xref: /openbmc/linux/fs/splice.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * "splice": joining two ropes together by interweaving their strands.
4  *
5  * This is the "extended pipe" functionality, where a pipe is used as
6  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7  * buffer that you can use to transfer data from one end to the other.
8  *
9  * The traditional unix read/write is extended with a "splice()" operation
10  * that transfers data buffers to or from a pipe buffer.
11  *
12  * Named by Larry McVoy, original implementation from Linus, extended by
13  * Jens to support splicing to files, network, direct splicing, etc and
14  * fixing lots of bugs.
15  *
16  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19  *
20  */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/fsnotify.h>
34 #include <linux/security.h>
35 #include <linux/gfp.h>
36 #include <linux/socket.h>
37 #include <linux/sched/signal.h>
38 
39 #include "internal.h"
40 
41 /*
42  * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
43  * indicate they support non-blocking reads or writes, we must clear it
44  * here if set to avoid blocking other users of this pipe if splice is
45  * being done on it.
46  */
47 static noinline void noinline pipe_clear_nowait(struct file *file)
48 {
49 	fmode_t fmode = READ_ONCE(file->f_mode);
50 
51 	do {
52 		if (!(fmode & FMODE_NOWAIT))
53 			break;
54 	} while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
55 }
56 
57 /*
58  * Attempt to steal a page from a pipe buffer. This should perhaps go into
59  * a vm helper function, it's already simplified quite a bit by the
60  * addition of remove_mapping(). If success is returned, the caller may
61  * attempt to reuse this page for another destination.
62  */
63 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
64 		struct pipe_buffer *buf)
65 {
66 	struct folio *folio = page_folio(buf->page);
67 	struct address_space *mapping;
68 
69 	folio_lock(folio);
70 
71 	mapping = folio_mapping(folio);
72 	if (mapping) {
73 		WARN_ON(!folio_test_uptodate(folio));
74 
75 		/*
76 		 * At least for ext2 with nobh option, we need to wait on
77 		 * writeback completing on this folio, since we'll remove it
78 		 * from the pagecache.  Otherwise truncate wont wait on the
79 		 * folio, allowing the disk blocks to be reused by someone else
80 		 * before we actually wrote our data to them. fs corruption
81 		 * ensues.
82 		 */
83 		folio_wait_writeback(folio);
84 
85 		if (folio_has_private(folio) &&
86 		    !filemap_release_folio(folio, GFP_KERNEL))
87 			goto out_unlock;
88 
89 		/*
90 		 * If we succeeded in removing the mapping, set LRU flag
91 		 * and return good.
92 		 */
93 		if (remove_mapping(mapping, folio)) {
94 			buf->flags |= PIPE_BUF_FLAG_LRU;
95 			return true;
96 		}
97 	}
98 
99 	/*
100 	 * Raced with truncate or failed to remove folio from current
101 	 * address space, unlock and return failure.
102 	 */
103 out_unlock:
104 	folio_unlock(folio);
105 	return false;
106 }
107 
108 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
109 					struct pipe_buffer *buf)
110 {
111 	put_page(buf->page);
112 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
113 }
114 
115 /*
116  * Check whether the contents of buf is OK to access. Since the content
117  * is a page cache page, IO may be in flight.
118  */
119 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
120 				       struct pipe_buffer *buf)
121 {
122 	struct page *page = buf->page;
123 	int err;
124 
125 	if (!PageUptodate(page)) {
126 		lock_page(page);
127 
128 		/*
129 		 * Page got truncated/unhashed. This will cause a 0-byte
130 		 * splice, if this is the first page.
131 		 */
132 		if (!page->mapping) {
133 			err = -ENODATA;
134 			goto error;
135 		}
136 
137 		/*
138 		 * Uh oh, read-error from disk.
139 		 */
140 		if (!PageUptodate(page)) {
141 			err = -EIO;
142 			goto error;
143 		}
144 
145 		/*
146 		 * Page is ok afterall, we are done.
147 		 */
148 		unlock_page(page);
149 	}
150 
151 	return 0;
152 error:
153 	unlock_page(page);
154 	return err;
155 }
156 
157 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
158 	.confirm	= page_cache_pipe_buf_confirm,
159 	.release	= page_cache_pipe_buf_release,
160 	.try_steal	= page_cache_pipe_buf_try_steal,
161 	.get		= generic_pipe_buf_get,
162 };
163 
164 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
165 		struct pipe_buffer *buf)
166 {
167 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
168 		return false;
169 
170 	buf->flags |= PIPE_BUF_FLAG_LRU;
171 	return generic_pipe_buf_try_steal(pipe, buf);
172 }
173 
174 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
175 	.release	= page_cache_pipe_buf_release,
176 	.try_steal	= user_page_pipe_buf_try_steal,
177 	.get		= generic_pipe_buf_get,
178 };
179 
180 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
181 {
182 	smp_mb();
183 	if (waitqueue_active(&pipe->rd_wait))
184 		wake_up_interruptible(&pipe->rd_wait);
185 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
186 }
187 
188 /**
189  * splice_to_pipe - fill passed data into a pipe
190  * @pipe:	pipe to fill
191  * @spd:	data to fill
192  *
193  * Description:
194  *    @spd contains a map of pages and len/offset tuples, along with
195  *    the struct pipe_buf_operations associated with these pages. This
196  *    function will link that data to the pipe.
197  *
198  */
199 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
200 		       struct splice_pipe_desc *spd)
201 {
202 	unsigned int spd_pages = spd->nr_pages;
203 	unsigned int tail = pipe->tail;
204 	unsigned int head = pipe->head;
205 	unsigned int mask = pipe->ring_size - 1;
206 	int ret = 0, page_nr = 0;
207 
208 	if (!spd_pages)
209 		return 0;
210 
211 	if (unlikely(!pipe->readers)) {
212 		send_sig(SIGPIPE, current, 0);
213 		ret = -EPIPE;
214 		goto out;
215 	}
216 
217 	while (!pipe_full(head, tail, pipe->max_usage)) {
218 		struct pipe_buffer *buf = &pipe->bufs[head & mask];
219 
220 		buf->page = spd->pages[page_nr];
221 		buf->offset = spd->partial[page_nr].offset;
222 		buf->len = spd->partial[page_nr].len;
223 		buf->private = spd->partial[page_nr].private;
224 		buf->ops = spd->ops;
225 		buf->flags = 0;
226 
227 		head++;
228 		pipe->head = head;
229 		page_nr++;
230 		ret += buf->len;
231 
232 		if (!--spd->nr_pages)
233 			break;
234 	}
235 
236 	if (!ret)
237 		ret = -EAGAIN;
238 
239 out:
240 	while (page_nr < spd_pages)
241 		spd->spd_release(spd, page_nr++);
242 
243 	return ret;
244 }
245 EXPORT_SYMBOL_GPL(splice_to_pipe);
246 
247 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
248 {
249 	unsigned int head = pipe->head;
250 	unsigned int tail = pipe->tail;
251 	unsigned int mask = pipe->ring_size - 1;
252 	int ret;
253 
254 	if (unlikely(!pipe->readers)) {
255 		send_sig(SIGPIPE, current, 0);
256 		ret = -EPIPE;
257 	} else if (pipe_full(head, tail, pipe->max_usage)) {
258 		ret = -EAGAIN;
259 	} else {
260 		pipe->bufs[head & mask] = *buf;
261 		pipe->head = head + 1;
262 		return buf->len;
263 	}
264 	pipe_buf_release(pipe, buf);
265 	return ret;
266 }
267 EXPORT_SYMBOL(add_to_pipe);
268 
269 /*
270  * Check if we need to grow the arrays holding pages and partial page
271  * descriptions.
272  */
273 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
274 {
275 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
276 
277 	spd->nr_pages_max = max_usage;
278 	if (max_usage <= PIPE_DEF_BUFFERS)
279 		return 0;
280 
281 	spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
282 	spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
283 				     GFP_KERNEL);
284 
285 	if (spd->pages && spd->partial)
286 		return 0;
287 
288 	kfree(spd->pages);
289 	kfree(spd->partial);
290 	return -ENOMEM;
291 }
292 
293 void splice_shrink_spd(struct splice_pipe_desc *spd)
294 {
295 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
296 		return;
297 
298 	kfree(spd->pages);
299 	kfree(spd->partial);
300 }
301 
302 /**
303  * copy_splice_read -  Copy data from a file and splice the copy into a pipe
304  * @in: The file to read from
305  * @ppos: Pointer to the file position to read from
306  * @pipe: The pipe to splice into
307  * @len: The amount to splice
308  * @flags: The SPLICE_F_* flags
309  *
310  * This function allocates a bunch of pages sufficient to hold the requested
311  * amount of data (but limited by the remaining pipe capacity), passes it to
312  * the file's ->read_iter() to read into and then splices the used pages into
313  * the pipe.
314  *
315  * Return: On success, the number of bytes read will be returned and *@ppos
316  * will be updated if appropriate; 0 will be returned if there is no more data
317  * to be read; -EAGAIN will be returned if the pipe had no space, and some
318  * other negative error code will be returned on error.  A short read may occur
319  * if the pipe has insufficient space, we reach the end of the data or we hit a
320  * hole.
321  */
322 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
323 			 struct pipe_inode_info *pipe,
324 			 size_t len, unsigned int flags)
325 {
326 	struct iov_iter to;
327 	struct bio_vec *bv;
328 	struct kiocb kiocb;
329 	struct page **pages;
330 	ssize_t ret;
331 	size_t used, npages, chunk, remain, keep = 0;
332 	int i;
333 
334 	/* Work out how much data we can actually add into the pipe */
335 	used = pipe_occupancy(pipe->head, pipe->tail);
336 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
337 	len = min_t(size_t, len, npages * PAGE_SIZE);
338 	npages = DIV_ROUND_UP(len, PAGE_SIZE);
339 
340 	bv = kzalloc(array_size(npages, sizeof(bv[0])) +
341 		     array_size(npages, sizeof(struct page *)), GFP_KERNEL);
342 	if (!bv)
343 		return -ENOMEM;
344 
345 	pages = (struct page **)(bv + npages);
346 	npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
347 	if (!npages) {
348 		kfree(bv);
349 		return -ENOMEM;
350 	}
351 
352 	remain = len = min_t(size_t, len, npages * PAGE_SIZE);
353 
354 	for (i = 0; i < npages; i++) {
355 		chunk = min_t(size_t, PAGE_SIZE, remain);
356 		bv[i].bv_page = pages[i];
357 		bv[i].bv_offset = 0;
358 		bv[i].bv_len = chunk;
359 		remain -= chunk;
360 	}
361 
362 	/* Do the I/O */
363 	iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
364 	init_sync_kiocb(&kiocb, in);
365 	kiocb.ki_pos = *ppos;
366 	ret = call_read_iter(in, &kiocb, &to);
367 
368 	if (ret > 0) {
369 		keep = DIV_ROUND_UP(ret, PAGE_SIZE);
370 		*ppos = kiocb.ki_pos;
371 	}
372 
373 	/*
374 	 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in
375 	 * there", rather than -EFAULT.
376 	 */
377 	if (ret == -EFAULT)
378 		ret = -EAGAIN;
379 
380 	/* Free any pages that didn't get touched at all. */
381 	if (keep < npages)
382 		release_pages(pages + keep, npages - keep);
383 
384 	/* Push the remaining pages into the pipe. */
385 	remain = ret;
386 	for (i = 0; i < keep; i++) {
387 		struct pipe_buffer *buf = pipe_head_buf(pipe);
388 
389 		chunk = min_t(size_t, remain, PAGE_SIZE);
390 		*buf = (struct pipe_buffer) {
391 			.ops	= &default_pipe_buf_ops,
392 			.page	= bv[i].bv_page,
393 			.offset	= 0,
394 			.len	= chunk,
395 		};
396 		pipe->head++;
397 		remain -= chunk;
398 	}
399 
400 	kfree(bv);
401 	return ret;
402 }
403 EXPORT_SYMBOL(copy_splice_read);
404 
405 const struct pipe_buf_operations default_pipe_buf_ops = {
406 	.release	= generic_pipe_buf_release,
407 	.try_steal	= generic_pipe_buf_try_steal,
408 	.get		= generic_pipe_buf_get,
409 };
410 
411 /* Pipe buffer operations for a socket and similar. */
412 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
413 	.release	= generic_pipe_buf_release,
414 	.get		= generic_pipe_buf_get,
415 };
416 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
417 
418 /*
419  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
420  * using sendpage(). Return the number of bytes sent.
421  */
422 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
423 			    struct pipe_buffer *buf, struct splice_desc *sd)
424 {
425 	struct file *file = sd->u.file;
426 	loff_t pos = sd->pos;
427 	int more;
428 
429 	if (!likely(file->f_op->sendpage))
430 		return -EINVAL;
431 
432 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
433 
434 	if (sd->len < sd->total_len &&
435 	    pipe_occupancy(pipe->head, pipe->tail) > 1)
436 		more |= MSG_SENDPAGE_NOTLAST;
437 
438 	return file->f_op->sendpage(file, buf->page, buf->offset,
439 				    sd->len, &pos, more);
440 }
441 
442 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
443 {
444 	smp_mb();
445 	if (waitqueue_active(&pipe->wr_wait))
446 		wake_up_interruptible(&pipe->wr_wait);
447 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
448 }
449 
450 /**
451  * splice_from_pipe_feed - feed available data from a pipe to a file
452  * @pipe:	pipe to splice from
453  * @sd:		information to @actor
454  * @actor:	handler that splices the data
455  *
456  * Description:
457  *    This function loops over the pipe and calls @actor to do the
458  *    actual moving of a single struct pipe_buffer to the desired
459  *    destination.  It returns when there's no more buffers left in
460  *    the pipe or if the requested number of bytes (@sd->total_len)
461  *    have been copied.  It returns a positive number (one) if the
462  *    pipe needs to be filled with more data, zero if the required
463  *    number of bytes have been copied and -errno on error.
464  *
465  *    This, together with splice_from_pipe_{begin,end,next}, may be
466  *    used to implement the functionality of __splice_from_pipe() when
467  *    locking is required around copying the pipe buffers to the
468  *    destination.
469  */
470 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
471 			  splice_actor *actor)
472 {
473 	unsigned int head = pipe->head;
474 	unsigned int tail = pipe->tail;
475 	unsigned int mask = pipe->ring_size - 1;
476 	int ret;
477 
478 	while (!pipe_empty(head, tail)) {
479 		struct pipe_buffer *buf = &pipe->bufs[tail & mask];
480 
481 		sd->len = buf->len;
482 		if (sd->len > sd->total_len)
483 			sd->len = sd->total_len;
484 
485 		ret = pipe_buf_confirm(pipe, buf);
486 		if (unlikely(ret)) {
487 			if (ret == -ENODATA)
488 				ret = 0;
489 			return ret;
490 		}
491 
492 		ret = actor(pipe, buf, sd);
493 		if (ret <= 0)
494 			return ret;
495 
496 		buf->offset += ret;
497 		buf->len -= ret;
498 
499 		sd->num_spliced += ret;
500 		sd->len -= ret;
501 		sd->pos += ret;
502 		sd->total_len -= ret;
503 
504 		if (!buf->len) {
505 			pipe_buf_release(pipe, buf);
506 			tail++;
507 			pipe->tail = tail;
508 			if (pipe->files)
509 				sd->need_wakeup = true;
510 		}
511 
512 		if (!sd->total_len)
513 			return 0;
514 	}
515 
516 	return 1;
517 }
518 
519 /* We know we have a pipe buffer, but maybe it's empty? */
520 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
521 {
522 	unsigned int tail = pipe->tail;
523 	unsigned int mask = pipe->ring_size - 1;
524 	struct pipe_buffer *buf = &pipe->bufs[tail & mask];
525 
526 	if (unlikely(!buf->len)) {
527 		pipe_buf_release(pipe, buf);
528 		pipe->tail = tail+1;
529 		return true;
530 	}
531 
532 	return false;
533 }
534 
535 /**
536  * splice_from_pipe_next - wait for some data to splice from
537  * @pipe:	pipe to splice from
538  * @sd:		information about the splice operation
539  *
540  * Description:
541  *    This function will wait for some data and return a positive
542  *    value (one) if pipe buffers are available.  It will return zero
543  *    or -errno if no more data needs to be spliced.
544  */
545 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
546 {
547 	/*
548 	 * Check for signal early to make process killable when there are
549 	 * always buffers available
550 	 */
551 	if (signal_pending(current))
552 		return -ERESTARTSYS;
553 
554 repeat:
555 	while (pipe_empty(pipe->head, pipe->tail)) {
556 		if (!pipe->writers)
557 			return 0;
558 
559 		if (sd->num_spliced)
560 			return 0;
561 
562 		if (sd->flags & SPLICE_F_NONBLOCK)
563 			return -EAGAIN;
564 
565 		if (signal_pending(current))
566 			return -ERESTARTSYS;
567 
568 		if (sd->need_wakeup) {
569 			wakeup_pipe_writers(pipe);
570 			sd->need_wakeup = false;
571 		}
572 
573 		pipe_wait_readable(pipe);
574 	}
575 
576 	if (eat_empty_buffer(pipe))
577 		goto repeat;
578 
579 	return 1;
580 }
581 
582 /**
583  * splice_from_pipe_begin - start splicing from pipe
584  * @sd:		information about the splice operation
585  *
586  * Description:
587  *    This function should be called before a loop containing
588  *    splice_from_pipe_next() and splice_from_pipe_feed() to
589  *    initialize the necessary fields of @sd.
590  */
591 static void splice_from_pipe_begin(struct splice_desc *sd)
592 {
593 	sd->num_spliced = 0;
594 	sd->need_wakeup = false;
595 }
596 
597 /**
598  * splice_from_pipe_end - finish splicing from pipe
599  * @pipe:	pipe to splice from
600  * @sd:		information about the splice operation
601  *
602  * Description:
603  *    This function will wake up pipe writers if necessary.  It should
604  *    be called after a loop containing splice_from_pipe_next() and
605  *    splice_from_pipe_feed().
606  */
607 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
608 {
609 	if (sd->need_wakeup)
610 		wakeup_pipe_writers(pipe);
611 }
612 
613 /**
614  * __splice_from_pipe - splice data from a pipe to given actor
615  * @pipe:	pipe to splice from
616  * @sd:		information to @actor
617  * @actor:	handler that splices the data
618  *
619  * Description:
620  *    This function does little more than loop over the pipe and call
621  *    @actor to do the actual moving of a single struct pipe_buffer to
622  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
623  *    pipe_to_user.
624  *
625  */
626 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
627 			   splice_actor *actor)
628 {
629 	int ret;
630 
631 	splice_from_pipe_begin(sd);
632 	do {
633 		cond_resched();
634 		ret = splice_from_pipe_next(pipe, sd);
635 		if (ret > 0)
636 			ret = splice_from_pipe_feed(pipe, sd, actor);
637 	} while (ret > 0);
638 	splice_from_pipe_end(pipe, sd);
639 
640 	return sd->num_spliced ? sd->num_spliced : ret;
641 }
642 EXPORT_SYMBOL(__splice_from_pipe);
643 
644 /**
645  * splice_from_pipe - splice data from a pipe to a file
646  * @pipe:	pipe to splice from
647  * @out:	file to splice to
648  * @ppos:	position in @out
649  * @len:	how many bytes to splice
650  * @flags:	splice modifier flags
651  * @actor:	handler that splices the data
652  *
653  * Description:
654  *    See __splice_from_pipe. This function locks the pipe inode,
655  *    otherwise it's identical to __splice_from_pipe().
656  *
657  */
658 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
659 			 loff_t *ppos, size_t len, unsigned int flags,
660 			 splice_actor *actor)
661 {
662 	ssize_t ret;
663 	struct splice_desc sd = {
664 		.total_len = len,
665 		.flags = flags,
666 		.pos = *ppos,
667 		.u.file = out,
668 	};
669 
670 	pipe_lock(pipe);
671 	ret = __splice_from_pipe(pipe, &sd, actor);
672 	pipe_unlock(pipe);
673 
674 	return ret;
675 }
676 
677 /**
678  * iter_file_splice_write - splice data from a pipe to a file
679  * @pipe:	pipe info
680  * @out:	file to write to
681  * @ppos:	position in @out
682  * @len:	number of bytes to splice
683  * @flags:	splice modifier flags
684  *
685  * Description:
686  *    Will either move or copy pages (determined by @flags options) from
687  *    the given pipe inode to the given file.
688  *    This one is ->write_iter-based.
689  *
690  */
691 ssize_t
692 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
693 			  loff_t *ppos, size_t len, unsigned int flags)
694 {
695 	struct splice_desc sd = {
696 		.total_len = len,
697 		.flags = flags,
698 		.pos = *ppos,
699 		.u.file = out,
700 	};
701 	int nbufs = pipe->max_usage;
702 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
703 					GFP_KERNEL);
704 	ssize_t ret;
705 
706 	if (unlikely(!array))
707 		return -ENOMEM;
708 
709 	pipe_lock(pipe);
710 
711 	splice_from_pipe_begin(&sd);
712 	while (sd.total_len) {
713 		struct iov_iter from;
714 		unsigned int head, tail, mask;
715 		size_t left;
716 		int n;
717 
718 		ret = splice_from_pipe_next(pipe, &sd);
719 		if (ret <= 0)
720 			break;
721 
722 		if (unlikely(nbufs < pipe->max_usage)) {
723 			kfree(array);
724 			nbufs = pipe->max_usage;
725 			array = kcalloc(nbufs, sizeof(struct bio_vec),
726 					GFP_KERNEL);
727 			if (!array) {
728 				ret = -ENOMEM;
729 				break;
730 			}
731 		}
732 
733 		head = pipe->head;
734 		tail = pipe->tail;
735 		mask = pipe->ring_size - 1;
736 
737 		/* build the vector */
738 		left = sd.total_len;
739 		for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
740 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
741 			size_t this_len = buf->len;
742 
743 			/* zero-length bvecs are not supported, skip them */
744 			if (!this_len)
745 				continue;
746 			this_len = min(this_len, left);
747 
748 			ret = pipe_buf_confirm(pipe, buf);
749 			if (unlikely(ret)) {
750 				if (ret == -ENODATA)
751 					ret = 0;
752 				goto done;
753 			}
754 
755 			bvec_set_page(&array[n], buf->page, this_len,
756 				      buf->offset);
757 			left -= this_len;
758 			n++;
759 		}
760 
761 		iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
762 		ret = vfs_iter_write(out, &from, &sd.pos, 0);
763 		if (ret <= 0)
764 			break;
765 
766 		sd.num_spliced += ret;
767 		sd.total_len -= ret;
768 		*ppos = sd.pos;
769 
770 		/* dismiss the fully eaten buffers, adjust the partial one */
771 		tail = pipe->tail;
772 		while (ret) {
773 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
774 			if (ret >= buf->len) {
775 				ret -= buf->len;
776 				buf->len = 0;
777 				pipe_buf_release(pipe, buf);
778 				tail++;
779 				pipe->tail = tail;
780 				if (pipe->files)
781 					sd.need_wakeup = true;
782 			} else {
783 				buf->offset += ret;
784 				buf->len -= ret;
785 				ret = 0;
786 			}
787 		}
788 	}
789 done:
790 	kfree(array);
791 	splice_from_pipe_end(pipe, &sd);
792 
793 	pipe_unlock(pipe);
794 
795 	if (sd.num_spliced)
796 		ret = sd.num_spliced;
797 
798 	return ret;
799 }
800 
801 EXPORT_SYMBOL(iter_file_splice_write);
802 
803 /**
804  * generic_splice_sendpage - splice data from a pipe to a socket
805  * @pipe:	pipe to splice from
806  * @out:	socket to write to
807  * @ppos:	position in @out
808  * @len:	number of bytes to splice
809  * @flags:	splice modifier flags
810  *
811  * Description:
812  *    Will send @len bytes from the pipe to a network socket. No data copying
813  *    is involved.
814  *
815  */
816 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
817 				loff_t *ppos, size_t len, unsigned int flags)
818 {
819 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
820 }
821 
822 EXPORT_SYMBOL(generic_splice_sendpage);
823 
824 static int warn_unsupported(struct file *file, const char *op)
825 {
826 	pr_debug_ratelimited(
827 		"splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
828 		op, file, current->pid, current->comm);
829 	return -EINVAL;
830 }
831 
832 /*
833  * Attempt to initiate a splice from pipe to file.
834  */
835 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
836 			   loff_t *ppos, size_t len, unsigned int flags)
837 {
838 	if (unlikely(!out->f_op->splice_write))
839 		return warn_unsupported(out, "write");
840 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
841 }
842 
843 /**
844  * vfs_splice_read - Read data from a file and splice it into a pipe
845  * @in:		File to splice from
846  * @ppos:	Input file offset
847  * @pipe:	Pipe to splice to
848  * @len:	Number of bytes to splice
849  * @flags:	Splice modifier flags (SPLICE_F_*)
850  *
851  * Splice the requested amount of data from the input file to the pipe.  This
852  * is synchronous as the caller must hold the pipe lock across the entire
853  * operation.
854  *
855  * If successful, it returns the amount of data spliced, 0 if it hit the EOF or
856  * a hole and a negative error code otherwise.
857  */
858 long vfs_splice_read(struct file *in, loff_t *ppos,
859 		     struct pipe_inode_info *pipe, size_t len,
860 		     unsigned int flags)
861 {
862 	unsigned int p_space;
863 	int ret;
864 
865 	if (unlikely(!(in->f_mode & FMODE_READ)))
866 		return -EBADF;
867 	if (!len)
868 		return 0;
869 
870 	/* Don't try to read more the pipe has space for. */
871 	p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
872 	len = min_t(size_t, len, p_space << PAGE_SHIFT);
873 
874 	ret = rw_verify_area(READ, in, ppos, len);
875 	if (unlikely(ret < 0))
876 		return ret;
877 
878 	if (unlikely(len > MAX_RW_COUNT))
879 		len = MAX_RW_COUNT;
880 
881 	if (unlikely(!in->f_op->splice_read))
882 		return warn_unsupported(in, "read");
883 	/*
884 	 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a
885 	 * buffer, copy into it and splice that into the pipe.
886 	 */
887 	if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
888 		return copy_splice_read(in, ppos, pipe, len, flags);
889 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
890 }
891 EXPORT_SYMBOL_GPL(vfs_splice_read);
892 
893 /**
894  * splice_direct_to_actor - splices data directly between two non-pipes
895  * @in:		file to splice from
896  * @sd:		actor information on where to splice to
897  * @actor:	handles the data splicing
898  *
899  * Description:
900  *    This is a special case helper to splice directly between two
901  *    points, without requiring an explicit pipe. Internally an allocated
902  *    pipe is cached in the process, and reused during the lifetime of
903  *    that process.
904  *
905  */
906 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
907 			       splice_direct_actor *actor)
908 {
909 	struct pipe_inode_info *pipe;
910 	long ret, bytes;
911 	size_t len;
912 	int i, flags, more;
913 
914 	/*
915 	 * We require the input to be seekable, as we don't want to randomly
916 	 * drop data for eg socket -> socket splicing. Use the piped splicing
917 	 * for that!
918 	 */
919 	if (unlikely(!(in->f_mode & FMODE_LSEEK)))
920 		return -EINVAL;
921 
922 	/*
923 	 * neither in nor out is a pipe, setup an internal pipe attached to
924 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
925 	 */
926 	pipe = current->splice_pipe;
927 	if (unlikely(!pipe)) {
928 		pipe = alloc_pipe_info();
929 		if (!pipe)
930 			return -ENOMEM;
931 
932 		/*
933 		 * We don't have an immediate reader, but we'll read the stuff
934 		 * out of the pipe right after the splice_to_pipe(). So set
935 		 * PIPE_READERS appropriately.
936 		 */
937 		pipe->readers = 1;
938 
939 		current->splice_pipe = pipe;
940 	}
941 
942 	/*
943 	 * Do the splice.
944 	 */
945 	bytes = 0;
946 	len = sd->total_len;
947 	flags = sd->flags;
948 
949 	/*
950 	 * Don't block on output, we have to drain the direct pipe.
951 	 */
952 	sd->flags &= ~SPLICE_F_NONBLOCK;
953 	more = sd->flags & SPLICE_F_MORE;
954 
955 	WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
956 
957 	while (len) {
958 		size_t read_len;
959 		loff_t pos = sd->pos, prev_pos = pos;
960 
961 		ret = vfs_splice_read(in, &pos, pipe, len, flags);
962 		if (unlikely(ret <= 0))
963 			goto out_release;
964 
965 		read_len = ret;
966 		sd->total_len = read_len;
967 
968 		/*
969 		 * If more data is pending, set SPLICE_F_MORE
970 		 * If this is the last data and SPLICE_F_MORE was not set
971 		 * initially, clears it.
972 		 */
973 		if (read_len < len)
974 			sd->flags |= SPLICE_F_MORE;
975 		else if (!more)
976 			sd->flags &= ~SPLICE_F_MORE;
977 		/*
978 		 * NOTE: nonblocking mode only applies to the input. We
979 		 * must not do the output in nonblocking mode as then we
980 		 * could get stuck data in the internal pipe:
981 		 */
982 		ret = actor(pipe, sd);
983 		if (unlikely(ret <= 0)) {
984 			sd->pos = prev_pos;
985 			goto out_release;
986 		}
987 
988 		bytes += ret;
989 		len -= ret;
990 		sd->pos = pos;
991 
992 		if (ret < read_len) {
993 			sd->pos = prev_pos + ret;
994 			goto out_release;
995 		}
996 	}
997 
998 done:
999 	pipe->tail = pipe->head = 0;
1000 	file_accessed(in);
1001 	return bytes;
1002 
1003 out_release:
1004 	/*
1005 	 * If we did an incomplete transfer we must release
1006 	 * the pipe buffers in question:
1007 	 */
1008 	for (i = 0; i < pipe->ring_size; i++) {
1009 		struct pipe_buffer *buf = &pipe->bufs[i];
1010 
1011 		if (buf->ops)
1012 			pipe_buf_release(pipe, buf);
1013 	}
1014 
1015 	if (!bytes)
1016 		bytes = ret;
1017 
1018 	goto done;
1019 }
1020 EXPORT_SYMBOL(splice_direct_to_actor);
1021 
1022 static int direct_splice_actor(struct pipe_inode_info *pipe,
1023 			       struct splice_desc *sd)
1024 {
1025 	struct file *file = sd->u.file;
1026 
1027 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1028 			      sd->flags);
1029 }
1030 
1031 /**
1032  * do_splice_direct - splices data directly between two files
1033  * @in:		file to splice from
1034  * @ppos:	input file offset
1035  * @out:	file to splice to
1036  * @opos:	output file offset
1037  * @len:	number of bytes to splice
1038  * @flags:	splice modifier flags
1039  *
1040  * Description:
1041  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1042  *    doing it in the application would incur an extra system call
1043  *    (splice in + splice out, as compared to just sendfile()). So this helper
1044  *    can splice directly through a process-private pipe.
1045  *
1046  */
1047 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1048 		      loff_t *opos, size_t len, unsigned int flags)
1049 {
1050 	struct splice_desc sd = {
1051 		.len		= len,
1052 		.total_len	= len,
1053 		.flags		= flags,
1054 		.pos		= *ppos,
1055 		.u.file		= out,
1056 		.opos		= opos,
1057 	};
1058 	long ret;
1059 
1060 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1061 		return -EBADF;
1062 
1063 	if (unlikely(out->f_flags & O_APPEND))
1064 		return -EINVAL;
1065 
1066 	ret = rw_verify_area(WRITE, out, opos, len);
1067 	if (unlikely(ret < 0))
1068 		return ret;
1069 
1070 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1071 	if (ret > 0)
1072 		*ppos = sd.pos;
1073 
1074 	return ret;
1075 }
1076 EXPORT_SYMBOL(do_splice_direct);
1077 
1078 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1079 {
1080 	for (;;) {
1081 		if (unlikely(!pipe->readers)) {
1082 			send_sig(SIGPIPE, current, 0);
1083 			return -EPIPE;
1084 		}
1085 		if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1086 			return 0;
1087 		if (flags & SPLICE_F_NONBLOCK)
1088 			return -EAGAIN;
1089 		if (signal_pending(current))
1090 			return -ERESTARTSYS;
1091 		pipe_wait_writable(pipe);
1092 	}
1093 }
1094 
1095 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1096 			       struct pipe_inode_info *opipe,
1097 			       size_t len, unsigned int flags);
1098 
1099 long splice_file_to_pipe(struct file *in,
1100 			 struct pipe_inode_info *opipe,
1101 			 loff_t *offset,
1102 			 size_t len, unsigned int flags)
1103 {
1104 	long ret;
1105 
1106 	pipe_lock(opipe);
1107 	ret = wait_for_space(opipe, flags);
1108 	if (!ret)
1109 		ret = vfs_splice_read(in, offset, opipe, len, flags);
1110 	pipe_unlock(opipe);
1111 	if (ret > 0)
1112 		wakeup_pipe_readers(opipe);
1113 	return ret;
1114 }
1115 
1116 /*
1117  * Determine where to splice to/from.
1118  */
1119 long do_splice(struct file *in, loff_t *off_in, struct file *out,
1120 	       loff_t *off_out, size_t len, unsigned int flags)
1121 {
1122 	struct pipe_inode_info *ipipe;
1123 	struct pipe_inode_info *opipe;
1124 	loff_t offset;
1125 	long ret;
1126 
1127 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1128 		     !(out->f_mode & FMODE_WRITE)))
1129 		return -EBADF;
1130 
1131 	ipipe = get_pipe_info(in, true);
1132 	opipe = get_pipe_info(out, true);
1133 
1134 	if (ipipe && opipe) {
1135 		if (off_in || off_out)
1136 			return -ESPIPE;
1137 
1138 		/* Splicing to self would be fun, but... */
1139 		if (ipipe == opipe)
1140 			return -EINVAL;
1141 
1142 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1143 			flags |= SPLICE_F_NONBLOCK;
1144 
1145 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1146 	}
1147 
1148 	if (ipipe) {
1149 		if (off_in)
1150 			return -ESPIPE;
1151 		if (off_out) {
1152 			if (!(out->f_mode & FMODE_PWRITE))
1153 				return -EINVAL;
1154 			offset = *off_out;
1155 		} else {
1156 			offset = out->f_pos;
1157 		}
1158 
1159 		if (unlikely(out->f_flags & O_APPEND))
1160 			return -EINVAL;
1161 
1162 		ret = rw_verify_area(WRITE, out, &offset, len);
1163 		if (unlikely(ret < 0))
1164 			return ret;
1165 
1166 		if (in->f_flags & O_NONBLOCK)
1167 			flags |= SPLICE_F_NONBLOCK;
1168 
1169 		file_start_write(out);
1170 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1171 		file_end_write(out);
1172 
1173 		if (ret > 0)
1174 			fsnotify_modify(out);
1175 
1176 		if (!off_out)
1177 			out->f_pos = offset;
1178 		else
1179 			*off_out = offset;
1180 
1181 		return ret;
1182 	}
1183 
1184 	if (opipe) {
1185 		if (off_out)
1186 			return -ESPIPE;
1187 		if (off_in) {
1188 			if (!(in->f_mode & FMODE_PREAD))
1189 				return -EINVAL;
1190 			offset = *off_in;
1191 		} else {
1192 			offset = in->f_pos;
1193 		}
1194 
1195 		if (out->f_flags & O_NONBLOCK)
1196 			flags |= SPLICE_F_NONBLOCK;
1197 
1198 		ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1199 
1200 		if (ret > 0)
1201 			fsnotify_access(in);
1202 
1203 		if (!off_in)
1204 			in->f_pos = offset;
1205 		else
1206 			*off_in = offset;
1207 
1208 		return ret;
1209 	}
1210 
1211 	return -EINVAL;
1212 }
1213 
1214 static long __do_splice(struct file *in, loff_t __user *off_in,
1215 			struct file *out, loff_t __user *off_out,
1216 			size_t len, unsigned int flags)
1217 {
1218 	struct pipe_inode_info *ipipe;
1219 	struct pipe_inode_info *opipe;
1220 	loff_t offset, *__off_in = NULL, *__off_out = NULL;
1221 	long ret;
1222 
1223 	ipipe = get_pipe_info(in, true);
1224 	opipe = get_pipe_info(out, true);
1225 
1226 	if (ipipe) {
1227 		if (off_in)
1228 			return -ESPIPE;
1229 		pipe_clear_nowait(in);
1230 	}
1231 	if (opipe) {
1232 		if (off_out)
1233 			return -ESPIPE;
1234 		pipe_clear_nowait(out);
1235 	}
1236 
1237 	if (off_out) {
1238 		if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1239 			return -EFAULT;
1240 		__off_out = &offset;
1241 	}
1242 	if (off_in) {
1243 		if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1244 			return -EFAULT;
1245 		__off_in = &offset;
1246 	}
1247 
1248 	ret = do_splice(in, __off_in, out, __off_out, len, flags);
1249 	if (ret < 0)
1250 		return ret;
1251 
1252 	if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1253 		return -EFAULT;
1254 	if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1255 		return -EFAULT;
1256 
1257 	return ret;
1258 }
1259 
1260 static int iter_to_pipe(struct iov_iter *from,
1261 			struct pipe_inode_info *pipe,
1262 			unsigned flags)
1263 {
1264 	struct pipe_buffer buf = {
1265 		.ops = &user_page_pipe_buf_ops,
1266 		.flags = flags
1267 	};
1268 	size_t total = 0;
1269 	int ret = 0;
1270 
1271 	while (iov_iter_count(from)) {
1272 		struct page *pages[16];
1273 		ssize_t left;
1274 		size_t start;
1275 		int i, n;
1276 
1277 		left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1278 		if (left <= 0) {
1279 			ret = left;
1280 			break;
1281 		}
1282 
1283 		n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1284 		for (i = 0; i < n; i++) {
1285 			int size = min_t(int, left, PAGE_SIZE - start);
1286 
1287 			buf.page = pages[i];
1288 			buf.offset = start;
1289 			buf.len = size;
1290 			ret = add_to_pipe(pipe, &buf);
1291 			if (unlikely(ret < 0)) {
1292 				iov_iter_revert(from, left);
1293 				// this one got dropped by add_to_pipe()
1294 				while (++i < n)
1295 					put_page(pages[i]);
1296 				goto out;
1297 			}
1298 			total += ret;
1299 			left -= size;
1300 			start = 0;
1301 		}
1302 	}
1303 out:
1304 	return total ? total : ret;
1305 }
1306 
1307 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1308 			struct splice_desc *sd)
1309 {
1310 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1311 	return n == sd->len ? n : -EFAULT;
1312 }
1313 
1314 /*
1315  * For lack of a better implementation, implement vmsplice() to userspace
1316  * as a simple copy of the pipes pages to the user iov.
1317  */
1318 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1319 			     unsigned int flags)
1320 {
1321 	struct pipe_inode_info *pipe = get_pipe_info(file, true);
1322 	struct splice_desc sd = {
1323 		.total_len = iov_iter_count(iter),
1324 		.flags = flags,
1325 		.u.data = iter
1326 	};
1327 	long ret = 0;
1328 
1329 	if (!pipe)
1330 		return -EBADF;
1331 
1332 	pipe_clear_nowait(file);
1333 
1334 	if (sd.total_len) {
1335 		pipe_lock(pipe);
1336 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1337 		pipe_unlock(pipe);
1338 	}
1339 
1340 	return ret;
1341 }
1342 
1343 /*
1344  * vmsplice splices a user address range into a pipe. It can be thought of
1345  * as splice-from-memory, where the regular splice is splice-from-file (or
1346  * to file). In both cases the output is a pipe, naturally.
1347  */
1348 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1349 			     unsigned int flags)
1350 {
1351 	struct pipe_inode_info *pipe;
1352 	long ret = 0;
1353 	unsigned buf_flag = 0;
1354 
1355 	if (flags & SPLICE_F_GIFT)
1356 		buf_flag = PIPE_BUF_FLAG_GIFT;
1357 
1358 	pipe = get_pipe_info(file, true);
1359 	if (!pipe)
1360 		return -EBADF;
1361 
1362 	pipe_clear_nowait(file);
1363 
1364 	pipe_lock(pipe);
1365 	ret = wait_for_space(pipe, flags);
1366 	if (!ret)
1367 		ret = iter_to_pipe(iter, pipe, buf_flag);
1368 	pipe_unlock(pipe);
1369 	if (ret > 0)
1370 		wakeup_pipe_readers(pipe);
1371 	return ret;
1372 }
1373 
1374 static int vmsplice_type(struct fd f, int *type)
1375 {
1376 	if (!f.file)
1377 		return -EBADF;
1378 	if (f.file->f_mode & FMODE_WRITE) {
1379 		*type = ITER_SOURCE;
1380 	} else if (f.file->f_mode & FMODE_READ) {
1381 		*type = ITER_DEST;
1382 	} else {
1383 		fdput(f);
1384 		return -EBADF;
1385 	}
1386 	return 0;
1387 }
1388 
1389 /*
1390  * Note that vmsplice only really supports true splicing _from_ user memory
1391  * to a pipe, not the other way around. Splicing from user memory is a simple
1392  * operation that can be supported without any funky alignment restrictions
1393  * or nasty vm tricks. We simply map in the user memory and fill them into
1394  * a pipe. The reverse isn't quite as easy, though. There are two possible
1395  * solutions for that:
1396  *
1397  *	- memcpy() the data internally, at which point we might as well just
1398  *	  do a regular read() on the buffer anyway.
1399  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1400  *	  has restriction limitations on both ends of the pipe).
1401  *
1402  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1403  *
1404  */
1405 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1406 		unsigned long, nr_segs, unsigned int, flags)
1407 {
1408 	struct iovec iovstack[UIO_FASTIOV];
1409 	struct iovec *iov = iovstack;
1410 	struct iov_iter iter;
1411 	ssize_t error;
1412 	struct fd f;
1413 	int type;
1414 
1415 	if (unlikely(flags & ~SPLICE_F_ALL))
1416 		return -EINVAL;
1417 
1418 	f = fdget(fd);
1419 	error = vmsplice_type(f, &type);
1420 	if (error)
1421 		return error;
1422 
1423 	error = import_iovec(type, uiov, nr_segs,
1424 			     ARRAY_SIZE(iovstack), &iov, &iter);
1425 	if (error < 0)
1426 		goto out_fdput;
1427 
1428 	if (!iov_iter_count(&iter))
1429 		error = 0;
1430 	else if (type == ITER_SOURCE)
1431 		error = vmsplice_to_pipe(f.file, &iter, flags);
1432 	else
1433 		error = vmsplice_to_user(f.file, &iter, flags);
1434 
1435 	kfree(iov);
1436 out_fdput:
1437 	fdput(f);
1438 	return error;
1439 }
1440 
1441 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1442 		int, fd_out, loff_t __user *, off_out,
1443 		size_t, len, unsigned int, flags)
1444 {
1445 	struct fd in, out;
1446 	long error;
1447 
1448 	if (unlikely(!len))
1449 		return 0;
1450 
1451 	if (unlikely(flags & ~SPLICE_F_ALL))
1452 		return -EINVAL;
1453 
1454 	error = -EBADF;
1455 	in = fdget(fd_in);
1456 	if (in.file) {
1457 		out = fdget(fd_out);
1458 		if (out.file) {
1459 			error = __do_splice(in.file, off_in, out.file, off_out,
1460 						len, flags);
1461 			fdput(out);
1462 		}
1463 		fdput(in);
1464 	}
1465 	return error;
1466 }
1467 
1468 /*
1469  * Make sure there's data to read. Wait for input if we can, otherwise
1470  * return an appropriate error.
1471  */
1472 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1473 {
1474 	int ret;
1475 
1476 	/*
1477 	 * Check the pipe occupancy without the inode lock first. This function
1478 	 * is speculative anyways, so missing one is ok.
1479 	 */
1480 	if (!pipe_empty(pipe->head, pipe->tail))
1481 		return 0;
1482 
1483 	ret = 0;
1484 	pipe_lock(pipe);
1485 
1486 	while (pipe_empty(pipe->head, pipe->tail)) {
1487 		if (signal_pending(current)) {
1488 			ret = -ERESTARTSYS;
1489 			break;
1490 		}
1491 		if (!pipe->writers)
1492 			break;
1493 		if (flags & SPLICE_F_NONBLOCK) {
1494 			ret = -EAGAIN;
1495 			break;
1496 		}
1497 		pipe_wait_readable(pipe);
1498 	}
1499 
1500 	pipe_unlock(pipe);
1501 	return ret;
1502 }
1503 
1504 /*
1505  * Make sure there's writeable room. Wait for room if we can, otherwise
1506  * return an appropriate error.
1507  */
1508 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1509 {
1510 	int ret;
1511 
1512 	/*
1513 	 * Check pipe occupancy without the inode lock first. This function
1514 	 * is speculative anyways, so missing one is ok.
1515 	 */
1516 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1517 		return 0;
1518 
1519 	ret = 0;
1520 	pipe_lock(pipe);
1521 
1522 	while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1523 		if (!pipe->readers) {
1524 			send_sig(SIGPIPE, current, 0);
1525 			ret = -EPIPE;
1526 			break;
1527 		}
1528 		if (flags & SPLICE_F_NONBLOCK) {
1529 			ret = -EAGAIN;
1530 			break;
1531 		}
1532 		if (signal_pending(current)) {
1533 			ret = -ERESTARTSYS;
1534 			break;
1535 		}
1536 		pipe_wait_writable(pipe);
1537 	}
1538 
1539 	pipe_unlock(pipe);
1540 	return ret;
1541 }
1542 
1543 /*
1544  * Splice contents of ipipe to opipe.
1545  */
1546 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1547 			       struct pipe_inode_info *opipe,
1548 			       size_t len, unsigned int flags)
1549 {
1550 	struct pipe_buffer *ibuf, *obuf;
1551 	unsigned int i_head, o_head;
1552 	unsigned int i_tail, o_tail;
1553 	unsigned int i_mask, o_mask;
1554 	int ret = 0;
1555 	bool input_wakeup = false;
1556 
1557 
1558 retry:
1559 	ret = ipipe_prep(ipipe, flags);
1560 	if (ret)
1561 		return ret;
1562 
1563 	ret = opipe_prep(opipe, flags);
1564 	if (ret)
1565 		return ret;
1566 
1567 	/*
1568 	 * Potential ABBA deadlock, work around it by ordering lock
1569 	 * grabbing by pipe info address. Otherwise two different processes
1570 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1571 	 */
1572 	pipe_double_lock(ipipe, opipe);
1573 
1574 	i_tail = ipipe->tail;
1575 	i_mask = ipipe->ring_size - 1;
1576 	o_head = opipe->head;
1577 	o_mask = opipe->ring_size - 1;
1578 
1579 	do {
1580 		size_t o_len;
1581 
1582 		if (!opipe->readers) {
1583 			send_sig(SIGPIPE, current, 0);
1584 			if (!ret)
1585 				ret = -EPIPE;
1586 			break;
1587 		}
1588 
1589 		i_head = ipipe->head;
1590 		o_tail = opipe->tail;
1591 
1592 		if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1593 			break;
1594 
1595 		/*
1596 		 * Cannot make any progress, because either the input
1597 		 * pipe is empty or the output pipe is full.
1598 		 */
1599 		if (pipe_empty(i_head, i_tail) ||
1600 		    pipe_full(o_head, o_tail, opipe->max_usage)) {
1601 			/* Already processed some buffers, break */
1602 			if (ret)
1603 				break;
1604 
1605 			if (flags & SPLICE_F_NONBLOCK) {
1606 				ret = -EAGAIN;
1607 				break;
1608 			}
1609 
1610 			/*
1611 			 * We raced with another reader/writer and haven't
1612 			 * managed to process any buffers.  A zero return
1613 			 * value means EOF, so retry instead.
1614 			 */
1615 			pipe_unlock(ipipe);
1616 			pipe_unlock(opipe);
1617 			goto retry;
1618 		}
1619 
1620 		ibuf = &ipipe->bufs[i_tail & i_mask];
1621 		obuf = &opipe->bufs[o_head & o_mask];
1622 
1623 		if (len >= ibuf->len) {
1624 			/*
1625 			 * Simply move the whole buffer from ipipe to opipe
1626 			 */
1627 			*obuf = *ibuf;
1628 			ibuf->ops = NULL;
1629 			i_tail++;
1630 			ipipe->tail = i_tail;
1631 			input_wakeup = true;
1632 			o_len = obuf->len;
1633 			o_head++;
1634 			opipe->head = o_head;
1635 		} else {
1636 			/*
1637 			 * Get a reference to this pipe buffer,
1638 			 * so we can copy the contents over.
1639 			 */
1640 			if (!pipe_buf_get(ipipe, ibuf)) {
1641 				if (ret == 0)
1642 					ret = -EFAULT;
1643 				break;
1644 			}
1645 			*obuf = *ibuf;
1646 
1647 			/*
1648 			 * Don't inherit the gift and merge flags, we need to
1649 			 * prevent multiple steals of this page.
1650 			 */
1651 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1652 			obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1653 
1654 			obuf->len = len;
1655 			ibuf->offset += len;
1656 			ibuf->len -= len;
1657 			o_len = len;
1658 			o_head++;
1659 			opipe->head = o_head;
1660 		}
1661 		ret += o_len;
1662 		len -= o_len;
1663 	} while (len);
1664 
1665 	pipe_unlock(ipipe);
1666 	pipe_unlock(opipe);
1667 
1668 	/*
1669 	 * If we put data in the output pipe, wakeup any potential readers.
1670 	 */
1671 	if (ret > 0)
1672 		wakeup_pipe_readers(opipe);
1673 
1674 	if (input_wakeup)
1675 		wakeup_pipe_writers(ipipe);
1676 
1677 	return ret;
1678 }
1679 
1680 /*
1681  * Link contents of ipipe to opipe.
1682  */
1683 static int link_pipe(struct pipe_inode_info *ipipe,
1684 		     struct pipe_inode_info *opipe,
1685 		     size_t len, unsigned int flags)
1686 {
1687 	struct pipe_buffer *ibuf, *obuf;
1688 	unsigned int i_head, o_head;
1689 	unsigned int i_tail, o_tail;
1690 	unsigned int i_mask, o_mask;
1691 	int ret = 0;
1692 
1693 	/*
1694 	 * Potential ABBA deadlock, work around it by ordering lock
1695 	 * grabbing by pipe info address. Otherwise two different processes
1696 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1697 	 */
1698 	pipe_double_lock(ipipe, opipe);
1699 
1700 	i_tail = ipipe->tail;
1701 	i_mask = ipipe->ring_size - 1;
1702 	o_head = opipe->head;
1703 	o_mask = opipe->ring_size - 1;
1704 
1705 	do {
1706 		if (!opipe->readers) {
1707 			send_sig(SIGPIPE, current, 0);
1708 			if (!ret)
1709 				ret = -EPIPE;
1710 			break;
1711 		}
1712 
1713 		i_head = ipipe->head;
1714 		o_tail = opipe->tail;
1715 
1716 		/*
1717 		 * If we have iterated all input buffers or run out of
1718 		 * output room, break.
1719 		 */
1720 		if (pipe_empty(i_head, i_tail) ||
1721 		    pipe_full(o_head, o_tail, opipe->max_usage))
1722 			break;
1723 
1724 		ibuf = &ipipe->bufs[i_tail & i_mask];
1725 		obuf = &opipe->bufs[o_head & o_mask];
1726 
1727 		/*
1728 		 * Get a reference to this pipe buffer,
1729 		 * so we can copy the contents over.
1730 		 */
1731 		if (!pipe_buf_get(ipipe, ibuf)) {
1732 			if (ret == 0)
1733 				ret = -EFAULT;
1734 			break;
1735 		}
1736 
1737 		*obuf = *ibuf;
1738 
1739 		/*
1740 		 * Don't inherit the gift and merge flag, we need to prevent
1741 		 * multiple steals of this page.
1742 		 */
1743 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1744 		obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1745 
1746 		if (obuf->len > len)
1747 			obuf->len = len;
1748 		ret += obuf->len;
1749 		len -= obuf->len;
1750 
1751 		o_head++;
1752 		opipe->head = o_head;
1753 		i_tail++;
1754 	} while (len);
1755 
1756 	pipe_unlock(ipipe);
1757 	pipe_unlock(opipe);
1758 
1759 	/*
1760 	 * If we put data in the output pipe, wakeup any potential readers.
1761 	 */
1762 	if (ret > 0)
1763 		wakeup_pipe_readers(opipe);
1764 
1765 	return ret;
1766 }
1767 
1768 /*
1769  * This is a tee(1) implementation that works on pipes. It doesn't copy
1770  * any data, it simply references the 'in' pages on the 'out' pipe.
1771  * The 'flags' used are the SPLICE_F_* variants, currently the only
1772  * applicable one is SPLICE_F_NONBLOCK.
1773  */
1774 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1775 {
1776 	struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1777 	struct pipe_inode_info *opipe = get_pipe_info(out, true);
1778 	int ret = -EINVAL;
1779 
1780 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1781 		     !(out->f_mode & FMODE_WRITE)))
1782 		return -EBADF;
1783 
1784 	/*
1785 	 * Duplicate the contents of ipipe to opipe without actually
1786 	 * copying the data.
1787 	 */
1788 	if (ipipe && opipe && ipipe != opipe) {
1789 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1790 			flags |= SPLICE_F_NONBLOCK;
1791 
1792 		/*
1793 		 * Keep going, unless we encounter an error. The ipipe/opipe
1794 		 * ordering doesn't really matter.
1795 		 */
1796 		ret = ipipe_prep(ipipe, flags);
1797 		if (!ret) {
1798 			ret = opipe_prep(opipe, flags);
1799 			if (!ret)
1800 				ret = link_pipe(ipipe, opipe, len, flags);
1801 		}
1802 	}
1803 
1804 	return ret;
1805 }
1806 
1807 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1808 {
1809 	struct fd in, out;
1810 	int error;
1811 
1812 	if (unlikely(flags & ~SPLICE_F_ALL))
1813 		return -EINVAL;
1814 
1815 	if (unlikely(!len))
1816 		return 0;
1817 
1818 	error = -EBADF;
1819 	in = fdget(fdin);
1820 	if (in.file) {
1821 		out = fdget(fdout);
1822 		if (out.file) {
1823 			error = do_tee(in.file, out.file, len, flags);
1824 			fdput(out);
1825 		}
1826  		fdput(in);
1827  	}
1828 
1829 	return error;
1830 }
1831