1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/bvec.h> 21 #include <linux/fs.h> 22 #include <linux/file.h> 23 #include <linux/pagemap.h> 24 #include <linux/splice.h> 25 #include <linux/memcontrol.h> 26 #include <linux/mm_inline.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/export.h> 30 #include <linux/syscalls.h> 31 #include <linux/uio.h> 32 #include <linux/security.h> 33 #include <linux/gfp.h> 34 #include <linux/socket.h> 35 #include <linux/compat.h> 36 #include <linux/sched/signal.h> 37 38 #include "internal.h" 39 40 /* 41 * Attempt to steal a page from a pipe buffer. This should perhaps go into 42 * a vm helper function, it's already simplified quite a bit by the 43 * addition of remove_mapping(). If success is returned, the caller may 44 * attempt to reuse this page for another destination. 45 */ 46 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 47 struct pipe_buffer *buf) 48 { 49 struct page *page = buf->page; 50 struct address_space *mapping; 51 52 lock_page(page); 53 54 mapping = page_mapping(page); 55 if (mapping) { 56 WARN_ON(!PageUptodate(page)); 57 58 /* 59 * At least for ext2 with nobh option, we need to wait on 60 * writeback completing on this page, since we'll remove it 61 * from the pagecache. Otherwise truncate wont wait on the 62 * page, allowing the disk blocks to be reused by someone else 63 * before we actually wrote our data to them. fs corruption 64 * ensues. 65 */ 66 wait_on_page_writeback(page); 67 68 if (page_has_private(page) && 69 !try_to_release_page(page, GFP_KERNEL)) 70 goto out_unlock; 71 72 /* 73 * If we succeeded in removing the mapping, set LRU flag 74 * and return good. 75 */ 76 if (remove_mapping(mapping, page)) { 77 buf->flags |= PIPE_BUF_FLAG_LRU; 78 return 0; 79 } 80 } 81 82 /* 83 * Raced with truncate or failed to remove page from current 84 * address space, unlock and return failure. 85 */ 86 out_unlock: 87 unlock_page(page); 88 return 1; 89 } 90 91 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 92 struct pipe_buffer *buf) 93 { 94 put_page(buf->page); 95 buf->flags &= ~PIPE_BUF_FLAG_LRU; 96 } 97 98 /* 99 * Check whether the contents of buf is OK to access. Since the content 100 * is a page cache page, IO may be in flight. 101 */ 102 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 103 struct pipe_buffer *buf) 104 { 105 struct page *page = buf->page; 106 int err; 107 108 if (!PageUptodate(page)) { 109 lock_page(page); 110 111 /* 112 * Page got truncated/unhashed. This will cause a 0-byte 113 * splice, if this is the first page. 114 */ 115 if (!page->mapping) { 116 err = -ENODATA; 117 goto error; 118 } 119 120 /* 121 * Uh oh, read-error from disk. 122 */ 123 if (!PageUptodate(page)) { 124 err = -EIO; 125 goto error; 126 } 127 128 /* 129 * Page is ok afterall, we are done. 130 */ 131 unlock_page(page); 132 } 133 134 return 0; 135 error: 136 unlock_page(page); 137 return err; 138 } 139 140 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 141 .can_merge = 0, 142 .confirm = page_cache_pipe_buf_confirm, 143 .release = page_cache_pipe_buf_release, 144 .steal = page_cache_pipe_buf_steal, 145 .get = generic_pipe_buf_get, 146 }; 147 148 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 149 struct pipe_buffer *buf) 150 { 151 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 152 return 1; 153 154 buf->flags |= PIPE_BUF_FLAG_LRU; 155 return generic_pipe_buf_steal(pipe, buf); 156 } 157 158 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 159 .can_merge = 0, 160 .confirm = generic_pipe_buf_confirm, 161 .release = page_cache_pipe_buf_release, 162 .steal = user_page_pipe_buf_steal, 163 .get = generic_pipe_buf_get, 164 }; 165 166 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 167 { 168 smp_mb(); 169 if (waitqueue_active(&pipe->wait)) 170 wake_up_interruptible(&pipe->wait); 171 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 172 } 173 174 /** 175 * splice_to_pipe - fill passed data into a pipe 176 * @pipe: pipe to fill 177 * @spd: data to fill 178 * 179 * Description: 180 * @spd contains a map of pages and len/offset tuples, along with 181 * the struct pipe_buf_operations associated with these pages. This 182 * function will link that data to the pipe. 183 * 184 */ 185 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 186 struct splice_pipe_desc *spd) 187 { 188 unsigned int spd_pages = spd->nr_pages; 189 int ret = 0, page_nr = 0; 190 191 if (!spd_pages) 192 return 0; 193 194 if (unlikely(!pipe->readers)) { 195 send_sig(SIGPIPE, current, 0); 196 ret = -EPIPE; 197 goto out; 198 } 199 200 while (pipe->nrbufs < pipe->buffers) { 201 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 202 struct pipe_buffer *buf = pipe->bufs + newbuf; 203 204 buf->page = spd->pages[page_nr]; 205 buf->offset = spd->partial[page_nr].offset; 206 buf->len = spd->partial[page_nr].len; 207 buf->private = spd->partial[page_nr].private; 208 buf->ops = spd->ops; 209 buf->flags = 0; 210 211 pipe->nrbufs++; 212 page_nr++; 213 ret += buf->len; 214 215 if (!--spd->nr_pages) 216 break; 217 } 218 219 if (!ret) 220 ret = -EAGAIN; 221 222 out: 223 while (page_nr < spd_pages) 224 spd->spd_release(spd, page_nr++); 225 226 return ret; 227 } 228 EXPORT_SYMBOL_GPL(splice_to_pipe); 229 230 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 231 { 232 int ret; 233 234 if (unlikely(!pipe->readers)) { 235 send_sig(SIGPIPE, current, 0); 236 ret = -EPIPE; 237 } else if (pipe->nrbufs == pipe->buffers) { 238 ret = -EAGAIN; 239 } else { 240 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 241 pipe->bufs[newbuf] = *buf; 242 pipe->nrbufs++; 243 return buf->len; 244 } 245 pipe_buf_release(pipe, buf); 246 return ret; 247 } 248 EXPORT_SYMBOL(add_to_pipe); 249 250 /* 251 * Check if we need to grow the arrays holding pages and partial page 252 * descriptions. 253 */ 254 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 255 { 256 unsigned int buffers = READ_ONCE(pipe->buffers); 257 258 spd->nr_pages_max = buffers; 259 if (buffers <= PIPE_DEF_BUFFERS) 260 return 0; 261 262 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL); 263 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL); 264 265 if (spd->pages && spd->partial) 266 return 0; 267 268 kfree(spd->pages); 269 kfree(spd->partial); 270 return -ENOMEM; 271 } 272 273 void splice_shrink_spd(struct splice_pipe_desc *spd) 274 { 275 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 276 return; 277 278 kfree(spd->pages); 279 kfree(spd->partial); 280 } 281 282 /** 283 * generic_file_splice_read - splice data from file to a pipe 284 * @in: file to splice from 285 * @ppos: position in @in 286 * @pipe: pipe to splice to 287 * @len: number of bytes to splice 288 * @flags: splice modifier flags 289 * 290 * Description: 291 * Will read pages from given file and fill them into a pipe. Can be 292 * used as long as it has more or less sane ->read_iter(). 293 * 294 */ 295 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 296 struct pipe_inode_info *pipe, size_t len, 297 unsigned int flags) 298 { 299 struct iov_iter to; 300 struct kiocb kiocb; 301 int idx, ret; 302 303 iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len); 304 idx = to.idx; 305 init_sync_kiocb(&kiocb, in); 306 kiocb.ki_pos = *ppos; 307 ret = call_read_iter(in, &kiocb, &to); 308 if (ret > 0) { 309 *ppos = kiocb.ki_pos; 310 file_accessed(in); 311 } else if (ret < 0) { 312 to.idx = idx; 313 to.iov_offset = 0; 314 iov_iter_advance(&to, 0); /* to free what was emitted */ 315 /* 316 * callers of ->splice_read() expect -EAGAIN on 317 * "can't put anything in there", rather than -EFAULT. 318 */ 319 if (ret == -EFAULT) 320 ret = -EAGAIN; 321 } 322 323 return ret; 324 } 325 EXPORT_SYMBOL(generic_file_splice_read); 326 327 const struct pipe_buf_operations default_pipe_buf_ops = { 328 .can_merge = 0, 329 .confirm = generic_pipe_buf_confirm, 330 .release = generic_pipe_buf_release, 331 .steal = generic_pipe_buf_steal, 332 .get = generic_pipe_buf_get, 333 }; 334 335 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe, 336 struct pipe_buffer *buf) 337 { 338 return 1; 339 } 340 341 /* Pipe buffer operations for a socket and similar. */ 342 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 343 .can_merge = 0, 344 .confirm = generic_pipe_buf_confirm, 345 .release = generic_pipe_buf_release, 346 .steal = generic_pipe_buf_nosteal, 347 .get = generic_pipe_buf_get, 348 }; 349 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 350 351 static ssize_t kernel_readv(struct file *file, const struct kvec *vec, 352 unsigned long vlen, loff_t offset) 353 { 354 mm_segment_t old_fs; 355 loff_t pos = offset; 356 ssize_t res; 357 358 old_fs = get_fs(); 359 set_fs(get_ds()); 360 /* The cast to a user pointer is valid due to the set_fs() */ 361 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0); 362 set_fs(old_fs); 363 364 return res; 365 } 366 367 static ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 368 struct pipe_inode_info *pipe, size_t len, 369 unsigned int flags) 370 { 371 struct kvec *vec, __vec[PIPE_DEF_BUFFERS]; 372 struct iov_iter to; 373 struct page **pages; 374 unsigned int nr_pages; 375 size_t offset, base, copied = 0; 376 ssize_t res; 377 int i; 378 379 if (pipe->nrbufs == pipe->buffers) 380 return -EAGAIN; 381 382 /* 383 * Try to keep page boundaries matching to source pagecache ones - 384 * it probably won't be much help, but... 385 */ 386 offset = *ppos & ~PAGE_MASK; 387 388 iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len + offset); 389 390 res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &base); 391 if (res <= 0) 392 return -ENOMEM; 393 394 nr_pages = DIV_ROUND_UP(res + base, PAGE_SIZE); 395 396 vec = __vec; 397 if (nr_pages > PIPE_DEF_BUFFERS) { 398 vec = kmalloc(nr_pages * sizeof(struct kvec), GFP_KERNEL); 399 if (unlikely(!vec)) { 400 res = -ENOMEM; 401 goto out; 402 } 403 } 404 405 pipe->bufs[to.idx].offset = offset; 406 pipe->bufs[to.idx].len -= offset; 407 408 for (i = 0; i < nr_pages; i++) { 409 size_t this_len = min_t(size_t, len, PAGE_SIZE - offset); 410 vec[i].iov_base = page_address(pages[i]) + offset; 411 vec[i].iov_len = this_len; 412 len -= this_len; 413 offset = 0; 414 } 415 416 res = kernel_readv(in, vec, nr_pages, *ppos); 417 if (res > 0) { 418 copied = res; 419 *ppos += res; 420 } 421 422 if (vec != __vec) 423 kfree(vec); 424 out: 425 for (i = 0; i < nr_pages; i++) 426 put_page(pages[i]); 427 kvfree(pages); 428 iov_iter_advance(&to, copied); /* truncates and discards */ 429 return res; 430 } 431 432 /* 433 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 434 * using sendpage(). Return the number of bytes sent. 435 */ 436 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 437 struct pipe_buffer *buf, struct splice_desc *sd) 438 { 439 struct file *file = sd->u.file; 440 loff_t pos = sd->pos; 441 int more; 442 443 if (!likely(file->f_op->sendpage)) 444 return -EINVAL; 445 446 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0; 447 448 if (sd->len < sd->total_len && pipe->nrbufs > 1) 449 more |= MSG_SENDPAGE_NOTLAST; 450 451 return file->f_op->sendpage(file, buf->page, buf->offset, 452 sd->len, &pos, more); 453 } 454 455 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 456 { 457 smp_mb(); 458 if (waitqueue_active(&pipe->wait)) 459 wake_up_interruptible(&pipe->wait); 460 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 461 } 462 463 /** 464 * splice_from_pipe_feed - feed available data from a pipe to a file 465 * @pipe: pipe to splice from 466 * @sd: information to @actor 467 * @actor: handler that splices the data 468 * 469 * Description: 470 * This function loops over the pipe and calls @actor to do the 471 * actual moving of a single struct pipe_buffer to the desired 472 * destination. It returns when there's no more buffers left in 473 * the pipe or if the requested number of bytes (@sd->total_len) 474 * have been copied. It returns a positive number (one) if the 475 * pipe needs to be filled with more data, zero if the required 476 * number of bytes have been copied and -errno on error. 477 * 478 * This, together with splice_from_pipe_{begin,end,next}, may be 479 * used to implement the functionality of __splice_from_pipe() when 480 * locking is required around copying the pipe buffers to the 481 * destination. 482 */ 483 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 484 splice_actor *actor) 485 { 486 int ret; 487 488 while (pipe->nrbufs) { 489 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 490 491 sd->len = buf->len; 492 if (sd->len > sd->total_len) 493 sd->len = sd->total_len; 494 495 ret = pipe_buf_confirm(pipe, buf); 496 if (unlikely(ret)) { 497 if (ret == -ENODATA) 498 ret = 0; 499 return ret; 500 } 501 502 ret = actor(pipe, buf, sd); 503 if (ret <= 0) 504 return ret; 505 506 buf->offset += ret; 507 buf->len -= ret; 508 509 sd->num_spliced += ret; 510 sd->len -= ret; 511 sd->pos += ret; 512 sd->total_len -= ret; 513 514 if (!buf->len) { 515 pipe_buf_release(pipe, buf); 516 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 517 pipe->nrbufs--; 518 if (pipe->files) 519 sd->need_wakeup = true; 520 } 521 522 if (!sd->total_len) 523 return 0; 524 } 525 526 return 1; 527 } 528 529 /** 530 * splice_from_pipe_next - wait for some data to splice from 531 * @pipe: pipe to splice from 532 * @sd: information about the splice operation 533 * 534 * Description: 535 * This function will wait for some data and return a positive 536 * value (one) if pipe buffers are available. It will return zero 537 * or -errno if no more data needs to be spliced. 538 */ 539 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 540 { 541 /* 542 * Check for signal early to make process killable when there are 543 * always buffers available 544 */ 545 if (signal_pending(current)) 546 return -ERESTARTSYS; 547 548 while (!pipe->nrbufs) { 549 if (!pipe->writers) 550 return 0; 551 552 if (!pipe->waiting_writers && sd->num_spliced) 553 return 0; 554 555 if (sd->flags & SPLICE_F_NONBLOCK) 556 return -EAGAIN; 557 558 if (signal_pending(current)) 559 return -ERESTARTSYS; 560 561 if (sd->need_wakeup) { 562 wakeup_pipe_writers(pipe); 563 sd->need_wakeup = false; 564 } 565 566 pipe_wait(pipe); 567 } 568 569 return 1; 570 } 571 572 /** 573 * splice_from_pipe_begin - start splicing from pipe 574 * @sd: information about the splice operation 575 * 576 * Description: 577 * This function should be called before a loop containing 578 * splice_from_pipe_next() and splice_from_pipe_feed() to 579 * initialize the necessary fields of @sd. 580 */ 581 static void splice_from_pipe_begin(struct splice_desc *sd) 582 { 583 sd->num_spliced = 0; 584 sd->need_wakeup = false; 585 } 586 587 /** 588 * splice_from_pipe_end - finish splicing from pipe 589 * @pipe: pipe to splice from 590 * @sd: information about the splice operation 591 * 592 * Description: 593 * This function will wake up pipe writers if necessary. It should 594 * be called after a loop containing splice_from_pipe_next() and 595 * splice_from_pipe_feed(). 596 */ 597 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 598 { 599 if (sd->need_wakeup) 600 wakeup_pipe_writers(pipe); 601 } 602 603 /** 604 * __splice_from_pipe - splice data from a pipe to given actor 605 * @pipe: pipe to splice from 606 * @sd: information to @actor 607 * @actor: handler that splices the data 608 * 609 * Description: 610 * This function does little more than loop over the pipe and call 611 * @actor to do the actual moving of a single struct pipe_buffer to 612 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 613 * pipe_to_user. 614 * 615 */ 616 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 617 splice_actor *actor) 618 { 619 int ret; 620 621 splice_from_pipe_begin(sd); 622 do { 623 cond_resched(); 624 ret = splice_from_pipe_next(pipe, sd); 625 if (ret > 0) 626 ret = splice_from_pipe_feed(pipe, sd, actor); 627 } while (ret > 0); 628 splice_from_pipe_end(pipe, sd); 629 630 return sd->num_spliced ? sd->num_spliced : ret; 631 } 632 EXPORT_SYMBOL(__splice_from_pipe); 633 634 /** 635 * splice_from_pipe - splice data from a pipe to a file 636 * @pipe: pipe to splice from 637 * @out: file to splice to 638 * @ppos: position in @out 639 * @len: how many bytes to splice 640 * @flags: splice modifier flags 641 * @actor: handler that splices the data 642 * 643 * Description: 644 * See __splice_from_pipe. This function locks the pipe inode, 645 * otherwise it's identical to __splice_from_pipe(). 646 * 647 */ 648 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 649 loff_t *ppos, size_t len, unsigned int flags, 650 splice_actor *actor) 651 { 652 ssize_t ret; 653 struct splice_desc sd = { 654 .total_len = len, 655 .flags = flags, 656 .pos = *ppos, 657 .u.file = out, 658 }; 659 660 pipe_lock(pipe); 661 ret = __splice_from_pipe(pipe, &sd, actor); 662 pipe_unlock(pipe); 663 664 return ret; 665 } 666 667 /** 668 * iter_file_splice_write - splice data from a pipe to a file 669 * @pipe: pipe info 670 * @out: file to write to 671 * @ppos: position in @out 672 * @len: number of bytes to splice 673 * @flags: splice modifier flags 674 * 675 * Description: 676 * Will either move or copy pages (determined by @flags options) from 677 * the given pipe inode to the given file. 678 * This one is ->write_iter-based. 679 * 680 */ 681 ssize_t 682 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 683 loff_t *ppos, size_t len, unsigned int flags) 684 { 685 struct splice_desc sd = { 686 .total_len = len, 687 .flags = flags, 688 .pos = *ppos, 689 .u.file = out, 690 }; 691 int nbufs = pipe->buffers; 692 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 693 GFP_KERNEL); 694 ssize_t ret; 695 696 if (unlikely(!array)) 697 return -ENOMEM; 698 699 pipe_lock(pipe); 700 701 splice_from_pipe_begin(&sd); 702 while (sd.total_len) { 703 struct iov_iter from; 704 size_t left; 705 int n, idx; 706 707 ret = splice_from_pipe_next(pipe, &sd); 708 if (ret <= 0) 709 break; 710 711 if (unlikely(nbufs < pipe->buffers)) { 712 kfree(array); 713 nbufs = pipe->buffers; 714 array = kcalloc(nbufs, sizeof(struct bio_vec), 715 GFP_KERNEL); 716 if (!array) { 717 ret = -ENOMEM; 718 break; 719 } 720 } 721 722 /* build the vector */ 723 left = sd.total_len; 724 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) { 725 struct pipe_buffer *buf = pipe->bufs + idx; 726 size_t this_len = buf->len; 727 728 if (this_len > left) 729 this_len = left; 730 731 if (idx == pipe->buffers - 1) 732 idx = -1; 733 734 ret = pipe_buf_confirm(pipe, buf); 735 if (unlikely(ret)) { 736 if (ret == -ENODATA) 737 ret = 0; 738 goto done; 739 } 740 741 array[n].bv_page = buf->page; 742 array[n].bv_len = this_len; 743 array[n].bv_offset = buf->offset; 744 left -= this_len; 745 } 746 747 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n, 748 sd.total_len - left); 749 ret = vfs_iter_write(out, &from, &sd.pos, 0); 750 if (ret <= 0) 751 break; 752 753 sd.num_spliced += ret; 754 sd.total_len -= ret; 755 *ppos = sd.pos; 756 757 /* dismiss the fully eaten buffers, adjust the partial one */ 758 while (ret) { 759 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 760 if (ret >= buf->len) { 761 ret -= buf->len; 762 buf->len = 0; 763 pipe_buf_release(pipe, buf); 764 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 765 pipe->nrbufs--; 766 if (pipe->files) 767 sd.need_wakeup = true; 768 } else { 769 buf->offset += ret; 770 buf->len -= ret; 771 ret = 0; 772 } 773 } 774 } 775 done: 776 kfree(array); 777 splice_from_pipe_end(pipe, &sd); 778 779 pipe_unlock(pipe); 780 781 if (sd.num_spliced) 782 ret = sd.num_spliced; 783 784 return ret; 785 } 786 787 EXPORT_SYMBOL(iter_file_splice_write); 788 789 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 790 struct splice_desc *sd) 791 { 792 int ret; 793 void *data; 794 loff_t tmp = sd->pos; 795 796 data = kmap(buf->page); 797 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp); 798 kunmap(buf->page); 799 800 return ret; 801 } 802 803 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 804 struct file *out, loff_t *ppos, 805 size_t len, unsigned int flags) 806 { 807 ssize_t ret; 808 809 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 810 if (ret > 0) 811 *ppos += ret; 812 813 return ret; 814 } 815 816 /** 817 * generic_splice_sendpage - splice data from a pipe to a socket 818 * @pipe: pipe to splice from 819 * @out: socket to write to 820 * @ppos: position in @out 821 * @len: number of bytes to splice 822 * @flags: splice modifier flags 823 * 824 * Description: 825 * Will send @len bytes from the pipe to a network socket. No data copying 826 * is involved. 827 * 828 */ 829 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 830 loff_t *ppos, size_t len, unsigned int flags) 831 { 832 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 833 } 834 835 EXPORT_SYMBOL(generic_splice_sendpage); 836 837 /* 838 * Attempt to initiate a splice from pipe to file. 839 */ 840 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 841 loff_t *ppos, size_t len, unsigned int flags) 842 { 843 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 844 loff_t *, size_t, unsigned int); 845 846 if (out->f_op->splice_write) 847 splice_write = out->f_op->splice_write; 848 else 849 splice_write = default_file_splice_write; 850 851 return splice_write(pipe, out, ppos, len, flags); 852 } 853 854 /* 855 * Attempt to initiate a splice from a file to a pipe. 856 */ 857 static long do_splice_to(struct file *in, loff_t *ppos, 858 struct pipe_inode_info *pipe, size_t len, 859 unsigned int flags) 860 { 861 ssize_t (*splice_read)(struct file *, loff_t *, 862 struct pipe_inode_info *, size_t, unsigned int); 863 int ret; 864 865 if (unlikely(!(in->f_mode & FMODE_READ))) 866 return -EBADF; 867 868 ret = rw_verify_area(READ, in, ppos, len); 869 if (unlikely(ret < 0)) 870 return ret; 871 872 if (unlikely(len > MAX_RW_COUNT)) 873 len = MAX_RW_COUNT; 874 875 if (in->f_op->splice_read) 876 splice_read = in->f_op->splice_read; 877 else 878 splice_read = default_file_splice_read; 879 880 return splice_read(in, ppos, pipe, len, flags); 881 } 882 883 /** 884 * splice_direct_to_actor - splices data directly between two non-pipes 885 * @in: file to splice from 886 * @sd: actor information on where to splice to 887 * @actor: handles the data splicing 888 * 889 * Description: 890 * This is a special case helper to splice directly between two 891 * points, without requiring an explicit pipe. Internally an allocated 892 * pipe is cached in the process, and reused during the lifetime of 893 * that process. 894 * 895 */ 896 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 897 splice_direct_actor *actor) 898 { 899 struct pipe_inode_info *pipe; 900 long ret, bytes; 901 umode_t i_mode; 902 size_t len; 903 int i, flags, more; 904 905 /* 906 * We require the input being a regular file, as we don't want to 907 * randomly drop data for eg socket -> socket splicing. Use the 908 * piped splicing for that! 909 */ 910 i_mode = file_inode(in)->i_mode; 911 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 912 return -EINVAL; 913 914 /* 915 * neither in nor out is a pipe, setup an internal pipe attached to 916 * 'out' and transfer the wanted data from 'in' to 'out' through that 917 */ 918 pipe = current->splice_pipe; 919 if (unlikely(!pipe)) { 920 pipe = alloc_pipe_info(); 921 if (!pipe) 922 return -ENOMEM; 923 924 /* 925 * We don't have an immediate reader, but we'll read the stuff 926 * out of the pipe right after the splice_to_pipe(). So set 927 * PIPE_READERS appropriately. 928 */ 929 pipe->readers = 1; 930 931 current->splice_pipe = pipe; 932 } 933 934 /* 935 * Do the splice. 936 */ 937 ret = 0; 938 bytes = 0; 939 len = sd->total_len; 940 flags = sd->flags; 941 942 /* 943 * Don't block on output, we have to drain the direct pipe. 944 */ 945 sd->flags &= ~SPLICE_F_NONBLOCK; 946 more = sd->flags & SPLICE_F_MORE; 947 948 while (len) { 949 size_t read_len; 950 loff_t pos = sd->pos, prev_pos = pos; 951 952 ret = do_splice_to(in, &pos, pipe, len, flags); 953 if (unlikely(ret <= 0)) 954 goto out_release; 955 956 read_len = ret; 957 sd->total_len = read_len; 958 959 /* 960 * If more data is pending, set SPLICE_F_MORE 961 * If this is the last data and SPLICE_F_MORE was not set 962 * initially, clears it. 963 */ 964 if (read_len < len) 965 sd->flags |= SPLICE_F_MORE; 966 else if (!more) 967 sd->flags &= ~SPLICE_F_MORE; 968 /* 969 * NOTE: nonblocking mode only applies to the input. We 970 * must not do the output in nonblocking mode as then we 971 * could get stuck data in the internal pipe: 972 */ 973 ret = actor(pipe, sd); 974 if (unlikely(ret <= 0)) { 975 sd->pos = prev_pos; 976 goto out_release; 977 } 978 979 bytes += ret; 980 len -= ret; 981 sd->pos = pos; 982 983 if (ret < read_len) { 984 sd->pos = prev_pos + ret; 985 goto out_release; 986 } 987 } 988 989 done: 990 pipe->nrbufs = pipe->curbuf = 0; 991 file_accessed(in); 992 return bytes; 993 994 out_release: 995 /* 996 * If we did an incomplete transfer we must release 997 * the pipe buffers in question: 998 */ 999 for (i = 0; i < pipe->buffers; i++) { 1000 struct pipe_buffer *buf = pipe->bufs + i; 1001 1002 if (buf->ops) 1003 pipe_buf_release(pipe, buf); 1004 } 1005 1006 if (!bytes) 1007 bytes = ret; 1008 1009 goto done; 1010 } 1011 EXPORT_SYMBOL(splice_direct_to_actor); 1012 1013 static int direct_splice_actor(struct pipe_inode_info *pipe, 1014 struct splice_desc *sd) 1015 { 1016 struct file *file = sd->u.file; 1017 1018 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1019 sd->flags); 1020 } 1021 1022 /** 1023 * do_splice_direct - splices data directly between two files 1024 * @in: file to splice from 1025 * @ppos: input file offset 1026 * @out: file to splice to 1027 * @opos: output file offset 1028 * @len: number of bytes to splice 1029 * @flags: splice modifier flags 1030 * 1031 * Description: 1032 * For use by do_sendfile(). splice can easily emulate sendfile, but 1033 * doing it in the application would incur an extra system call 1034 * (splice in + splice out, as compared to just sendfile()). So this helper 1035 * can splice directly through a process-private pipe. 1036 * 1037 */ 1038 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1039 loff_t *opos, size_t len, unsigned int flags) 1040 { 1041 struct splice_desc sd = { 1042 .len = len, 1043 .total_len = len, 1044 .flags = flags, 1045 .pos = *ppos, 1046 .u.file = out, 1047 .opos = opos, 1048 }; 1049 long ret; 1050 1051 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1052 return -EBADF; 1053 1054 if (unlikely(out->f_flags & O_APPEND)) 1055 return -EINVAL; 1056 1057 ret = rw_verify_area(WRITE, out, opos, len); 1058 if (unlikely(ret < 0)) 1059 return ret; 1060 1061 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1062 if (ret > 0) 1063 *ppos = sd.pos; 1064 1065 return ret; 1066 } 1067 EXPORT_SYMBOL(do_splice_direct); 1068 1069 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 1070 { 1071 for (;;) { 1072 if (unlikely(!pipe->readers)) { 1073 send_sig(SIGPIPE, current, 0); 1074 return -EPIPE; 1075 } 1076 if (pipe->nrbufs != pipe->buffers) 1077 return 0; 1078 if (flags & SPLICE_F_NONBLOCK) 1079 return -EAGAIN; 1080 if (signal_pending(current)) 1081 return -ERESTARTSYS; 1082 pipe->waiting_writers++; 1083 pipe_wait(pipe); 1084 pipe->waiting_writers--; 1085 } 1086 } 1087 1088 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1089 struct pipe_inode_info *opipe, 1090 size_t len, unsigned int flags); 1091 1092 /* 1093 * Determine where to splice to/from. 1094 */ 1095 static long do_splice(struct file *in, loff_t __user *off_in, 1096 struct file *out, loff_t __user *off_out, 1097 size_t len, unsigned int flags) 1098 { 1099 struct pipe_inode_info *ipipe; 1100 struct pipe_inode_info *opipe; 1101 loff_t offset; 1102 long ret; 1103 1104 ipipe = get_pipe_info(in); 1105 opipe = get_pipe_info(out); 1106 1107 if (ipipe && opipe) { 1108 if (off_in || off_out) 1109 return -ESPIPE; 1110 1111 if (!(in->f_mode & FMODE_READ)) 1112 return -EBADF; 1113 1114 if (!(out->f_mode & FMODE_WRITE)) 1115 return -EBADF; 1116 1117 /* Splicing to self would be fun, but... */ 1118 if (ipipe == opipe) 1119 return -EINVAL; 1120 1121 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1122 } 1123 1124 if (ipipe) { 1125 if (off_in) 1126 return -ESPIPE; 1127 if (off_out) { 1128 if (!(out->f_mode & FMODE_PWRITE)) 1129 return -EINVAL; 1130 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1131 return -EFAULT; 1132 } else { 1133 offset = out->f_pos; 1134 } 1135 1136 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1137 return -EBADF; 1138 1139 if (unlikely(out->f_flags & O_APPEND)) 1140 return -EINVAL; 1141 1142 ret = rw_verify_area(WRITE, out, &offset, len); 1143 if (unlikely(ret < 0)) 1144 return ret; 1145 1146 file_start_write(out); 1147 ret = do_splice_from(ipipe, out, &offset, len, flags); 1148 file_end_write(out); 1149 1150 if (!off_out) 1151 out->f_pos = offset; 1152 else if (copy_to_user(off_out, &offset, sizeof(loff_t))) 1153 ret = -EFAULT; 1154 1155 return ret; 1156 } 1157 1158 if (opipe) { 1159 if (off_out) 1160 return -ESPIPE; 1161 if (off_in) { 1162 if (!(in->f_mode & FMODE_PREAD)) 1163 return -EINVAL; 1164 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1165 return -EFAULT; 1166 } else { 1167 offset = in->f_pos; 1168 } 1169 1170 pipe_lock(opipe); 1171 ret = wait_for_space(opipe, flags); 1172 if (!ret) 1173 ret = do_splice_to(in, &offset, opipe, len, flags); 1174 pipe_unlock(opipe); 1175 if (ret > 0) 1176 wakeup_pipe_readers(opipe); 1177 if (!off_in) 1178 in->f_pos = offset; 1179 else if (copy_to_user(off_in, &offset, sizeof(loff_t))) 1180 ret = -EFAULT; 1181 1182 return ret; 1183 } 1184 1185 return -EINVAL; 1186 } 1187 1188 static int iter_to_pipe(struct iov_iter *from, 1189 struct pipe_inode_info *pipe, 1190 unsigned flags) 1191 { 1192 struct pipe_buffer buf = { 1193 .ops = &user_page_pipe_buf_ops, 1194 .flags = flags 1195 }; 1196 size_t total = 0; 1197 int ret = 0; 1198 bool failed = false; 1199 1200 while (iov_iter_count(from) && !failed) { 1201 struct page *pages[16]; 1202 ssize_t copied; 1203 size_t start; 1204 int n; 1205 1206 copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start); 1207 if (copied <= 0) { 1208 ret = copied; 1209 break; 1210 } 1211 1212 for (n = 0; copied; n++, start = 0) { 1213 int size = min_t(int, copied, PAGE_SIZE - start); 1214 if (!failed) { 1215 buf.page = pages[n]; 1216 buf.offset = start; 1217 buf.len = size; 1218 ret = add_to_pipe(pipe, &buf); 1219 if (unlikely(ret < 0)) { 1220 failed = true; 1221 } else { 1222 iov_iter_advance(from, ret); 1223 total += ret; 1224 } 1225 } else { 1226 put_page(pages[n]); 1227 } 1228 copied -= size; 1229 } 1230 } 1231 return total ? total : ret; 1232 } 1233 1234 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1235 struct splice_desc *sd) 1236 { 1237 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1238 return n == sd->len ? n : -EFAULT; 1239 } 1240 1241 /* 1242 * For lack of a better implementation, implement vmsplice() to userspace 1243 * as a simple copy of the pipes pages to the user iov. 1244 */ 1245 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov, 1246 unsigned long nr_segs, unsigned int flags) 1247 { 1248 struct pipe_inode_info *pipe; 1249 struct splice_desc sd; 1250 long ret; 1251 struct iovec iovstack[UIO_FASTIOV]; 1252 struct iovec *iov = iovstack; 1253 struct iov_iter iter; 1254 1255 pipe = get_pipe_info(file); 1256 if (!pipe) 1257 return -EBADF; 1258 1259 ret = import_iovec(READ, uiov, nr_segs, 1260 ARRAY_SIZE(iovstack), &iov, &iter); 1261 if (ret < 0) 1262 return ret; 1263 1264 sd.total_len = iov_iter_count(&iter); 1265 sd.len = 0; 1266 sd.flags = flags; 1267 sd.u.data = &iter; 1268 sd.pos = 0; 1269 1270 if (sd.total_len) { 1271 pipe_lock(pipe); 1272 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1273 pipe_unlock(pipe); 1274 } 1275 1276 kfree(iov); 1277 return ret; 1278 } 1279 1280 /* 1281 * vmsplice splices a user address range into a pipe. It can be thought of 1282 * as splice-from-memory, where the regular splice is splice-from-file (or 1283 * to file). In both cases the output is a pipe, naturally. 1284 */ 1285 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *uiov, 1286 unsigned long nr_segs, unsigned int flags) 1287 { 1288 struct pipe_inode_info *pipe; 1289 struct iovec iovstack[UIO_FASTIOV]; 1290 struct iovec *iov = iovstack; 1291 struct iov_iter from; 1292 long ret; 1293 unsigned buf_flag = 0; 1294 1295 if (flags & SPLICE_F_GIFT) 1296 buf_flag = PIPE_BUF_FLAG_GIFT; 1297 1298 pipe = get_pipe_info(file); 1299 if (!pipe) 1300 return -EBADF; 1301 1302 ret = import_iovec(WRITE, uiov, nr_segs, 1303 ARRAY_SIZE(iovstack), &iov, &from); 1304 if (ret < 0) 1305 return ret; 1306 1307 pipe_lock(pipe); 1308 ret = wait_for_space(pipe, flags); 1309 if (!ret) 1310 ret = iter_to_pipe(&from, pipe, buf_flag); 1311 pipe_unlock(pipe); 1312 if (ret > 0) 1313 wakeup_pipe_readers(pipe); 1314 kfree(iov); 1315 return ret; 1316 } 1317 1318 /* 1319 * Note that vmsplice only really supports true splicing _from_ user memory 1320 * to a pipe, not the other way around. Splicing from user memory is a simple 1321 * operation that can be supported without any funky alignment restrictions 1322 * or nasty vm tricks. We simply map in the user memory and fill them into 1323 * a pipe. The reverse isn't quite as easy, though. There are two possible 1324 * solutions for that: 1325 * 1326 * - memcpy() the data internally, at which point we might as well just 1327 * do a regular read() on the buffer anyway. 1328 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1329 * has restriction limitations on both ends of the pipe). 1330 * 1331 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1332 * 1333 */ 1334 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1335 unsigned long, nr_segs, unsigned int, flags) 1336 { 1337 struct fd f; 1338 long error; 1339 1340 if (unlikely(flags & ~SPLICE_F_ALL)) 1341 return -EINVAL; 1342 if (unlikely(nr_segs > UIO_MAXIOV)) 1343 return -EINVAL; 1344 else if (unlikely(!nr_segs)) 1345 return 0; 1346 1347 error = -EBADF; 1348 f = fdget(fd); 1349 if (f.file) { 1350 if (f.file->f_mode & FMODE_WRITE) 1351 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags); 1352 else if (f.file->f_mode & FMODE_READ) 1353 error = vmsplice_to_user(f.file, iov, nr_segs, flags); 1354 1355 fdput(f); 1356 } 1357 1358 return error; 1359 } 1360 1361 #ifdef CONFIG_COMPAT 1362 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32, 1363 unsigned int, nr_segs, unsigned int, flags) 1364 { 1365 unsigned i; 1366 struct iovec __user *iov; 1367 if (nr_segs > UIO_MAXIOV) 1368 return -EINVAL; 1369 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec)); 1370 for (i = 0; i < nr_segs; i++) { 1371 struct compat_iovec v; 1372 if (get_user(v.iov_base, &iov32[i].iov_base) || 1373 get_user(v.iov_len, &iov32[i].iov_len) || 1374 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) || 1375 put_user(v.iov_len, &iov[i].iov_len)) 1376 return -EFAULT; 1377 } 1378 return sys_vmsplice(fd, iov, nr_segs, flags); 1379 } 1380 #endif 1381 1382 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1383 int, fd_out, loff_t __user *, off_out, 1384 size_t, len, unsigned int, flags) 1385 { 1386 struct fd in, out; 1387 long error; 1388 1389 if (unlikely(!len)) 1390 return 0; 1391 1392 if (unlikely(flags & ~SPLICE_F_ALL)) 1393 return -EINVAL; 1394 1395 error = -EBADF; 1396 in = fdget(fd_in); 1397 if (in.file) { 1398 if (in.file->f_mode & FMODE_READ) { 1399 out = fdget(fd_out); 1400 if (out.file) { 1401 if (out.file->f_mode & FMODE_WRITE) 1402 error = do_splice(in.file, off_in, 1403 out.file, off_out, 1404 len, flags); 1405 fdput(out); 1406 } 1407 } 1408 fdput(in); 1409 } 1410 return error; 1411 } 1412 1413 /* 1414 * Make sure there's data to read. Wait for input if we can, otherwise 1415 * return an appropriate error. 1416 */ 1417 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1418 { 1419 int ret; 1420 1421 /* 1422 * Check ->nrbufs without the inode lock first. This function 1423 * is speculative anyways, so missing one is ok. 1424 */ 1425 if (pipe->nrbufs) 1426 return 0; 1427 1428 ret = 0; 1429 pipe_lock(pipe); 1430 1431 while (!pipe->nrbufs) { 1432 if (signal_pending(current)) { 1433 ret = -ERESTARTSYS; 1434 break; 1435 } 1436 if (!pipe->writers) 1437 break; 1438 if (!pipe->waiting_writers) { 1439 if (flags & SPLICE_F_NONBLOCK) { 1440 ret = -EAGAIN; 1441 break; 1442 } 1443 } 1444 pipe_wait(pipe); 1445 } 1446 1447 pipe_unlock(pipe); 1448 return ret; 1449 } 1450 1451 /* 1452 * Make sure there's writeable room. Wait for room if we can, otherwise 1453 * return an appropriate error. 1454 */ 1455 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1456 { 1457 int ret; 1458 1459 /* 1460 * Check ->nrbufs without the inode lock first. This function 1461 * is speculative anyways, so missing one is ok. 1462 */ 1463 if (pipe->nrbufs < pipe->buffers) 1464 return 0; 1465 1466 ret = 0; 1467 pipe_lock(pipe); 1468 1469 while (pipe->nrbufs >= pipe->buffers) { 1470 if (!pipe->readers) { 1471 send_sig(SIGPIPE, current, 0); 1472 ret = -EPIPE; 1473 break; 1474 } 1475 if (flags & SPLICE_F_NONBLOCK) { 1476 ret = -EAGAIN; 1477 break; 1478 } 1479 if (signal_pending(current)) { 1480 ret = -ERESTARTSYS; 1481 break; 1482 } 1483 pipe->waiting_writers++; 1484 pipe_wait(pipe); 1485 pipe->waiting_writers--; 1486 } 1487 1488 pipe_unlock(pipe); 1489 return ret; 1490 } 1491 1492 /* 1493 * Splice contents of ipipe to opipe. 1494 */ 1495 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1496 struct pipe_inode_info *opipe, 1497 size_t len, unsigned int flags) 1498 { 1499 struct pipe_buffer *ibuf, *obuf; 1500 int ret = 0, nbuf; 1501 bool input_wakeup = false; 1502 1503 1504 retry: 1505 ret = ipipe_prep(ipipe, flags); 1506 if (ret) 1507 return ret; 1508 1509 ret = opipe_prep(opipe, flags); 1510 if (ret) 1511 return ret; 1512 1513 /* 1514 * Potential ABBA deadlock, work around it by ordering lock 1515 * grabbing by pipe info address. Otherwise two different processes 1516 * could deadlock (one doing tee from A -> B, the other from B -> A). 1517 */ 1518 pipe_double_lock(ipipe, opipe); 1519 1520 do { 1521 if (!opipe->readers) { 1522 send_sig(SIGPIPE, current, 0); 1523 if (!ret) 1524 ret = -EPIPE; 1525 break; 1526 } 1527 1528 if (!ipipe->nrbufs && !ipipe->writers) 1529 break; 1530 1531 /* 1532 * Cannot make any progress, because either the input 1533 * pipe is empty or the output pipe is full. 1534 */ 1535 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) { 1536 /* Already processed some buffers, break */ 1537 if (ret) 1538 break; 1539 1540 if (flags & SPLICE_F_NONBLOCK) { 1541 ret = -EAGAIN; 1542 break; 1543 } 1544 1545 /* 1546 * We raced with another reader/writer and haven't 1547 * managed to process any buffers. A zero return 1548 * value means EOF, so retry instead. 1549 */ 1550 pipe_unlock(ipipe); 1551 pipe_unlock(opipe); 1552 goto retry; 1553 } 1554 1555 ibuf = ipipe->bufs + ipipe->curbuf; 1556 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1557 obuf = opipe->bufs + nbuf; 1558 1559 if (len >= ibuf->len) { 1560 /* 1561 * Simply move the whole buffer from ipipe to opipe 1562 */ 1563 *obuf = *ibuf; 1564 ibuf->ops = NULL; 1565 opipe->nrbufs++; 1566 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1); 1567 ipipe->nrbufs--; 1568 input_wakeup = true; 1569 } else { 1570 /* 1571 * Get a reference to this pipe buffer, 1572 * so we can copy the contents over. 1573 */ 1574 pipe_buf_get(ipipe, ibuf); 1575 *obuf = *ibuf; 1576 1577 /* 1578 * Don't inherit the gift flag, we need to 1579 * prevent multiple steals of this page. 1580 */ 1581 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1582 1583 obuf->len = len; 1584 opipe->nrbufs++; 1585 ibuf->offset += obuf->len; 1586 ibuf->len -= obuf->len; 1587 } 1588 ret += obuf->len; 1589 len -= obuf->len; 1590 } while (len); 1591 1592 pipe_unlock(ipipe); 1593 pipe_unlock(opipe); 1594 1595 /* 1596 * If we put data in the output pipe, wakeup any potential readers. 1597 */ 1598 if (ret > 0) 1599 wakeup_pipe_readers(opipe); 1600 1601 if (input_wakeup) 1602 wakeup_pipe_writers(ipipe); 1603 1604 return ret; 1605 } 1606 1607 /* 1608 * Link contents of ipipe to opipe. 1609 */ 1610 static int link_pipe(struct pipe_inode_info *ipipe, 1611 struct pipe_inode_info *opipe, 1612 size_t len, unsigned int flags) 1613 { 1614 struct pipe_buffer *ibuf, *obuf; 1615 int ret = 0, i = 0, nbuf; 1616 1617 /* 1618 * Potential ABBA deadlock, work around it by ordering lock 1619 * grabbing by pipe info address. Otherwise two different processes 1620 * could deadlock (one doing tee from A -> B, the other from B -> A). 1621 */ 1622 pipe_double_lock(ipipe, opipe); 1623 1624 do { 1625 if (!opipe->readers) { 1626 send_sig(SIGPIPE, current, 0); 1627 if (!ret) 1628 ret = -EPIPE; 1629 break; 1630 } 1631 1632 /* 1633 * If we have iterated all input buffers or ran out of 1634 * output room, break. 1635 */ 1636 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) 1637 break; 1638 1639 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1)); 1640 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1641 1642 /* 1643 * Get a reference to this pipe buffer, 1644 * so we can copy the contents over. 1645 */ 1646 pipe_buf_get(ipipe, ibuf); 1647 1648 obuf = opipe->bufs + nbuf; 1649 *obuf = *ibuf; 1650 1651 /* 1652 * Don't inherit the gift flag, we need to 1653 * prevent multiple steals of this page. 1654 */ 1655 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1656 1657 if (obuf->len > len) 1658 obuf->len = len; 1659 1660 opipe->nrbufs++; 1661 ret += obuf->len; 1662 len -= obuf->len; 1663 i++; 1664 } while (len); 1665 1666 /* 1667 * return EAGAIN if we have the potential of some data in the 1668 * future, otherwise just return 0 1669 */ 1670 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1671 ret = -EAGAIN; 1672 1673 pipe_unlock(ipipe); 1674 pipe_unlock(opipe); 1675 1676 /* 1677 * If we put data in the output pipe, wakeup any potential readers. 1678 */ 1679 if (ret > 0) 1680 wakeup_pipe_readers(opipe); 1681 1682 return ret; 1683 } 1684 1685 /* 1686 * This is a tee(1) implementation that works on pipes. It doesn't copy 1687 * any data, it simply references the 'in' pages on the 'out' pipe. 1688 * The 'flags' used are the SPLICE_F_* variants, currently the only 1689 * applicable one is SPLICE_F_NONBLOCK. 1690 */ 1691 static long do_tee(struct file *in, struct file *out, size_t len, 1692 unsigned int flags) 1693 { 1694 struct pipe_inode_info *ipipe = get_pipe_info(in); 1695 struct pipe_inode_info *opipe = get_pipe_info(out); 1696 int ret = -EINVAL; 1697 1698 /* 1699 * Duplicate the contents of ipipe to opipe without actually 1700 * copying the data. 1701 */ 1702 if (ipipe && opipe && ipipe != opipe) { 1703 /* 1704 * Keep going, unless we encounter an error. The ipipe/opipe 1705 * ordering doesn't really matter. 1706 */ 1707 ret = ipipe_prep(ipipe, flags); 1708 if (!ret) { 1709 ret = opipe_prep(opipe, flags); 1710 if (!ret) 1711 ret = link_pipe(ipipe, opipe, len, flags); 1712 } 1713 } 1714 1715 return ret; 1716 } 1717 1718 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1719 { 1720 struct fd in; 1721 int error; 1722 1723 if (unlikely(flags & ~SPLICE_F_ALL)) 1724 return -EINVAL; 1725 1726 if (unlikely(!len)) 1727 return 0; 1728 1729 error = -EBADF; 1730 in = fdget(fdin); 1731 if (in.file) { 1732 if (in.file->f_mode & FMODE_READ) { 1733 struct fd out = fdget(fdout); 1734 if (out.file) { 1735 if (out.file->f_mode & FMODE_WRITE) 1736 error = do_tee(in.file, out.file, 1737 len, flags); 1738 fdput(out); 1739 } 1740 } 1741 fdput(in); 1742 } 1743 1744 return error; 1745 } 1746