1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * "splice": joining two ropes together by interweaving their strands. 4 * 5 * This is the "extended pipe" functionality, where a pipe is used as 6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 7 * buffer that you can use to transfer data from one end to the other. 8 * 9 * The traditional unix read/write is extended with a "splice()" operation 10 * that transfers data buffers to or from a pipe buffer. 11 * 12 * Named by Larry McVoy, original implementation from Linus, extended by 13 * Jens to support splicing to files, network, direct splicing, etc and 14 * fixing lots of bugs. 15 * 16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 19 * 20 */ 21 #include <linux/bvec.h> 22 #include <linux/fs.h> 23 #include <linux/file.h> 24 #include <linux/pagemap.h> 25 #include <linux/splice.h> 26 #include <linux/memcontrol.h> 27 #include <linux/mm_inline.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/export.h> 31 #include <linux/syscalls.h> 32 #include <linux/uio.h> 33 #include <linux/security.h> 34 #include <linux/gfp.h> 35 #include <linux/socket.h> 36 #include <linux/sched/signal.h> 37 38 #include "internal.h" 39 40 /* 41 * Attempt to steal a page from a pipe buffer. This should perhaps go into 42 * a vm helper function, it's already simplified quite a bit by the 43 * addition of remove_mapping(). If success is returned, the caller may 44 * attempt to reuse this page for another destination. 45 */ 46 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe, 47 struct pipe_buffer *buf) 48 { 49 struct folio *folio = page_folio(buf->page); 50 struct address_space *mapping; 51 52 folio_lock(folio); 53 54 mapping = folio_mapping(folio); 55 if (mapping) { 56 WARN_ON(!folio_test_uptodate(folio)); 57 58 /* 59 * At least for ext2 with nobh option, we need to wait on 60 * writeback completing on this folio, since we'll remove it 61 * from the pagecache. Otherwise truncate wont wait on the 62 * folio, allowing the disk blocks to be reused by someone else 63 * before we actually wrote our data to them. fs corruption 64 * ensues. 65 */ 66 folio_wait_writeback(folio); 67 68 if (folio_has_private(folio) && 69 !filemap_release_folio(folio, GFP_KERNEL)) 70 goto out_unlock; 71 72 /* 73 * If we succeeded in removing the mapping, set LRU flag 74 * and return good. 75 */ 76 if (remove_mapping(mapping, folio)) { 77 buf->flags |= PIPE_BUF_FLAG_LRU; 78 return true; 79 } 80 } 81 82 /* 83 * Raced with truncate or failed to remove folio from current 84 * address space, unlock and return failure. 85 */ 86 out_unlock: 87 folio_unlock(folio); 88 return false; 89 } 90 91 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 92 struct pipe_buffer *buf) 93 { 94 put_page(buf->page); 95 buf->flags &= ~PIPE_BUF_FLAG_LRU; 96 } 97 98 /* 99 * Check whether the contents of buf is OK to access. Since the content 100 * is a page cache page, IO may be in flight. 101 */ 102 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 103 struct pipe_buffer *buf) 104 { 105 struct page *page = buf->page; 106 int err; 107 108 if (!PageUptodate(page)) { 109 lock_page(page); 110 111 /* 112 * Page got truncated/unhashed. This will cause a 0-byte 113 * splice, if this is the first page. 114 */ 115 if (!page->mapping) { 116 err = -ENODATA; 117 goto error; 118 } 119 120 /* 121 * Uh oh, read-error from disk. 122 */ 123 if (!PageUptodate(page)) { 124 err = -EIO; 125 goto error; 126 } 127 128 /* 129 * Page is ok afterall, we are done. 130 */ 131 unlock_page(page); 132 } 133 134 return 0; 135 error: 136 unlock_page(page); 137 return err; 138 } 139 140 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 141 .confirm = page_cache_pipe_buf_confirm, 142 .release = page_cache_pipe_buf_release, 143 .try_steal = page_cache_pipe_buf_try_steal, 144 .get = generic_pipe_buf_get, 145 }; 146 147 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe, 148 struct pipe_buffer *buf) 149 { 150 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 151 return false; 152 153 buf->flags |= PIPE_BUF_FLAG_LRU; 154 return generic_pipe_buf_try_steal(pipe, buf); 155 } 156 157 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 158 .release = page_cache_pipe_buf_release, 159 .try_steal = user_page_pipe_buf_try_steal, 160 .get = generic_pipe_buf_get, 161 }; 162 163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 164 { 165 smp_mb(); 166 if (waitqueue_active(&pipe->rd_wait)) 167 wake_up_interruptible(&pipe->rd_wait); 168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 169 } 170 171 /** 172 * splice_to_pipe - fill passed data into a pipe 173 * @pipe: pipe to fill 174 * @spd: data to fill 175 * 176 * Description: 177 * @spd contains a map of pages and len/offset tuples, along with 178 * the struct pipe_buf_operations associated with these pages. This 179 * function will link that data to the pipe. 180 * 181 */ 182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 183 struct splice_pipe_desc *spd) 184 { 185 unsigned int spd_pages = spd->nr_pages; 186 unsigned int tail = pipe->tail; 187 unsigned int head = pipe->head; 188 unsigned int mask = pipe->ring_size - 1; 189 int ret = 0, page_nr = 0; 190 191 if (!spd_pages) 192 return 0; 193 194 if (unlikely(!pipe->readers)) { 195 send_sig(SIGPIPE, current, 0); 196 ret = -EPIPE; 197 goto out; 198 } 199 200 while (!pipe_full(head, tail, pipe->max_usage)) { 201 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 202 203 buf->page = spd->pages[page_nr]; 204 buf->offset = spd->partial[page_nr].offset; 205 buf->len = spd->partial[page_nr].len; 206 buf->private = spd->partial[page_nr].private; 207 buf->ops = spd->ops; 208 buf->flags = 0; 209 210 head++; 211 pipe->head = head; 212 page_nr++; 213 ret += buf->len; 214 215 if (!--spd->nr_pages) 216 break; 217 } 218 219 if (!ret) 220 ret = -EAGAIN; 221 222 out: 223 while (page_nr < spd_pages) 224 spd->spd_release(spd, page_nr++); 225 226 return ret; 227 } 228 EXPORT_SYMBOL_GPL(splice_to_pipe); 229 230 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 231 { 232 unsigned int head = pipe->head; 233 unsigned int tail = pipe->tail; 234 unsigned int mask = pipe->ring_size - 1; 235 int ret; 236 237 if (unlikely(!pipe->readers)) { 238 send_sig(SIGPIPE, current, 0); 239 ret = -EPIPE; 240 } else if (pipe_full(head, tail, pipe->max_usage)) { 241 ret = -EAGAIN; 242 } else { 243 pipe->bufs[head & mask] = *buf; 244 pipe->head = head + 1; 245 return buf->len; 246 } 247 pipe_buf_release(pipe, buf); 248 return ret; 249 } 250 EXPORT_SYMBOL(add_to_pipe); 251 252 /* 253 * Check if we need to grow the arrays holding pages and partial page 254 * descriptions. 255 */ 256 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 257 { 258 unsigned int max_usage = READ_ONCE(pipe->max_usage); 259 260 spd->nr_pages_max = max_usage; 261 if (max_usage <= PIPE_DEF_BUFFERS) 262 return 0; 263 264 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL); 265 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page), 266 GFP_KERNEL); 267 268 if (spd->pages && spd->partial) 269 return 0; 270 271 kfree(spd->pages); 272 kfree(spd->partial); 273 return -ENOMEM; 274 } 275 276 void splice_shrink_spd(struct splice_pipe_desc *spd) 277 { 278 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 279 return; 280 281 kfree(spd->pages); 282 kfree(spd->partial); 283 } 284 285 /** 286 * generic_file_splice_read - splice data from file to a pipe 287 * @in: file to splice from 288 * @ppos: position in @in 289 * @pipe: pipe to splice to 290 * @len: number of bytes to splice 291 * @flags: splice modifier flags 292 * 293 * Description: 294 * Will read pages from given file and fill them into a pipe. Can be 295 * used as long as it has more or less sane ->read_iter(). 296 * 297 */ 298 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 299 struct pipe_inode_info *pipe, size_t len, 300 unsigned int flags) 301 { 302 struct iov_iter to; 303 struct kiocb kiocb; 304 unsigned int i_head; 305 int ret; 306 307 iov_iter_pipe(&to, READ, pipe, len); 308 i_head = to.head; 309 init_sync_kiocb(&kiocb, in); 310 kiocb.ki_pos = *ppos; 311 ret = call_read_iter(in, &kiocb, &to); 312 if (ret > 0) { 313 *ppos = kiocb.ki_pos; 314 file_accessed(in); 315 } else if (ret < 0) { 316 to.head = i_head; 317 to.iov_offset = 0; 318 iov_iter_advance(&to, 0); /* to free what was emitted */ 319 /* 320 * callers of ->splice_read() expect -EAGAIN on 321 * "can't put anything in there", rather than -EFAULT. 322 */ 323 if (ret == -EFAULT) 324 ret = -EAGAIN; 325 } 326 327 return ret; 328 } 329 EXPORT_SYMBOL(generic_file_splice_read); 330 331 const struct pipe_buf_operations default_pipe_buf_ops = { 332 .release = generic_pipe_buf_release, 333 .try_steal = generic_pipe_buf_try_steal, 334 .get = generic_pipe_buf_get, 335 }; 336 337 /* Pipe buffer operations for a socket and similar. */ 338 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 339 .release = generic_pipe_buf_release, 340 .get = generic_pipe_buf_get, 341 }; 342 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 343 344 /* 345 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 346 * using sendpage(). Return the number of bytes sent. 347 */ 348 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 349 struct pipe_buffer *buf, struct splice_desc *sd) 350 { 351 struct file *file = sd->u.file; 352 loff_t pos = sd->pos; 353 int more; 354 355 if (!likely(file->f_op->sendpage)) 356 return -EINVAL; 357 358 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0; 359 360 if (sd->len < sd->total_len && 361 pipe_occupancy(pipe->head, pipe->tail) > 1) 362 more |= MSG_SENDPAGE_NOTLAST; 363 364 return file->f_op->sendpage(file, buf->page, buf->offset, 365 sd->len, &pos, more); 366 } 367 368 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 369 { 370 smp_mb(); 371 if (waitqueue_active(&pipe->wr_wait)) 372 wake_up_interruptible(&pipe->wr_wait); 373 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 374 } 375 376 /** 377 * splice_from_pipe_feed - feed available data from a pipe to a file 378 * @pipe: pipe to splice from 379 * @sd: information to @actor 380 * @actor: handler that splices the data 381 * 382 * Description: 383 * This function loops over the pipe and calls @actor to do the 384 * actual moving of a single struct pipe_buffer to the desired 385 * destination. It returns when there's no more buffers left in 386 * the pipe or if the requested number of bytes (@sd->total_len) 387 * have been copied. It returns a positive number (one) if the 388 * pipe needs to be filled with more data, zero if the required 389 * number of bytes have been copied and -errno on error. 390 * 391 * This, together with splice_from_pipe_{begin,end,next}, may be 392 * used to implement the functionality of __splice_from_pipe() when 393 * locking is required around copying the pipe buffers to the 394 * destination. 395 */ 396 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 397 splice_actor *actor) 398 { 399 unsigned int head = pipe->head; 400 unsigned int tail = pipe->tail; 401 unsigned int mask = pipe->ring_size - 1; 402 int ret; 403 404 while (!pipe_empty(head, tail)) { 405 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 406 407 sd->len = buf->len; 408 if (sd->len > sd->total_len) 409 sd->len = sd->total_len; 410 411 ret = pipe_buf_confirm(pipe, buf); 412 if (unlikely(ret)) { 413 if (ret == -ENODATA) 414 ret = 0; 415 return ret; 416 } 417 418 ret = actor(pipe, buf, sd); 419 if (ret <= 0) 420 return ret; 421 422 buf->offset += ret; 423 buf->len -= ret; 424 425 sd->num_spliced += ret; 426 sd->len -= ret; 427 sd->pos += ret; 428 sd->total_len -= ret; 429 430 if (!buf->len) { 431 pipe_buf_release(pipe, buf); 432 tail++; 433 pipe->tail = tail; 434 if (pipe->files) 435 sd->need_wakeup = true; 436 } 437 438 if (!sd->total_len) 439 return 0; 440 } 441 442 return 1; 443 } 444 445 /* We know we have a pipe buffer, but maybe it's empty? */ 446 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe) 447 { 448 unsigned int tail = pipe->tail; 449 unsigned int mask = pipe->ring_size - 1; 450 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 451 452 if (unlikely(!buf->len)) { 453 pipe_buf_release(pipe, buf); 454 pipe->tail = tail+1; 455 return true; 456 } 457 458 return false; 459 } 460 461 /** 462 * splice_from_pipe_next - wait for some data to splice from 463 * @pipe: pipe to splice from 464 * @sd: information about the splice operation 465 * 466 * Description: 467 * This function will wait for some data and return a positive 468 * value (one) if pipe buffers are available. It will return zero 469 * or -errno if no more data needs to be spliced. 470 */ 471 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 472 { 473 /* 474 * Check for signal early to make process killable when there are 475 * always buffers available 476 */ 477 if (signal_pending(current)) 478 return -ERESTARTSYS; 479 480 repeat: 481 while (pipe_empty(pipe->head, pipe->tail)) { 482 if (!pipe->writers) 483 return 0; 484 485 if (sd->num_spliced) 486 return 0; 487 488 if (sd->flags & SPLICE_F_NONBLOCK) 489 return -EAGAIN; 490 491 if (signal_pending(current)) 492 return -ERESTARTSYS; 493 494 if (sd->need_wakeup) { 495 wakeup_pipe_writers(pipe); 496 sd->need_wakeup = false; 497 } 498 499 pipe_wait_readable(pipe); 500 } 501 502 if (eat_empty_buffer(pipe)) 503 goto repeat; 504 505 return 1; 506 } 507 508 /** 509 * splice_from_pipe_begin - start splicing from pipe 510 * @sd: information about the splice operation 511 * 512 * Description: 513 * This function should be called before a loop containing 514 * splice_from_pipe_next() and splice_from_pipe_feed() to 515 * initialize the necessary fields of @sd. 516 */ 517 static void splice_from_pipe_begin(struct splice_desc *sd) 518 { 519 sd->num_spliced = 0; 520 sd->need_wakeup = false; 521 } 522 523 /** 524 * splice_from_pipe_end - finish splicing from pipe 525 * @pipe: pipe to splice from 526 * @sd: information about the splice operation 527 * 528 * Description: 529 * This function will wake up pipe writers if necessary. It should 530 * be called after a loop containing splice_from_pipe_next() and 531 * splice_from_pipe_feed(). 532 */ 533 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 534 { 535 if (sd->need_wakeup) 536 wakeup_pipe_writers(pipe); 537 } 538 539 /** 540 * __splice_from_pipe - splice data from a pipe to given actor 541 * @pipe: pipe to splice from 542 * @sd: information to @actor 543 * @actor: handler that splices the data 544 * 545 * Description: 546 * This function does little more than loop over the pipe and call 547 * @actor to do the actual moving of a single struct pipe_buffer to 548 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 549 * pipe_to_user. 550 * 551 */ 552 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 553 splice_actor *actor) 554 { 555 int ret; 556 557 splice_from_pipe_begin(sd); 558 do { 559 cond_resched(); 560 ret = splice_from_pipe_next(pipe, sd); 561 if (ret > 0) 562 ret = splice_from_pipe_feed(pipe, sd, actor); 563 } while (ret > 0); 564 splice_from_pipe_end(pipe, sd); 565 566 return sd->num_spliced ? sd->num_spliced : ret; 567 } 568 EXPORT_SYMBOL(__splice_from_pipe); 569 570 /** 571 * splice_from_pipe - splice data from a pipe to a file 572 * @pipe: pipe to splice from 573 * @out: file to splice to 574 * @ppos: position in @out 575 * @len: how many bytes to splice 576 * @flags: splice modifier flags 577 * @actor: handler that splices the data 578 * 579 * Description: 580 * See __splice_from_pipe. This function locks the pipe inode, 581 * otherwise it's identical to __splice_from_pipe(). 582 * 583 */ 584 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 585 loff_t *ppos, size_t len, unsigned int flags, 586 splice_actor *actor) 587 { 588 ssize_t ret; 589 struct splice_desc sd = { 590 .total_len = len, 591 .flags = flags, 592 .pos = *ppos, 593 .u.file = out, 594 }; 595 596 pipe_lock(pipe); 597 ret = __splice_from_pipe(pipe, &sd, actor); 598 pipe_unlock(pipe); 599 600 return ret; 601 } 602 603 /** 604 * iter_file_splice_write - splice data from a pipe to a file 605 * @pipe: pipe info 606 * @out: file to write to 607 * @ppos: position in @out 608 * @len: number of bytes to splice 609 * @flags: splice modifier flags 610 * 611 * Description: 612 * Will either move or copy pages (determined by @flags options) from 613 * the given pipe inode to the given file. 614 * This one is ->write_iter-based. 615 * 616 */ 617 ssize_t 618 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 619 loff_t *ppos, size_t len, unsigned int flags) 620 { 621 struct splice_desc sd = { 622 .total_len = len, 623 .flags = flags, 624 .pos = *ppos, 625 .u.file = out, 626 }; 627 int nbufs = pipe->max_usage; 628 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 629 GFP_KERNEL); 630 ssize_t ret; 631 632 if (unlikely(!array)) 633 return -ENOMEM; 634 635 pipe_lock(pipe); 636 637 splice_from_pipe_begin(&sd); 638 while (sd.total_len) { 639 struct iov_iter from; 640 unsigned int head, tail, mask; 641 size_t left; 642 int n; 643 644 ret = splice_from_pipe_next(pipe, &sd); 645 if (ret <= 0) 646 break; 647 648 if (unlikely(nbufs < pipe->max_usage)) { 649 kfree(array); 650 nbufs = pipe->max_usage; 651 array = kcalloc(nbufs, sizeof(struct bio_vec), 652 GFP_KERNEL); 653 if (!array) { 654 ret = -ENOMEM; 655 break; 656 } 657 } 658 659 head = pipe->head; 660 tail = pipe->tail; 661 mask = pipe->ring_size - 1; 662 663 /* build the vector */ 664 left = sd.total_len; 665 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) { 666 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 667 size_t this_len = buf->len; 668 669 /* zero-length bvecs are not supported, skip them */ 670 if (!this_len) 671 continue; 672 this_len = min(this_len, left); 673 674 ret = pipe_buf_confirm(pipe, buf); 675 if (unlikely(ret)) { 676 if (ret == -ENODATA) 677 ret = 0; 678 goto done; 679 } 680 681 array[n].bv_page = buf->page; 682 array[n].bv_len = this_len; 683 array[n].bv_offset = buf->offset; 684 left -= this_len; 685 n++; 686 } 687 688 iov_iter_bvec(&from, WRITE, array, n, sd.total_len - left); 689 ret = vfs_iter_write(out, &from, &sd.pos, 0); 690 if (ret <= 0) 691 break; 692 693 sd.num_spliced += ret; 694 sd.total_len -= ret; 695 *ppos = sd.pos; 696 697 /* dismiss the fully eaten buffers, adjust the partial one */ 698 tail = pipe->tail; 699 while (ret) { 700 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 701 if (ret >= buf->len) { 702 ret -= buf->len; 703 buf->len = 0; 704 pipe_buf_release(pipe, buf); 705 tail++; 706 pipe->tail = tail; 707 if (pipe->files) 708 sd.need_wakeup = true; 709 } else { 710 buf->offset += ret; 711 buf->len -= ret; 712 ret = 0; 713 } 714 } 715 } 716 done: 717 kfree(array); 718 splice_from_pipe_end(pipe, &sd); 719 720 pipe_unlock(pipe); 721 722 if (sd.num_spliced) 723 ret = sd.num_spliced; 724 725 return ret; 726 } 727 728 EXPORT_SYMBOL(iter_file_splice_write); 729 730 /** 731 * generic_splice_sendpage - splice data from a pipe to a socket 732 * @pipe: pipe to splice from 733 * @out: socket to write to 734 * @ppos: position in @out 735 * @len: number of bytes to splice 736 * @flags: splice modifier flags 737 * 738 * Description: 739 * Will send @len bytes from the pipe to a network socket. No data copying 740 * is involved. 741 * 742 */ 743 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 744 loff_t *ppos, size_t len, unsigned int flags) 745 { 746 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 747 } 748 749 EXPORT_SYMBOL(generic_splice_sendpage); 750 751 static int warn_unsupported(struct file *file, const char *op) 752 { 753 pr_debug_ratelimited( 754 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n", 755 op, file, current->pid, current->comm); 756 return -EINVAL; 757 } 758 759 /* 760 * Attempt to initiate a splice from pipe to file. 761 */ 762 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 763 loff_t *ppos, size_t len, unsigned int flags) 764 { 765 if (unlikely(!out->f_op->splice_write)) 766 return warn_unsupported(out, "write"); 767 return out->f_op->splice_write(pipe, out, ppos, len, flags); 768 } 769 770 /* 771 * Attempt to initiate a splice from a file to a pipe. 772 */ 773 static long do_splice_to(struct file *in, loff_t *ppos, 774 struct pipe_inode_info *pipe, size_t len, 775 unsigned int flags) 776 { 777 unsigned int p_space; 778 int ret; 779 780 if (unlikely(!(in->f_mode & FMODE_READ))) 781 return -EBADF; 782 783 /* Don't try to read more the pipe has space for. */ 784 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail); 785 len = min_t(size_t, len, p_space << PAGE_SHIFT); 786 787 ret = rw_verify_area(READ, in, ppos, len); 788 if (unlikely(ret < 0)) 789 return ret; 790 791 if (unlikely(len > MAX_RW_COUNT)) 792 len = MAX_RW_COUNT; 793 794 if (unlikely(!in->f_op->splice_read)) 795 return warn_unsupported(in, "read"); 796 return in->f_op->splice_read(in, ppos, pipe, len, flags); 797 } 798 799 /** 800 * splice_direct_to_actor - splices data directly between two non-pipes 801 * @in: file to splice from 802 * @sd: actor information on where to splice to 803 * @actor: handles the data splicing 804 * 805 * Description: 806 * This is a special case helper to splice directly between two 807 * points, without requiring an explicit pipe. Internally an allocated 808 * pipe is cached in the process, and reused during the lifetime of 809 * that process. 810 * 811 */ 812 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 813 splice_direct_actor *actor) 814 { 815 struct pipe_inode_info *pipe; 816 long ret, bytes; 817 size_t len; 818 int i, flags, more; 819 820 /* 821 * We require the input to be seekable, as we don't want to randomly 822 * drop data for eg socket -> socket splicing. Use the piped splicing 823 * for that! 824 */ 825 if (unlikely(!(in->f_mode & FMODE_LSEEK))) 826 return -EINVAL; 827 828 /* 829 * neither in nor out is a pipe, setup an internal pipe attached to 830 * 'out' and transfer the wanted data from 'in' to 'out' through that 831 */ 832 pipe = current->splice_pipe; 833 if (unlikely(!pipe)) { 834 pipe = alloc_pipe_info(); 835 if (!pipe) 836 return -ENOMEM; 837 838 /* 839 * We don't have an immediate reader, but we'll read the stuff 840 * out of the pipe right after the splice_to_pipe(). So set 841 * PIPE_READERS appropriately. 842 */ 843 pipe->readers = 1; 844 845 current->splice_pipe = pipe; 846 } 847 848 /* 849 * Do the splice. 850 */ 851 ret = 0; 852 bytes = 0; 853 len = sd->total_len; 854 flags = sd->flags; 855 856 /* 857 * Don't block on output, we have to drain the direct pipe. 858 */ 859 sd->flags &= ~SPLICE_F_NONBLOCK; 860 more = sd->flags & SPLICE_F_MORE; 861 862 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail)); 863 864 while (len) { 865 size_t read_len; 866 loff_t pos = sd->pos, prev_pos = pos; 867 868 ret = do_splice_to(in, &pos, pipe, len, flags); 869 if (unlikely(ret <= 0)) 870 goto out_release; 871 872 read_len = ret; 873 sd->total_len = read_len; 874 875 /* 876 * If more data is pending, set SPLICE_F_MORE 877 * If this is the last data and SPLICE_F_MORE was not set 878 * initially, clears it. 879 */ 880 if (read_len < len) 881 sd->flags |= SPLICE_F_MORE; 882 else if (!more) 883 sd->flags &= ~SPLICE_F_MORE; 884 /* 885 * NOTE: nonblocking mode only applies to the input. We 886 * must not do the output in nonblocking mode as then we 887 * could get stuck data in the internal pipe: 888 */ 889 ret = actor(pipe, sd); 890 if (unlikely(ret <= 0)) { 891 sd->pos = prev_pos; 892 goto out_release; 893 } 894 895 bytes += ret; 896 len -= ret; 897 sd->pos = pos; 898 899 if (ret < read_len) { 900 sd->pos = prev_pos + ret; 901 goto out_release; 902 } 903 } 904 905 done: 906 pipe->tail = pipe->head = 0; 907 file_accessed(in); 908 return bytes; 909 910 out_release: 911 /* 912 * If we did an incomplete transfer we must release 913 * the pipe buffers in question: 914 */ 915 for (i = 0; i < pipe->ring_size; i++) { 916 struct pipe_buffer *buf = &pipe->bufs[i]; 917 918 if (buf->ops) 919 pipe_buf_release(pipe, buf); 920 } 921 922 if (!bytes) 923 bytes = ret; 924 925 goto done; 926 } 927 EXPORT_SYMBOL(splice_direct_to_actor); 928 929 static int direct_splice_actor(struct pipe_inode_info *pipe, 930 struct splice_desc *sd) 931 { 932 struct file *file = sd->u.file; 933 934 return do_splice_from(pipe, file, sd->opos, sd->total_len, 935 sd->flags); 936 } 937 938 /** 939 * do_splice_direct - splices data directly between two files 940 * @in: file to splice from 941 * @ppos: input file offset 942 * @out: file to splice to 943 * @opos: output file offset 944 * @len: number of bytes to splice 945 * @flags: splice modifier flags 946 * 947 * Description: 948 * For use by do_sendfile(). splice can easily emulate sendfile, but 949 * doing it in the application would incur an extra system call 950 * (splice in + splice out, as compared to just sendfile()). So this helper 951 * can splice directly through a process-private pipe. 952 * 953 */ 954 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 955 loff_t *opos, size_t len, unsigned int flags) 956 { 957 struct splice_desc sd = { 958 .len = len, 959 .total_len = len, 960 .flags = flags, 961 .pos = *ppos, 962 .u.file = out, 963 .opos = opos, 964 }; 965 long ret; 966 967 if (unlikely(!(out->f_mode & FMODE_WRITE))) 968 return -EBADF; 969 970 if (unlikely(out->f_flags & O_APPEND)) 971 return -EINVAL; 972 973 ret = rw_verify_area(WRITE, out, opos, len); 974 if (unlikely(ret < 0)) 975 return ret; 976 977 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 978 if (ret > 0) 979 *ppos = sd.pos; 980 981 return ret; 982 } 983 EXPORT_SYMBOL(do_splice_direct); 984 985 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 986 { 987 for (;;) { 988 if (unlikely(!pipe->readers)) { 989 send_sig(SIGPIPE, current, 0); 990 return -EPIPE; 991 } 992 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 993 return 0; 994 if (flags & SPLICE_F_NONBLOCK) 995 return -EAGAIN; 996 if (signal_pending(current)) 997 return -ERESTARTSYS; 998 pipe_wait_writable(pipe); 999 } 1000 } 1001 1002 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1003 struct pipe_inode_info *opipe, 1004 size_t len, unsigned int flags); 1005 1006 long splice_file_to_pipe(struct file *in, 1007 struct pipe_inode_info *opipe, 1008 loff_t *offset, 1009 size_t len, unsigned int flags) 1010 { 1011 long ret; 1012 1013 pipe_lock(opipe); 1014 ret = wait_for_space(opipe, flags); 1015 if (!ret) 1016 ret = do_splice_to(in, offset, opipe, len, flags); 1017 pipe_unlock(opipe); 1018 if (ret > 0) 1019 wakeup_pipe_readers(opipe); 1020 return ret; 1021 } 1022 1023 /* 1024 * Determine where to splice to/from. 1025 */ 1026 long do_splice(struct file *in, loff_t *off_in, struct file *out, 1027 loff_t *off_out, size_t len, unsigned int flags) 1028 { 1029 struct pipe_inode_info *ipipe; 1030 struct pipe_inode_info *opipe; 1031 loff_t offset; 1032 long ret; 1033 1034 if (unlikely(!(in->f_mode & FMODE_READ) || 1035 !(out->f_mode & FMODE_WRITE))) 1036 return -EBADF; 1037 1038 ipipe = get_pipe_info(in, true); 1039 opipe = get_pipe_info(out, true); 1040 1041 if (ipipe && opipe) { 1042 if (off_in || off_out) 1043 return -ESPIPE; 1044 1045 /* Splicing to self would be fun, but... */ 1046 if (ipipe == opipe) 1047 return -EINVAL; 1048 1049 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1050 flags |= SPLICE_F_NONBLOCK; 1051 1052 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1053 } 1054 1055 if (ipipe) { 1056 if (off_in) 1057 return -ESPIPE; 1058 if (off_out) { 1059 if (!(out->f_mode & FMODE_PWRITE)) 1060 return -EINVAL; 1061 offset = *off_out; 1062 } else { 1063 offset = out->f_pos; 1064 } 1065 1066 if (unlikely(out->f_flags & O_APPEND)) 1067 return -EINVAL; 1068 1069 ret = rw_verify_area(WRITE, out, &offset, len); 1070 if (unlikely(ret < 0)) 1071 return ret; 1072 1073 if (in->f_flags & O_NONBLOCK) 1074 flags |= SPLICE_F_NONBLOCK; 1075 1076 file_start_write(out); 1077 ret = do_splice_from(ipipe, out, &offset, len, flags); 1078 file_end_write(out); 1079 1080 if (!off_out) 1081 out->f_pos = offset; 1082 else 1083 *off_out = offset; 1084 1085 return ret; 1086 } 1087 1088 if (opipe) { 1089 if (off_out) 1090 return -ESPIPE; 1091 if (off_in) { 1092 if (!(in->f_mode & FMODE_PREAD)) 1093 return -EINVAL; 1094 offset = *off_in; 1095 } else { 1096 offset = in->f_pos; 1097 } 1098 1099 if (out->f_flags & O_NONBLOCK) 1100 flags |= SPLICE_F_NONBLOCK; 1101 1102 ret = splice_file_to_pipe(in, opipe, &offset, len, flags); 1103 if (!off_in) 1104 in->f_pos = offset; 1105 else 1106 *off_in = offset; 1107 1108 return ret; 1109 } 1110 1111 return -EINVAL; 1112 } 1113 1114 static long __do_splice(struct file *in, loff_t __user *off_in, 1115 struct file *out, loff_t __user *off_out, 1116 size_t len, unsigned int flags) 1117 { 1118 struct pipe_inode_info *ipipe; 1119 struct pipe_inode_info *opipe; 1120 loff_t offset, *__off_in = NULL, *__off_out = NULL; 1121 long ret; 1122 1123 ipipe = get_pipe_info(in, true); 1124 opipe = get_pipe_info(out, true); 1125 1126 if (ipipe && off_in) 1127 return -ESPIPE; 1128 if (opipe && off_out) 1129 return -ESPIPE; 1130 1131 if (off_out) { 1132 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1133 return -EFAULT; 1134 __off_out = &offset; 1135 } 1136 if (off_in) { 1137 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1138 return -EFAULT; 1139 __off_in = &offset; 1140 } 1141 1142 ret = do_splice(in, __off_in, out, __off_out, len, flags); 1143 if (ret < 0) 1144 return ret; 1145 1146 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t))) 1147 return -EFAULT; 1148 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t))) 1149 return -EFAULT; 1150 1151 return ret; 1152 } 1153 1154 static int iter_to_pipe(struct iov_iter *from, 1155 struct pipe_inode_info *pipe, 1156 unsigned flags) 1157 { 1158 struct pipe_buffer buf = { 1159 .ops = &user_page_pipe_buf_ops, 1160 .flags = flags 1161 }; 1162 size_t total = 0; 1163 int ret = 0; 1164 bool failed = false; 1165 1166 while (iov_iter_count(from) && !failed) { 1167 struct page *pages[16]; 1168 ssize_t copied; 1169 size_t start; 1170 int n; 1171 1172 copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start); 1173 if (copied <= 0) { 1174 ret = copied; 1175 break; 1176 } 1177 1178 for (n = 0; copied; n++, start = 0) { 1179 int size = min_t(int, copied, PAGE_SIZE - start); 1180 if (!failed) { 1181 buf.page = pages[n]; 1182 buf.offset = start; 1183 buf.len = size; 1184 ret = add_to_pipe(pipe, &buf); 1185 if (unlikely(ret < 0)) { 1186 failed = true; 1187 } else { 1188 iov_iter_advance(from, ret); 1189 total += ret; 1190 } 1191 } else { 1192 put_page(pages[n]); 1193 } 1194 copied -= size; 1195 } 1196 } 1197 return total ? total : ret; 1198 } 1199 1200 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1201 struct splice_desc *sd) 1202 { 1203 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1204 return n == sd->len ? n : -EFAULT; 1205 } 1206 1207 /* 1208 * For lack of a better implementation, implement vmsplice() to userspace 1209 * as a simple copy of the pipes pages to the user iov. 1210 */ 1211 static long vmsplice_to_user(struct file *file, struct iov_iter *iter, 1212 unsigned int flags) 1213 { 1214 struct pipe_inode_info *pipe = get_pipe_info(file, true); 1215 struct splice_desc sd = { 1216 .total_len = iov_iter_count(iter), 1217 .flags = flags, 1218 .u.data = iter 1219 }; 1220 long ret = 0; 1221 1222 if (!pipe) 1223 return -EBADF; 1224 1225 if (sd.total_len) { 1226 pipe_lock(pipe); 1227 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1228 pipe_unlock(pipe); 1229 } 1230 1231 return ret; 1232 } 1233 1234 /* 1235 * vmsplice splices a user address range into a pipe. It can be thought of 1236 * as splice-from-memory, where the regular splice is splice-from-file (or 1237 * to file). In both cases the output is a pipe, naturally. 1238 */ 1239 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter, 1240 unsigned int flags) 1241 { 1242 struct pipe_inode_info *pipe; 1243 long ret = 0; 1244 unsigned buf_flag = 0; 1245 1246 if (flags & SPLICE_F_GIFT) 1247 buf_flag = PIPE_BUF_FLAG_GIFT; 1248 1249 pipe = get_pipe_info(file, true); 1250 if (!pipe) 1251 return -EBADF; 1252 1253 pipe_lock(pipe); 1254 ret = wait_for_space(pipe, flags); 1255 if (!ret) 1256 ret = iter_to_pipe(iter, pipe, buf_flag); 1257 pipe_unlock(pipe); 1258 if (ret > 0) 1259 wakeup_pipe_readers(pipe); 1260 return ret; 1261 } 1262 1263 static int vmsplice_type(struct fd f, int *type) 1264 { 1265 if (!f.file) 1266 return -EBADF; 1267 if (f.file->f_mode & FMODE_WRITE) { 1268 *type = WRITE; 1269 } else if (f.file->f_mode & FMODE_READ) { 1270 *type = READ; 1271 } else { 1272 fdput(f); 1273 return -EBADF; 1274 } 1275 return 0; 1276 } 1277 1278 /* 1279 * Note that vmsplice only really supports true splicing _from_ user memory 1280 * to a pipe, not the other way around. Splicing from user memory is a simple 1281 * operation that can be supported without any funky alignment restrictions 1282 * or nasty vm tricks. We simply map in the user memory and fill them into 1283 * a pipe. The reverse isn't quite as easy, though. There are two possible 1284 * solutions for that: 1285 * 1286 * - memcpy() the data internally, at which point we might as well just 1287 * do a regular read() on the buffer anyway. 1288 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1289 * has restriction limitations on both ends of the pipe). 1290 * 1291 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1292 * 1293 */ 1294 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov, 1295 unsigned long, nr_segs, unsigned int, flags) 1296 { 1297 struct iovec iovstack[UIO_FASTIOV]; 1298 struct iovec *iov = iovstack; 1299 struct iov_iter iter; 1300 ssize_t error; 1301 struct fd f; 1302 int type; 1303 1304 if (unlikely(flags & ~SPLICE_F_ALL)) 1305 return -EINVAL; 1306 1307 f = fdget(fd); 1308 error = vmsplice_type(f, &type); 1309 if (error) 1310 return error; 1311 1312 error = import_iovec(type, uiov, nr_segs, 1313 ARRAY_SIZE(iovstack), &iov, &iter); 1314 if (error < 0) 1315 goto out_fdput; 1316 1317 if (!iov_iter_count(&iter)) 1318 error = 0; 1319 else if (iov_iter_rw(&iter) == WRITE) 1320 error = vmsplice_to_pipe(f.file, &iter, flags); 1321 else 1322 error = vmsplice_to_user(f.file, &iter, flags); 1323 1324 kfree(iov); 1325 out_fdput: 1326 fdput(f); 1327 return error; 1328 } 1329 1330 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1331 int, fd_out, loff_t __user *, off_out, 1332 size_t, len, unsigned int, flags) 1333 { 1334 struct fd in, out; 1335 long error; 1336 1337 if (unlikely(!len)) 1338 return 0; 1339 1340 if (unlikely(flags & ~SPLICE_F_ALL)) 1341 return -EINVAL; 1342 1343 error = -EBADF; 1344 in = fdget(fd_in); 1345 if (in.file) { 1346 out = fdget(fd_out); 1347 if (out.file) { 1348 error = __do_splice(in.file, off_in, out.file, off_out, 1349 len, flags); 1350 fdput(out); 1351 } 1352 fdput(in); 1353 } 1354 return error; 1355 } 1356 1357 /* 1358 * Make sure there's data to read. Wait for input if we can, otherwise 1359 * return an appropriate error. 1360 */ 1361 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1362 { 1363 int ret; 1364 1365 /* 1366 * Check the pipe occupancy without the inode lock first. This function 1367 * is speculative anyways, so missing one is ok. 1368 */ 1369 if (!pipe_empty(pipe->head, pipe->tail)) 1370 return 0; 1371 1372 ret = 0; 1373 pipe_lock(pipe); 1374 1375 while (pipe_empty(pipe->head, pipe->tail)) { 1376 if (signal_pending(current)) { 1377 ret = -ERESTARTSYS; 1378 break; 1379 } 1380 if (!pipe->writers) 1381 break; 1382 if (flags & SPLICE_F_NONBLOCK) { 1383 ret = -EAGAIN; 1384 break; 1385 } 1386 pipe_wait_readable(pipe); 1387 } 1388 1389 pipe_unlock(pipe); 1390 return ret; 1391 } 1392 1393 /* 1394 * Make sure there's writeable room. Wait for room if we can, otherwise 1395 * return an appropriate error. 1396 */ 1397 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1398 { 1399 int ret; 1400 1401 /* 1402 * Check pipe occupancy without the inode lock first. This function 1403 * is speculative anyways, so missing one is ok. 1404 */ 1405 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1406 return 0; 1407 1408 ret = 0; 1409 pipe_lock(pipe); 1410 1411 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 1412 if (!pipe->readers) { 1413 send_sig(SIGPIPE, current, 0); 1414 ret = -EPIPE; 1415 break; 1416 } 1417 if (flags & SPLICE_F_NONBLOCK) { 1418 ret = -EAGAIN; 1419 break; 1420 } 1421 if (signal_pending(current)) { 1422 ret = -ERESTARTSYS; 1423 break; 1424 } 1425 pipe_wait_writable(pipe); 1426 } 1427 1428 pipe_unlock(pipe); 1429 return ret; 1430 } 1431 1432 /* 1433 * Splice contents of ipipe to opipe. 1434 */ 1435 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1436 struct pipe_inode_info *opipe, 1437 size_t len, unsigned int flags) 1438 { 1439 struct pipe_buffer *ibuf, *obuf; 1440 unsigned int i_head, o_head; 1441 unsigned int i_tail, o_tail; 1442 unsigned int i_mask, o_mask; 1443 int ret = 0; 1444 bool input_wakeup = false; 1445 1446 1447 retry: 1448 ret = ipipe_prep(ipipe, flags); 1449 if (ret) 1450 return ret; 1451 1452 ret = opipe_prep(opipe, flags); 1453 if (ret) 1454 return ret; 1455 1456 /* 1457 * Potential ABBA deadlock, work around it by ordering lock 1458 * grabbing by pipe info address. Otherwise two different processes 1459 * could deadlock (one doing tee from A -> B, the other from B -> A). 1460 */ 1461 pipe_double_lock(ipipe, opipe); 1462 1463 i_tail = ipipe->tail; 1464 i_mask = ipipe->ring_size - 1; 1465 o_head = opipe->head; 1466 o_mask = opipe->ring_size - 1; 1467 1468 do { 1469 size_t o_len; 1470 1471 if (!opipe->readers) { 1472 send_sig(SIGPIPE, current, 0); 1473 if (!ret) 1474 ret = -EPIPE; 1475 break; 1476 } 1477 1478 i_head = ipipe->head; 1479 o_tail = opipe->tail; 1480 1481 if (pipe_empty(i_head, i_tail) && !ipipe->writers) 1482 break; 1483 1484 /* 1485 * Cannot make any progress, because either the input 1486 * pipe is empty or the output pipe is full. 1487 */ 1488 if (pipe_empty(i_head, i_tail) || 1489 pipe_full(o_head, o_tail, opipe->max_usage)) { 1490 /* Already processed some buffers, break */ 1491 if (ret) 1492 break; 1493 1494 if (flags & SPLICE_F_NONBLOCK) { 1495 ret = -EAGAIN; 1496 break; 1497 } 1498 1499 /* 1500 * We raced with another reader/writer and haven't 1501 * managed to process any buffers. A zero return 1502 * value means EOF, so retry instead. 1503 */ 1504 pipe_unlock(ipipe); 1505 pipe_unlock(opipe); 1506 goto retry; 1507 } 1508 1509 ibuf = &ipipe->bufs[i_tail & i_mask]; 1510 obuf = &opipe->bufs[o_head & o_mask]; 1511 1512 if (len >= ibuf->len) { 1513 /* 1514 * Simply move the whole buffer from ipipe to opipe 1515 */ 1516 *obuf = *ibuf; 1517 ibuf->ops = NULL; 1518 i_tail++; 1519 ipipe->tail = i_tail; 1520 input_wakeup = true; 1521 o_len = obuf->len; 1522 o_head++; 1523 opipe->head = o_head; 1524 } else { 1525 /* 1526 * Get a reference to this pipe buffer, 1527 * so we can copy the contents over. 1528 */ 1529 if (!pipe_buf_get(ipipe, ibuf)) { 1530 if (ret == 0) 1531 ret = -EFAULT; 1532 break; 1533 } 1534 *obuf = *ibuf; 1535 1536 /* 1537 * Don't inherit the gift and merge flags, we need to 1538 * prevent multiple steals of this page. 1539 */ 1540 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1541 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1542 1543 obuf->len = len; 1544 ibuf->offset += len; 1545 ibuf->len -= len; 1546 o_len = len; 1547 o_head++; 1548 opipe->head = o_head; 1549 } 1550 ret += o_len; 1551 len -= o_len; 1552 } while (len); 1553 1554 pipe_unlock(ipipe); 1555 pipe_unlock(opipe); 1556 1557 /* 1558 * If we put data in the output pipe, wakeup any potential readers. 1559 */ 1560 if (ret > 0) 1561 wakeup_pipe_readers(opipe); 1562 1563 if (input_wakeup) 1564 wakeup_pipe_writers(ipipe); 1565 1566 return ret; 1567 } 1568 1569 /* 1570 * Link contents of ipipe to opipe. 1571 */ 1572 static int link_pipe(struct pipe_inode_info *ipipe, 1573 struct pipe_inode_info *opipe, 1574 size_t len, unsigned int flags) 1575 { 1576 struct pipe_buffer *ibuf, *obuf; 1577 unsigned int i_head, o_head; 1578 unsigned int i_tail, o_tail; 1579 unsigned int i_mask, o_mask; 1580 int ret = 0; 1581 1582 /* 1583 * Potential ABBA deadlock, work around it by ordering lock 1584 * grabbing by pipe info address. Otherwise two different processes 1585 * could deadlock (one doing tee from A -> B, the other from B -> A). 1586 */ 1587 pipe_double_lock(ipipe, opipe); 1588 1589 i_tail = ipipe->tail; 1590 i_mask = ipipe->ring_size - 1; 1591 o_head = opipe->head; 1592 o_mask = opipe->ring_size - 1; 1593 1594 do { 1595 if (!opipe->readers) { 1596 send_sig(SIGPIPE, current, 0); 1597 if (!ret) 1598 ret = -EPIPE; 1599 break; 1600 } 1601 1602 i_head = ipipe->head; 1603 o_tail = opipe->tail; 1604 1605 /* 1606 * If we have iterated all input buffers or run out of 1607 * output room, break. 1608 */ 1609 if (pipe_empty(i_head, i_tail) || 1610 pipe_full(o_head, o_tail, opipe->max_usage)) 1611 break; 1612 1613 ibuf = &ipipe->bufs[i_tail & i_mask]; 1614 obuf = &opipe->bufs[o_head & o_mask]; 1615 1616 /* 1617 * Get a reference to this pipe buffer, 1618 * so we can copy the contents over. 1619 */ 1620 if (!pipe_buf_get(ipipe, ibuf)) { 1621 if (ret == 0) 1622 ret = -EFAULT; 1623 break; 1624 } 1625 1626 *obuf = *ibuf; 1627 1628 /* 1629 * Don't inherit the gift and merge flag, we need to prevent 1630 * multiple steals of this page. 1631 */ 1632 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1633 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1634 1635 if (obuf->len > len) 1636 obuf->len = len; 1637 ret += obuf->len; 1638 len -= obuf->len; 1639 1640 o_head++; 1641 opipe->head = o_head; 1642 i_tail++; 1643 } while (len); 1644 1645 pipe_unlock(ipipe); 1646 pipe_unlock(opipe); 1647 1648 /* 1649 * If we put data in the output pipe, wakeup any potential readers. 1650 */ 1651 if (ret > 0) 1652 wakeup_pipe_readers(opipe); 1653 1654 return ret; 1655 } 1656 1657 /* 1658 * This is a tee(1) implementation that works on pipes. It doesn't copy 1659 * any data, it simply references the 'in' pages on the 'out' pipe. 1660 * The 'flags' used are the SPLICE_F_* variants, currently the only 1661 * applicable one is SPLICE_F_NONBLOCK. 1662 */ 1663 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags) 1664 { 1665 struct pipe_inode_info *ipipe = get_pipe_info(in, true); 1666 struct pipe_inode_info *opipe = get_pipe_info(out, true); 1667 int ret = -EINVAL; 1668 1669 if (unlikely(!(in->f_mode & FMODE_READ) || 1670 !(out->f_mode & FMODE_WRITE))) 1671 return -EBADF; 1672 1673 /* 1674 * Duplicate the contents of ipipe to opipe without actually 1675 * copying the data. 1676 */ 1677 if (ipipe && opipe && ipipe != opipe) { 1678 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1679 flags |= SPLICE_F_NONBLOCK; 1680 1681 /* 1682 * Keep going, unless we encounter an error. The ipipe/opipe 1683 * ordering doesn't really matter. 1684 */ 1685 ret = ipipe_prep(ipipe, flags); 1686 if (!ret) { 1687 ret = opipe_prep(opipe, flags); 1688 if (!ret) 1689 ret = link_pipe(ipipe, opipe, len, flags); 1690 } 1691 } 1692 1693 return ret; 1694 } 1695 1696 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1697 { 1698 struct fd in, out; 1699 int error; 1700 1701 if (unlikely(flags & ~SPLICE_F_ALL)) 1702 return -EINVAL; 1703 1704 if (unlikely(!len)) 1705 return 0; 1706 1707 error = -EBADF; 1708 in = fdget(fdin); 1709 if (in.file) { 1710 out = fdget(fdout); 1711 if (out.file) { 1712 error = do_tee(in.file, out.file, len, flags); 1713 fdput(out); 1714 } 1715 fdput(in); 1716 } 1717 1718 return error; 1719 } 1720