1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * "splice": joining two ropes together by interweaving their strands. 4 * 5 * This is the "extended pipe" functionality, where a pipe is used as 6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 7 * buffer that you can use to transfer data from one end to the other. 8 * 9 * The traditional unix read/write is extended with a "splice()" operation 10 * that transfers data buffers to or from a pipe buffer. 11 * 12 * Named by Larry McVoy, original implementation from Linus, extended by 13 * Jens to support splicing to files, network, direct splicing, etc and 14 * fixing lots of bugs. 15 * 16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 19 * 20 */ 21 #include <linux/bvec.h> 22 #include <linux/fs.h> 23 #include <linux/file.h> 24 #include <linux/pagemap.h> 25 #include <linux/splice.h> 26 #include <linux/memcontrol.h> 27 #include <linux/mm_inline.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/export.h> 31 #include <linux/syscalls.h> 32 #include <linux/uio.h> 33 #include <linux/fsnotify.h> 34 #include <linux/security.h> 35 #include <linux/gfp.h> 36 #include <linux/socket.h> 37 #include <linux/sched/signal.h> 38 39 #include "internal.h" 40 41 /* 42 * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to 43 * indicate they support non-blocking reads or writes, we must clear it 44 * here if set to avoid blocking other users of this pipe if splice is 45 * being done on it. 46 */ 47 static noinline void noinline pipe_clear_nowait(struct file *file) 48 { 49 fmode_t fmode = READ_ONCE(file->f_mode); 50 51 do { 52 if (!(fmode & FMODE_NOWAIT)) 53 break; 54 } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT)); 55 } 56 57 /* 58 * Attempt to steal a page from a pipe buffer. This should perhaps go into 59 * a vm helper function, it's already simplified quite a bit by the 60 * addition of remove_mapping(). If success is returned, the caller may 61 * attempt to reuse this page for another destination. 62 */ 63 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe, 64 struct pipe_buffer *buf) 65 { 66 struct folio *folio = page_folio(buf->page); 67 struct address_space *mapping; 68 69 folio_lock(folio); 70 71 mapping = folio_mapping(folio); 72 if (mapping) { 73 WARN_ON(!folio_test_uptodate(folio)); 74 75 /* 76 * At least for ext2 with nobh option, we need to wait on 77 * writeback completing on this folio, since we'll remove it 78 * from the pagecache. Otherwise truncate wont wait on the 79 * folio, allowing the disk blocks to be reused by someone else 80 * before we actually wrote our data to them. fs corruption 81 * ensues. 82 */ 83 folio_wait_writeback(folio); 84 85 if (folio_has_private(folio) && 86 !filemap_release_folio(folio, GFP_KERNEL)) 87 goto out_unlock; 88 89 /* 90 * If we succeeded in removing the mapping, set LRU flag 91 * and return good. 92 */ 93 if (remove_mapping(mapping, folio)) { 94 buf->flags |= PIPE_BUF_FLAG_LRU; 95 return true; 96 } 97 } 98 99 /* 100 * Raced with truncate or failed to remove folio from current 101 * address space, unlock and return failure. 102 */ 103 out_unlock: 104 folio_unlock(folio); 105 return false; 106 } 107 108 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 109 struct pipe_buffer *buf) 110 { 111 put_page(buf->page); 112 buf->flags &= ~PIPE_BUF_FLAG_LRU; 113 } 114 115 /* 116 * Check whether the contents of buf is OK to access. Since the content 117 * is a page cache page, IO may be in flight. 118 */ 119 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 120 struct pipe_buffer *buf) 121 { 122 struct page *page = buf->page; 123 int err; 124 125 if (!PageUptodate(page)) { 126 lock_page(page); 127 128 /* 129 * Page got truncated/unhashed. This will cause a 0-byte 130 * splice, if this is the first page. 131 */ 132 if (!page->mapping) { 133 err = -ENODATA; 134 goto error; 135 } 136 137 /* 138 * Uh oh, read-error from disk. 139 */ 140 if (!PageUptodate(page)) { 141 err = -EIO; 142 goto error; 143 } 144 145 /* 146 * Page is ok afterall, we are done. 147 */ 148 unlock_page(page); 149 } 150 151 return 0; 152 error: 153 unlock_page(page); 154 return err; 155 } 156 157 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 158 .confirm = page_cache_pipe_buf_confirm, 159 .release = page_cache_pipe_buf_release, 160 .try_steal = page_cache_pipe_buf_try_steal, 161 .get = generic_pipe_buf_get, 162 }; 163 164 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe, 165 struct pipe_buffer *buf) 166 { 167 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 168 return false; 169 170 buf->flags |= PIPE_BUF_FLAG_LRU; 171 return generic_pipe_buf_try_steal(pipe, buf); 172 } 173 174 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 175 .release = page_cache_pipe_buf_release, 176 .try_steal = user_page_pipe_buf_try_steal, 177 .get = generic_pipe_buf_get, 178 }; 179 180 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 181 { 182 smp_mb(); 183 if (waitqueue_active(&pipe->rd_wait)) 184 wake_up_interruptible(&pipe->rd_wait); 185 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 186 } 187 188 /** 189 * splice_to_pipe - fill passed data into a pipe 190 * @pipe: pipe to fill 191 * @spd: data to fill 192 * 193 * Description: 194 * @spd contains a map of pages and len/offset tuples, along with 195 * the struct pipe_buf_operations associated with these pages. This 196 * function will link that data to the pipe. 197 * 198 */ 199 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 200 struct splice_pipe_desc *spd) 201 { 202 unsigned int spd_pages = spd->nr_pages; 203 unsigned int tail = pipe->tail; 204 unsigned int head = pipe->head; 205 unsigned int mask = pipe->ring_size - 1; 206 int ret = 0, page_nr = 0; 207 208 if (!spd_pages) 209 return 0; 210 211 if (unlikely(!pipe->readers)) { 212 send_sig(SIGPIPE, current, 0); 213 ret = -EPIPE; 214 goto out; 215 } 216 217 while (!pipe_full(head, tail, pipe->max_usage)) { 218 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 219 220 buf->page = spd->pages[page_nr]; 221 buf->offset = spd->partial[page_nr].offset; 222 buf->len = spd->partial[page_nr].len; 223 buf->private = spd->partial[page_nr].private; 224 buf->ops = spd->ops; 225 buf->flags = 0; 226 227 head++; 228 pipe->head = head; 229 page_nr++; 230 ret += buf->len; 231 232 if (!--spd->nr_pages) 233 break; 234 } 235 236 if (!ret) 237 ret = -EAGAIN; 238 239 out: 240 while (page_nr < spd_pages) 241 spd->spd_release(spd, page_nr++); 242 243 return ret; 244 } 245 EXPORT_SYMBOL_GPL(splice_to_pipe); 246 247 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 248 { 249 unsigned int head = pipe->head; 250 unsigned int tail = pipe->tail; 251 unsigned int mask = pipe->ring_size - 1; 252 int ret; 253 254 if (unlikely(!pipe->readers)) { 255 send_sig(SIGPIPE, current, 0); 256 ret = -EPIPE; 257 } else if (pipe_full(head, tail, pipe->max_usage)) { 258 ret = -EAGAIN; 259 } else { 260 pipe->bufs[head & mask] = *buf; 261 pipe->head = head + 1; 262 return buf->len; 263 } 264 pipe_buf_release(pipe, buf); 265 return ret; 266 } 267 EXPORT_SYMBOL(add_to_pipe); 268 269 /* 270 * Check if we need to grow the arrays holding pages and partial page 271 * descriptions. 272 */ 273 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 274 { 275 unsigned int max_usage = READ_ONCE(pipe->max_usage); 276 277 spd->nr_pages_max = max_usage; 278 if (max_usage <= PIPE_DEF_BUFFERS) 279 return 0; 280 281 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL); 282 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page), 283 GFP_KERNEL); 284 285 if (spd->pages && spd->partial) 286 return 0; 287 288 kfree(spd->pages); 289 kfree(spd->partial); 290 return -ENOMEM; 291 } 292 293 void splice_shrink_spd(struct splice_pipe_desc *spd) 294 { 295 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 296 return; 297 298 kfree(spd->pages); 299 kfree(spd->partial); 300 } 301 302 /** 303 * copy_splice_read - Copy data from a file and splice the copy into a pipe 304 * @in: The file to read from 305 * @ppos: Pointer to the file position to read from 306 * @pipe: The pipe to splice into 307 * @len: The amount to splice 308 * @flags: The SPLICE_F_* flags 309 * 310 * This function allocates a bunch of pages sufficient to hold the requested 311 * amount of data (but limited by the remaining pipe capacity), passes it to 312 * the file's ->read_iter() to read into and then splices the used pages into 313 * the pipe. 314 * 315 * Return: On success, the number of bytes read will be returned and *@ppos 316 * will be updated if appropriate; 0 will be returned if there is no more data 317 * to be read; -EAGAIN will be returned if the pipe had no space, and some 318 * other negative error code will be returned on error. A short read may occur 319 * if the pipe has insufficient space, we reach the end of the data or we hit a 320 * hole. 321 */ 322 ssize_t copy_splice_read(struct file *in, loff_t *ppos, 323 struct pipe_inode_info *pipe, 324 size_t len, unsigned int flags) 325 { 326 struct iov_iter to; 327 struct bio_vec *bv; 328 struct kiocb kiocb; 329 struct page **pages; 330 ssize_t ret; 331 size_t used, npages, chunk, remain, keep = 0; 332 int i; 333 334 /* Work out how much data we can actually add into the pipe */ 335 used = pipe_occupancy(pipe->head, pipe->tail); 336 npages = max_t(ssize_t, pipe->max_usage - used, 0); 337 len = min_t(size_t, len, npages * PAGE_SIZE); 338 npages = DIV_ROUND_UP(len, PAGE_SIZE); 339 340 bv = kzalloc(array_size(npages, sizeof(bv[0])) + 341 array_size(npages, sizeof(struct page *)), GFP_KERNEL); 342 if (!bv) 343 return -ENOMEM; 344 345 pages = (struct page **)(bv + npages); 346 npages = alloc_pages_bulk_array(GFP_USER, npages, pages); 347 if (!npages) { 348 kfree(bv); 349 return -ENOMEM; 350 } 351 352 remain = len = min_t(size_t, len, npages * PAGE_SIZE); 353 354 for (i = 0; i < npages; i++) { 355 chunk = min_t(size_t, PAGE_SIZE, remain); 356 bv[i].bv_page = pages[i]; 357 bv[i].bv_offset = 0; 358 bv[i].bv_len = chunk; 359 remain -= chunk; 360 } 361 362 /* Do the I/O */ 363 iov_iter_bvec(&to, ITER_DEST, bv, npages, len); 364 init_sync_kiocb(&kiocb, in); 365 kiocb.ki_pos = *ppos; 366 ret = call_read_iter(in, &kiocb, &to); 367 368 if (ret > 0) { 369 keep = DIV_ROUND_UP(ret, PAGE_SIZE); 370 *ppos = kiocb.ki_pos; 371 } 372 373 /* 374 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in 375 * there", rather than -EFAULT. 376 */ 377 if (ret == -EFAULT) 378 ret = -EAGAIN; 379 380 /* Free any pages that didn't get touched at all. */ 381 if (keep < npages) 382 release_pages(pages + keep, npages - keep); 383 384 /* Push the remaining pages into the pipe. */ 385 remain = ret; 386 for (i = 0; i < keep; i++) { 387 struct pipe_buffer *buf = pipe_head_buf(pipe); 388 389 chunk = min_t(size_t, remain, PAGE_SIZE); 390 *buf = (struct pipe_buffer) { 391 .ops = &default_pipe_buf_ops, 392 .page = bv[i].bv_page, 393 .offset = 0, 394 .len = chunk, 395 }; 396 pipe->head++; 397 remain -= chunk; 398 } 399 400 kfree(bv); 401 return ret; 402 } 403 EXPORT_SYMBOL(copy_splice_read); 404 405 const struct pipe_buf_operations default_pipe_buf_ops = { 406 .release = generic_pipe_buf_release, 407 .try_steal = generic_pipe_buf_try_steal, 408 .get = generic_pipe_buf_get, 409 }; 410 411 /* Pipe buffer operations for a socket and similar. */ 412 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 413 .release = generic_pipe_buf_release, 414 .get = generic_pipe_buf_get, 415 }; 416 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 417 418 /* 419 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 420 * using sendpage(). Return the number of bytes sent. 421 */ 422 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 423 struct pipe_buffer *buf, struct splice_desc *sd) 424 { 425 struct file *file = sd->u.file; 426 loff_t pos = sd->pos; 427 int more; 428 429 if (!likely(file->f_op->sendpage)) 430 return -EINVAL; 431 432 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0; 433 434 if (sd->len < sd->total_len && 435 pipe_occupancy(pipe->head, pipe->tail) > 1) 436 more |= MSG_SENDPAGE_NOTLAST; 437 438 return file->f_op->sendpage(file, buf->page, buf->offset, 439 sd->len, &pos, more); 440 } 441 442 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 443 { 444 smp_mb(); 445 if (waitqueue_active(&pipe->wr_wait)) 446 wake_up_interruptible(&pipe->wr_wait); 447 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 448 } 449 450 /** 451 * splice_from_pipe_feed - feed available data from a pipe to a file 452 * @pipe: pipe to splice from 453 * @sd: information to @actor 454 * @actor: handler that splices the data 455 * 456 * Description: 457 * This function loops over the pipe and calls @actor to do the 458 * actual moving of a single struct pipe_buffer to the desired 459 * destination. It returns when there's no more buffers left in 460 * the pipe or if the requested number of bytes (@sd->total_len) 461 * have been copied. It returns a positive number (one) if the 462 * pipe needs to be filled with more data, zero if the required 463 * number of bytes have been copied and -errno on error. 464 * 465 * This, together with splice_from_pipe_{begin,end,next}, may be 466 * used to implement the functionality of __splice_from_pipe() when 467 * locking is required around copying the pipe buffers to the 468 * destination. 469 */ 470 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 471 splice_actor *actor) 472 { 473 unsigned int head = pipe->head; 474 unsigned int tail = pipe->tail; 475 unsigned int mask = pipe->ring_size - 1; 476 int ret; 477 478 while (!pipe_empty(head, tail)) { 479 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 480 481 sd->len = buf->len; 482 if (sd->len > sd->total_len) 483 sd->len = sd->total_len; 484 485 ret = pipe_buf_confirm(pipe, buf); 486 if (unlikely(ret)) { 487 if (ret == -ENODATA) 488 ret = 0; 489 return ret; 490 } 491 492 ret = actor(pipe, buf, sd); 493 if (ret <= 0) 494 return ret; 495 496 buf->offset += ret; 497 buf->len -= ret; 498 499 sd->num_spliced += ret; 500 sd->len -= ret; 501 sd->pos += ret; 502 sd->total_len -= ret; 503 504 if (!buf->len) { 505 pipe_buf_release(pipe, buf); 506 tail++; 507 pipe->tail = tail; 508 if (pipe->files) 509 sd->need_wakeup = true; 510 } 511 512 if (!sd->total_len) 513 return 0; 514 } 515 516 return 1; 517 } 518 519 /* We know we have a pipe buffer, but maybe it's empty? */ 520 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe) 521 { 522 unsigned int tail = pipe->tail; 523 unsigned int mask = pipe->ring_size - 1; 524 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 525 526 if (unlikely(!buf->len)) { 527 pipe_buf_release(pipe, buf); 528 pipe->tail = tail+1; 529 return true; 530 } 531 532 return false; 533 } 534 535 /** 536 * splice_from_pipe_next - wait for some data to splice from 537 * @pipe: pipe to splice from 538 * @sd: information about the splice operation 539 * 540 * Description: 541 * This function will wait for some data and return a positive 542 * value (one) if pipe buffers are available. It will return zero 543 * or -errno if no more data needs to be spliced. 544 */ 545 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 546 { 547 /* 548 * Check for signal early to make process killable when there are 549 * always buffers available 550 */ 551 if (signal_pending(current)) 552 return -ERESTARTSYS; 553 554 repeat: 555 while (pipe_empty(pipe->head, pipe->tail)) { 556 if (!pipe->writers) 557 return 0; 558 559 if (sd->num_spliced) 560 return 0; 561 562 if (sd->flags & SPLICE_F_NONBLOCK) 563 return -EAGAIN; 564 565 if (signal_pending(current)) 566 return -ERESTARTSYS; 567 568 if (sd->need_wakeup) { 569 wakeup_pipe_writers(pipe); 570 sd->need_wakeup = false; 571 } 572 573 pipe_wait_readable(pipe); 574 } 575 576 if (eat_empty_buffer(pipe)) 577 goto repeat; 578 579 return 1; 580 } 581 582 /** 583 * splice_from_pipe_begin - start splicing from pipe 584 * @sd: information about the splice operation 585 * 586 * Description: 587 * This function should be called before a loop containing 588 * splice_from_pipe_next() and splice_from_pipe_feed() to 589 * initialize the necessary fields of @sd. 590 */ 591 static void splice_from_pipe_begin(struct splice_desc *sd) 592 { 593 sd->num_spliced = 0; 594 sd->need_wakeup = false; 595 } 596 597 /** 598 * splice_from_pipe_end - finish splicing from pipe 599 * @pipe: pipe to splice from 600 * @sd: information about the splice operation 601 * 602 * Description: 603 * This function will wake up pipe writers if necessary. It should 604 * be called after a loop containing splice_from_pipe_next() and 605 * splice_from_pipe_feed(). 606 */ 607 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 608 { 609 if (sd->need_wakeup) 610 wakeup_pipe_writers(pipe); 611 } 612 613 /** 614 * __splice_from_pipe - splice data from a pipe to given actor 615 * @pipe: pipe to splice from 616 * @sd: information to @actor 617 * @actor: handler that splices the data 618 * 619 * Description: 620 * This function does little more than loop over the pipe and call 621 * @actor to do the actual moving of a single struct pipe_buffer to 622 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 623 * pipe_to_user. 624 * 625 */ 626 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 627 splice_actor *actor) 628 { 629 int ret; 630 631 splice_from_pipe_begin(sd); 632 do { 633 cond_resched(); 634 ret = splice_from_pipe_next(pipe, sd); 635 if (ret > 0) 636 ret = splice_from_pipe_feed(pipe, sd, actor); 637 } while (ret > 0); 638 splice_from_pipe_end(pipe, sd); 639 640 return sd->num_spliced ? sd->num_spliced : ret; 641 } 642 EXPORT_SYMBOL(__splice_from_pipe); 643 644 /** 645 * splice_from_pipe - splice data from a pipe to a file 646 * @pipe: pipe to splice from 647 * @out: file to splice to 648 * @ppos: position in @out 649 * @len: how many bytes to splice 650 * @flags: splice modifier flags 651 * @actor: handler that splices the data 652 * 653 * Description: 654 * See __splice_from_pipe. This function locks the pipe inode, 655 * otherwise it's identical to __splice_from_pipe(). 656 * 657 */ 658 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 659 loff_t *ppos, size_t len, unsigned int flags, 660 splice_actor *actor) 661 { 662 ssize_t ret; 663 struct splice_desc sd = { 664 .total_len = len, 665 .flags = flags, 666 .pos = *ppos, 667 .u.file = out, 668 }; 669 670 pipe_lock(pipe); 671 ret = __splice_from_pipe(pipe, &sd, actor); 672 pipe_unlock(pipe); 673 674 return ret; 675 } 676 677 /** 678 * iter_file_splice_write - splice data from a pipe to a file 679 * @pipe: pipe info 680 * @out: file to write to 681 * @ppos: position in @out 682 * @len: number of bytes to splice 683 * @flags: splice modifier flags 684 * 685 * Description: 686 * Will either move or copy pages (determined by @flags options) from 687 * the given pipe inode to the given file. 688 * This one is ->write_iter-based. 689 * 690 */ 691 ssize_t 692 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 693 loff_t *ppos, size_t len, unsigned int flags) 694 { 695 struct splice_desc sd = { 696 .total_len = len, 697 .flags = flags, 698 .pos = *ppos, 699 .u.file = out, 700 }; 701 int nbufs = pipe->max_usage; 702 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 703 GFP_KERNEL); 704 ssize_t ret; 705 706 if (unlikely(!array)) 707 return -ENOMEM; 708 709 pipe_lock(pipe); 710 711 splice_from_pipe_begin(&sd); 712 while (sd.total_len) { 713 struct iov_iter from; 714 unsigned int head, tail, mask; 715 size_t left; 716 int n; 717 718 ret = splice_from_pipe_next(pipe, &sd); 719 if (ret <= 0) 720 break; 721 722 if (unlikely(nbufs < pipe->max_usage)) { 723 kfree(array); 724 nbufs = pipe->max_usage; 725 array = kcalloc(nbufs, sizeof(struct bio_vec), 726 GFP_KERNEL); 727 if (!array) { 728 ret = -ENOMEM; 729 break; 730 } 731 } 732 733 head = pipe->head; 734 tail = pipe->tail; 735 mask = pipe->ring_size - 1; 736 737 /* build the vector */ 738 left = sd.total_len; 739 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) { 740 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 741 size_t this_len = buf->len; 742 743 /* zero-length bvecs are not supported, skip them */ 744 if (!this_len) 745 continue; 746 this_len = min(this_len, left); 747 748 ret = pipe_buf_confirm(pipe, buf); 749 if (unlikely(ret)) { 750 if (ret == -ENODATA) 751 ret = 0; 752 goto done; 753 } 754 755 bvec_set_page(&array[n], buf->page, this_len, 756 buf->offset); 757 left -= this_len; 758 n++; 759 } 760 761 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left); 762 ret = vfs_iter_write(out, &from, &sd.pos, 0); 763 if (ret <= 0) 764 break; 765 766 sd.num_spliced += ret; 767 sd.total_len -= ret; 768 *ppos = sd.pos; 769 770 /* dismiss the fully eaten buffers, adjust the partial one */ 771 tail = pipe->tail; 772 while (ret) { 773 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 774 if (ret >= buf->len) { 775 ret -= buf->len; 776 buf->len = 0; 777 pipe_buf_release(pipe, buf); 778 tail++; 779 pipe->tail = tail; 780 if (pipe->files) 781 sd.need_wakeup = true; 782 } else { 783 buf->offset += ret; 784 buf->len -= ret; 785 ret = 0; 786 } 787 } 788 } 789 done: 790 kfree(array); 791 splice_from_pipe_end(pipe, &sd); 792 793 pipe_unlock(pipe); 794 795 if (sd.num_spliced) 796 ret = sd.num_spliced; 797 798 return ret; 799 } 800 801 EXPORT_SYMBOL(iter_file_splice_write); 802 803 /** 804 * generic_splice_sendpage - splice data from a pipe to a socket 805 * @pipe: pipe to splice from 806 * @out: socket to write to 807 * @ppos: position in @out 808 * @len: number of bytes to splice 809 * @flags: splice modifier flags 810 * 811 * Description: 812 * Will send @len bytes from the pipe to a network socket. No data copying 813 * is involved. 814 * 815 */ 816 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 817 loff_t *ppos, size_t len, unsigned int flags) 818 { 819 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 820 } 821 822 EXPORT_SYMBOL(generic_splice_sendpage); 823 824 static int warn_unsupported(struct file *file, const char *op) 825 { 826 pr_debug_ratelimited( 827 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n", 828 op, file, current->pid, current->comm); 829 return -EINVAL; 830 } 831 832 /* 833 * Attempt to initiate a splice from pipe to file. 834 */ 835 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 836 loff_t *ppos, size_t len, unsigned int flags) 837 { 838 if (unlikely(!out->f_op->splice_write)) 839 return warn_unsupported(out, "write"); 840 return out->f_op->splice_write(pipe, out, ppos, len, flags); 841 } 842 843 /** 844 * vfs_splice_read - Read data from a file and splice it into a pipe 845 * @in: File to splice from 846 * @ppos: Input file offset 847 * @pipe: Pipe to splice to 848 * @len: Number of bytes to splice 849 * @flags: Splice modifier flags (SPLICE_F_*) 850 * 851 * Splice the requested amount of data from the input file to the pipe. This 852 * is synchronous as the caller must hold the pipe lock across the entire 853 * operation. 854 * 855 * If successful, it returns the amount of data spliced, 0 if it hit the EOF or 856 * a hole and a negative error code otherwise. 857 */ 858 long vfs_splice_read(struct file *in, loff_t *ppos, 859 struct pipe_inode_info *pipe, size_t len, 860 unsigned int flags) 861 { 862 unsigned int p_space; 863 int ret; 864 865 if (unlikely(!(in->f_mode & FMODE_READ))) 866 return -EBADF; 867 if (!len) 868 return 0; 869 870 /* Don't try to read more the pipe has space for. */ 871 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail); 872 len = min_t(size_t, len, p_space << PAGE_SHIFT); 873 874 ret = rw_verify_area(READ, in, ppos, len); 875 if (unlikely(ret < 0)) 876 return ret; 877 878 if (unlikely(len > MAX_RW_COUNT)) 879 len = MAX_RW_COUNT; 880 881 if (unlikely(!in->f_op->splice_read)) 882 return warn_unsupported(in, "read"); 883 /* 884 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a 885 * buffer, copy into it and splice that into the pipe. 886 */ 887 if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host)) 888 return copy_splice_read(in, ppos, pipe, len, flags); 889 return in->f_op->splice_read(in, ppos, pipe, len, flags); 890 } 891 EXPORT_SYMBOL_GPL(vfs_splice_read); 892 893 /** 894 * splice_direct_to_actor - splices data directly between two non-pipes 895 * @in: file to splice from 896 * @sd: actor information on where to splice to 897 * @actor: handles the data splicing 898 * 899 * Description: 900 * This is a special case helper to splice directly between two 901 * points, without requiring an explicit pipe. Internally an allocated 902 * pipe is cached in the process, and reused during the lifetime of 903 * that process. 904 * 905 */ 906 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 907 splice_direct_actor *actor) 908 { 909 struct pipe_inode_info *pipe; 910 long ret, bytes; 911 size_t len; 912 int i, flags, more; 913 914 /* 915 * We require the input to be seekable, as we don't want to randomly 916 * drop data for eg socket -> socket splicing. Use the piped splicing 917 * for that! 918 */ 919 if (unlikely(!(in->f_mode & FMODE_LSEEK))) 920 return -EINVAL; 921 922 /* 923 * neither in nor out is a pipe, setup an internal pipe attached to 924 * 'out' and transfer the wanted data from 'in' to 'out' through that 925 */ 926 pipe = current->splice_pipe; 927 if (unlikely(!pipe)) { 928 pipe = alloc_pipe_info(); 929 if (!pipe) 930 return -ENOMEM; 931 932 /* 933 * We don't have an immediate reader, but we'll read the stuff 934 * out of the pipe right after the splice_to_pipe(). So set 935 * PIPE_READERS appropriately. 936 */ 937 pipe->readers = 1; 938 939 current->splice_pipe = pipe; 940 } 941 942 /* 943 * Do the splice. 944 */ 945 bytes = 0; 946 len = sd->total_len; 947 flags = sd->flags; 948 949 /* 950 * Don't block on output, we have to drain the direct pipe. 951 */ 952 sd->flags &= ~SPLICE_F_NONBLOCK; 953 more = sd->flags & SPLICE_F_MORE; 954 955 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail)); 956 957 while (len) { 958 size_t read_len; 959 loff_t pos = sd->pos, prev_pos = pos; 960 961 ret = vfs_splice_read(in, &pos, pipe, len, flags); 962 if (unlikely(ret <= 0)) 963 goto out_release; 964 965 read_len = ret; 966 sd->total_len = read_len; 967 968 /* 969 * If more data is pending, set SPLICE_F_MORE 970 * If this is the last data and SPLICE_F_MORE was not set 971 * initially, clears it. 972 */ 973 if (read_len < len) 974 sd->flags |= SPLICE_F_MORE; 975 else if (!more) 976 sd->flags &= ~SPLICE_F_MORE; 977 /* 978 * NOTE: nonblocking mode only applies to the input. We 979 * must not do the output in nonblocking mode as then we 980 * could get stuck data in the internal pipe: 981 */ 982 ret = actor(pipe, sd); 983 if (unlikely(ret <= 0)) { 984 sd->pos = prev_pos; 985 goto out_release; 986 } 987 988 bytes += ret; 989 len -= ret; 990 sd->pos = pos; 991 992 if (ret < read_len) { 993 sd->pos = prev_pos + ret; 994 goto out_release; 995 } 996 } 997 998 done: 999 pipe->tail = pipe->head = 0; 1000 file_accessed(in); 1001 return bytes; 1002 1003 out_release: 1004 /* 1005 * If we did an incomplete transfer we must release 1006 * the pipe buffers in question: 1007 */ 1008 for (i = 0; i < pipe->ring_size; i++) { 1009 struct pipe_buffer *buf = &pipe->bufs[i]; 1010 1011 if (buf->ops) 1012 pipe_buf_release(pipe, buf); 1013 } 1014 1015 if (!bytes) 1016 bytes = ret; 1017 1018 goto done; 1019 } 1020 EXPORT_SYMBOL(splice_direct_to_actor); 1021 1022 static int direct_splice_actor(struct pipe_inode_info *pipe, 1023 struct splice_desc *sd) 1024 { 1025 struct file *file = sd->u.file; 1026 1027 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1028 sd->flags); 1029 } 1030 1031 /** 1032 * do_splice_direct - splices data directly between two files 1033 * @in: file to splice from 1034 * @ppos: input file offset 1035 * @out: file to splice to 1036 * @opos: output file offset 1037 * @len: number of bytes to splice 1038 * @flags: splice modifier flags 1039 * 1040 * Description: 1041 * For use by do_sendfile(). splice can easily emulate sendfile, but 1042 * doing it in the application would incur an extra system call 1043 * (splice in + splice out, as compared to just sendfile()). So this helper 1044 * can splice directly through a process-private pipe. 1045 * 1046 */ 1047 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1048 loff_t *opos, size_t len, unsigned int flags) 1049 { 1050 struct splice_desc sd = { 1051 .len = len, 1052 .total_len = len, 1053 .flags = flags, 1054 .pos = *ppos, 1055 .u.file = out, 1056 .opos = opos, 1057 }; 1058 long ret; 1059 1060 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1061 return -EBADF; 1062 1063 if (unlikely(out->f_flags & O_APPEND)) 1064 return -EINVAL; 1065 1066 ret = rw_verify_area(WRITE, out, opos, len); 1067 if (unlikely(ret < 0)) 1068 return ret; 1069 1070 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1071 if (ret > 0) 1072 *ppos = sd.pos; 1073 1074 return ret; 1075 } 1076 EXPORT_SYMBOL(do_splice_direct); 1077 1078 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 1079 { 1080 for (;;) { 1081 if (unlikely(!pipe->readers)) { 1082 send_sig(SIGPIPE, current, 0); 1083 return -EPIPE; 1084 } 1085 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1086 return 0; 1087 if (flags & SPLICE_F_NONBLOCK) 1088 return -EAGAIN; 1089 if (signal_pending(current)) 1090 return -ERESTARTSYS; 1091 pipe_wait_writable(pipe); 1092 } 1093 } 1094 1095 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1096 struct pipe_inode_info *opipe, 1097 size_t len, unsigned int flags); 1098 1099 long splice_file_to_pipe(struct file *in, 1100 struct pipe_inode_info *opipe, 1101 loff_t *offset, 1102 size_t len, unsigned int flags) 1103 { 1104 long ret; 1105 1106 pipe_lock(opipe); 1107 ret = wait_for_space(opipe, flags); 1108 if (!ret) 1109 ret = vfs_splice_read(in, offset, opipe, len, flags); 1110 pipe_unlock(opipe); 1111 if (ret > 0) 1112 wakeup_pipe_readers(opipe); 1113 return ret; 1114 } 1115 1116 /* 1117 * Determine where to splice to/from. 1118 */ 1119 long do_splice(struct file *in, loff_t *off_in, struct file *out, 1120 loff_t *off_out, size_t len, unsigned int flags) 1121 { 1122 struct pipe_inode_info *ipipe; 1123 struct pipe_inode_info *opipe; 1124 loff_t offset; 1125 long ret; 1126 1127 if (unlikely(!(in->f_mode & FMODE_READ) || 1128 !(out->f_mode & FMODE_WRITE))) 1129 return -EBADF; 1130 1131 ipipe = get_pipe_info(in, true); 1132 opipe = get_pipe_info(out, true); 1133 1134 if (ipipe && opipe) { 1135 if (off_in || off_out) 1136 return -ESPIPE; 1137 1138 /* Splicing to self would be fun, but... */ 1139 if (ipipe == opipe) 1140 return -EINVAL; 1141 1142 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1143 flags |= SPLICE_F_NONBLOCK; 1144 1145 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1146 } 1147 1148 if (ipipe) { 1149 if (off_in) 1150 return -ESPIPE; 1151 if (off_out) { 1152 if (!(out->f_mode & FMODE_PWRITE)) 1153 return -EINVAL; 1154 offset = *off_out; 1155 } else { 1156 offset = out->f_pos; 1157 } 1158 1159 if (unlikely(out->f_flags & O_APPEND)) 1160 return -EINVAL; 1161 1162 ret = rw_verify_area(WRITE, out, &offset, len); 1163 if (unlikely(ret < 0)) 1164 return ret; 1165 1166 if (in->f_flags & O_NONBLOCK) 1167 flags |= SPLICE_F_NONBLOCK; 1168 1169 file_start_write(out); 1170 ret = do_splice_from(ipipe, out, &offset, len, flags); 1171 file_end_write(out); 1172 1173 if (ret > 0) 1174 fsnotify_modify(out); 1175 1176 if (!off_out) 1177 out->f_pos = offset; 1178 else 1179 *off_out = offset; 1180 1181 return ret; 1182 } 1183 1184 if (opipe) { 1185 if (off_out) 1186 return -ESPIPE; 1187 if (off_in) { 1188 if (!(in->f_mode & FMODE_PREAD)) 1189 return -EINVAL; 1190 offset = *off_in; 1191 } else { 1192 offset = in->f_pos; 1193 } 1194 1195 if (out->f_flags & O_NONBLOCK) 1196 flags |= SPLICE_F_NONBLOCK; 1197 1198 ret = splice_file_to_pipe(in, opipe, &offset, len, flags); 1199 1200 if (ret > 0) 1201 fsnotify_access(in); 1202 1203 if (!off_in) 1204 in->f_pos = offset; 1205 else 1206 *off_in = offset; 1207 1208 return ret; 1209 } 1210 1211 return -EINVAL; 1212 } 1213 1214 static long __do_splice(struct file *in, loff_t __user *off_in, 1215 struct file *out, loff_t __user *off_out, 1216 size_t len, unsigned int flags) 1217 { 1218 struct pipe_inode_info *ipipe; 1219 struct pipe_inode_info *opipe; 1220 loff_t offset, *__off_in = NULL, *__off_out = NULL; 1221 long ret; 1222 1223 ipipe = get_pipe_info(in, true); 1224 opipe = get_pipe_info(out, true); 1225 1226 if (ipipe) { 1227 if (off_in) 1228 return -ESPIPE; 1229 pipe_clear_nowait(in); 1230 } 1231 if (opipe) { 1232 if (off_out) 1233 return -ESPIPE; 1234 pipe_clear_nowait(out); 1235 } 1236 1237 if (off_out) { 1238 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1239 return -EFAULT; 1240 __off_out = &offset; 1241 } 1242 if (off_in) { 1243 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1244 return -EFAULT; 1245 __off_in = &offset; 1246 } 1247 1248 ret = do_splice(in, __off_in, out, __off_out, len, flags); 1249 if (ret < 0) 1250 return ret; 1251 1252 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t))) 1253 return -EFAULT; 1254 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t))) 1255 return -EFAULT; 1256 1257 return ret; 1258 } 1259 1260 static int iter_to_pipe(struct iov_iter *from, 1261 struct pipe_inode_info *pipe, 1262 unsigned flags) 1263 { 1264 struct pipe_buffer buf = { 1265 .ops = &user_page_pipe_buf_ops, 1266 .flags = flags 1267 }; 1268 size_t total = 0; 1269 int ret = 0; 1270 1271 while (iov_iter_count(from)) { 1272 struct page *pages[16]; 1273 ssize_t left; 1274 size_t start; 1275 int i, n; 1276 1277 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start); 1278 if (left <= 0) { 1279 ret = left; 1280 break; 1281 } 1282 1283 n = DIV_ROUND_UP(left + start, PAGE_SIZE); 1284 for (i = 0; i < n; i++) { 1285 int size = min_t(int, left, PAGE_SIZE - start); 1286 1287 buf.page = pages[i]; 1288 buf.offset = start; 1289 buf.len = size; 1290 ret = add_to_pipe(pipe, &buf); 1291 if (unlikely(ret < 0)) { 1292 iov_iter_revert(from, left); 1293 // this one got dropped by add_to_pipe() 1294 while (++i < n) 1295 put_page(pages[i]); 1296 goto out; 1297 } 1298 total += ret; 1299 left -= size; 1300 start = 0; 1301 } 1302 } 1303 out: 1304 return total ? total : ret; 1305 } 1306 1307 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1308 struct splice_desc *sd) 1309 { 1310 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1311 return n == sd->len ? n : -EFAULT; 1312 } 1313 1314 /* 1315 * For lack of a better implementation, implement vmsplice() to userspace 1316 * as a simple copy of the pipes pages to the user iov. 1317 */ 1318 static long vmsplice_to_user(struct file *file, struct iov_iter *iter, 1319 unsigned int flags) 1320 { 1321 struct pipe_inode_info *pipe = get_pipe_info(file, true); 1322 struct splice_desc sd = { 1323 .total_len = iov_iter_count(iter), 1324 .flags = flags, 1325 .u.data = iter 1326 }; 1327 long ret = 0; 1328 1329 if (!pipe) 1330 return -EBADF; 1331 1332 pipe_clear_nowait(file); 1333 1334 if (sd.total_len) { 1335 pipe_lock(pipe); 1336 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1337 pipe_unlock(pipe); 1338 } 1339 1340 return ret; 1341 } 1342 1343 /* 1344 * vmsplice splices a user address range into a pipe. It can be thought of 1345 * as splice-from-memory, where the regular splice is splice-from-file (or 1346 * to file). In both cases the output is a pipe, naturally. 1347 */ 1348 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter, 1349 unsigned int flags) 1350 { 1351 struct pipe_inode_info *pipe; 1352 long ret = 0; 1353 unsigned buf_flag = 0; 1354 1355 if (flags & SPLICE_F_GIFT) 1356 buf_flag = PIPE_BUF_FLAG_GIFT; 1357 1358 pipe = get_pipe_info(file, true); 1359 if (!pipe) 1360 return -EBADF; 1361 1362 pipe_clear_nowait(file); 1363 1364 pipe_lock(pipe); 1365 ret = wait_for_space(pipe, flags); 1366 if (!ret) 1367 ret = iter_to_pipe(iter, pipe, buf_flag); 1368 pipe_unlock(pipe); 1369 if (ret > 0) 1370 wakeup_pipe_readers(pipe); 1371 return ret; 1372 } 1373 1374 static int vmsplice_type(struct fd f, int *type) 1375 { 1376 if (!f.file) 1377 return -EBADF; 1378 if (f.file->f_mode & FMODE_WRITE) { 1379 *type = ITER_SOURCE; 1380 } else if (f.file->f_mode & FMODE_READ) { 1381 *type = ITER_DEST; 1382 } else { 1383 fdput(f); 1384 return -EBADF; 1385 } 1386 return 0; 1387 } 1388 1389 /* 1390 * Note that vmsplice only really supports true splicing _from_ user memory 1391 * to a pipe, not the other way around. Splicing from user memory is a simple 1392 * operation that can be supported without any funky alignment restrictions 1393 * or nasty vm tricks. We simply map in the user memory and fill them into 1394 * a pipe. The reverse isn't quite as easy, though. There are two possible 1395 * solutions for that: 1396 * 1397 * - memcpy() the data internally, at which point we might as well just 1398 * do a regular read() on the buffer anyway. 1399 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1400 * has restriction limitations on both ends of the pipe). 1401 * 1402 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1403 * 1404 */ 1405 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov, 1406 unsigned long, nr_segs, unsigned int, flags) 1407 { 1408 struct iovec iovstack[UIO_FASTIOV]; 1409 struct iovec *iov = iovstack; 1410 struct iov_iter iter; 1411 ssize_t error; 1412 struct fd f; 1413 int type; 1414 1415 if (unlikely(flags & ~SPLICE_F_ALL)) 1416 return -EINVAL; 1417 1418 f = fdget(fd); 1419 error = vmsplice_type(f, &type); 1420 if (error) 1421 return error; 1422 1423 error = import_iovec(type, uiov, nr_segs, 1424 ARRAY_SIZE(iovstack), &iov, &iter); 1425 if (error < 0) 1426 goto out_fdput; 1427 1428 if (!iov_iter_count(&iter)) 1429 error = 0; 1430 else if (type == ITER_SOURCE) 1431 error = vmsplice_to_pipe(f.file, &iter, flags); 1432 else 1433 error = vmsplice_to_user(f.file, &iter, flags); 1434 1435 kfree(iov); 1436 out_fdput: 1437 fdput(f); 1438 return error; 1439 } 1440 1441 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1442 int, fd_out, loff_t __user *, off_out, 1443 size_t, len, unsigned int, flags) 1444 { 1445 struct fd in, out; 1446 long error; 1447 1448 if (unlikely(!len)) 1449 return 0; 1450 1451 if (unlikely(flags & ~SPLICE_F_ALL)) 1452 return -EINVAL; 1453 1454 error = -EBADF; 1455 in = fdget(fd_in); 1456 if (in.file) { 1457 out = fdget(fd_out); 1458 if (out.file) { 1459 error = __do_splice(in.file, off_in, out.file, off_out, 1460 len, flags); 1461 fdput(out); 1462 } 1463 fdput(in); 1464 } 1465 return error; 1466 } 1467 1468 /* 1469 * Make sure there's data to read. Wait for input if we can, otherwise 1470 * return an appropriate error. 1471 */ 1472 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1473 { 1474 int ret; 1475 1476 /* 1477 * Check the pipe occupancy without the inode lock first. This function 1478 * is speculative anyways, so missing one is ok. 1479 */ 1480 if (!pipe_empty(pipe->head, pipe->tail)) 1481 return 0; 1482 1483 ret = 0; 1484 pipe_lock(pipe); 1485 1486 while (pipe_empty(pipe->head, pipe->tail)) { 1487 if (signal_pending(current)) { 1488 ret = -ERESTARTSYS; 1489 break; 1490 } 1491 if (!pipe->writers) 1492 break; 1493 if (flags & SPLICE_F_NONBLOCK) { 1494 ret = -EAGAIN; 1495 break; 1496 } 1497 pipe_wait_readable(pipe); 1498 } 1499 1500 pipe_unlock(pipe); 1501 return ret; 1502 } 1503 1504 /* 1505 * Make sure there's writeable room. Wait for room if we can, otherwise 1506 * return an appropriate error. 1507 */ 1508 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1509 { 1510 int ret; 1511 1512 /* 1513 * Check pipe occupancy without the inode lock first. This function 1514 * is speculative anyways, so missing one is ok. 1515 */ 1516 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1517 return 0; 1518 1519 ret = 0; 1520 pipe_lock(pipe); 1521 1522 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 1523 if (!pipe->readers) { 1524 send_sig(SIGPIPE, current, 0); 1525 ret = -EPIPE; 1526 break; 1527 } 1528 if (flags & SPLICE_F_NONBLOCK) { 1529 ret = -EAGAIN; 1530 break; 1531 } 1532 if (signal_pending(current)) { 1533 ret = -ERESTARTSYS; 1534 break; 1535 } 1536 pipe_wait_writable(pipe); 1537 } 1538 1539 pipe_unlock(pipe); 1540 return ret; 1541 } 1542 1543 /* 1544 * Splice contents of ipipe to opipe. 1545 */ 1546 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1547 struct pipe_inode_info *opipe, 1548 size_t len, unsigned int flags) 1549 { 1550 struct pipe_buffer *ibuf, *obuf; 1551 unsigned int i_head, o_head; 1552 unsigned int i_tail, o_tail; 1553 unsigned int i_mask, o_mask; 1554 int ret = 0; 1555 bool input_wakeup = false; 1556 1557 1558 retry: 1559 ret = ipipe_prep(ipipe, flags); 1560 if (ret) 1561 return ret; 1562 1563 ret = opipe_prep(opipe, flags); 1564 if (ret) 1565 return ret; 1566 1567 /* 1568 * Potential ABBA deadlock, work around it by ordering lock 1569 * grabbing by pipe info address. Otherwise two different processes 1570 * could deadlock (one doing tee from A -> B, the other from B -> A). 1571 */ 1572 pipe_double_lock(ipipe, opipe); 1573 1574 i_tail = ipipe->tail; 1575 i_mask = ipipe->ring_size - 1; 1576 o_head = opipe->head; 1577 o_mask = opipe->ring_size - 1; 1578 1579 do { 1580 size_t o_len; 1581 1582 if (!opipe->readers) { 1583 send_sig(SIGPIPE, current, 0); 1584 if (!ret) 1585 ret = -EPIPE; 1586 break; 1587 } 1588 1589 i_head = ipipe->head; 1590 o_tail = opipe->tail; 1591 1592 if (pipe_empty(i_head, i_tail) && !ipipe->writers) 1593 break; 1594 1595 /* 1596 * Cannot make any progress, because either the input 1597 * pipe is empty or the output pipe is full. 1598 */ 1599 if (pipe_empty(i_head, i_tail) || 1600 pipe_full(o_head, o_tail, opipe->max_usage)) { 1601 /* Already processed some buffers, break */ 1602 if (ret) 1603 break; 1604 1605 if (flags & SPLICE_F_NONBLOCK) { 1606 ret = -EAGAIN; 1607 break; 1608 } 1609 1610 /* 1611 * We raced with another reader/writer and haven't 1612 * managed to process any buffers. A zero return 1613 * value means EOF, so retry instead. 1614 */ 1615 pipe_unlock(ipipe); 1616 pipe_unlock(opipe); 1617 goto retry; 1618 } 1619 1620 ibuf = &ipipe->bufs[i_tail & i_mask]; 1621 obuf = &opipe->bufs[o_head & o_mask]; 1622 1623 if (len >= ibuf->len) { 1624 /* 1625 * Simply move the whole buffer from ipipe to opipe 1626 */ 1627 *obuf = *ibuf; 1628 ibuf->ops = NULL; 1629 i_tail++; 1630 ipipe->tail = i_tail; 1631 input_wakeup = true; 1632 o_len = obuf->len; 1633 o_head++; 1634 opipe->head = o_head; 1635 } else { 1636 /* 1637 * Get a reference to this pipe buffer, 1638 * so we can copy the contents over. 1639 */ 1640 if (!pipe_buf_get(ipipe, ibuf)) { 1641 if (ret == 0) 1642 ret = -EFAULT; 1643 break; 1644 } 1645 *obuf = *ibuf; 1646 1647 /* 1648 * Don't inherit the gift and merge flags, we need to 1649 * prevent multiple steals of this page. 1650 */ 1651 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1652 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1653 1654 obuf->len = len; 1655 ibuf->offset += len; 1656 ibuf->len -= len; 1657 o_len = len; 1658 o_head++; 1659 opipe->head = o_head; 1660 } 1661 ret += o_len; 1662 len -= o_len; 1663 } while (len); 1664 1665 pipe_unlock(ipipe); 1666 pipe_unlock(opipe); 1667 1668 /* 1669 * If we put data in the output pipe, wakeup any potential readers. 1670 */ 1671 if (ret > 0) 1672 wakeup_pipe_readers(opipe); 1673 1674 if (input_wakeup) 1675 wakeup_pipe_writers(ipipe); 1676 1677 return ret; 1678 } 1679 1680 /* 1681 * Link contents of ipipe to opipe. 1682 */ 1683 static int link_pipe(struct pipe_inode_info *ipipe, 1684 struct pipe_inode_info *opipe, 1685 size_t len, unsigned int flags) 1686 { 1687 struct pipe_buffer *ibuf, *obuf; 1688 unsigned int i_head, o_head; 1689 unsigned int i_tail, o_tail; 1690 unsigned int i_mask, o_mask; 1691 int ret = 0; 1692 1693 /* 1694 * Potential ABBA deadlock, work around it by ordering lock 1695 * grabbing by pipe info address. Otherwise two different processes 1696 * could deadlock (one doing tee from A -> B, the other from B -> A). 1697 */ 1698 pipe_double_lock(ipipe, opipe); 1699 1700 i_tail = ipipe->tail; 1701 i_mask = ipipe->ring_size - 1; 1702 o_head = opipe->head; 1703 o_mask = opipe->ring_size - 1; 1704 1705 do { 1706 if (!opipe->readers) { 1707 send_sig(SIGPIPE, current, 0); 1708 if (!ret) 1709 ret = -EPIPE; 1710 break; 1711 } 1712 1713 i_head = ipipe->head; 1714 o_tail = opipe->tail; 1715 1716 /* 1717 * If we have iterated all input buffers or run out of 1718 * output room, break. 1719 */ 1720 if (pipe_empty(i_head, i_tail) || 1721 pipe_full(o_head, o_tail, opipe->max_usage)) 1722 break; 1723 1724 ibuf = &ipipe->bufs[i_tail & i_mask]; 1725 obuf = &opipe->bufs[o_head & o_mask]; 1726 1727 /* 1728 * Get a reference to this pipe buffer, 1729 * so we can copy the contents over. 1730 */ 1731 if (!pipe_buf_get(ipipe, ibuf)) { 1732 if (ret == 0) 1733 ret = -EFAULT; 1734 break; 1735 } 1736 1737 *obuf = *ibuf; 1738 1739 /* 1740 * Don't inherit the gift and merge flag, we need to prevent 1741 * multiple steals of this page. 1742 */ 1743 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1744 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1745 1746 if (obuf->len > len) 1747 obuf->len = len; 1748 ret += obuf->len; 1749 len -= obuf->len; 1750 1751 o_head++; 1752 opipe->head = o_head; 1753 i_tail++; 1754 } while (len); 1755 1756 pipe_unlock(ipipe); 1757 pipe_unlock(opipe); 1758 1759 /* 1760 * If we put data in the output pipe, wakeup any potential readers. 1761 */ 1762 if (ret > 0) 1763 wakeup_pipe_readers(opipe); 1764 1765 return ret; 1766 } 1767 1768 /* 1769 * This is a tee(1) implementation that works on pipes. It doesn't copy 1770 * any data, it simply references the 'in' pages on the 'out' pipe. 1771 * The 'flags' used are the SPLICE_F_* variants, currently the only 1772 * applicable one is SPLICE_F_NONBLOCK. 1773 */ 1774 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags) 1775 { 1776 struct pipe_inode_info *ipipe = get_pipe_info(in, true); 1777 struct pipe_inode_info *opipe = get_pipe_info(out, true); 1778 int ret = -EINVAL; 1779 1780 if (unlikely(!(in->f_mode & FMODE_READ) || 1781 !(out->f_mode & FMODE_WRITE))) 1782 return -EBADF; 1783 1784 /* 1785 * Duplicate the contents of ipipe to opipe without actually 1786 * copying the data. 1787 */ 1788 if (ipipe && opipe && ipipe != opipe) { 1789 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1790 flags |= SPLICE_F_NONBLOCK; 1791 1792 /* 1793 * Keep going, unless we encounter an error. The ipipe/opipe 1794 * ordering doesn't really matter. 1795 */ 1796 ret = ipipe_prep(ipipe, flags); 1797 if (!ret) { 1798 ret = opipe_prep(opipe, flags); 1799 if (!ret) 1800 ret = link_pipe(ipipe, opipe, len, flags); 1801 } 1802 } 1803 1804 return ret; 1805 } 1806 1807 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1808 { 1809 struct fd in, out; 1810 int error; 1811 1812 if (unlikely(flags & ~SPLICE_F_ALL)) 1813 return -EINVAL; 1814 1815 if (unlikely(!len)) 1816 return 0; 1817 1818 error = -EBADF; 1819 in = fdget(fdin); 1820 if (in.file) { 1821 out = fdget(fdout); 1822 if (out.file) { 1823 error = do_tee(in.file, out.file, len, flags); 1824 fdput(out); 1825 } 1826 fdput(in); 1827 } 1828 1829 return error; 1830 } 1831