xref: /openbmc/linux/fs/splice.c (revision 6f4eaea2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * "splice": joining two ropes together by interweaving their strands.
4  *
5  * This is the "extended pipe" functionality, where a pipe is used as
6  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7  * buffer that you can use to transfer data from one end to the other.
8  *
9  * The traditional unix read/write is extended with a "splice()" operation
10  * that transfers data buffers to or from a pipe buffer.
11  *
12  * Named by Larry McVoy, original implementation from Linus, extended by
13  * Jens to support splicing to files, network, direct splicing, etc and
14  * fixing lots of bugs.
15  *
16  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19  *
20  */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/security.h>
34 #include <linux/gfp.h>
35 #include <linux/socket.h>
36 #include <linux/sched/signal.h>
37 
38 #include "internal.h"
39 
40 /*
41  * Attempt to steal a page from a pipe buffer. This should perhaps go into
42  * a vm helper function, it's already simplified quite a bit by the
43  * addition of remove_mapping(). If success is returned, the caller may
44  * attempt to reuse this page for another destination.
45  */
46 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
47 		struct pipe_buffer *buf)
48 {
49 	struct page *page = buf->page;
50 	struct address_space *mapping;
51 
52 	lock_page(page);
53 
54 	mapping = page_mapping(page);
55 	if (mapping) {
56 		WARN_ON(!PageUptodate(page));
57 
58 		/*
59 		 * At least for ext2 with nobh option, we need to wait on
60 		 * writeback completing on this page, since we'll remove it
61 		 * from the pagecache.  Otherwise truncate wont wait on the
62 		 * page, allowing the disk blocks to be reused by someone else
63 		 * before we actually wrote our data to them. fs corruption
64 		 * ensues.
65 		 */
66 		wait_on_page_writeback(page);
67 
68 		if (page_has_private(page) &&
69 		    !try_to_release_page(page, GFP_KERNEL))
70 			goto out_unlock;
71 
72 		/*
73 		 * If we succeeded in removing the mapping, set LRU flag
74 		 * and return good.
75 		 */
76 		if (remove_mapping(mapping, page)) {
77 			buf->flags |= PIPE_BUF_FLAG_LRU;
78 			return true;
79 		}
80 	}
81 
82 	/*
83 	 * Raced with truncate or failed to remove page from current
84 	 * address space, unlock and return failure.
85 	 */
86 out_unlock:
87 	unlock_page(page);
88 	return false;
89 }
90 
91 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
92 					struct pipe_buffer *buf)
93 {
94 	put_page(buf->page);
95 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
96 }
97 
98 /*
99  * Check whether the contents of buf is OK to access. Since the content
100  * is a page cache page, IO may be in flight.
101  */
102 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
103 				       struct pipe_buffer *buf)
104 {
105 	struct page *page = buf->page;
106 	int err;
107 
108 	if (!PageUptodate(page)) {
109 		lock_page(page);
110 
111 		/*
112 		 * Page got truncated/unhashed. This will cause a 0-byte
113 		 * splice, if this is the first page.
114 		 */
115 		if (!page->mapping) {
116 			err = -ENODATA;
117 			goto error;
118 		}
119 
120 		/*
121 		 * Uh oh, read-error from disk.
122 		 */
123 		if (!PageUptodate(page)) {
124 			err = -EIO;
125 			goto error;
126 		}
127 
128 		/*
129 		 * Page is ok afterall, we are done.
130 		 */
131 		unlock_page(page);
132 	}
133 
134 	return 0;
135 error:
136 	unlock_page(page);
137 	return err;
138 }
139 
140 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
141 	.confirm	= page_cache_pipe_buf_confirm,
142 	.release	= page_cache_pipe_buf_release,
143 	.try_steal	= page_cache_pipe_buf_try_steal,
144 	.get		= generic_pipe_buf_get,
145 };
146 
147 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
148 		struct pipe_buffer *buf)
149 {
150 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
151 		return false;
152 
153 	buf->flags |= PIPE_BUF_FLAG_LRU;
154 	return generic_pipe_buf_try_steal(pipe, buf);
155 }
156 
157 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
158 	.release	= page_cache_pipe_buf_release,
159 	.try_steal	= user_page_pipe_buf_try_steal,
160 	.get		= generic_pipe_buf_get,
161 };
162 
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165 	smp_mb();
166 	if (waitqueue_active(&pipe->rd_wait))
167 		wake_up_interruptible(&pipe->rd_wait);
168 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170 
171 /**
172  * splice_to_pipe - fill passed data into a pipe
173  * @pipe:	pipe to fill
174  * @spd:	data to fill
175  *
176  * Description:
177  *    @spd contains a map of pages and len/offset tuples, along with
178  *    the struct pipe_buf_operations associated with these pages. This
179  *    function will link that data to the pipe.
180  *
181  */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 		       struct splice_pipe_desc *spd)
184 {
185 	unsigned int spd_pages = spd->nr_pages;
186 	unsigned int tail = pipe->tail;
187 	unsigned int head = pipe->head;
188 	unsigned int mask = pipe->ring_size - 1;
189 	int ret = 0, page_nr = 0;
190 
191 	if (!spd_pages)
192 		return 0;
193 
194 	if (unlikely(!pipe->readers)) {
195 		send_sig(SIGPIPE, current, 0);
196 		ret = -EPIPE;
197 		goto out;
198 	}
199 
200 	while (!pipe_full(head, tail, pipe->max_usage)) {
201 		struct pipe_buffer *buf = &pipe->bufs[head & mask];
202 
203 		buf->page = spd->pages[page_nr];
204 		buf->offset = spd->partial[page_nr].offset;
205 		buf->len = spd->partial[page_nr].len;
206 		buf->private = spd->partial[page_nr].private;
207 		buf->ops = spd->ops;
208 		buf->flags = 0;
209 
210 		head++;
211 		pipe->head = head;
212 		page_nr++;
213 		ret += buf->len;
214 
215 		if (!--spd->nr_pages)
216 			break;
217 	}
218 
219 	if (!ret)
220 		ret = -EAGAIN;
221 
222 out:
223 	while (page_nr < spd_pages)
224 		spd->spd_release(spd, page_nr++);
225 
226 	return ret;
227 }
228 EXPORT_SYMBOL_GPL(splice_to_pipe);
229 
230 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
231 {
232 	unsigned int head = pipe->head;
233 	unsigned int tail = pipe->tail;
234 	unsigned int mask = pipe->ring_size - 1;
235 	int ret;
236 
237 	if (unlikely(!pipe->readers)) {
238 		send_sig(SIGPIPE, current, 0);
239 		ret = -EPIPE;
240 	} else if (pipe_full(head, tail, pipe->max_usage)) {
241 		ret = -EAGAIN;
242 	} else {
243 		pipe->bufs[head & mask] = *buf;
244 		pipe->head = head + 1;
245 		return buf->len;
246 	}
247 	pipe_buf_release(pipe, buf);
248 	return ret;
249 }
250 EXPORT_SYMBOL(add_to_pipe);
251 
252 /*
253  * Check if we need to grow the arrays holding pages and partial page
254  * descriptions.
255  */
256 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
257 {
258 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
259 
260 	spd->nr_pages_max = max_usage;
261 	if (max_usage <= PIPE_DEF_BUFFERS)
262 		return 0;
263 
264 	spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
265 	spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
266 				     GFP_KERNEL);
267 
268 	if (spd->pages && spd->partial)
269 		return 0;
270 
271 	kfree(spd->pages);
272 	kfree(spd->partial);
273 	return -ENOMEM;
274 }
275 
276 void splice_shrink_spd(struct splice_pipe_desc *spd)
277 {
278 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
279 		return;
280 
281 	kfree(spd->pages);
282 	kfree(spd->partial);
283 }
284 
285 /**
286  * generic_file_splice_read - splice data from file to a pipe
287  * @in:		file to splice from
288  * @ppos:	position in @in
289  * @pipe:	pipe to splice to
290  * @len:	number of bytes to splice
291  * @flags:	splice modifier flags
292  *
293  * Description:
294  *    Will read pages from given file and fill them into a pipe. Can be
295  *    used as long as it has more or less sane ->read_iter().
296  *
297  */
298 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
299 				 struct pipe_inode_info *pipe, size_t len,
300 				 unsigned int flags)
301 {
302 	struct iov_iter to;
303 	struct kiocb kiocb;
304 	unsigned int i_head;
305 	int ret;
306 
307 	iov_iter_pipe(&to, READ, pipe, len);
308 	i_head = to.head;
309 	init_sync_kiocb(&kiocb, in);
310 	kiocb.ki_pos = *ppos;
311 	ret = call_read_iter(in, &kiocb, &to);
312 	if (ret > 0) {
313 		*ppos = kiocb.ki_pos;
314 		file_accessed(in);
315 	} else if (ret < 0) {
316 		to.head = i_head;
317 		to.iov_offset = 0;
318 		iov_iter_advance(&to, 0); /* to free what was emitted */
319 		/*
320 		 * callers of ->splice_read() expect -EAGAIN on
321 		 * "can't put anything in there", rather than -EFAULT.
322 		 */
323 		if (ret == -EFAULT)
324 			ret = -EAGAIN;
325 	}
326 
327 	return ret;
328 }
329 EXPORT_SYMBOL(generic_file_splice_read);
330 
331 const struct pipe_buf_operations default_pipe_buf_ops = {
332 	.release	= generic_pipe_buf_release,
333 	.try_steal	= generic_pipe_buf_try_steal,
334 	.get		= generic_pipe_buf_get,
335 };
336 
337 /* Pipe buffer operations for a socket and similar. */
338 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
339 	.release	= generic_pipe_buf_release,
340 	.get		= generic_pipe_buf_get,
341 };
342 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
343 
344 /*
345  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
346  * using sendpage(). Return the number of bytes sent.
347  */
348 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
349 			    struct pipe_buffer *buf, struct splice_desc *sd)
350 {
351 	struct file *file = sd->u.file;
352 	loff_t pos = sd->pos;
353 	int more;
354 
355 	if (!likely(file->f_op->sendpage))
356 		return -EINVAL;
357 
358 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
359 
360 	if (sd->len < sd->total_len &&
361 	    pipe_occupancy(pipe->head, pipe->tail) > 1)
362 		more |= MSG_SENDPAGE_NOTLAST;
363 
364 	return file->f_op->sendpage(file, buf->page, buf->offset,
365 				    sd->len, &pos, more);
366 }
367 
368 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
369 {
370 	smp_mb();
371 	if (waitqueue_active(&pipe->wr_wait))
372 		wake_up_interruptible(&pipe->wr_wait);
373 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
374 }
375 
376 /**
377  * splice_from_pipe_feed - feed available data from a pipe to a file
378  * @pipe:	pipe to splice from
379  * @sd:		information to @actor
380  * @actor:	handler that splices the data
381  *
382  * Description:
383  *    This function loops over the pipe and calls @actor to do the
384  *    actual moving of a single struct pipe_buffer to the desired
385  *    destination.  It returns when there's no more buffers left in
386  *    the pipe or if the requested number of bytes (@sd->total_len)
387  *    have been copied.  It returns a positive number (one) if the
388  *    pipe needs to be filled with more data, zero if the required
389  *    number of bytes have been copied and -errno on error.
390  *
391  *    This, together with splice_from_pipe_{begin,end,next}, may be
392  *    used to implement the functionality of __splice_from_pipe() when
393  *    locking is required around copying the pipe buffers to the
394  *    destination.
395  */
396 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
397 			  splice_actor *actor)
398 {
399 	unsigned int head = pipe->head;
400 	unsigned int tail = pipe->tail;
401 	unsigned int mask = pipe->ring_size - 1;
402 	int ret;
403 
404 	while (!pipe_empty(head, tail)) {
405 		struct pipe_buffer *buf = &pipe->bufs[tail & mask];
406 
407 		sd->len = buf->len;
408 		if (sd->len > sd->total_len)
409 			sd->len = sd->total_len;
410 
411 		ret = pipe_buf_confirm(pipe, buf);
412 		if (unlikely(ret)) {
413 			if (ret == -ENODATA)
414 				ret = 0;
415 			return ret;
416 		}
417 
418 		ret = actor(pipe, buf, sd);
419 		if (ret <= 0)
420 			return ret;
421 
422 		buf->offset += ret;
423 		buf->len -= ret;
424 
425 		sd->num_spliced += ret;
426 		sd->len -= ret;
427 		sd->pos += ret;
428 		sd->total_len -= ret;
429 
430 		if (!buf->len) {
431 			pipe_buf_release(pipe, buf);
432 			tail++;
433 			pipe->tail = tail;
434 			if (pipe->files)
435 				sd->need_wakeup = true;
436 		}
437 
438 		if (!sd->total_len)
439 			return 0;
440 	}
441 
442 	return 1;
443 }
444 
445 /* We know we have a pipe buffer, but maybe it's empty? */
446 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
447 {
448 	unsigned int tail = pipe->tail;
449 	unsigned int mask = pipe->ring_size - 1;
450 	struct pipe_buffer *buf = &pipe->bufs[tail & mask];
451 
452 	if (unlikely(!buf->len)) {
453 		pipe_buf_release(pipe, buf);
454 		pipe->tail = tail+1;
455 		return true;
456 	}
457 
458 	return false;
459 }
460 
461 /**
462  * splice_from_pipe_next - wait for some data to splice from
463  * @pipe:	pipe to splice from
464  * @sd:		information about the splice operation
465  *
466  * Description:
467  *    This function will wait for some data and return a positive
468  *    value (one) if pipe buffers are available.  It will return zero
469  *    or -errno if no more data needs to be spliced.
470  */
471 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
472 {
473 	/*
474 	 * Check for signal early to make process killable when there are
475 	 * always buffers available
476 	 */
477 	if (signal_pending(current))
478 		return -ERESTARTSYS;
479 
480 repeat:
481 	while (pipe_empty(pipe->head, pipe->tail)) {
482 		if (!pipe->writers)
483 			return 0;
484 
485 		if (sd->num_spliced)
486 			return 0;
487 
488 		if (sd->flags & SPLICE_F_NONBLOCK)
489 			return -EAGAIN;
490 
491 		if (signal_pending(current))
492 			return -ERESTARTSYS;
493 
494 		if (sd->need_wakeup) {
495 			wakeup_pipe_writers(pipe);
496 			sd->need_wakeup = false;
497 		}
498 
499 		pipe_wait_readable(pipe);
500 	}
501 
502 	if (eat_empty_buffer(pipe))
503 		goto repeat;
504 
505 	return 1;
506 }
507 
508 /**
509  * splice_from_pipe_begin - start splicing from pipe
510  * @sd:		information about the splice operation
511  *
512  * Description:
513  *    This function should be called before a loop containing
514  *    splice_from_pipe_next() and splice_from_pipe_feed() to
515  *    initialize the necessary fields of @sd.
516  */
517 static void splice_from_pipe_begin(struct splice_desc *sd)
518 {
519 	sd->num_spliced = 0;
520 	sd->need_wakeup = false;
521 }
522 
523 /**
524  * splice_from_pipe_end - finish splicing from pipe
525  * @pipe:	pipe to splice from
526  * @sd:		information about the splice operation
527  *
528  * Description:
529  *    This function will wake up pipe writers if necessary.  It should
530  *    be called after a loop containing splice_from_pipe_next() and
531  *    splice_from_pipe_feed().
532  */
533 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
534 {
535 	if (sd->need_wakeup)
536 		wakeup_pipe_writers(pipe);
537 }
538 
539 /**
540  * __splice_from_pipe - splice data from a pipe to given actor
541  * @pipe:	pipe to splice from
542  * @sd:		information to @actor
543  * @actor:	handler that splices the data
544  *
545  * Description:
546  *    This function does little more than loop over the pipe and call
547  *    @actor to do the actual moving of a single struct pipe_buffer to
548  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
549  *    pipe_to_user.
550  *
551  */
552 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
553 			   splice_actor *actor)
554 {
555 	int ret;
556 
557 	splice_from_pipe_begin(sd);
558 	do {
559 		cond_resched();
560 		ret = splice_from_pipe_next(pipe, sd);
561 		if (ret > 0)
562 			ret = splice_from_pipe_feed(pipe, sd, actor);
563 	} while (ret > 0);
564 	splice_from_pipe_end(pipe, sd);
565 
566 	return sd->num_spliced ? sd->num_spliced : ret;
567 }
568 EXPORT_SYMBOL(__splice_from_pipe);
569 
570 /**
571  * splice_from_pipe - splice data from a pipe to a file
572  * @pipe:	pipe to splice from
573  * @out:	file to splice to
574  * @ppos:	position in @out
575  * @len:	how many bytes to splice
576  * @flags:	splice modifier flags
577  * @actor:	handler that splices the data
578  *
579  * Description:
580  *    See __splice_from_pipe. This function locks the pipe inode,
581  *    otherwise it's identical to __splice_from_pipe().
582  *
583  */
584 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
585 			 loff_t *ppos, size_t len, unsigned int flags,
586 			 splice_actor *actor)
587 {
588 	ssize_t ret;
589 	struct splice_desc sd = {
590 		.total_len = len,
591 		.flags = flags,
592 		.pos = *ppos,
593 		.u.file = out,
594 	};
595 
596 	pipe_lock(pipe);
597 	ret = __splice_from_pipe(pipe, &sd, actor);
598 	pipe_unlock(pipe);
599 
600 	return ret;
601 }
602 
603 /**
604  * iter_file_splice_write - splice data from a pipe to a file
605  * @pipe:	pipe info
606  * @out:	file to write to
607  * @ppos:	position in @out
608  * @len:	number of bytes to splice
609  * @flags:	splice modifier flags
610  *
611  * Description:
612  *    Will either move or copy pages (determined by @flags options) from
613  *    the given pipe inode to the given file.
614  *    This one is ->write_iter-based.
615  *
616  */
617 ssize_t
618 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
619 			  loff_t *ppos, size_t len, unsigned int flags)
620 {
621 	struct splice_desc sd = {
622 		.total_len = len,
623 		.flags = flags,
624 		.pos = *ppos,
625 		.u.file = out,
626 	};
627 	int nbufs = pipe->max_usage;
628 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
629 					GFP_KERNEL);
630 	ssize_t ret;
631 
632 	if (unlikely(!array))
633 		return -ENOMEM;
634 
635 	pipe_lock(pipe);
636 
637 	splice_from_pipe_begin(&sd);
638 	while (sd.total_len) {
639 		struct iov_iter from;
640 		unsigned int head, tail, mask;
641 		size_t left;
642 		int n;
643 
644 		ret = splice_from_pipe_next(pipe, &sd);
645 		if (ret <= 0)
646 			break;
647 
648 		if (unlikely(nbufs < pipe->max_usage)) {
649 			kfree(array);
650 			nbufs = pipe->max_usage;
651 			array = kcalloc(nbufs, sizeof(struct bio_vec),
652 					GFP_KERNEL);
653 			if (!array) {
654 				ret = -ENOMEM;
655 				break;
656 			}
657 		}
658 
659 		head = pipe->head;
660 		tail = pipe->tail;
661 		mask = pipe->ring_size - 1;
662 
663 		/* build the vector */
664 		left = sd.total_len;
665 		for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
666 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
667 			size_t this_len = buf->len;
668 
669 			/* zero-length bvecs are not supported, skip them */
670 			if (!this_len)
671 				continue;
672 			this_len = min(this_len, left);
673 
674 			ret = pipe_buf_confirm(pipe, buf);
675 			if (unlikely(ret)) {
676 				if (ret == -ENODATA)
677 					ret = 0;
678 				goto done;
679 			}
680 
681 			array[n].bv_page = buf->page;
682 			array[n].bv_len = this_len;
683 			array[n].bv_offset = buf->offset;
684 			left -= this_len;
685 			n++;
686 		}
687 
688 		iov_iter_bvec(&from, WRITE, array, n, sd.total_len - left);
689 		ret = vfs_iter_write(out, &from, &sd.pos, 0);
690 		if (ret <= 0)
691 			break;
692 
693 		sd.num_spliced += ret;
694 		sd.total_len -= ret;
695 		*ppos = sd.pos;
696 
697 		/* dismiss the fully eaten buffers, adjust the partial one */
698 		tail = pipe->tail;
699 		while (ret) {
700 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
701 			if (ret >= buf->len) {
702 				ret -= buf->len;
703 				buf->len = 0;
704 				pipe_buf_release(pipe, buf);
705 				tail++;
706 				pipe->tail = tail;
707 				if (pipe->files)
708 					sd.need_wakeup = true;
709 			} else {
710 				buf->offset += ret;
711 				buf->len -= ret;
712 				ret = 0;
713 			}
714 		}
715 	}
716 done:
717 	kfree(array);
718 	splice_from_pipe_end(pipe, &sd);
719 
720 	pipe_unlock(pipe);
721 
722 	if (sd.num_spliced)
723 		ret = sd.num_spliced;
724 
725 	return ret;
726 }
727 
728 EXPORT_SYMBOL(iter_file_splice_write);
729 
730 /**
731  * generic_splice_sendpage - splice data from a pipe to a socket
732  * @pipe:	pipe to splice from
733  * @out:	socket to write to
734  * @ppos:	position in @out
735  * @len:	number of bytes to splice
736  * @flags:	splice modifier flags
737  *
738  * Description:
739  *    Will send @len bytes from the pipe to a network socket. No data copying
740  *    is involved.
741  *
742  */
743 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
744 				loff_t *ppos, size_t len, unsigned int flags)
745 {
746 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
747 }
748 
749 EXPORT_SYMBOL(generic_splice_sendpage);
750 
751 static int warn_unsupported(struct file *file, const char *op)
752 {
753 	pr_debug_ratelimited(
754 		"splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
755 		op, file, current->pid, current->comm);
756 	return -EINVAL;
757 }
758 
759 /*
760  * Attempt to initiate a splice from pipe to file.
761  */
762 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
763 			   loff_t *ppos, size_t len, unsigned int flags)
764 {
765 	if (unlikely(!out->f_op->splice_write))
766 		return warn_unsupported(out, "write");
767 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
768 }
769 
770 /*
771  * Attempt to initiate a splice from a file to a pipe.
772  */
773 static long do_splice_to(struct file *in, loff_t *ppos,
774 			 struct pipe_inode_info *pipe, size_t len,
775 			 unsigned int flags)
776 {
777 	unsigned int p_space;
778 	int ret;
779 
780 	if (unlikely(!(in->f_mode & FMODE_READ)))
781 		return -EBADF;
782 
783 	/* Don't try to read more the pipe has space for. */
784 	p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
785 	len = min_t(size_t, len, p_space << PAGE_SHIFT);
786 
787 	ret = rw_verify_area(READ, in, ppos, len);
788 	if (unlikely(ret < 0))
789 		return ret;
790 
791 	if (unlikely(len > MAX_RW_COUNT))
792 		len = MAX_RW_COUNT;
793 
794 	if (unlikely(!in->f_op->splice_read))
795 		return warn_unsupported(in, "read");
796 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
797 }
798 
799 /**
800  * splice_direct_to_actor - splices data directly between two non-pipes
801  * @in:		file to splice from
802  * @sd:		actor information on where to splice to
803  * @actor:	handles the data splicing
804  *
805  * Description:
806  *    This is a special case helper to splice directly between two
807  *    points, without requiring an explicit pipe. Internally an allocated
808  *    pipe is cached in the process, and reused during the lifetime of
809  *    that process.
810  *
811  */
812 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
813 			       splice_direct_actor *actor)
814 {
815 	struct pipe_inode_info *pipe;
816 	long ret, bytes;
817 	umode_t i_mode;
818 	size_t len;
819 	int i, flags, more;
820 
821 	/*
822 	 * We require the input being a regular file, as we don't want to
823 	 * randomly drop data for eg socket -> socket splicing. Use the
824 	 * piped splicing for that!
825 	 */
826 	i_mode = file_inode(in)->i_mode;
827 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
828 		return -EINVAL;
829 
830 	/*
831 	 * neither in nor out is a pipe, setup an internal pipe attached to
832 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
833 	 */
834 	pipe = current->splice_pipe;
835 	if (unlikely(!pipe)) {
836 		pipe = alloc_pipe_info();
837 		if (!pipe)
838 			return -ENOMEM;
839 
840 		/*
841 		 * We don't have an immediate reader, but we'll read the stuff
842 		 * out of the pipe right after the splice_to_pipe(). So set
843 		 * PIPE_READERS appropriately.
844 		 */
845 		pipe->readers = 1;
846 
847 		current->splice_pipe = pipe;
848 	}
849 
850 	/*
851 	 * Do the splice.
852 	 */
853 	ret = 0;
854 	bytes = 0;
855 	len = sd->total_len;
856 	flags = sd->flags;
857 
858 	/*
859 	 * Don't block on output, we have to drain the direct pipe.
860 	 */
861 	sd->flags &= ~SPLICE_F_NONBLOCK;
862 	more = sd->flags & SPLICE_F_MORE;
863 
864 	WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
865 
866 	while (len) {
867 		size_t read_len;
868 		loff_t pos = sd->pos, prev_pos = pos;
869 
870 		ret = do_splice_to(in, &pos, pipe, len, flags);
871 		if (unlikely(ret <= 0))
872 			goto out_release;
873 
874 		read_len = ret;
875 		sd->total_len = read_len;
876 
877 		/*
878 		 * If more data is pending, set SPLICE_F_MORE
879 		 * If this is the last data and SPLICE_F_MORE was not set
880 		 * initially, clears it.
881 		 */
882 		if (read_len < len)
883 			sd->flags |= SPLICE_F_MORE;
884 		else if (!more)
885 			sd->flags &= ~SPLICE_F_MORE;
886 		/*
887 		 * NOTE: nonblocking mode only applies to the input. We
888 		 * must not do the output in nonblocking mode as then we
889 		 * could get stuck data in the internal pipe:
890 		 */
891 		ret = actor(pipe, sd);
892 		if (unlikely(ret <= 0)) {
893 			sd->pos = prev_pos;
894 			goto out_release;
895 		}
896 
897 		bytes += ret;
898 		len -= ret;
899 		sd->pos = pos;
900 
901 		if (ret < read_len) {
902 			sd->pos = prev_pos + ret;
903 			goto out_release;
904 		}
905 	}
906 
907 done:
908 	pipe->tail = pipe->head = 0;
909 	file_accessed(in);
910 	return bytes;
911 
912 out_release:
913 	/*
914 	 * If we did an incomplete transfer we must release
915 	 * the pipe buffers in question:
916 	 */
917 	for (i = 0; i < pipe->ring_size; i++) {
918 		struct pipe_buffer *buf = &pipe->bufs[i];
919 
920 		if (buf->ops)
921 			pipe_buf_release(pipe, buf);
922 	}
923 
924 	if (!bytes)
925 		bytes = ret;
926 
927 	goto done;
928 }
929 EXPORT_SYMBOL(splice_direct_to_actor);
930 
931 static int direct_splice_actor(struct pipe_inode_info *pipe,
932 			       struct splice_desc *sd)
933 {
934 	struct file *file = sd->u.file;
935 
936 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
937 			      sd->flags);
938 }
939 
940 /**
941  * do_splice_direct - splices data directly between two files
942  * @in:		file to splice from
943  * @ppos:	input file offset
944  * @out:	file to splice to
945  * @opos:	output file offset
946  * @len:	number of bytes to splice
947  * @flags:	splice modifier flags
948  *
949  * Description:
950  *    For use by do_sendfile(). splice can easily emulate sendfile, but
951  *    doing it in the application would incur an extra system call
952  *    (splice in + splice out, as compared to just sendfile()). So this helper
953  *    can splice directly through a process-private pipe.
954  *
955  */
956 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
957 		      loff_t *opos, size_t len, unsigned int flags)
958 {
959 	struct splice_desc sd = {
960 		.len		= len,
961 		.total_len	= len,
962 		.flags		= flags,
963 		.pos		= *ppos,
964 		.u.file		= out,
965 		.opos		= opos,
966 	};
967 	long ret;
968 
969 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
970 		return -EBADF;
971 
972 	if (unlikely(out->f_flags & O_APPEND))
973 		return -EINVAL;
974 
975 	ret = rw_verify_area(WRITE, out, opos, len);
976 	if (unlikely(ret < 0))
977 		return ret;
978 
979 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
980 	if (ret > 0)
981 		*ppos = sd.pos;
982 
983 	return ret;
984 }
985 EXPORT_SYMBOL(do_splice_direct);
986 
987 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
988 {
989 	for (;;) {
990 		if (unlikely(!pipe->readers)) {
991 			send_sig(SIGPIPE, current, 0);
992 			return -EPIPE;
993 		}
994 		if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
995 			return 0;
996 		if (flags & SPLICE_F_NONBLOCK)
997 			return -EAGAIN;
998 		if (signal_pending(current))
999 			return -ERESTARTSYS;
1000 		pipe_wait_writable(pipe);
1001 	}
1002 }
1003 
1004 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1005 			       struct pipe_inode_info *opipe,
1006 			       size_t len, unsigned int flags);
1007 
1008 long splice_file_to_pipe(struct file *in,
1009 			 struct pipe_inode_info *opipe,
1010 			 loff_t *offset,
1011 			 size_t len, unsigned int flags)
1012 {
1013 	long ret;
1014 
1015 	pipe_lock(opipe);
1016 	ret = wait_for_space(opipe, flags);
1017 	if (!ret)
1018 		ret = do_splice_to(in, offset, opipe, len, flags);
1019 	pipe_unlock(opipe);
1020 	if (ret > 0)
1021 		wakeup_pipe_readers(opipe);
1022 	return ret;
1023 }
1024 
1025 /*
1026  * Determine where to splice to/from.
1027  */
1028 long do_splice(struct file *in, loff_t *off_in, struct file *out,
1029 	       loff_t *off_out, size_t len, unsigned int flags)
1030 {
1031 	struct pipe_inode_info *ipipe;
1032 	struct pipe_inode_info *opipe;
1033 	loff_t offset;
1034 	long ret;
1035 
1036 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1037 		     !(out->f_mode & FMODE_WRITE)))
1038 		return -EBADF;
1039 
1040 	ipipe = get_pipe_info(in, true);
1041 	opipe = get_pipe_info(out, true);
1042 
1043 	if (ipipe && opipe) {
1044 		if (off_in || off_out)
1045 			return -ESPIPE;
1046 
1047 		/* Splicing to self would be fun, but... */
1048 		if (ipipe == opipe)
1049 			return -EINVAL;
1050 
1051 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1052 			flags |= SPLICE_F_NONBLOCK;
1053 
1054 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1055 	}
1056 
1057 	if (ipipe) {
1058 		if (off_in)
1059 			return -ESPIPE;
1060 		if (off_out) {
1061 			if (!(out->f_mode & FMODE_PWRITE))
1062 				return -EINVAL;
1063 			offset = *off_out;
1064 		} else {
1065 			offset = out->f_pos;
1066 		}
1067 
1068 		if (unlikely(out->f_flags & O_APPEND))
1069 			return -EINVAL;
1070 
1071 		ret = rw_verify_area(WRITE, out, &offset, len);
1072 		if (unlikely(ret < 0))
1073 			return ret;
1074 
1075 		if (in->f_flags & O_NONBLOCK)
1076 			flags |= SPLICE_F_NONBLOCK;
1077 
1078 		file_start_write(out);
1079 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1080 		file_end_write(out);
1081 
1082 		if (!off_out)
1083 			out->f_pos = offset;
1084 		else
1085 			*off_out = offset;
1086 
1087 		return ret;
1088 	}
1089 
1090 	if (opipe) {
1091 		if (off_out)
1092 			return -ESPIPE;
1093 		if (off_in) {
1094 			if (!(in->f_mode & FMODE_PREAD))
1095 				return -EINVAL;
1096 			offset = *off_in;
1097 		} else {
1098 			offset = in->f_pos;
1099 		}
1100 
1101 		if (out->f_flags & O_NONBLOCK)
1102 			flags |= SPLICE_F_NONBLOCK;
1103 
1104 		ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1105 		if (!off_in)
1106 			in->f_pos = offset;
1107 		else
1108 			*off_in = offset;
1109 
1110 		return ret;
1111 	}
1112 
1113 	return -EINVAL;
1114 }
1115 
1116 static long __do_splice(struct file *in, loff_t __user *off_in,
1117 			struct file *out, loff_t __user *off_out,
1118 			size_t len, unsigned int flags)
1119 {
1120 	struct pipe_inode_info *ipipe;
1121 	struct pipe_inode_info *opipe;
1122 	loff_t offset, *__off_in = NULL, *__off_out = NULL;
1123 	long ret;
1124 
1125 	ipipe = get_pipe_info(in, true);
1126 	opipe = get_pipe_info(out, true);
1127 
1128 	if (ipipe && off_in)
1129 		return -ESPIPE;
1130 	if (opipe && off_out)
1131 		return -ESPIPE;
1132 
1133 	if (off_out) {
1134 		if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1135 			return -EFAULT;
1136 		__off_out = &offset;
1137 	}
1138 	if (off_in) {
1139 		if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1140 			return -EFAULT;
1141 		__off_in = &offset;
1142 	}
1143 
1144 	ret = do_splice(in, __off_in, out, __off_out, len, flags);
1145 	if (ret < 0)
1146 		return ret;
1147 
1148 	if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1149 		return -EFAULT;
1150 	if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1151 		return -EFAULT;
1152 
1153 	return ret;
1154 }
1155 
1156 static int iter_to_pipe(struct iov_iter *from,
1157 			struct pipe_inode_info *pipe,
1158 			unsigned flags)
1159 {
1160 	struct pipe_buffer buf = {
1161 		.ops = &user_page_pipe_buf_ops,
1162 		.flags = flags
1163 	};
1164 	size_t total = 0;
1165 	int ret = 0;
1166 	bool failed = false;
1167 
1168 	while (iov_iter_count(from) && !failed) {
1169 		struct page *pages[16];
1170 		ssize_t copied;
1171 		size_t start;
1172 		int n;
1173 
1174 		copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start);
1175 		if (copied <= 0) {
1176 			ret = copied;
1177 			break;
1178 		}
1179 
1180 		for (n = 0; copied; n++, start = 0) {
1181 			int size = min_t(int, copied, PAGE_SIZE - start);
1182 			if (!failed) {
1183 				buf.page = pages[n];
1184 				buf.offset = start;
1185 				buf.len = size;
1186 				ret = add_to_pipe(pipe, &buf);
1187 				if (unlikely(ret < 0)) {
1188 					failed = true;
1189 				} else {
1190 					iov_iter_advance(from, ret);
1191 					total += ret;
1192 				}
1193 			} else {
1194 				put_page(pages[n]);
1195 			}
1196 			copied -= size;
1197 		}
1198 	}
1199 	return total ? total : ret;
1200 }
1201 
1202 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1203 			struct splice_desc *sd)
1204 {
1205 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1206 	return n == sd->len ? n : -EFAULT;
1207 }
1208 
1209 /*
1210  * For lack of a better implementation, implement vmsplice() to userspace
1211  * as a simple copy of the pipes pages to the user iov.
1212  */
1213 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1214 			     unsigned int flags)
1215 {
1216 	struct pipe_inode_info *pipe = get_pipe_info(file, true);
1217 	struct splice_desc sd = {
1218 		.total_len = iov_iter_count(iter),
1219 		.flags = flags,
1220 		.u.data = iter
1221 	};
1222 	long ret = 0;
1223 
1224 	if (!pipe)
1225 		return -EBADF;
1226 
1227 	if (sd.total_len) {
1228 		pipe_lock(pipe);
1229 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1230 		pipe_unlock(pipe);
1231 	}
1232 
1233 	return ret;
1234 }
1235 
1236 /*
1237  * vmsplice splices a user address range into a pipe. It can be thought of
1238  * as splice-from-memory, where the regular splice is splice-from-file (or
1239  * to file). In both cases the output is a pipe, naturally.
1240  */
1241 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1242 			     unsigned int flags)
1243 {
1244 	struct pipe_inode_info *pipe;
1245 	long ret = 0;
1246 	unsigned buf_flag = 0;
1247 
1248 	if (flags & SPLICE_F_GIFT)
1249 		buf_flag = PIPE_BUF_FLAG_GIFT;
1250 
1251 	pipe = get_pipe_info(file, true);
1252 	if (!pipe)
1253 		return -EBADF;
1254 
1255 	pipe_lock(pipe);
1256 	ret = wait_for_space(pipe, flags);
1257 	if (!ret)
1258 		ret = iter_to_pipe(iter, pipe, buf_flag);
1259 	pipe_unlock(pipe);
1260 	if (ret > 0)
1261 		wakeup_pipe_readers(pipe);
1262 	return ret;
1263 }
1264 
1265 static int vmsplice_type(struct fd f, int *type)
1266 {
1267 	if (!f.file)
1268 		return -EBADF;
1269 	if (f.file->f_mode & FMODE_WRITE) {
1270 		*type = WRITE;
1271 	} else if (f.file->f_mode & FMODE_READ) {
1272 		*type = READ;
1273 	} else {
1274 		fdput(f);
1275 		return -EBADF;
1276 	}
1277 	return 0;
1278 }
1279 
1280 /*
1281  * Note that vmsplice only really supports true splicing _from_ user memory
1282  * to a pipe, not the other way around. Splicing from user memory is a simple
1283  * operation that can be supported without any funky alignment restrictions
1284  * or nasty vm tricks. We simply map in the user memory and fill them into
1285  * a pipe. The reverse isn't quite as easy, though. There are two possible
1286  * solutions for that:
1287  *
1288  *	- memcpy() the data internally, at which point we might as well just
1289  *	  do a regular read() on the buffer anyway.
1290  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1291  *	  has restriction limitations on both ends of the pipe).
1292  *
1293  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1294  *
1295  */
1296 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1297 		unsigned long, nr_segs, unsigned int, flags)
1298 {
1299 	struct iovec iovstack[UIO_FASTIOV];
1300 	struct iovec *iov = iovstack;
1301 	struct iov_iter iter;
1302 	ssize_t error;
1303 	struct fd f;
1304 	int type;
1305 
1306 	if (unlikely(flags & ~SPLICE_F_ALL))
1307 		return -EINVAL;
1308 
1309 	f = fdget(fd);
1310 	error = vmsplice_type(f, &type);
1311 	if (error)
1312 		return error;
1313 
1314 	error = import_iovec(type, uiov, nr_segs,
1315 			     ARRAY_SIZE(iovstack), &iov, &iter);
1316 	if (error < 0)
1317 		goto out_fdput;
1318 
1319 	if (!iov_iter_count(&iter))
1320 		error = 0;
1321 	else if (iov_iter_rw(&iter) == WRITE)
1322 		error = vmsplice_to_pipe(f.file, &iter, flags);
1323 	else
1324 		error = vmsplice_to_user(f.file, &iter, flags);
1325 
1326 	kfree(iov);
1327 out_fdput:
1328 	fdput(f);
1329 	return error;
1330 }
1331 
1332 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1333 		int, fd_out, loff_t __user *, off_out,
1334 		size_t, len, unsigned int, flags)
1335 {
1336 	struct fd in, out;
1337 	long error;
1338 
1339 	if (unlikely(!len))
1340 		return 0;
1341 
1342 	if (unlikely(flags & ~SPLICE_F_ALL))
1343 		return -EINVAL;
1344 
1345 	error = -EBADF;
1346 	in = fdget(fd_in);
1347 	if (in.file) {
1348 		out = fdget(fd_out);
1349 		if (out.file) {
1350 			error = __do_splice(in.file, off_in, out.file, off_out,
1351 						len, flags);
1352 			fdput(out);
1353 		}
1354 		fdput(in);
1355 	}
1356 	return error;
1357 }
1358 
1359 /*
1360  * Make sure there's data to read. Wait for input if we can, otherwise
1361  * return an appropriate error.
1362  */
1363 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1364 {
1365 	int ret;
1366 
1367 	/*
1368 	 * Check the pipe occupancy without the inode lock first. This function
1369 	 * is speculative anyways, so missing one is ok.
1370 	 */
1371 	if (!pipe_empty(pipe->head, pipe->tail))
1372 		return 0;
1373 
1374 	ret = 0;
1375 	pipe_lock(pipe);
1376 
1377 	while (pipe_empty(pipe->head, pipe->tail)) {
1378 		if (signal_pending(current)) {
1379 			ret = -ERESTARTSYS;
1380 			break;
1381 		}
1382 		if (!pipe->writers)
1383 			break;
1384 		if (flags & SPLICE_F_NONBLOCK) {
1385 			ret = -EAGAIN;
1386 			break;
1387 		}
1388 		pipe_wait_readable(pipe);
1389 	}
1390 
1391 	pipe_unlock(pipe);
1392 	return ret;
1393 }
1394 
1395 /*
1396  * Make sure there's writeable room. Wait for room if we can, otherwise
1397  * return an appropriate error.
1398  */
1399 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1400 {
1401 	int ret;
1402 
1403 	/*
1404 	 * Check pipe occupancy without the inode lock first. This function
1405 	 * is speculative anyways, so missing one is ok.
1406 	 */
1407 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1408 		return 0;
1409 
1410 	ret = 0;
1411 	pipe_lock(pipe);
1412 
1413 	while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1414 		if (!pipe->readers) {
1415 			send_sig(SIGPIPE, current, 0);
1416 			ret = -EPIPE;
1417 			break;
1418 		}
1419 		if (flags & SPLICE_F_NONBLOCK) {
1420 			ret = -EAGAIN;
1421 			break;
1422 		}
1423 		if (signal_pending(current)) {
1424 			ret = -ERESTARTSYS;
1425 			break;
1426 		}
1427 		pipe_wait_writable(pipe);
1428 	}
1429 
1430 	pipe_unlock(pipe);
1431 	return ret;
1432 }
1433 
1434 /*
1435  * Splice contents of ipipe to opipe.
1436  */
1437 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1438 			       struct pipe_inode_info *opipe,
1439 			       size_t len, unsigned int flags)
1440 {
1441 	struct pipe_buffer *ibuf, *obuf;
1442 	unsigned int i_head, o_head;
1443 	unsigned int i_tail, o_tail;
1444 	unsigned int i_mask, o_mask;
1445 	int ret = 0;
1446 	bool input_wakeup = false;
1447 
1448 
1449 retry:
1450 	ret = ipipe_prep(ipipe, flags);
1451 	if (ret)
1452 		return ret;
1453 
1454 	ret = opipe_prep(opipe, flags);
1455 	if (ret)
1456 		return ret;
1457 
1458 	/*
1459 	 * Potential ABBA deadlock, work around it by ordering lock
1460 	 * grabbing by pipe info address. Otherwise two different processes
1461 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1462 	 */
1463 	pipe_double_lock(ipipe, opipe);
1464 
1465 	i_tail = ipipe->tail;
1466 	i_mask = ipipe->ring_size - 1;
1467 	o_head = opipe->head;
1468 	o_mask = opipe->ring_size - 1;
1469 
1470 	do {
1471 		size_t o_len;
1472 
1473 		if (!opipe->readers) {
1474 			send_sig(SIGPIPE, current, 0);
1475 			if (!ret)
1476 				ret = -EPIPE;
1477 			break;
1478 		}
1479 
1480 		i_head = ipipe->head;
1481 		o_tail = opipe->tail;
1482 
1483 		if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1484 			break;
1485 
1486 		/*
1487 		 * Cannot make any progress, because either the input
1488 		 * pipe is empty or the output pipe is full.
1489 		 */
1490 		if (pipe_empty(i_head, i_tail) ||
1491 		    pipe_full(o_head, o_tail, opipe->max_usage)) {
1492 			/* Already processed some buffers, break */
1493 			if (ret)
1494 				break;
1495 
1496 			if (flags & SPLICE_F_NONBLOCK) {
1497 				ret = -EAGAIN;
1498 				break;
1499 			}
1500 
1501 			/*
1502 			 * We raced with another reader/writer and haven't
1503 			 * managed to process any buffers.  A zero return
1504 			 * value means EOF, so retry instead.
1505 			 */
1506 			pipe_unlock(ipipe);
1507 			pipe_unlock(opipe);
1508 			goto retry;
1509 		}
1510 
1511 		ibuf = &ipipe->bufs[i_tail & i_mask];
1512 		obuf = &opipe->bufs[o_head & o_mask];
1513 
1514 		if (len >= ibuf->len) {
1515 			/*
1516 			 * Simply move the whole buffer from ipipe to opipe
1517 			 */
1518 			*obuf = *ibuf;
1519 			ibuf->ops = NULL;
1520 			i_tail++;
1521 			ipipe->tail = i_tail;
1522 			input_wakeup = true;
1523 			o_len = obuf->len;
1524 			o_head++;
1525 			opipe->head = o_head;
1526 		} else {
1527 			/*
1528 			 * Get a reference to this pipe buffer,
1529 			 * so we can copy the contents over.
1530 			 */
1531 			if (!pipe_buf_get(ipipe, ibuf)) {
1532 				if (ret == 0)
1533 					ret = -EFAULT;
1534 				break;
1535 			}
1536 			*obuf = *ibuf;
1537 
1538 			/*
1539 			 * Don't inherit the gift and merge flags, we need to
1540 			 * prevent multiple steals of this page.
1541 			 */
1542 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1543 			obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1544 
1545 			obuf->len = len;
1546 			ibuf->offset += len;
1547 			ibuf->len -= len;
1548 			o_len = len;
1549 			o_head++;
1550 			opipe->head = o_head;
1551 		}
1552 		ret += o_len;
1553 		len -= o_len;
1554 	} while (len);
1555 
1556 	pipe_unlock(ipipe);
1557 	pipe_unlock(opipe);
1558 
1559 	/*
1560 	 * If we put data in the output pipe, wakeup any potential readers.
1561 	 */
1562 	if (ret > 0)
1563 		wakeup_pipe_readers(opipe);
1564 
1565 	if (input_wakeup)
1566 		wakeup_pipe_writers(ipipe);
1567 
1568 	return ret;
1569 }
1570 
1571 /*
1572  * Link contents of ipipe to opipe.
1573  */
1574 static int link_pipe(struct pipe_inode_info *ipipe,
1575 		     struct pipe_inode_info *opipe,
1576 		     size_t len, unsigned int flags)
1577 {
1578 	struct pipe_buffer *ibuf, *obuf;
1579 	unsigned int i_head, o_head;
1580 	unsigned int i_tail, o_tail;
1581 	unsigned int i_mask, o_mask;
1582 	int ret = 0;
1583 
1584 	/*
1585 	 * Potential ABBA deadlock, work around it by ordering lock
1586 	 * grabbing by pipe info address. Otherwise two different processes
1587 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1588 	 */
1589 	pipe_double_lock(ipipe, opipe);
1590 
1591 	i_tail = ipipe->tail;
1592 	i_mask = ipipe->ring_size - 1;
1593 	o_head = opipe->head;
1594 	o_mask = opipe->ring_size - 1;
1595 
1596 	do {
1597 		if (!opipe->readers) {
1598 			send_sig(SIGPIPE, current, 0);
1599 			if (!ret)
1600 				ret = -EPIPE;
1601 			break;
1602 		}
1603 
1604 		i_head = ipipe->head;
1605 		o_tail = opipe->tail;
1606 
1607 		/*
1608 		 * If we have iterated all input buffers or run out of
1609 		 * output room, break.
1610 		 */
1611 		if (pipe_empty(i_head, i_tail) ||
1612 		    pipe_full(o_head, o_tail, opipe->max_usage))
1613 			break;
1614 
1615 		ibuf = &ipipe->bufs[i_tail & i_mask];
1616 		obuf = &opipe->bufs[o_head & o_mask];
1617 
1618 		/*
1619 		 * Get a reference to this pipe buffer,
1620 		 * so we can copy the contents over.
1621 		 */
1622 		if (!pipe_buf_get(ipipe, ibuf)) {
1623 			if (ret == 0)
1624 				ret = -EFAULT;
1625 			break;
1626 		}
1627 
1628 		*obuf = *ibuf;
1629 
1630 		/*
1631 		 * Don't inherit the gift and merge flag, we need to prevent
1632 		 * multiple steals of this page.
1633 		 */
1634 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1635 		obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1636 
1637 		if (obuf->len > len)
1638 			obuf->len = len;
1639 		ret += obuf->len;
1640 		len -= obuf->len;
1641 
1642 		o_head++;
1643 		opipe->head = o_head;
1644 		i_tail++;
1645 	} while (len);
1646 
1647 	pipe_unlock(ipipe);
1648 	pipe_unlock(opipe);
1649 
1650 	/*
1651 	 * If we put data in the output pipe, wakeup any potential readers.
1652 	 */
1653 	if (ret > 0)
1654 		wakeup_pipe_readers(opipe);
1655 
1656 	return ret;
1657 }
1658 
1659 /*
1660  * This is a tee(1) implementation that works on pipes. It doesn't copy
1661  * any data, it simply references the 'in' pages on the 'out' pipe.
1662  * The 'flags' used are the SPLICE_F_* variants, currently the only
1663  * applicable one is SPLICE_F_NONBLOCK.
1664  */
1665 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1666 {
1667 	struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1668 	struct pipe_inode_info *opipe = get_pipe_info(out, true);
1669 	int ret = -EINVAL;
1670 
1671 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1672 		     !(out->f_mode & FMODE_WRITE)))
1673 		return -EBADF;
1674 
1675 	/*
1676 	 * Duplicate the contents of ipipe to opipe without actually
1677 	 * copying the data.
1678 	 */
1679 	if (ipipe && opipe && ipipe != opipe) {
1680 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1681 			flags |= SPLICE_F_NONBLOCK;
1682 
1683 		/*
1684 		 * Keep going, unless we encounter an error. The ipipe/opipe
1685 		 * ordering doesn't really matter.
1686 		 */
1687 		ret = ipipe_prep(ipipe, flags);
1688 		if (!ret) {
1689 			ret = opipe_prep(opipe, flags);
1690 			if (!ret)
1691 				ret = link_pipe(ipipe, opipe, len, flags);
1692 		}
1693 	}
1694 
1695 	return ret;
1696 }
1697 
1698 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1699 {
1700 	struct fd in, out;
1701 	int error;
1702 
1703 	if (unlikely(flags & ~SPLICE_F_ALL))
1704 		return -EINVAL;
1705 
1706 	if (unlikely(!len))
1707 		return 0;
1708 
1709 	error = -EBADF;
1710 	in = fdget(fdin);
1711 	if (in.file) {
1712 		out = fdget(fdout);
1713 		if (out.file) {
1714 			error = do_tee(in.file, out.file, len, flags);
1715 			fdput(out);
1716 		}
1717  		fdput(in);
1718  	}
1719 
1720 	return error;
1721 }
1722