1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * "splice": joining two ropes together by interweaving their strands. 4 * 5 * This is the "extended pipe" functionality, where a pipe is used as 6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 7 * buffer that you can use to transfer data from one end to the other. 8 * 9 * The traditional unix read/write is extended with a "splice()" operation 10 * that transfers data buffers to or from a pipe buffer. 11 * 12 * Named by Larry McVoy, original implementation from Linus, extended by 13 * Jens to support splicing to files, network, direct splicing, etc and 14 * fixing lots of bugs. 15 * 16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 19 * 20 */ 21 #include <linux/bvec.h> 22 #include <linux/fs.h> 23 #include <linux/file.h> 24 #include <linux/pagemap.h> 25 #include <linux/splice.h> 26 #include <linux/memcontrol.h> 27 #include <linux/mm_inline.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/export.h> 31 #include <linux/syscalls.h> 32 #include <linux/uio.h> 33 #include <linux/fsnotify.h> 34 #include <linux/security.h> 35 #include <linux/gfp.h> 36 #include <linux/socket.h> 37 #include <linux/sched/signal.h> 38 39 #include "internal.h" 40 41 /* 42 * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to 43 * indicate they support non-blocking reads or writes, we must clear it 44 * here if set to avoid blocking other users of this pipe if splice is 45 * being done on it. 46 */ 47 static noinline void noinline pipe_clear_nowait(struct file *file) 48 { 49 fmode_t fmode = READ_ONCE(file->f_mode); 50 51 do { 52 if (!(fmode & FMODE_NOWAIT)) 53 break; 54 } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT)); 55 } 56 57 /* 58 * Attempt to steal a page from a pipe buffer. This should perhaps go into 59 * a vm helper function, it's already simplified quite a bit by the 60 * addition of remove_mapping(). If success is returned, the caller may 61 * attempt to reuse this page for another destination. 62 */ 63 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe, 64 struct pipe_buffer *buf) 65 { 66 struct folio *folio = page_folio(buf->page); 67 struct address_space *mapping; 68 69 folio_lock(folio); 70 71 mapping = folio_mapping(folio); 72 if (mapping) { 73 WARN_ON(!folio_test_uptodate(folio)); 74 75 /* 76 * At least for ext2 with nobh option, we need to wait on 77 * writeback completing on this folio, since we'll remove it 78 * from the pagecache. Otherwise truncate wont wait on the 79 * folio, allowing the disk blocks to be reused by someone else 80 * before we actually wrote our data to them. fs corruption 81 * ensues. 82 */ 83 folio_wait_writeback(folio); 84 85 if (folio_has_private(folio) && 86 !filemap_release_folio(folio, GFP_KERNEL)) 87 goto out_unlock; 88 89 /* 90 * If we succeeded in removing the mapping, set LRU flag 91 * and return good. 92 */ 93 if (remove_mapping(mapping, folio)) { 94 buf->flags |= PIPE_BUF_FLAG_LRU; 95 return true; 96 } 97 } 98 99 /* 100 * Raced with truncate or failed to remove folio from current 101 * address space, unlock and return failure. 102 */ 103 out_unlock: 104 folio_unlock(folio); 105 return false; 106 } 107 108 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 109 struct pipe_buffer *buf) 110 { 111 put_page(buf->page); 112 buf->flags &= ~PIPE_BUF_FLAG_LRU; 113 } 114 115 /* 116 * Check whether the contents of buf is OK to access. Since the content 117 * is a page cache page, IO may be in flight. 118 */ 119 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 120 struct pipe_buffer *buf) 121 { 122 struct page *page = buf->page; 123 int err; 124 125 if (!PageUptodate(page)) { 126 lock_page(page); 127 128 /* 129 * Page got truncated/unhashed. This will cause a 0-byte 130 * splice, if this is the first page. 131 */ 132 if (!page->mapping) { 133 err = -ENODATA; 134 goto error; 135 } 136 137 /* 138 * Uh oh, read-error from disk. 139 */ 140 if (!PageUptodate(page)) { 141 err = -EIO; 142 goto error; 143 } 144 145 /* 146 * Page is ok afterall, we are done. 147 */ 148 unlock_page(page); 149 } 150 151 return 0; 152 error: 153 unlock_page(page); 154 return err; 155 } 156 157 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 158 .confirm = page_cache_pipe_buf_confirm, 159 .release = page_cache_pipe_buf_release, 160 .try_steal = page_cache_pipe_buf_try_steal, 161 .get = generic_pipe_buf_get, 162 }; 163 164 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe, 165 struct pipe_buffer *buf) 166 { 167 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 168 return false; 169 170 buf->flags |= PIPE_BUF_FLAG_LRU; 171 return generic_pipe_buf_try_steal(pipe, buf); 172 } 173 174 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 175 .release = page_cache_pipe_buf_release, 176 .try_steal = user_page_pipe_buf_try_steal, 177 .get = generic_pipe_buf_get, 178 }; 179 180 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 181 { 182 smp_mb(); 183 if (waitqueue_active(&pipe->rd_wait)) 184 wake_up_interruptible(&pipe->rd_wait); 185 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 186 } 187 188 /** 189 * splice_to_pipe - fill passed data into a pipe 190 * @pipe: pipe to fill 191 * @spd: data to fill 192 * 193 * Description: 194 * @spd contains a map of pages and len/offset tuples, along with 195 * the struct pipe_buf_operations associated with these pages. This 196 * function will link that data to the pipe. 197 * 198 */ 199 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 200 struct splice_pipe_desc *spd) 201 { 202 unsigned int spd_pages = spd->nr_pages; 203 unsigned int tail = pipe->tail; 204 unsigned int head = pipe->head; 205 unsigned int mask = pipe->ring_size - 1; 206 int ret = 0, page_nr = 0; 207 208 if (!spd_pages) 209 return 0; 210 211 if (unlikely(!pipe->readers)) { 212 send_sig(SIGPIPE, current, 0); 213 ret = -EPIPE; 214 goto out; 215 } 216 217 while (!pipe_full(head, tail, pipe->max_usage)) { 218 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 219 220 buf->page = spd->pages[page_nr]; 221 buf->offset = spd->partial[page_nr].offset; 222 buf->len = spd->partial[page_nr].len; 223 buf->private = spd->partial[page_nr].private; 224 buf->ops = spd->ops; 225 buf->flags = 0; 226 227 head++; 228 pipe->head = head; 229 page_nr++; 230 ret += buf->len; 231 232 if (!--spd->nr_pages) 233 break; 234 } 235 236 if (!ret) 237 ret = -EAGAIN; 238 239 out: 240 while (page_nr < spd_pages) 241 spd->spd_release(spd, page_nr++); 242 243 return ret; 244 } 245 EXPORT_SYMBOL_GPL(splice_to_pipe); 246 247 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 248 { 249 unsigned int head = pipe->head; 250 unsigned int tail = pipe->tail; 251 unsigned int mask = pipe->ring_size - 1; 252 int ret; 253 254 if (unlikely(!pipe->readers)) { 255 send_sig(SIGPIPE, current, 0); 256 ret = -EPIPE; 257 } else if (pipe_full(head, tail, pipe->max_usage)) { 258 ret = -EAGAIN; 259 } else { 260 pipe->bufs[head & mask] = *buf; 261 pipe->head = head + 1; 262 return buf->len; 263 } 264 pipe_buf_release(pipe, buf); 265 return ret; 266 } 267 EXPORT_SYMBOL(add_to_pipe); 268 269 /* 270 * Check if we need to grow the arrays holding pages and partial page 271 * descriptions. 272 */ 273 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 274 { 275 unsigned int max_usage = READ_ONCE(pipe->max_usage); 276 277 spd->nr_pages_max = max_usage; 278 if (max_usage <= PIPE_DEF_BUFFERS) 279 return 0; 280 281 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL); 282 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page), 283 GFP_KERNEL); 284 285 if (spd->pages && spd->partial) 286 return 0; 287 288 kfree(spd->pages); 289 kfree(spd->partial); 290 return -ENOMEM; 291 } 292 293 void splice_shrink_spd(struct splice_pipe_desc *spd) 294 { 295 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 296 return; 297 298 kfree(spd->pages); 299 kfree(spd->partial); 300 } 301 302 /* 303 * Splice data from an O_DIRECT file into pages and then add them to the output 304 * pipe. 305 */ 306 ssize_t direct_splice_read(struct file *in, loff_t *ppos, 307 struct pipe_inode_info *pipe, 308 size_t len, unsigned int flags) 309 { 310 struct iov_iter to; 311 struct bio_vec *bv; 312 struct kiocb kiocb; 313 struct page **pages; 314 ssize_t ret; 315 size_t used, npages, chunk, remain, reclaim; 316 int i; 317 318 /* Work out how much data we can actually add into the pipe */ 319 used = pipe_occupancy(pipe->head, pipe->tail); 320 npages = max_t(ssize_t, pipe->max_usage - used, 0); 321 len = min_t(size_t, len, npages * PAGE_SIZE); 322 npages = DIV_ROUND_UP(len, PAGE_SIZE); 323 324 bv = kzalloc(array_size(npages, sizeof(bv[0])) + 325 array_size(npages, sizeof(struct page *)), GFP_KERNEL); 326 if (!bv) 327 return -ENOMEM; 328 329 pages = (void *)(bv + npages); 330 npages = alloc_pages_bulk_array(GFP_USER, npages, pages); 331 if (!npages) { 332 kfree(bv); 333 return -ENOMEM; 334 } 335 336 remain = len = min_t(size_t, len, npages * PAGE_SIZE); 337 338 for (i = 0; i < npages; i++) { 339 chunk = min_t(size_t, PAGE_SIZE, remain); 340 bv[i].bv_page = pages[i]; 341 bv[i].bv_offset = 0; 342 bv[i].bv_len = chunk; 343 remain -= chunk; 344 } 345 346 /* Do the I/O */ 347 iov_iter_bvec(&to, ITER_DEST, bv, npages, len); 348 init_sync_kiocb(&kiocb, in); 349 kiocb.ki_pos = *ppos; 350 ret = call_read_iter(in, &kiocb, &to); 351 352 reclaim = npages * PAGE_SIZE; 353 remain = 0; 354 if (ret > 0) { 355 reclaim -= ret; 356 remain = ret; 357 *ppos = kiocb.ki_pos; 358 file_accessed(in); 359 } else if (ret < 0) { 360 /* 361 * callers of ->splice_read() expect -EAGAIN on 362 * "can't put anything in there", rather than -EFAULT. 363 */ 364 if (ret == -EFAULT) 365 ret = -EAGAIN; 366 } 367 368 /* Free any pages that didn't get touched at all. */ 369 reclaim /= PAGE_SIZE; 370 if (reclaim) { 371 npages -= reclaim; 372 release_pages(pages + npages, reclaim); 373 } 374 375 /* Push the remaining pages into the pipe. */ 376 for (i = 0; i < npages; i++) { 377 struct pipe_buffer *buf = pipe_head_buf(pipe); 378 379 chunk = min_t(size_t, remain, PAGE_SIZE); 380 *buf = (struct pipe_buffer) { 381 .ops = &default_pipe_buf_ops, 382 .page = bv[i].bv_page, 383 .offset = 0, 384 .len = chunk, 385 }; 386 pipe->head++; 387 remain -= chunk; 388 } 389 390 kfree(bv); 391 return ret; 392 } 393 EXPORT_SYMBOL(direct_splice_read); 394 395 /** 396 * generic_file_splice_read - splice data from file to a pipe 397 * @in: file to splice from 398 * @ppos: position in @in 399 * @pipe: pipe to splice to 400 * @len: number of bytes to splice 401 * @flags: splice modifier flags 402 * 403 * Description: 404 * Will read pages from given file and fill them into a pipe. Can be 405 * used as long as it has more or less sane ->read_iter(). 406 * 407 */ 408 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 409 struct pipe_inode_info *pipe, size_t len, 410 unsigned int flags) 411 { 412 struct iov_iter to; 413 struct kiocb kiocb; 414 int ret; 415 416 iov_iter_pipe(&to, ITER_DEST, pipe, len); 417 init_sync_kiocb(&kiocb, in); 418 kiocb.ki_pos = *ppos; 419 ret = call_read_iter(in, &kiocb, &to); 420 if (ret > 0) { 421 *ppos = kiocb.ki_pos; 422 file_accessed(in); 423 } else if (ret < 0) { 424 /* free what was emitted */ 425 pipe_discard_from(pipe, to.start_head); 426 /* 427 * callers of ->splice_read() expect -EAGAIN on 428 * "can't put anything in there", rather than -EFAULT. 429 */ 430 if (ret == -EFAULT) 431 ret = -EAGAIN; 432 } 433 434 return ret; 435 } 436 EXPORT_SYMBOL(generic_file_splice_read); 437 438 const struct pipe_buf_operations default_pipe_buf_ops = { 439 .release = generic_pipe_buf_release, 440 .try_steal = generic_pipe_buf_try_steal, 441 .get = generic_pipe_buf_get, 442 }; 443 444 /* Pipe buffer operations for a socket and similar. */ 445 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 446 .release = generic_pipe_buf_release, 447 .get = generic_pipe_buf_get, 448 }; 449 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 450 451 /* 452 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 453 * using sendpage(). Return the number of bytes sent. 454 */ 455 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 456 struct pipe_buffer *buf, struct splice_desc *sd) 457 { 458 struct file *file = sd->u.file; 459 loff_t pos = sd->pos; 460 int more; 461 462 if (!likely(file->f_op->sendpage)) 463 return -EINVAL; 464 465 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0; 466 467 if (sd->len < sd->total_len && 468 pipe_occupancy(pipe->head, pipe->tail) > 1) 469 more |= MSG_SENDPAGE_NOTLAST; 470 471 return file->f_op->sendpage(file, buf->page, buf->offset, 472 sd->len, &pos, more); 473 } 474 475 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 476 { 477 smp_mb(); 478 if (waitqueue_active(&pipe->wr_wait)) 479 wake_up_interruptible(&pipe->wr_wait); 480 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 481 } 482 483 /** 484 * splice_from_pipe_feed - feed available data from a pipe to a file 485 * @pipe: pipe to splice from 486 * @sd: information to @actor 487 * @actor: handler that splices the data 488 * 489 * Description: 490 * This function loops over the pipe and calls @actor to do the 491 * actual moving of a single struct pipe_buffer to the desired 492 * destination. It returns when there's no more buffers left in 493 * the pipe or if the requested number of bytes (@sd->total_len) 494 * have been copied. It returns a positive number (one) if the 495 * pipe needs to be filled with more data, zero if the required 496 * number of bytes have been copied and -errno on error. 497 * 498 * This, together with splice_from_pipe_{begin,end,next}, may be 499 * used to implement the functionality of __splice_from_pipe() when 500 * locking is required around copying the pipe buffers to the 501 * destination. 502 */ 503 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 504 splice_actor *actor) 505 { 506 unsigned int head = pipe->head; 507 unsigned int tail = pipe->tail; 508 unsigned int mask = pipe->ring_size - 1; 509 int ret; 510 511 while (!pipe_empty(head, tail)) { 512 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 513 514 sd->len = buf->len; 515 if (sd->len > sd->total_len) 516 sd->len = sd->total_len; 517 518 ret = pipe_buf_confirm(pipe, buf); 519 if (unlikely(ret)) { 520 if (ret == -ENODATA) 521 ret = 0; 522 return ret; 523 } 524 525 ret = actor(pipe, buf, sd); 526 if (ret <= 0) 527 return ret; 528 529 buf->offset += ret; 530 buf->len -= ret; 531 532 sd->num_spliced += ret; 533 sd->len -= ret; 534 sd->pos += ret; 535 sd->total_len -= ret; 536 537 if (!buf->len) { 538 pipe_buf_release(pipe, buf); 539 tail++; 540 pipe->tail = tail; 541 if (pipe->files) 542 sd->need_wakeup = true; 543 } 544 545 if (!sd->total_len) 546 return 0; 547 } 548 549 return 1; 550 } 551 552 /* We know we have a pipe buffer, but maybe it's empty? */ 553 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe) 554 { 555 unsigned int tail = pipe->tail; 556 unsigned int mask = pipe->ring_size - 1; 557 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 558 559 if (unlikely(!buf->len)) { 560 pipe_buf_release(pipe, buf); 561 pipe->tail = tail+1; 562 return true; 563 } 564 565 return false; 566 } 567 568 /** 569 * splice_from_pipe_next - wait for some data to splice from 570 * @pipe: pipe to splice from 571 * @sd: information about the splice operation 572 * 573 * Description: 574 * This function will wait for some data and return a positive 575 * value (one) if pipe buffers are available. It will return zero 576 * or -errno if no more data needs to be spliced. 577 */ 578 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 579 { 580 /* 581 * Check for signal early to make process killable when there are 582 * always buffers available 583 */ 584 if (signal_pending(current)) 585 return -ERESTARTSYS; 586 587 repeat: 588 while (pipe_empty(pipe->head, pipe->tail)) { 589 if (!pipe->writers) 590 return 0; 591 592 if (sd->num_spliced) 593 return 0; 594 595 if (sd->flags & SPLICE_F_NONBLOCK) 596 return -EAGAIN; 597 598 if (signal_pending(current)) 599 return -ERESTARTSYS; 600 601 if (sd->need_wakeup) { 602 wakeup_pipe_writers(pipe); 603 sd->need_wakeup = false; 604 } 605 606 pipe_wait_readable(pipe); 607 } 608 609 if (eat_empty_buffer(pipe)) 610 goto repeat; 611 612 return 1; 613 } 614 615 /** 616 * splice_from_pipe_begin - start splicing from pipe 617 * @sd: information about the splice operation 618 * 619 * Description: 620 * This function should be called before a loop containing 621 * splice_from_pipe_next() and splice_from_pipe_feed() to 622 * initialize the necessary fields of @sd. 623 */ 624 static void splice_from_pipe_begin(struct splice_desc *sd) 625 { 626 sd->num_spliced = 0; 627 sd->need_wakeup = false; 628 } 629 630 /** 631 * splice_from_pipe_end - finish splicing from pipe 632 * @pipe: pipe to splice from 633 * @sd: information about the splice operation 634 * 635 * Description: 636 * This function will wake up pipe writers if necessary. It should 637 * be called after a loop containing splice_from_pipe_next() and 638 * splice_from_pipe_feed(). 639 */ 640 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 641 { 642 if (sd->need_wakeup) 643 wakeup_pipe_writers(pipe); 644 } 645 646 /** 647 * __splice_from_pipe - splice data from a pipe to given actor 648 * @pipe: pipe to splice from 649 * @sd: information to @actor 650 * @actor: handler that splices the data 651 * 652 * Description: 653 * This function does little more than loop over the pipe and call 654 * @actor to do the actual moving of a single struct pipe_buffer to 655 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 656 * pipe_to_user. 657 * 658 */ 659 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 660 splice_actor *actor) 661 { 662 int ret; 663 664 splice_from_pipe_begin(sd); 665 do { 666 cond_resched(); 667 ret = splice_from_pipe_next(pipe, sd); 668 if (ret > 0) 669 ret = splice_from_pipe_feed(pipe, sd, actor); 670 } while (ret > 0); 671 splice_from_pipe_end(pipe, sd); 672 673 return sd->num_spliced ? sd->num_spliced : ret; 674 } 675 EXPORT_SYMBOL(__splice_from_pipe); 676 677 /** 678 * splice_from_pipe - splice data from a pipe to a file 679 * @pipe: pipe to splice from 680 * @out: file to splice to 681 * @ppos: position in @out 682 * @len: how many bytes to splice 683 * @flags: splice modifier flags 684 * @actor: handler that splices the data 685 * 686 * Description: 687 * See __splice_from_pipe. This function locks the pipe inode, 688 * otherwise it's identical to __splice_from_pipe(). 689 * 690 */ 691 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 692 loff_t *ppos, size_t len, unsigned int flags, 693 splice_actor *actor) 694 { 695 ssize_t ret; 696 struct splice_desc sd = { 697 .total_len = len, 698 .flags = flags, 699 .pos = *ppos, 700 .u.file = out, 701 }; 702 703 pipe_lock(pipe); 704 ret = __splice_from_pipe(pipe, &sd, actor); 705 pipe_unlock(pipe); 706 707 return ret; 708 } 709 710 /** 711 * iter_file_splice_write - splice data from a pipe to a file 712 * @pipe: pipe info 713 * @out: file to write to 714 * @ppos: position in @out 715 * @len: number of bytes to splice 716 * @flags: splice modifier flags 717 * 718 * Description: 719 * Will either move or copy pages (determined by @flags options) from 720 * the given pipe inode to the given file. 721 * This one is ->write_iter-based. 722 * 723 */ 724 ssize_t 725 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 726 loff_t *ppos, size_t len, unsigned int flags) 727 { 728 struct splice_desc sd = { 729 .total_len = len, 730 .flags = flags, 731 .pos = *ppos, 732 .u.file = out, 733 }; 734 int nbufs = pipe->max_usage; 735 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 736 GFP_KERNEL); 737 ssize_t ret; 738 739 if (unlikely(!array)) 740 return -ENOMEM; 741 742 pipe_lock(pipe); 743 744 splice_from_pipe_begin(&sd); 745 while (sd.total_len) { 746 struct iov_iter from; 747 unsigned int head, tail, mask; 748 size_t left; 749 int n; 750 751 ret = splice_from_pipe_next(pipe, &sd); 752 if (ret <= 0) 753 break; 754 755 if (unlikely(nbufs < pipe->max_usage)) { 756 kfree(array); 757 nbufs = pipe->max_usage; 758 array = kcalloc(nbufs, sizeof(struct bio_vec), 759 GFP_KERNEL); 760 if (!array) { 761 ret = -ENOMEM; 762 break; 763 } 764 } 765 766 head = pipe->head; 767 tail = pipe->tail; 768 mask = pipe->ring_size - 1; 769 770 /* build the vector */ 771 left = sd.total_len; 772 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) { 773 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 774 size_t this_len = buf->len; 775 776 /* zero-length bvecs are not supported, skip them */ 777 if (!this_len) 778 continue; 779 this_len = min(this_len, left); 780 781 ret = pipe_buf_confirm(pipe, buf); 782 if (unlikely(ret)) { 783 if (ret == -ENODATA) 784 ret = 0; 785 goto done; 786 } 787 788 bvec_set_page(&array[n], buf->page, this_len, 789 buf->offset); 790 left -= this_len; 791 n++; 792 } 793 794 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left); 795 ret = vfs_iter_write(out, &from, &sd.pos, 0); 796 if (ret <= 0) 797 break; 798 799 sd.num_spliced += ret; 800 sd.total_len -= ret; 801 *ppos = sd.pos; 802 803 /* dismiss the fully eaten buffers, adjust the partial one */ 804 tail = pipe->tail; 805 while (ret) { 806 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 807 if (ret >= buf->len) { 808 ret -= buf->len; 809 buf->len = 0; 810 pipe_buf_release(pipe, buf); 811 tail++; 812 pipe->tail = tail; 813 if (pipe->files) 814 sd.need_wakeup = true; 815 } else { 816 buf->offset += ret; 817 buf->len -= ret; 818 ret = 0; 819 } 820 } 821 } 822 done: 823 kfree(array); 824 splice_from_pipe_end(pipe, &sd); 825 826 pipe_unlock(pipe); 827 828 if (sd.num_spliced) 829 ret = sd.num_spliced; 830 831 return ret; 832 } 833 834 EXPORT_SYMBOL(iter_file_splice_write); 835 836 /** 837 * generic_splice_sendpage - splice data from a pipe to a socket 838 * @pipe: pipe to splice from 839 * @out: socket to write to 840 * @ppos: position in @out 841 * @len: number of bytes to splice 842 * @flags: splice modifier flags 843 * 844 * Description: 845 * Will send @len bytes from the pipe to a network socket. No data copying 846 * is involved. 847 * 848 */ 849 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 850 loff_t *ppos, size_t len, unsigned int flags) 851 { 852 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 853 } 854 855 EXPORT_SYMBOL(generic_splice_sendpage); 856 857 static int warn_unsupported(struct file *file, const char *op) 858 { 859 pr_debug_ratelimited( 860 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n", 861 op, file, current->pid, current->comm); 862 return -EINVAL; 863 } 864 865 /* 866 * Attempt to initiate a splice from pipe to file. 867 */ 868 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 869 loff_t *ppos, size_t len, unsigned int flags) 870 { 871 if (unlikely(!out->f_op->splice_write)) 872 return warn_unsupported(out, "write"); 873 return out->f_op->splice_write(pipe, out, ppos, len, flags); 874 } 875 876 /* 877 * Attempt to initiate a splice from a file to a pipe. 878 */ 879 static long do_splice_to(struct file *in, loff_t *ppos, 880 struct pipe_inode_info *pipe, size_t len, 881 unsigned int flags) 882 { 883 unsigned int p_space; 884 int ret; 885 886 if (unlikely(!(in->f_mode & FMODE_READ))) 887 return -EBADF; 888 889 /* Don't try to read more the pipe has space for. */ 890 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail); 891 len = min_t(size_t, len, p_space << PAGE_SHIFT); 892 893 ret = rw_verify_area(READ, in, ppos, len); 894 if (unlikely(ret < 0)) 895 return ret; 896 897 if (unlikely(len > MAX_RW_COUNT)) 898 len = MAX_RW_COUNT; 899 900 if (unlikely(!in->f_op->splice_read)) 901 return warn_unsupported(in, "read"); 902 return in->f_op->splice_read(in, ppos, pipe, len, flags); 903 } 904 905 /** 906 * splice_direct_to_actor - splices data directly between two non-pipes 907 * @in: file to splice from 908 * @sd: actor information on where to splice to 909 * @actor: handles the data splicing 910 * 911 * Description: 912 * This is a special case helper to splice directly between two 913 * points, without requiring an explicit pipe. Internally an allocated 914 * pipe is cached in the process, and reused during the lifetime of 915 * that process. 916 * 917 */ 918 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 919 splice_direct_actor *actor) 920 { 921 struct pipe_inode_info *pipe; 922 long ret, bytes; 923 size_t len; 924 int i, flags, more; 925 926 /* 927 * We require the input to be seekable, as we don't want to randomly 928 * drop data for eg socket -> socket splicing. Use the piped splicing 929 * for that! 930 */ 931 if (unlikely(!(in->f_mode & FMODE_LSEEK))) 932 return -EINVAL; 933 934 /* 935 * neither in nor out is a pipe, setup an internal pipe attached to 936 * 'out' and transfer the wanted data from 'in' to 'out' through that 937 */ 938 pipe = current->splice_pipe; 939 if (unlikely(!pipe)) { 940 pipe = alloc_pipe_info(); 941 if (!pipe) 942 return -ENOMEM; 943 944 /* 945 * We don't have an immediate reader, but we'll read the stuff 946 * out of the pipe right after the splice_to_pipe(). So set 947 * PIPE_READERS appropriately. 948 */ 949 pipe->readers = 1; 950 951 current->splice_pipe = pipe; 952 } 953 954 /* 955 * Do the splice. 956 */ 957 bytes = 0; 958 len = sd->total_len; 959 flags = sd->flags; 960 961 /* 962 * Don't block on output, we have to drain the direct pipe. 963 */ 964 sd->flags &= ~SPLICE_F_NONBLOCK; 965 more = sd->flags & SPLICE_F_MORE; 966 967 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail)); 968 969 while (len) { 970 size_t read_len; 971 loff_t pos = sd->pos, prev_pos = pos; 972 973 ret = do_splice_to(in, &pos, pipe, len, flags); 974 if (unlikely(ret <= 0)) 975 goto out_release; 976 977 read_len = ret; 978 sd->total_len = read_len; 979 980 /* 981 * If more data is pending, set SPLICE_F_MORE 982 * If this is the last data and SPLICE_F_MORE was not set 983 * initially, clears it. 984 */ 985 if (read_len < len) 986 sd->flags |= SPLICE_F_MORE; 987 else if (!more) 988 sd->flags &= ~SPLICE_F_MORE; 989 /* 990 * NOTE: nonblocking mode only applies to the input. We 991 * must not do the output in nonblocking mode as then we 992 * could get stuck data in the internal pipe: 993 */ 994 ret = actor(pipe, sd); 995 if (unlikely(ret <= 0)) { 996 sd->pos = prev_pos; 997 goto out_release; 998 } 999 1000 bytes += ret; 1001 len -= ret; 1002 sd->pos = pos; 1003 1004 if (ret < read_len) { 1005 sd->pos = prev_pos + ret; 1006 goto out_release; 1007 } 1008 } 1009 1010 done: 1011 pipe->tail = pipe->head = 0; 1012 file_accessed(in); 1013 return bytes; 1014 1015 out_release: 1016 /* 1017 * If we did an incomplete transfer we must release 1018 * the pipe buffers in question: 1019 */ 1020 for (i = 0; i < pipe->ring_size; i++) { 1021 struct pipe_buffer *buf = &pipe->bufs[i]; 1022 1023 if (buf->ops) 1024 pipe_buf_release(pipe, buf); 1025 } 1026 1027 if (!bytes) 1028 bytes = ret; 1029 1030 goto done; 1031 } 1032 EXPORT_SYMBOL(splice_direct_to_actor); 1033 1034 static int direct_splice_actor(struct pipe_inode_info *pipe, 1035 struct splice_desc *sd) 1036 { 1037 struct file *file = sd->u.file; 1038 1039 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1040 sd->flags); 1041 } 1042 1043 /** 1044 * do_splice_direct - splices data directly between two files 1045 * @in: file to splice from 1046 * @ppos: input file offset 1047 * @out: file to splice to 1048 * @opos: output file offset 1049 * @len: number of bytes to splice 1050 * @flags: splice modifier flags 1051 * 1052 * Description: 1053 * For use by do_sendfile(). splice can easily emulate sendfile, but 1054 * doing it in the application would incur an extra system call 1055 * (splice in + splice out, as compared to just sendfile()). So this helper 1056 * can splice directly through a process-private pipe. 1057 * 1058 */ 1059 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1060 loff_t *opos, size_t len, unsigned int flags) 1061 { 1062 struct splice_desc sd = { 1063 .len = len, 1064 .total_len = len, 1065 .flags = flags, 1066 .pos = *ppos, 1067 .u.file = out, 1068 .opos = opos, 1069 }; 1070 long ret; 1071 1072 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1073 return -EBADF; 1074 1075 if (unlikely(out->f_flags & O_APPEND)) 1076 return -EINVAL; 1077 1078 ret = rw_verify_area(WRITE, out, opos, len); 1079 if (unlikely(ret < 0)) 1080 return ret; 1081 1082 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1083 if (ret > 0) 1084 *ppos = sd.pos; 1085 1086 return ret; 1087 } 1088 EXPORT_SYMBOL(do_splice_direct); 1089 1090 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 1091 { 1092 for (;;) { 1093 if (unlikely(!pipe->readers)) { 1094 send_sig(SIGPIPE, current, 0); 1095 return -EPIPE; 1096 } 1097 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1098 return 0; 1099 if (flags & SPLICE_F_NONBLOCK) 1100 return -EAGAIN; 1101 if (signal_pending(current)) 1102 return -ERESTARTSYS; 1103 pipe_wait_writable(pipe); 1104 } 1105 } 1106 1107 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1108 struct pipe_inode_info *opipe, 1109 size_t len, unsigned int flags); 1110 1111 long splice_file_to_pipe(struct file *in, 1112 struct pipe_inode_info *opipe, 1113 loff_t *offset, 1114 size_t len, unsigned int flags) 1115 { 1116 long ret; 1117 1118 pipe_lock(opipe); 1119 ret = wait_for_space(opipe, flags); 1120 if (!ret) 1121 ret = do_splice_to(in, offset, opipe, len, flags); 1122 pipe_unlock(opipe); 1123 if (ret > 0) 1124 wakeup_pipe_readers(opipe); 1125 return ret; 1126 } 1127 1128 /* 1129 * Determine where to splice to/from. 1130 */ 1131 long do_splice(struct file *in, loff_t *off_in, struct file *out, 1132 loff_t *off_out, size_t len, unsigned int flags) 1133 { 1134 struct pipe_inode_info *ipipe; 1135 struct pipe_inode_info *opipe; 1136 loff_t offset; 1137 long ret; 1138 1139 if (unlikely(!(in->f_mode & FMODE_READ) || 1140 !(out->f_mode & FMODE_WRITE))) 1141 return -EBADF; 1142 1143 ipipe = get_pipe_info(in, true); 1144 opipe = get_pipe_info(out, true); 1145 1146 if (ipipe && opipe) { 1147 if (off_in || off_out) 1148 return -ESPIPE; 1149 1150 /* Splicing to self would be fun, but... */ 1151 if (ipipe == opipe) 1152 return -EINVAL; 1153 1154 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1155 flags |= SPLICE_F_NONBLOCK; 1156 1157 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1158 } 1159 1160 if (ipipe) { 1161 if (off_in) 1162 return -ESPIPE; 1163 if (off_out) { 1164 if (!(out->f_mode & FMODE_PWRITE)) 1165 return -EINVAL; 1166 offset = *off_out; 1167 } else { 1168 offset = out->f_pos; 1169 } 1170 1171 if (unlikely(out->f_flags & O_APPEND)) 1172 return -EINVAL; 1173 1174 ret = rw_verify_area(WRITE, out, &offset, len); 1175 if (unlikely(ret < 0)) 1176 return ret; 1177 1178 if (in->f_flags & O_NONBLOCK) 1179 flags |= SPLICE_F_NONBLOCK; 1180 1181 file_start_write(out); 1182 ret = do_splice_from(ipipe, out, &offset, len, flags); 1183 file_end_write(out); 1184 1185 if (ret > 0) 1186 fsnotify_modify(out); 1187 1188 if (!off_out) 1189 out->f_pos = offset; 1190 else 1191 *off_out = offset; 1192 1193 return ret; 1194 } 1195 1196 if (opipe) { 1197 if (off_out) 1198 return -ESPIPE; 1199 if (off_in) { 1200 if (!(in->f_mode & FMODE_PREAD)) 1201 return -EINVAL; 1202 offset = *off_in; 1203 } else { 1204 offset = in->f_pos; 1205 } 1206 1207 if (out->f_flags & O_NONBLOCK) 1208 flags |= SPLICE_F_NONBLOCK; 1209 1210 ret = splice_file_to_pipe(in, opipe, &offset, len, flags); 1211 1212 if (ret > 0) 1213 fsnotify_access(in); 1214 1215 if (!off_in) 1216 in->f_pos = offset; 1217 else 1218 *off_in = offset; 1219 1220 return ret; 1221 } 1222 1223 return -EINVAL; 1224 } 1225 1226 static long __do_splice(struct file *in, loff_t __user *off_in, 1227 struct file *out, loff_t __user *off_out, 1228 size_t len, unsigned int flags) 1229 { 1230 struct pipe_inode_info *ipipe; 1231 struct pipe_inode_info *opipe; 1232 loff_t offset, *__off_in = NULL, *__off_out = NULL; 1233 long ret; 1234 1235 ipipe = get_pipe_info(in, true); 1236 opipe = get_pipe_info(out, true); 1237 1238 if (ipipe) { 1239 if (off_in) 1240 return -ESPIPE; 1241 pipe_clear_nowait(in); 1242 } 1243 if (opipe) { 1244 if (off_out) 1245 return -ESPIPE; 1246 pipe_clear_nowait(out); 1247 } 1248 1249 if (off_out) { 1250 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1251 return -EFAULT; 1252 __off_out = &offset; 1253 } 1254 if (off_in) { 1255 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1256 return -EFAULT; 1257 __off_in = &offset; 1258 } 1259 1260 ret = do_splice(in, __off_in, out, __off_out, len, flags); 1261 if (ret < 0) 1262 return ret; 1263 1264 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t))) 1265 return -EFAULT; 1266 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t))) 1267 return -EFAULT; 1268 1269 return ret; 1270 } 1271 1272 static int iter_to_pipe(struct iov_iter *from, 1273 struct pipe_inode_info *pipe, 1274 unsigned flags) 1275 { 1276 struct pipe_buffer buf = { 1277 .ops = &user_page_pipe_buf_ops, 1278 .flags = flags 1279 }; 1280 size_t total = 0; 1281 int ret = 0; 1282 1283 while (iov_iter_count(from)) { 1284 struct page *pages[16]; 1285 ssize_t left; 1286 size_t start; 1287 int i, n; 1288 1289 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start); 1290 if (left <= 0) { 1291 ret = left; 1292 break; 1293 } 1294 1295 n = DIV_ROUND_UP(left + start, PAGE_SIZE); 1296 for (i = 0; i < n; i++) { 1297 int size = min_t(int, left, PAGE_SIZE - start); 1298 1299 buf.page = pages[i]; 1300 buf.offset = start; 1301 buf.len = size; 1302 ret = add_to_pipe(pipe, &buf); 1303 if (unlikely(ret < 0)) { 1304 iov_iter_revert(from, left); 1305 // this one got dropped by add_to_pipe() 1306 while (++i < n) 1307 put_page(pages[i]); 1308 goto out; 1309 } 1310 total += ret; 1311 left -= size; 1312 start = 0; 1313 } 1314 } 1315 out: 1316 return total ? total : ret; 1317 } 1318 1319 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1320 struct splice_desc *sd) 1321 { 1322 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1323 return n == sd->len ? n : -EFAULT; 1324 } 1325 1326 /* 1327 * For lack of a better implementation, implement vmsplice() to userspace 1328 * as a simple copy of the pipes pages to the user iov. 1329 */ 1330 static long vmsplice_to_user(struct file *file, struct iov_iter *iter, 1331 unsigned int flags) 1332 { 1333 struct pipe_inode_info *pipe = get_pipe_info(file, true); 1334 struct splice_desc sd = { 1335 .total_len = iov_iter_count(iter), 1336 .flags = flags, 1337 .u.data = iter 1338 }; 1339 long ret = 0; 1340 1341 if (!pipe) 1342 return -EBADF; 1343 1344 pipe_clear_nowait(file); 1345 1346 if (sd.total_len) { 1347 pipe_lock(pipe); 1348 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1349 pipe_unlock(pipe); 1350 } 1351 1352 return ret; 1353 } 1354 1355 /* 1356 * vmsplice splices a user address range into a pipe. It can be thought of 1357 * as splice-from-memory, where the regular splice is splice-from-file (or 1358 * to file). In both cases the output is a pipe, naturally. 1359 */ 1360 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter, 1361 unsigned int flags) 1362 { 1363 struct pipe_inode_info *pipe; 1364 long ret = 0; 1365 unsigned buf_flag = 0; 1366 1367 if (flags & SPLICE_F_GIFT) 1368 buf_flag = PIPE_BUF_FLAG_GIFT; 1369 1370 pipe = get_pipe_info(file, true); 1371 if (!pipe) 1372 return -EBADF; 1373 1374 pipe_clear_nowait(file); 1375 1376 pipe_lock(pipe); 1377 ret = wait_for_space(pipe, flags); 1378 if (!ret) 1379 ret = iter_to_pipe(iter, pipe, buf_flag); 1380 pipe_unlock(pipe); 1381 if (ret > 0) 1382 wakeup_pipe_readers(pipe); 1383 return ret; 1384 } 1385 1386 static int vmsplice_type(struct fd f, int *type) 1387 { 1388 if (!f.file) 1389 return -EBADF; 1390 if (f.file->f_mode & FMODE_WRITE) { 1391 *type = ITER_SOURCE; 1392 } else if (f.file->f_mode & FMODE_READ) { 1393 *type = ITER_DEST; 1394 } else { 1395 fdput(f); 1396 return -EBADF; 1397 } 1398 return 0; 1399 } 1400 1401 /* 1402 * Note that vmsplice only really supports true splicing _from_ user memory 1403 * to a pipe, not the other way around. Splicing from user memory is a simple 1404 * operation that can be supported without any funky alignment restrictions 1405 * or nasty vm tricks. We simply map in the user memory and fill them into 1406 * a pipe. The reverse isn't quite as easy, though. There are two possible 1407 * solutions for that: 1408 * 1409 * - memcpy() the data internally, at which point we might as well just 1410 * do a regular read() on the buffer anyway. 1411 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1412 * has restriction limitations on both ends of the pipe). 1413 * 1414 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1415 * 1416 */ 1417 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov, 1418 unsigned long, nr_segs, unsigned int, flags) 1419 { 1420 struct iovec iovstack[UIO_FASTIOV]; 1421 struct iovec *iov = iovstack; 1422 struct iov_iter iter; 1423 ssize_t error; 1424 struct fd f; 1425 int type; 1426 1427 if (unlikely(flags & ~SPLICE_F_ALL)) 1428 return -EINVAL; 1429 1430 f = fdget(fd); 1431 error = vmsplice_type(f, &type); 1432 if (error) 1433 return error; 1434 1435 error = import_iovec(type, uiov, nr_segs, 1436 ARRAY_SIZE(iovstack), &iov, &iter); 1437 if (error < 0) 1438 goto out_fdput; 1439 1440 if (!iov_iter_count(&iter)) 1441 error = 0; 1442 else if (type == ITER_SOURCE) 1443 error = vmsplice_to_pipe(f.file, &iter, flags); 1444 else 1445 error = vmsplice_to_user(f.file, &iter, flags); 1446 1447 kfree(iov); 1448 out_fdput: 1449 fdput(f); 1450 return error; 1451 } 1452 1453 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1454 int, fd_out, loff_t __user *, off_out, 1455 size_t, len, unsigned int, flags) 1456 { 1457 struct fd in, out; 1458 long error; 1459 1460 if (unlikely(!len)) 1461 return 0; 1462 1463 if (unlikely(flags & ~SPLICE_F_ALL)) 1464 return -EINVAL; 1465 1466 error = -EBADF; 1467 in = fdget(fd_in); 1468 if (in.file) { 1469 out = fdget(fd_out); 1470 if (out.file) { 1471 error = __do_splice(in.file, off_in, out.file, off_out, 1472 len, flags); 1473 fdput(out); 1474 } 1475 fdput(in); 1476 } 1477 return error; 1478 } 1479 1480 /* 1481 * Make sure there's data to read. Wait for input if we can, otherwise 1482 * return an appropriate error. 1483 */ 1484 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1485 { 1486 int ret; 1487 1488 /* 1489 * Check the pipe occupancy without the inode lock first. This function 1490 * is speculative anyways, so missing one is ok. 1491 */ 1492 if (!pipe_empty(pipe->head, pipe->tail)) 1493 return 0; 1494 1495 ret = 0; 1496 pipe_lock(pipe); 1497 1498 while (pipe_empty(pipe->head, pipe->tail)) { 1499 if (signal_pending(current)) { 1500 ret = -ERESTARTSYS; 1501 break; 1502 } 1503 if (!pipe->writers) 1504 break; 1505 if (flags & SPLICE_F_NONBLOCK) { 1506 ret = -EAGAIN; 1507 break; 1508 } 1509 pipe_wait_readable(pipe); 1510 } 1511 1512 pipe_unlock(pipe); 1513 return ret; 1514 } 1515 1516 /* 1517 * Make sure there's writeable room. Wait for room if we can, otherwise 1518 * return an appropriate error. 1519 */ 1520 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1521 { 1522 int ret; 1523 1524 /* 1525 * Check pipe occupancy without the inode lock first. This function 1526 * is speculative anyways, so missing one is ok. 1527 */ 1528 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1529 return 0; 1530 1531 ret = 0; 1532 pipe_lock(pipe); 1533 1534 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 1535 if (!pipe->readers) { 1536 send_sig(SIGPIPE, current, 0); 1537 ret = -EPIPE; 1538 break; 1539 } 1540 if (flags & SPLICE_F_NONBLOCK) { 1541 ret = -EAGAIN; 1542 break; 1543 } 1544 if (signal_pending(current)) { 1545 ret = -ERESTARTSYS; 1546 break; 1547 } 1548 pipe_wait_writable(pipe); 1549 } 1550 1551 pipe_unlock(pipe); 1552 return ret; 1553 } 1554 1555 /* 1556 * Splice contents of ipipe to opipe. 1557 */ 1558 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1559 struct pipe_inode_info *opipe, 1560 size_t len, unsigned int flags) 1561 { 1562 struct pipe_buffer *ibuf, *obuf; 1563 unsigned int i_head, o_head; 1564 unsigned int i_tail, o_tail; 1565 unsigned int i_mask, o_mask; 1566 int ret = 0; 1567 bool input_wakeup = false; 1568 1569 1570 retry: 1571 ret = ipipe_prep(ipipe, flags); 1572 if (ret) 1573 return ret; 1574 1575 ret = opipe_prep(opipe, flags); 1576 if (ret) 1577 return ret; 1578 1579 /* 1580 * Potential ABBA deadlock, work around it by ordering lock 1581 * grabbing by pipe info address. Otherwise two different processes 1582 * could deadlock (one doing tee from A -> B, the other from B -> A). 1583 */ 1584 pipe_double_lock(ipipe, opipe); 1585 1586 i_tail = ipipe->tail; 1587 i_mask = ipipe->ring_size - 1; 1588 o_head = opipe->head; 1589 o_mask = opipe->ring_size - 1; 1590 1591 do { 1592 size_t o_len; 1593 1594 if (!opipe->readers) { 1595 send_sig(SIGPIPE, current, 0); 1596 if (!ret) 1597 ret = -EPIPE; 1598 break; 1599 } 1600 1601 i_head = ipipe->head; 1602 o_tail = opipe->tail; 1603 1604 if (pipe_empty(i_head, i_tail) && !ipipe->writers) 1605 break; 1606 1607 /* 1608 * Cannot make any progress, because either the input 1609 * pipe is empty or the output pipe is full. 1610 */ 1611 if (pipe_empty(i_head, i_tail) || 1612 pipe_full(o_head, o_tail, opipe->max_usage)) { 1613 /* Already processed some buffers, break */ 1614 if (ret) 1615 break; 1616 1617 if (flags & SPLICE_F_NONBLOCK) { 1618 ret = -EAGAIN; 1619 break; 1620 } 1621 1622 /* 1623 * We raced with another reader/writer and haven't 1624 * managed to process any buffers. A zero return 1625 * value means EOF, so retry instead. 1626 */ 1627 pipe_unlock(ipipe); 1628 pipe_unlock(opipe); 1629 goto retry; 1630 } 1631 1632 ibuf = &ipipe->bufs[i_tail & i_mask]; 1633 obuf = &opipe->bufs[o_head & o_mask]; 1634 1635 if (len >= ibuf->len) { 1636 /* 1637 * Simply move the whole buffer from ipipe to opipe 1638 */ 1639 *obuf = *ibuf; 1640 ibuf->ops = NULL; 1641 i_tail++; 1642 ipipe->tail = i_tail; 1643 input_wakeup = true; 1644 o_len = obuf->len; 1645 o_head++; 1646 opipe->head = o_head; 1647 } else { 1648 /* 1649 * Get a reference to this pipe buffer, 1650 * so we can copy the contents over. 1651 */ 1652 if (!pipe_buf_get(ipipe, ibuf)) { 1653 if (ret == 0) 1654 ret = -EFAULT; 1655 break; 1656 } 1657 *obuf = *ibuf; 1658 1659 /* 1660 * Don't inherit the gift and merge flags, we need to 1661 * prevent multiple steals of this page. 1662 */ 1663 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1664 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1665 1666 obuf->len = len; 1667 ibuf->offset += len; 1668 ibuf->len -= len; 1669 o_len = len; 1670 o_head++; 1671 opipe->head = o_head; 1672 } 1673 ret += o_len; 1674 len -= o_len; 1675 } while (len); 1676 1677 pipe_unlock(ipipe); 1678 pipe_unlock(opipe); 1679 1680 /* 1681 * If we put data in the output pipe, wakeup any potential readers. 1682 */ 1683 if (ret > 0) 1684 wakeup_pipe_readers(opipe); 1685 1686 if (input_wakeup) 1687 wakeup_pipe_writers(ipipe); 1688 1689 return ret; 1690 } 1691 1692 /* 1693 * Link contents of ipipe to opipe. 1694 */ 1695 static int link_pipe(struct pipe_inode_info *ipipe, 1696 struct pipe_inode_info *opipe, 1697 size_t len, unsigned int flags) 1698 { 1699 struct pipe_buffer *ibuf, *obuf; 1700 unsigned int i_head, o_head; 1701 unsigned int i_tail, o_tail; 1702 unsigned int i_mask, o_mask; 1703 int ret = 0; 1704 1705 /* 1706 * Potential ABBA deadlock, work around it by ordering lock 1707 * grabbing by pipe info address. Otherwise two different processes 1708 * could deadlock (one doing tee from A -> B, the other from B -> A). 1709 */ 1710 pipe_double_lock(ipipe, opipe); 1711 1712 i_tail = ipipe->tail; 1713 i_mask = ipipe->ring_size - 1; 1714 o_head = opipe->head; 1715 o_mask = opipe->ring_size - 1; 1716 1717 do { 1718 if (!opipe->readers) { 1719 send_sig(SIGPIPE, current, 0); 1720 if (!ret) 1721 ret = -EPIPE; 1722 break; 1723 } 1724 1725 i_head = ipipe->head; 1726 o_tail = opipe->tail; 1727 1728 /* 1729 * If we have iterated all input buffers or run out of 1730 * output room, break. 1731 */ 1732 if (pipe_empty(i_head, i_tail) || 1733 pipe_full(o_head, o_tail, opipe->max_usage)) 1734 break; 1735 1736 ibuf = &ipipe->bufs[i_tail & i_mask]; 1737 obuf = &opipe->bufs[o_head & o_mask]; 1738 1739 /* 1740 * Get a reference to this pipe buffer, 1741 * so we can copy the contents over. 1742 */ 1743 if (!pipe_buf_get(ipipe, ibuf)) { 1744 if (ret == 0) 1745 ret = -EFAULT; 1746 break; 1747 } 1748 1749 *obuf = *ibuf; 1750 1751 /* 1752 * Don't inherit the gift and merge flag, we need to prevent 1753 * multiple steals of this page. 1754 */ 1755 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1756 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1757 1758 if (obuf->len > len) 1759 obuf->len = len; 1760 ret += obuf->len; 1761 len -= obuf->len; 1762 1763 o_head++; 1764 opipe->head = o_head; 1765 i_tail++; 1766 } while (len); 1767 1768 pipe_unlock(ipipe); 1769 pipe_unlock(opipe); 1770 1771 /* 1772 * If we put data in the output pipe, wakeup any potential readers. 1773 */ 1774 if (ret > 0) 1775 wakeup_pipe_readers(opipe); 1776 1777 return ret; 1778 } 1779 1780 /* 1781 * This is a tee(1) implementation that works on pipes. It doesn't copy 1782 * any data, it simply references the 'in' pages on the 'out' pipe. 1783 * The 'flags' used are the SPLICE_F_* variants, currently the only 1784 * applicable one is SPLICE_F_NONBLOCK. 1785 */ 1786 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags) 1787 { 1788 struct pipe_inode_info *ipipe = get_pipe_info(in, true); 1789 struct pipe_inode_info *opipe = get_pipe_info(out, true); 1790 int ret = -EINVAL; 1791 1792 if (unlikely(!(in->f_mode & FMODE_READ) || 1793 !(out->f_mode & FMODE_WRITE))) 1794 return -EBADF; 1795 1796 /* 1797 * Duplicate the contents of ipipe to opipe without actually 1798 * copying the data. 1799 */ 1800 if (ipipe && opipe && ipipe != opipe) { 1801 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1802 flags |= SPLICE_F_NONBLOCK; 1803 1804 /* 1805 * Keep going, unless we encounter an error. The ipipe/opipe 1806 * ordering doesn't really matter. 1807 */ 1808 ret = ipipe_prep(ipipe, flags); 1809 if (!ret) { 1810 ret = opipe_prep(opipe, flags); 1811 if (!ret) 1812 ret = link_pipe(ipipe, opipe, len, flags); 1813 } 1814 } 1815 1816 return ret; 1817 } 1818 1819 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1820 { 1821 struct fd in, out; 1822 int error; 1823 1824 if (unlikely(flags & ~SPLICE_F_ALL)) 1825 return -EINVAL; 1826 1827 if (unlikely(!len)) 1828 return 0; 1829 1830 error = -EBADF; 1831 in = fdget(fdin); 1832 if (in.file) { 1833 out = fdget(fdout); 1834 if (out.file) { 1835 error = do_tee(in.file, out.file, len, flags); 1836 fdput(out); 1837 } 1838 fdput(in); 1839 } 1840 1841 return error; 1842 } 1843