(). Return the number of bytes sent. 452 */ 453 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 454 struct pipe_buffer *buf, struct splice_desc *sd) 455 { 456 struct file *file = sd->u.file; 457 loff_t pos = sd->pos; 458 int more; 459 460 if (!likely(file->f_op->sendpage)) 461 return -EINVAL; 462 463 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0; 464 465 if (sd->len < sd->total_len && pipe->nrbufs > 1) 466 more |= MSG_SENDPAGE_NOTLAST; 467 468 return file->f_op->sendpage(file, buf->page, buf->offset, 469 sd->len, &pos, more); 470 } 471 472 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 473 { 474 smp_mb(); 475 if (waitqueue_active(&pipe->wait)) 476 wake_up_interruptible(&pipe->wait); 477 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 478 } 479 480 /** 481 * splice_from_pipe_feed - feed available data from a pipe to a file 482 * @pipe: pipe to splice from 483 * @sd: information to @actor 484 * @actor: handler that splices the data 485 * 486 * Description: 487 * This function loops over the pipe and calls @actor to do the 488 * actual moving of a single struct pipe_buffer to the desired 489 * destination. It returns when there's no more buffers left in 490 * the pipe or if the requested number of bytes (@sd->total_len) 491 * have been copied. It returns a positive number (one) if the 492 * pipe needs to be filled with more data, zero if the required 493 * number of bytes have been copied and -errno on error. 494 * 495 * This, together with splice_from_pipe_{begin,end,next}, may be 496 * used to implement the functionality of __splice_from_pipe() when 497 * locking is required around copying the pipe buffers to the 498 * destination. 499 */ 500 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 501 splice_actor *actor) 502 { 503 int ret; 504 505 while (pipe->nrbufs) { 506 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 507 508 sd->len = buf->len; 509 if (sd->len > sd->total_len) 510 sd->len = sd->total_len; 511 512 ret = pipe_buf_confirm(pipe, buf); 513 if (unlikely(ret)) { 514 if (ret == -ENODATA) 515 ret = 0; 516 return ret; 517 } 518 519 ret = actor(pipe, buf, sd); 520 if (ret <= 0) 521 return ret; 522 523 buf->offset += ret; 524 buf->len -= ret; 525 526 sd->num_spliced += ret; 527 sd->len -= ret; 528 sd->pos += ret; 529 sd->total_len -= ret; 530 531 if (!buf->len) { 532 pipe_buf_release(pipe, buf); 533 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 534 pipe->nrbufs--; 535 if (pipe->files) 536 sd->need_wakeup = true; 537 } 538 539 if (!sd->total_len) 540 return 0; 541 } 542 543 return 1; 544 } 545 546 /** 547 * splice_from_pipe_next - wait for some data to splice from 548 * @pipe: pipe to splice from 549 * @sd: information about the splice operation 550 * 551 * Description: 552 * This function will wait for some data and return a positive 553 * value (one) if pipe buffers are available. It will return zero 554 * or -errno if no more data needs to be spliced. 555 */ 556 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 557 { 558 /* 559 * Check for signal early to make process killable when there are 560 * always buffers available 561 */ 562 if (signal_pending(current)) 563 return -ERESTARTSYS; 564 565 while (!pipe->nrbufs) { 566 if (!pipe->writers) 567 return 0; 568 569 if (!pipe->waiting_writers && sd->num_spliced) 570 return 0; 571 572 if (sd->flags & SPLICE_F_NONBLOCK) 573 return -EAGAIN; 574 575 if (signal_pending(current)) 576 return -ERESTARTSYS; 577 578 if (sd->need_wakeup) { 579 wakeup_pipe_writers(pipe); 580 sd->need_wakeup = false; 581 } 582 583 pipe_wait(pipe); 584 } 585 586 return 1; 587 } 588 589 /** 590 * splice_from_pipe_begin - start splicing from pipe 591 * @sd: information about the splice operation 592 * 593 * Description: 594 * This function should be called before a loop containing 595 * splice_from_pipe_next() and splice_from_pipe_feed() to 596 * initialize the necessary fields of @sd. 597 */ 598 static void splice_from_pipe_begin(struct splice_desc *sd) 599 { 600 sd->num_spliced = 0; 601 sd->need_wakeup = false; 602 } 603 604 /** 605 * splice_from_pipe_end - finish splicing from pipe 606 * @pipe: pipe to splice from 607 * @sd: information about the splice operation 608 * 609 * Description: 610 * This function will wake up pipe writers if necessary. It should 611 * be called after a loop containing splice_from_pipe_next() and 612 * splice_from_pipe_feed(). 613 */ 614 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 615 { 616 if (sd->need_wakeup) 617 wakeup_pipe_writers(pipe); 618 } 619 620 /** 621 * __splice_from_pipe - splice data from a pipe to given actor 622 * @pipe: pipe to splice from 623 * @sd: information to @actor 624 * @actor: handler that splices the data 625 * 626 * Description: 627 * This function does little more than loop over the pipe and call 628 * @actor to do the actual moving of a single struct pipe_buffer to 629 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 630 * pipe_to_user. 631 * 632 */ 633 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 634 splice_actor *actor) 635 { 636 int ret; 637 638 splice_from_pipe_begin(sd); 639 do { 640 cond_resched(); 641 ret = splice_from_pipe_next(pipe, sd); 642 if (ret > 0) 643 ret = splice_from_pipe_feed(pipe, sd, actor); 644 } while (ret > 0); 645 splice_from_pipe_end(pipe, sd); 646 647 return sd->num_spliced ? sd->num_spliced : ret; 648 } 649 EXPORT_SYMBOL(__splice_from_pipe); 650 651 /** 652 * splice_from_pipe - splice data from a pipe to a file 653 * @pipe: pipe to splice from 654 * @out: file to splice to 655 * @ppos: position in @out 656 * @len: how many bytes to splice 657 * @flags: splice modifier flags 658 * @actor: handler that splices the data 659 * 660 * Description: 661 * See __splice_from_pipe. This function locks the pipe inode, 662 * otherwise it's identical to __splice_from_pipe(). 663 * 664 */ 665 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 666 loff_t *ppos, size_t len, unsigned int flags, 667 splice_actor *actor) 668 { 669 ssize_t ret; 670 struct splice_desc sd = { 671 .total_len = len, 672 .flags = flags, 673 .pos = *ppos, 674 .u.file = out, 675 }; 676 677 pipe_lock(pipe); 678 ret = __splice_from_pipe(pipe, &sd, actor); 679 pipe_unlock(pipe); 680 681 return ret; 682 } 683 684 /** 685 * iter_file_splice_write - splice data from a pipe to a file 686 * @pipe: pipe info 687 * @out: file to write to 688 * @ppos: position in @out 689 * @len: number of bytes to splice 690 * @flags: splice modifier flags 691 * 692 * Description: 693 * Will either move or copy pages (determined by @flags options) from 694 * the given pipe inode to the given file. 695 * This one is ->write_iter-based. 696 * 697 */ 698 ssize_t 699 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 700 loff_t *ppos, size_t len, unsigned int flags) 701 { 702 struct splice_desc sd = { 703 .total_len = len, 704 .flags = flags, 705 .pos = *ppos, 706 .u.file = out, 707 }; 708 int nbufs = pipe->buffers; 709 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 710 GFP_KERNEL); 711 ssize_t ret; 712 713 if (unlikely(!array)) 714 return -ENOMEM; 715 716 pipe_lock(pipe); 717 718 splice_from_pipe_begin(&sd); 719 while (sd.total_len) { 720 struct iov_iter from; 721 size_t left; 722 int n, idx; 723 724 ret = splice_from_pipe_next(pipe, &sd); 725 if (ret <= 0) 726 break; 727 728 if (unlikely(nbufs < pipe->buffers)) { 729 kfree(array); 730 nbufs = pipe->buffers; 731 array = kcalloc(nbufs, sizeof(struct bio_vec), 732 GFP_KERNEL); 733 if (!array) { 734 ret = -ENOMEM; 735 break; 736 } 737 } 738 739 /* build the vector */ 740 left = sd.total_len; 741 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) { 742 struct pipe_buffer *buf = pipe->bufs + idx; 743 size_t this_len = buf->len; 744 745 if (this_len > left) 746 this_len = left; 747 748 if (idx == pipe->buffers - 1) 749 idx = -1; 750 751 ret = pipe_buf_confirm(pipe, buf); 752 if (unlikely(ret)) { 753 if (ret == -ENODATA) 754 ret = 0; 755 goto done; 756 } 757 758 array[n].bv_page = buf->page; 759 array[n].bv_len = this_len; 760 array[n].bv_offset = buf->offset; 761 left -= this_len; 762 } 763 764 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n, 765 sd.total_len - left); 766 ret = vfs_iter_write(out, &from, &sd.pos); 767 if (ret <= 0) 768 break; 769 770 sd.num_spliced += ret; 771 sd.total_len -= ret; 772 *ppos = sd.pos; 773 774 /* dismiss the fully eaten buffers, adjust the partial one */ 775 while (ret) { 776 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 777 if (ret >= buf->len) { 778 ret -= buf->len; 779 buf->len = 0; 780 pipe_buf_release(pipe, buf); 781 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 782 pipe->nrbufs--; 783 if (pipe->files) 784 sd.need_wakeup = true; 785 } else { 786 buf->offset += ret; 787 buf->len -= ret; 788 ret = 0; 789 } 790 } 791 } 792 done: 793 kfree(array); 794 splice_from_pipe_end(pipe, &sd); 795 796 pipe_unlock(pipe); 797 798 if (sd.num_spliced) 799 ret = sd.num_spliced; 800 801 return ret; 802 } 803 804 EXPORT_SYMBOL(iter_file_splice_write); 805 806 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 807 struct splice_desc *sd) 808 { 809 int ret; 810 void *data; 811 loff_t tmp = sd->pos; 812 813 data = kmap(buf->page); 814 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp); 815 kunmap(buf->page); 816 817 return ret; 818 } 819 820 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 821 struct file *out, loff_t *ppos, 822 size_t len, unsigned int flags) 823 { 824 ssize_t ret; 825 826 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 827 if (ret > 0) 828 *ppos += ret; 829 830 return ret; 831 } 832 833 /** 834 * generic_splice_sendpage - splice data from a pipe to a socket 835 * @pipe: pipe to splice from 836 * @out: socket to write to 837 * @ppos: position in @out 838 * @len: number of bytes to splice 839 * @flags: splice modifier flags 840 * 841 * Description: 842 * Will send @len bytes from the pipe to a network socket. No data copying 843 * is involved. 844 * 845 */ 846 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 847 loff_t *ppos, size_t len, unsigned int flags) 848 { 849 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 850 } 851 852 EXPORT_SYMBOL(generic_splice_sendpage); 853 854 /* 855 * Attempt to initiate a splice from pipe to file. 856 */ 857 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 858 loff_t *ppos, size_t len, unsigned int flags) 859 { 860 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 861 loff_t *, size_t, unsigned int); 862 863 if (out->f_op->splice_write) 864 splice_write = out->f_op->splice_write; 865 else 866 splice_write = default_file_splice_write; 867 868 return splice_write(pipe, out, ppos, len, flags); 869 } 870 871 /* 872 * Attempt to initiate a splice from a file to a pipe. 873 */ 874 static long do_splice_to(struct file *in, loff_t *ppos, 875 struct pipe_inode_info *pipe, size_t len, 876 unsigned int flags) 877 { 878 ssize_t (*splice_read)(struct file *, loff_t *, 879 struct pipe_inode_info *, size_t, unsigned int); 880 int ret; 881 882 if (unlikely(!(in->f_mode & FMODE_READ))) 883 return -EBADF; 884 885 ret = rw_verify_area(READ, in, ppos, len); 886 if (unlikely(ret < 0)) 887 return ret; 888 889 if (unlikely(len > MAX_RW_COUNT)) 890 len = MAX_RW_COUNT; 891 892 if (in->f_op->splice_read) 893 splice_read = in->f_op->splice_read; 894 else 895 splice_read = default_file_splice_read; 896 897 return splice_read(in, ppos, pipe, len, flags); 898 } 899 900 /** 901 * splice_direct_to_actor - splices data directly between two non-pipes 902 * @in: file to splice from 903 * @sd: actor information on where to splice to 904 * @actor: handles the data splicing 905 * 906 * Description: 907 * This is a special case helper to splice directly between two 908 * points, without requiring an explicit pipe. Internally an allocated 909 * pipe is cached in the process, and reused during the lifetime of 910 * that process. 911 * 912 */ 913 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 914 splice_direct_actor *actor) 915 { 916 struct pipe_inode_info *pipe; 917 long ret, bytes; 918 umode_t i_mode; 919 size_t len; 920 int i, flags, more; 921 922 /* 923 * We require the input being a regular file, as we don't want to 924 * randomly drop data for eg socket -> socket splicing. Use the 925 * piped splicing for that! 926 */ 927 i_mode = file_inode(in)->i_mode; 928 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 929 return -EINVAL; 930 931 /* 932 * neither in nor out is a pipe, setup an internal pipe attached to 933 * 'out' and transfer the wanted data from 'in' to 'out' through that 934 */ 935 pipe = current->splice_pipe; 936 if (unlikely(!pipe)) { 937 pipe = alloc_pipe_info(); 938 if (!pipe) 939 return -ENOMEM; 940 941 /* 942 * We don't have an immediate reader, but we'll read the stuff 943 * out of the pipe right after the splice_to_pipe(). So set 944 * PIPE_READERS appropriately. 945 */ 946 pipe->readers = 1; 947 948 current->splice_pipe = pipe; 949 } 950 951 /* 952 * Do the splice. 953 */ 954 ret = 0; 955 bytes = 0; 956 len = sd->total_len; 957 flags = sd->flags; 958 959 /* 960 * Don't block on output, we have to drain the direct pipe. 961 */ 962 sd->flags &= ~SPLICE_F_NONBLOCK; 963 more = sd->flags & SPLICE_F_MORE; 964 965 while (len) { 966 size_t read_len; 967 loff_t pos = sd->pos, prev_pos = pos; 968 969 ret = do_splice_to(in, &pos, pipe, len, flags); 970 if (unlikely(ret <= 0)) 971 goto out_release; 972 973 read_len = ret; 974 sd->total_len = read_len; 975 976 /* 977 * If more data is pending, set SPLICE_F_MORE 978 * If this is the last data and SPLICE_F_MORE was not set 979 * initially, clears it. 980 */ 981 if (read_len < len) 982 sd->flags |= SPLICE_F_MORE; 983 else if (!more) 984 sd->flags &= ~SPLICE_F_MORE; 985 /* 986 * NOTE: nonblocking mode only applies to the input. We 987 * must not do the output in nonblocking mode as then we 988 * could get stuck data in the internal pipe: 989 */ 990 ret = actor(pipe, sd); 991 if (unlikely(ret <= 0)) { 992 sd->pos = prev_pos; 993 goto out_release; 994 } 995 996 bytes += ret; 997 len -= ret; 998 sd->pos = pos; 999 1000 if (ret < read_len) { 1001 sd->pos = prev_pos + ret; 1002 goto out_release; 1003 } 1004 } 1005 1006 done: 1007 pipe->nrbufs = pipe->curbuf = 0; 1008 file_accessed(in); 1009 return bytes; 1010 1011 out_release: 1012 /* 1013 * If we did an incomplete transfer we must release 1014 * the pipe buffers in question: 1015 */ 1016 for (i = 0; i < pipe->buffers; i++) { 1017 struct pipe_buffer *buf = pipe->bufs + i; 1018 1019 if (buf->ops) 1020 pipe_buf_release(pipe, buf); 1021 } 1022 1023 if (!bytes) 1024 bytes = ret; 1025 1026 goto done; 1027 } 1028 EXPORT_SYMBOL(splice_direct_to_actor); 1029 1030 static int direct_splice_actor(struct pipe_inode_info *pipe, 1031 struct splice_desc *sd) 1032 { 1033 struct file *file = sd->u.file; 1034 1035 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1036 sd->flags); 1037 } 1038 1039 /** 1040 * do_splice_direct - splices data directly between two files 1041 * @in: file to splice from 1042 * @ppos: input file offset 1043 * @out: file to splice to 1044 * @opos: output file offset 1045 * @len: number of bytes to splice 1046 * @flags: splice modifier flags 1047 * 1048 * Description: 1049 * For use by do_sendfile(). splice can easily emulate sendfile, but 1050 * doing it in the application would incur an extra system call 1051 * (splice in + splice out, as compared to just sendfile()). So this helper 1052 * can splice directly through a process-private pipe. 1053 * 1054 */ 1055 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1056 loff_t *opos, size_t len, unsigned int flags) 1057 { 1058 struct splice_desc sd = { 1059 .len = len, 1060 .total_len = len, 1061 .flags = flags, 1062 .pos = *ppos, 1063 .u.file = out, 1064 .opos = opos, 1065 }; 1066 long ret; 1067 1068 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1069 return -EBADF; 1070 1071 if (unlikely(out->f_flags & O_APPEND)) 1072 return -EINVAL; 1073 1074 ret = rw_verify_area(WRITE, out, opos, len); 1075 if (unlikely(ret < 0)) 1076 return ret; 1077 1078 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1079 if (ret > 0) 1080 *ppos = sd.pos; 1081 1082 return ret; 1083 } 1084 EXPORT_SYMBOL(do_splice_direct); 1085 1086 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 1087 { 1088 while (pipe->nrbufs == pipe->buffers) { 1089 if (flags & SPLICE_F_NONBLOCK) 1090 return -EAGAIN; 1091 if (signal_pending(current)) 1092 return -ERESTARTSYS; 1093 pipe->waiting_writers++; 1094 pipe_wait(pipe); 1095 pipe->waiting_writers--; 1096 } 1097 return 0; 1098 } 1099 1100 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1101 struct pipe_inode_info *opipe, 1102 size_t len, unsigned int flags); 1103 1104 /* 1105 * Determine where to splice to/from. 1106 */ 1107 static long do_splice(struct file *in, loff_t __user *off_in, 1108 struct file *out, loff_t __user *off_out, 1109 size_t len, unsigned int flags) 1110 { 1111 struct pipe_inode_info *ipipe; 1112 struct pipe_inode_info *opipe; 1113 loff_t offset; 1114 long ret; 1115 1116 ipipe = get_pipe_info(in); 1117 opipe = get_pipe_info(out); 1118 1119 if (ipipe && opipe) { 1120 if (off_in || off_out) 1121 return -ESPIPE; 1122 1123 if (!(in->f_mode & FMODE_READ)) 1124 return -EBADF; 1125 1126 if (!(out->f_mode & FMODE_WRITE)) 1127 return -EBADF; 1128 1129 /* Splicing to self would be fun, but... */ 1130 if (ipipe == opipe) 1131 return -EINVAL; 1132 1133 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1134 } 1135 1136 if (ipipe) { 1137 if (off_in) 1138 return -ESPIPE; 1139 if (off_out) { 1140 if (!(out->f_mode & FMODE_PWRITE)) 1141 return -EINVAL; 1142 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1143 return -EFAULT; 1144 } else { 1145 offset = out->f_pos; 1146 } 1147 1148 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1149 return -EBADF; 1150 1151 if (unlikely(out->f_flags & O_APPEND)) 1152 return -EINVAL; 1153 1154 ret = rw_verify_area(WRITE, out, &offset, len); 1155 if (unlikely(ret < 0)) 1156 return ret; 1157 1158 file_start_write(out); 1159 ret = do_splice_from(ipipe, out, &offset, len, flags); 1160 file_end_write(out); 1161 1162 if (!off_out) 1163 out->f_pos = offset; 1164 else if (copy_to_user(off_out, &offset, sizeof(loff_t))) 1165 ret = -EFAULT; 1166 1167 return ret; 1168 } 1169 1170 if (opipe) { 1171 if (off_out) 1172 return -ESPIPE; 1173 if (off_in) { 1174 if (!(in->f_mode & FMODE_PREAD)) 1175 return -EINVAL; 1176 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1177 return -EFAULT; 1178 } else { 1179 offset = in->f_pos; 1180 } 1181 1182 pipe_lock(opipe); 1183 ret = wait_for_space(opipe, flags); 1184 if (!ret) 1185 ret = do_splice_to(in, &offset, opipe, len, flags); 1186 pipe_unlock(opipe); 1187 if (ret > 0) 1188 wakeup_pipe_readers(opipe); 1189 if (!off_in) 1190 in->f_pos = offset; 1191 else if (copy_to_user(off_in, &offset, sizeof(loff_t))) 1192 ret = -EFAULT; 1193 1194 return ret; 1195 } 1196 1197 return -EINVAL; 1198 } 1199 1200 static int iter_to_pipe(struct iov_iter *from, 1201 struct pipe_inode_info *pipe, 1202 unsigned flags) 1203 { 1204 struct pipe_buffer buf = { 1205 .ops = &user_page_pipe_buf_ops, 1206 .flags = flags 1207 }; 1208 size_t total = 0; 1209 int ret = 0; 1210 bool failed = false; 1211 1212 while (iov_iter_count(from) && !failed) { 1213 struct page *pages[16]; 1214 ssize_t copied; 1215 size_t start; 1216 int n; 1217 1218 copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start); 1219 if (copied <= 0) { 1220 ret = copied; 1221 break; 1222 } 1223 1224 for (n = 0; copied; n++, start = 0) { 1225 int size = min_t(int, copied, PAGE_SIZE - start); 1226 if (!failed) { 1227 buf.page = pages[n]; 1228 buf.offset = start; 1229 buf.len = size; 1230 ret = add_to_pipe(pipe, &buf); 1231 if (unlikely(ret < 0)) { 1232 failed = true; 1233 } else { 1234 iov_iter_advance(from, ret); 1235 total += ret; 1236 } 1237 } else { 1238 put_page(pages[n]); 1239 } 1240 copied -= size; 1241 } 1242 } 1243 return total ? total : ret; 1244 } 1245 1246 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1247 struct splice_desc *sd) 1248 { 1249 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1250 return n == sd->len ? n : -EFAULT; 1251 } 1252 1253 /* 1254 * For lack of a better implementation, implement vmsplice() to userspace 1255 * as a simple copy of the pipes pages to the user iov. 1256 */ 1257 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov, 1258 unsigned long nr_segs, unsigned int flags) 1259 { 1260 struct pipe_inode_info *pipe; 1261 struct splice_desc sd; 1262 long ret; 1263 struct iovec iovstack[UIO_FASTIOV]; 1264 struct iovec *iov = iovstack; 1265 struct iov_iter iter; 1266 1267 pipe = get_pipe_info(file); 1268 if (!pipe) 1269 return -EBADF; 1270 1271 ret = import_iovec(READ, uiov, nr_segs, 1272 ARRAY_SIZE(iovstack), &iov, &iter); 1273 if (ret < 0) 1274 return ret; 1275 1276 sd.total_len = iov_iter_count(&iter); 1277 sd.len = 0; 1278 sd.flags = flags; 1279 sd.u.data = &iter; 1280 sd.pos = 0; 1281 1282 if (sd.total_len) { 1283 pipe_lock(pipe); 1284 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1285 pipe_unlock(pipe); 1286 } 1287 1288 kfree(iov); 1289 return ret; 1290 } 1291 1292 /* 1293 * vmsplice splices a user address range into a pipe. It can be thought of 1294 * as splice-from-memory, where the regular splice is splice-from-file (or 1295 * to file). In both cases the output is a pipe, naturally. 1296 */ 1297 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *uiov, 1298 unsigned long nr_segs, unsigned int flags) 1299 { 1300 struct pipe_inode_info *pipe; 1301 struct iovec iovstack[UIO_FASTIOV]; 1302 struct iovec *iov = iovstack; 1303 struct iov_iter from; 1304 long ret; 1305 unsigned buf_flag = 0; 1306 1307 if (flags & SPLICE_F_GIFT) 1308 buf_flag = PIPE_BUF_FLAG_GIFT; 1309 1310 pipe = get_pipe_info(file); 1311 if (!pipe) 1312 return -EBADF; 1313 1314 ret = import_iovec(WRITE, uiov, nr_segs, 1315 ARRAY_SIZE(iovstack), &iov, &from); 1316 if (ret < 0) 1317 return ret; 1318 1319 pipe_lock(pipe); 1320 ret = wait_for_space(pipe, flags); 1321 if (!ret) 1322 ret = iter_to_pipe(&from, pipe, buf_flag); 1323 pipe_unlock(pipe); 1324 if (ret > 0) 1325 wakeup_pipe_readers(pipe); 1326 kfree(iov); 1327 return ret; 1328 } 1329 1330 /* 1331 * Note that vmsplice only really supports true splicing _from_ user memory 1332 * to a pipe, not the other way around. Splicing from user memory is a simple 1333 * operation that can be supported without any funky alignment restrictions 1334 * or nasty vm tricks. We simply map in the user memory and fill them into 1335 * a pipe. The reverse isn't quite as easy, though. There are two possible 1336 * solutions for that: 1337 * 1338 * - memcpy() the data internally, at which point we might as well just 1339 * do a regular read() on the buffer anyway. 1340 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1341 * has restriction limitations on both ends of the pipe). 1342 * 1343 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1344 * 1345 */ 1346 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1347 unsigned long, nr_segs, unsigned int, flags) 1348 { 1349 struct fd f; 1350 long error; 1351 1352 if (unlikely(nr_segs > UIO_MAXIOV)) 1353 return -EINVAL; 1354 else if (unlikely(!nr_segs)) 1355 return 0; 1356 1357 error = -EBADF; 1358 f = fdget(fd); 1359 if (f.file) { 1360 if (f.file->f_mode & FMODE_WRITE) 1361 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags); 1362 else if (f.file->f_mode & FMODE_READ) 1363 error = vmsplice_to_user(f.file, iov, nr_segs, flags); 1364 1365 fdput(f); 1366 } 1367 1368 return error; 1369 } 1370 1371 #ifdef CONFIG_COMPAT 1372 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32, 1373 unsigned int, nr_segs, unsigned int, flags) 1374 { 1375 unsigned i; 1376 struct iovec __user *iov; 1377 if (nr_segs > UIO_MAXIOV) 1378 return -EINVAL; 1379 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec)); 1380 for (i = 0; i < nr_segs; i++) { 1381 struct compat_iovec v; 1382 if (get_user(v.iov_base, &iov32[i].iov_base) || 1383 get_user(v.iov_len, &iov32[i].iov_len) || 1384 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) || 1385 put_user(v.iov_len, &iov[i].iov_len)) 1386 return -EFAULT; 1387 } 1388 return sys_vmsplice(fd, iov, nr_segs, flags); 1389 } 1390 #endif 1391 1392 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1393 int, fd_out, loff_t __user *, off_out, 1394 size_t, len, unsigned int, flags) 1395 { 1396 struct fd in, out; 1397 long error; 1398 1399 if (unlikely(!len)) 1400 return 0; 1401 1402 error = -EBADF; 1403 in = fdget(fd_in); 1404 if (in.file) { 1405 if (in.file->f_mode & FMODE_READ) { 1406 out = fdget(fd_out); 1407 if (out.file) { 1408 if (out.file->f_mode & FMODE_WRITE) 1409 error = do_splice(in.file, off_in, 1410 out.file, off_out, 1411 len, flags); 1412 fdput(out); 1413 } 1414 } 1415 fdput(in); 1416 } 1417 return error; 1418 } 1419 1420 /* 1421 * Make sure there's data to read. Wait for input if we can, otherwise 1422 * return an appropriate error. 1423 */ 1424 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1425 { 1426 int ret; 1427 1428 /* 1429 * Check ->nrbufs without the inode lock first. This function 1430 * is speculative anyways, so missing one is ok. 1431 */ 1432 if (pipe->nrbufs) 1433 return 0; 1434 1435 ret = 0; 1436 pipe_lock(pipe); 1437 1438 while (!pipe->nrbufs) { 1439 if (signal_pending(current)) { 1440 ret = -ERESTARTSYS; 1441 break; 1442 } 1443 if (!pipe->writers) 1444 break; 1445 if (!pipe->waiting_writers) { 1446 if (flags & SPLICE_F_NONBLOCK) { 1447 ret = -EAGAIN; 1448 break; 1449 } 1450 } 1451 pipe_wait(pipe); 1452 } 1453 1454 pipe_unlock(pipe); 1455 return ret; 1456 } 1457 1458 /* 1459 * Make sure there's writeable room. Wait for room if we can, otherwise 1460 * return an appropriate error. 1461 */ 1462 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1463 { 1464 int ret; 1465 1466 /* 1467 * Check ->nrbufs without the inode lock first. This function 1468 * is speculative anyways, so missing one is ok. 1469 */ 1470 if (pipe->nrbufs < pipe->buffers) 1471 return 0; 1472 1473 ret = 0; 1474 pipe_lock(pipe); 1475 1476 while (pipe->nrbufs >= pipe->buffers) { 1477 if (!pipe->readers) { 1478 send_sig(SIGPIPE, current, 0); 1479 ret = -EPIPE; 1480 break; 1481 } 1482 if (flags & SPLICE_F_NONBLOCK) { 1483 ret = -EAGAIN; 1484 break; 1485 } 1486 if (signal_pending(current)) { 1487 ret = -ERESTARTSYS; 1488 break; 1489 } 1490 pipe->waiting_writers++; 1491 pipe_wait(pipe); 1492 pipe->waiting_writers--; 1493 } 1494 1495 pipe_unlock(pipe); 1496 return ret; 1497 } 1498 1499 /* 1500 * Splice contents of ipipe to opipe. 1501 */ 1502 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1503 struct pipe_inode_info *opipe, 1504 size_t len, unsigned int flags) 1505 { 1506 struct pipe_buffer *ibuf, *obuf; 1507 int ret = 0, nbuf; 1508 bool input_wakeup = false; 1509 1510 1511 retry: 1512 ret = ipipe_prep(ipipe, flags); 1513 if (ret) 1514 return ret; 1515 1516 ret = opipe_prep(opipe, flags); 1517 if (ret) 1518 return ret; 1519 1520 /* 1521 * Potential ABBA deadlock, work around it by ordering lock 1522 * grabbing by pipe info address. Otherwise two different processes 1523 * could deadlock (one doing tee from A -> B, the other from B -> A). 1524 */ 1525 pipe_double_lock(ipipe, opipe); 1526 1527 do { 1528 if (!opipe->readers) { 1529 send_sig(SIGPIPE, current, 0); 1530 if (!ret) 1531 ret = -EPIPE; 1532 break; 1533 } 1534 1535 if (!ipipe->nrbufs && !ipipe->writers) 1536 break; 1537 1538 /* 1539 * Cannot make any progress, because either the input 1540 * pipe is empty or the output pipe is full. 1541 */ 1542 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) { 1543 /* Already processed some buffers, break */ 1544 if (ret) 1545 break; 1546 1547 if (flags & SPLICE_F_NONBLOCK) { 1548 ret = -EAGAIN; 1549 break; 1550 } 1551 1552 /* 1553 * We raced with another reader/writer and haven't 1554 * managed to process any buffers. A zero return 1555 * value means EOF, so retry instead. 1556 */ 1557 pipe_unlock(ipipe); 1558 pipe_unlock(opipe); 1559 goto retry; 1560 } 1561 1562 ibuf = ipipe->bufs + ipipe->curbuf; 1563 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1564 obuf = opipe->bufs + nbuf; 1565 1566 if (len >= ibuf->len) { 1567 /* 1568 * Simply move the whole buffer from ipipe to opipe 1569 */ 1570 *obuf = *ibuf; 1571 ibuf->ops = NULL; 1572 opipe->nrbufs++; 1573 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1); 1574 ipipe->nrbufs--; 1575 input_wakeup = true; 1576 } else { 1577 /* 1578 * Get a reference to this pipe buffer, 1579 * so we can copy the contents over. 1580 */ 1581 pipe_buf_get(ipipe, ibuf); 1582 *obuf = *ibuf; 1583 1584 /* 1585 * Don't inherit the gift flag, we need to 1586 * prevent multiple steals of this page. 1587 */ 1588 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1589 1590 obuf->len = len; 1591 opipe->nrbufs++; 1592 ibuf->offset += obuf->len; 1593 ibuf->len -= obuf->len; 1594 } 1595 ret += obuf->len; 1596 len -= obuf->len; 1597 } while (len); 1598 1599 pipe_unlock(ipipe); 1600 pipe_unlock(opipe); 1601 1602 /* 1603 * If we put data in the output pipe, wakeup any potential readers. 1604 */ 1605 if (ret > 0) 1606 wakeup_pipe_readers(opipe); 1607 1608 if (input_wakeup) 1609 wakeup_pipe_writers(ipipe); 1610 1611 return ret; 1612 } 1613 1614 /* 1615 * Link contents of ipipe to opipe. 1616 */ 1617 static int link_pipe(struct pipe_inode_info *ipipe, 1618 struct pipe_inode_info *opipe, 1619 size_t len, unsigned int flags) 1620 { 1621 struct pipe_buffer *ibuf, *obuf; 1622 int ret = 0, i = 0, nbuf; 1623 1624 /* 1625 * Potential ABBA deadlock, work around it by ordering lock 1626 * grabbing by pipe info address. Otherwise two different processes 1627 * could deadlock (one doing tee from A -> B, the other from B -> A). 1628 */ 1629 pipe_double_lock(ipipe, opipe); 1630 1631 do { 1632 if (!opipe->readers) { 1633 send_sig(SIGPIPE, current, 0); 1634 if (!ret) 1635 ret = -EPIPE; 1636 break; 1637 } 1638 1639 /* 1640 * If we have iterated all input buffers or ran out of 1641 * output room, break. 1642 */ 1643 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) 1644 break; 1645 1646 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1)); 1647 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1648 1649 /* 1650 * Get a reference to this pipe buffer, 1651 * so we can copy the contents over. 1652 */ 1653 pipe_buf_get(ipipe, ibuf); 1654 1655 obuf = opipe->bufs + nbuf; 1656 *obuf = *ibuf; 1657 1658 /* 1659 * Don't inherit the gift flag, we need to 1660 * prevent multiple steals of this page. 1661 */ 1662 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1663 1664 if (obuf->len > len) 1665 obuf->len = len; 1666 1667 opipe->nrbufs++; 1668 ret += obuf->len; 1669 len -= obuf->len; 1670 i++; 1671 } while (len); 1672 1673 /* 1674 * return EAGAIN if we have the potential of some data in the 1675 * future, otherwise just return 0 1676 */ 1677 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1678 ret = -EAGAIN; 1679 1680 pipe_unlock(ipipe); 1681 pipe_unlock(opipe); 1682 1683 /* 1684 * If we put data in the output pipe, wakeup any potential readers. 1685 */ 1686 if (ret > 0) 1687 wakeup_pipe_readers(opipe); 1688 1689 return ret; 1690 } 1691 1692 /* 1693 * This is a tee(1) implementation that works on pipes. It doesn't copy 1694 * any data, it simply references the 'in' pages on the 'out' pipe. 1695 * The 'flags' used are the SPLICE_F_* variants, currently the only 1696 * applicable one is SPLICE_F_NONBLOCK. 1697 */ 1698 static long do_tee(struct file *in, struct file *out, size_t len, 1699 unsigned int flags) 1700 { 1701 struct pipe_inode_info *ipipe = get_pipe_info(in); 1702 struct pipe_inode_info *opipe = get_pipe_info(out); 1703 int ret = -EINVAL; 1704 1705 /* 1706 * Duplicate the contents of ipipe to opipe without actually 1707 * copying the data. 1708 */ 1709 if (ipipe && opipe && ipipe != opipe) { 1710 /* 1711 * Keep going, unless we encounter an error. The ipipe/opipe 1712 * ordering doesn't really matter. 1713 */ 1714 ret = ipipe_prep(ipipe, flags); 1715 if (!ret) { 1716 ret = opipe_prep(opipe, flags); 1717 if (!ret) 1718 ret = link_pipe(ipipe, opipe, len, flags); 1719 } 1720 } 1721 1722 return ret; 1723 } 1724 1725 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1726 { 1727 struct fd in; 1728 int error; 1729 1730 if (unlikely(!len)) 1731 return 0; 1732 1733 error = -EBADF; 1734 in = fdget(fdin); 1735 if (in.file) { 1736 if (in.file->f_mode & FMODE_READ) { 1737 struct fd out = fdget(fdout); 1738 if (out.file) { 1739 if (out.file->f_mode & FMODE_WRITE) 1740 error = do_tee(in.file, out.file, 1741 len, flags); 1742 fdput(out); 1743 } 1744 } 1745 fdput(in); 1746 } 1747 1748 return error; 1749 } 1750