1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/bvec.h> 21 #include <linux/fs.h> 22 #include <linux/file.h> 23 #include <linux/pagemap.h> 24 #include <linux/splice.h> 25 #include <linux/memcontrol.h> 26 #include <linux/mm_inline.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/export.h> 30 #include <linux/syscalls.h> 31 #include <linux/uio.h> 32 #include <linux/security.h> 33 #include <linux/gfp.h> 34 #include <linux/socket.h> 35 #include <linux/compat.h> 36 #include <linux/sched/signal.h> 37 38 #include "internal.h" 39 40 /* 41 * Attempt to steal a page from a pipe buffer. This should perhaps go into 42 * a vm helper function, it's already simplified quite a bit by the 43 * addition of remove_mapping(). If success is returned, the caller may 44 * attempt to reuse this page for another destination. 45 */ 46 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 47 struct pipe_buffer *buf) 48 { 49 struct page *page = buf->page; 50 struct address_space *mapping; 51 52 lock_page(page); 53 54 mapping = page_mapping(page); 55 if (mapping) { 56 WARN_ON(!PageUptodate(page)); 57 58 /* 59 * At least for ext2 with nobh option, we need to wait on 60 * writeback completing on this page, since we'll remove it 61 * from the pagecache. Otherwise truncate wont wait on the 62 * page, allowing the disk blocks to be reused by someone else 63 * before we actually wrote our data to them. fs corruption 64 * ensues. 65 */ 66 wait_on_page_writeback(page); 67 68 if (page_has_private(page) && 69 !try_to_release_page(page, GFP_KERNEL)) 70 goto out_unlock; 71 72 /* 73 * If we succeeded in removing the mapping, set LRU flag 74 * and return good. 75 */ 76 if (remove_mapping(mapping, page)) { 77 buf->flags |= PIPE_BUF_FLAG_LRU; 78 return 0; 79 } 80 } 81 82 /* 83 * Raced with truncate or failed to remove page from current 84 * address space, unlock and return failure. 85 */ 86 out_unlock: 87 unlock_page(page); 88 return 1; 89 } 90 91 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 92 struct pipe_buffer *buf) 93 { 94 put_page(buf->page); 95 buf->flags &= ~PIPE_BUF_FLAG_LRU; 96 } 97 98 /* 99 * Check whether the contents of buf is OK to access. Since the content 100 * is a page cache page, IO may be in flight. 101 */ 102 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 103 struct pipe_buffer *buf) 104 { 105 struct page *page = buf->page; 106 int err; 107 108 if (!PageUptodate(page)) { 109 lock_page(page); 110 111 /* 112 * Page got truncated/unhashed. This will cause a 0-byte 113 * splice, if this is the first page. 114 */ 115 if (!page->mapping) { 116 err = -ENODATA; 117 goto error; 118 } 119 120 /* 121 * Uh oh, read-error from disk. 122 */ 123 if (!PageUptodate(page)) { 124 err = -EIO; 125 goto error; 126 } 127 128 /* 129 * Page is ok afterall, we are done. 130 */ 131 unlock_page(page); 132 } 133 134 return 0; 135 error: 136 unlock_page(page); 137 return err; 138 } 139 140 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 141 .can_merge = 0, 142 .confirm = page_cache_pipe_buf_confirm, 143 .release = page_cache_pipe_buf_release, 144 .steal = page_cache_pipe_buf_steal, 145 .get = generic_pipe_buf_get, 146 }; 147 148 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 149 struct pipe_buffer *buf) 150 { 151 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 152 return 1; 153 154 buf->flags |= PIPE_BUF_FLAG_LRU; 155 return generic_pipe_buf_steal(pipe, buf); 156 } 157 158 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 159 .can_merge = 0, 160 .confirm = generic_pipe_buf_confirm, 161 .release = page_cache_pipe_buf_release, 162 .steal = user_page_pipe_buf_steal, 163 .get = generic_pipe_buf_get, 164 }; 165 166 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 167 { 168 smp_mb(); 169 if (waitqueue_active(&pipe->wait)) 170 wake_up_interruptible(&pipe->wait); 171 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 172 } 173 174 /** 175 * splice_to_pipe - fill passed data into a pipe 176 * @pipe: pipe to fill 177 * @spd: data to fill 178 * 179 * Description: 180 * @spd contains a map of pages and len/offset tuples, along with 181 * the struct pipe_buf_operations associated with these pages. This 182 * function will link that data to the pipe. 183 * 184 */ 185 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 186 struct splice_pipe_desc *spd) 187 { 188 unsigned int spd_pages = spd->nr_pages; 189 int ret = 0, page_nr = 0; 190 191 if (!spd_pages) 192 return 0; 193 194 if (unlikely(!pipe->readers)) { 195 send_sig(SIGPIPE, current, 0); 196 ret = -EPIPE; 197 goto out; 198 } 199 200 while (pipe->nrbufs < pipe->buffers) { 201 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 202 struct pipe_buffer *buf = pipe->bufs + newbuf; 203 204 buf->page = spd->pages[page_nr]; 205 buf->offset = spd->partial[page_nr].offset; 206 buf->len = spd->partial[page_nr].len; 207 buf->private = spd->partial[page_nr].private; 208 buf->ops = spd->ops; 209 buf->flags = 0; 210 211 pipe->nrbufs++; 212 page_nr++; 213 ret += buf->len; 214 215 if (!--spd->nr_pages) 216 break; 217 } 218 219 if (!ret) 220 ret = -EAGAIN; 221 222 out: 223 while (page_nr < spd_pages) 224 spd->spd_release(spd, page_nr++); 225 226 return ret; 227 } 228 EXPORT_SYMBOL_GPL(splice_to_pipe); 229 230 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 231 { 232 int ret; 233 234 if (unlikely(!pipe->readers)) { 235 send_sig(SIGPIPE, current, 0); 236 ret = -EPIPE; 237 } else if (pipe->nrbufs == pipe->buffers) { 238 ret = -EAGAIN; 239 } else { 240 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 241 pipe->bufs[newbuf] = *buf; 242 pipe->nrbufs++; 243 return buf->len; 244 } 245 pipe_buf_release(pipe, buf); 246 return ret; 247 } 248 EXPORT_SYMBOL(add_to_pipe); 249 250 /* 251 * Check if we need to grow the arrays holding pages and partial page 252 * descriptions. 253 */ 254 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 255 { 256 unsigned int buffers = READ_ONCE(pipe->buffers); 257 258 spd->nr_pages_max = buffers; 259 if (buffers <= PIPE_DEF_BUFFERS) 260 return 0; 261 262 spd->pages = kmalloc_array(buffers, sizeof(struct page *), GFP_KERNEL); 263 spd->partial = kmalloc_array(buffers, sizeof(struct partial_page), 264 GFP_KERNEL); 265 266 if (spd->pages && spd->partial) 267 return 0; 268 269 kfree(spd->pages); 270 kfree(spd->partial); 271 return -ENOMEM; 272 } 273 274 void splice_shrink_spd(struct splice_pipe_desc *spd) 275 { 276 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 277 return; 278 279 kfree(spd->pages); 280 kfree(spd->partial); 281 } 282 283 /** 284 * generic_file_splice_read - splice data from file to a pipe 285 * @in: file to splice from 286 * @ppos: position in @in 287 * @pipe: pipe to splice to 288 * @len: number of bytes to splice 289 * @flags: splice modifier flags 290 * 291 * Description: 292 * Will read pages from given file and fill them into a pipe. Can be 293 * used as long as it has more or less sane ->read_iter(). 294 * 295 */ 296 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 297 struct pipe_inode_info *pipe, size_t len, 298 unsigned int flags) 299 { 300 struct iov_iter to; 301 struct kiocb kiocb; 302 int idx, ret; 303 304 iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len); 305 idx = to.idx; 306 init_sync_kiocb(&kiocb, in); 307 kiocb.ki_pos = *ppos; 308 ret = call_read_iter(in, &kiocb, &to); 309 if (ret > 0) { 310 *ppos = kiocb.ki_pos; 311 file_accessed(in); 312 } else if (ret < 0) { 313 to.idx = idx; 314 to.iov_offset = 0; 315 iov_iter_advance(&to, 0); /* to free what was emitted */ 316 /* 317 * callers of ->splice_read() expect -EAGAIN on 318 * "can't put anything in there", rather than -EFAULT. 319 */ 320 if (ret == -EFAULT) 321 ret = -EAGAIN; 322 } 323 324 return ret; 325 } 326 EXPORT_SYMBOL(generic_file_splice_read); 327 328 const struct pipe_buf_operations default_pipe_buf_ops = { 329 .can_merge = 0, 330 .confirm = generic_pipe_buf_confirm, 331 .release = generic_pipe_buf_release, 332 .steal = generic_pipe_buf_steal, 333 .get = generic_pipe_buf_get, 334 }; 335 336 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe, 337 struct pipe_buffer *buf) 338 { 339 return 1; 340 } 341 342 /* Pipe buffer operations for a socket and similar. */ 343 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 344 .can_merge = 0, 345 .confirm = generic_pipe_buf_confirm, 346 .release = generic_pipe_buf_release, 347 .steal = generic_pipe_buf_nosteal, 348 .get = generic_pipe_buf_get, 349 }; 350 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 351 352 static ssize_t kernel_readv(struct file *file, const struct kvec *vec, 353 unsigned long vlen, loff_t offset) 354 { 355 mm_segment_t old_fs; 356 loff_t pos = offset; 357 ssize_t res; 358 359 old_fs = get_fs(); 360 set_fs(get_ds()); 361 /* The cast to a user pointer is valid due to the set_fs() */ 362 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0); 363 set_fs(old_fs); 364 365 return res; 366 } 367 368 static ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 369 struct pipe_inode_info *pipe, size_t len, 370 unsigned int flags) 371 { 372 struct kvec *vec, __vec[PIPE_DEF_BUFFERS]; 373 struct iov_iter to; 374 struct page **pages; 375 unsigned int nr_pages; 376 size_t offset, base, copied = 0; 377 ssize_t res; 378 int i; 379 380 if (pipe->nrbufs == pipe->buffers) 381 return -EAGAIN; 382 383 /* 384 * Try to keep page boundaries matching to source pagecache ones - 385 * it probably won't be much help, but... 386 */ 387 offset = *ppos & ~PAGE_MASK; 388 389 iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len + offset); 390 391 res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &base); 392 if (res <= 0) 393 return -ENOMEM; 394 395 nr_pages = DIV_ROUND_UP(res + base, PAGE_SIZE); 396 397 vec = __vec; 398 if (nr_pages > PIPE_DEF_BUFFERS) { 399 vec = kmalloc_array(nr_pages, sizeof(struct kvec), GFP_KERNEL); 400 if (unlikely(!vec)) { 401 res = -ENOMEM; 402 goto out; 403 } 404 } 405 406 pipe->bufs[to.idx].offset = offset; 407 pipe->bufs[to.idx].len -= offset; 408 409 for (i = 0; i < nr_pages; i++) { 410 size_t this_len = min_t(size_t, len, PAGE_SIZE - offset); 411 vec[i].iov_base = page_address(pages[i]) + offset; 412 vec[i].iov_len = this_len; 413 len -= this_len; 414 offset = 0; 415 } 416 417 res = kernel_readv(in, vec, nr_pages, *ppos); 418 if (res > 0) { 419 copied = res; 420 *ppos += res; 421 } 422 423 if (vec != __vec) 424 kfree(vec); 425 out: 426 for (i = 0; i < nr_pages; i++) 427 put_page(pages[i]); 428 kvfree(pages); 429 iov_iter_advance(&to, copied); /* truncates and discards */ 430 return res; 431 } 432 433 /* 434 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 435 * using sendpage(). Return the number of bytes sent. 436 */ 437 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 438 struct pipe_buffer *buf, struct splice_desc *sd) 439 { 440 struct file *file = sd->u.file; 441 loff_t pos = sd->pos; 442 int more; 443 444 if (!likely(file->f_op->sendpage)) 445 return -EINVAL; 446 447 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0; 448 449 if (sd->len < sd->total_len && pipe->nrbufs > 1) 450 more |= MSG_SENDPAGE_NOTLAST; 451 452 return file->f_op->sendpage(file, buf->page, buf->offset, 453 sd->len, &pos, more); 454 } 455 456 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 457 { 458 smp_mb(); 459 if (waitqueue_active(&pipe->wait)) 460 wake_up_interruptible(&pipe->wait); 461 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 462 } 463 464 /** 465 * splice_from_pipe_feed - feed available data from a pipe to a file 466 * @pipe: pipe to splice from 467 * @sd: information to @actor 468 * @actor: handler that splices the data 469 * 470 * Description: 471 * This function loops over the pipe and calls @actor to do the 472 * actual moving of a single struct pipe_buffer to the desired 473 * destination. It returns when there's no more buffers left in 474 * the pipe or if the requested number of bytes (@sd->total_len) 475 * have been copied. It returns a positive number (one) if the 476 * pipe needs to be filled with more data, zero if the required 477 * number of bytes have been copied and -errno on error. 478 * 479 * This, together with splice_from_pipe_{begin,end,next}, may be 480 * used to implement the functionality of __splice_from_pipe() when 481 * locking is required around copying the pipe buffers to the 482 * destination. 483 */ 484 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 485 splice_actor *actor) 486 { 487 int ret; 488 489 while (pipe->nrbufs) { 490 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 491 492 sd->len = buf->len; 493 if (sd->len > sd->total_len) 494 sd->len = sd->total_len; 495 496 ret = pipe_buf_confirm(pipe, buf); 497 if (unlikely(ret)) { 498 if (ret == -ENODATA) 499 ret = 0; 500 return ret; 501 } 502 503 ret = actor(pipe, buf, sd); 504 if (ret <= 0) 505 return ret; 506 507 buf->offset += ret; 508 buf->len -= ret; 509 510 sd->num_spliced += ret; 511 sd->len -= ret; 512 sd->pos += ret; 513 sd->total_len -= ret; 514 515 if (!buf->len) { 516 pipe_buf_release(pipe, buf); 517 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 518 pipe->nrbufs--; 519 if (pipe->files) 520 sd->need_wakeup = true; 521 } 522 523 if (!sd->total_len) 524 return 0; 525 } 526 527 return 1; 528 } 529 530 /** 531 * splice_from_pipe_next - wait for some data to splice from 532 * @pipe: pipe to splice from 533 * @sd: information about the splice operation 534 * 535 * Description: 536 * This function will wait for some data and return a positive 537 * value (one) if pipe buffers are available. It will return zero 538 * or -errno if no more data needs to be spliced. 539 */ 540 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 541 { 542 /* 543 * Check for signal early to make process killable when there are 544 * always buffers available 545 */ 546 if (signal_pending(current)) 547 return -ERESTARTSYS; 548 549 while (!pipe->nrbufs) { 550 if (!pipe->writers) 551 return 0; 552 553 if (!pipe->waiting_writers && sd->num_spliced) 554 return 0; 555 556 if (sd->flags & SPLICE_F_NONBLOCK) 557 return -EAGAIN; 558 559 if (signal_pending(current)) 560 return -ERESTARTSYS; 561 562 if (sd->need_wakeup) { 563 wakeup_pipe_writers(pipe); 564 sd->need_wakeup = false; 565 } 566 567 pipe_wait(pipe); 568 } 569 570 return 1; 571 } 572 573 /** 574 * splice_from_pipe_begin - start splicing from pipe 575 * @sd: information about the splice operation 576 * 577 * Description: 578 * This function should be called before a loop containing 579 * splice_from_pipe_next() and splice_from_pipe_feed() to 580 * initialize the necessary fields of @sd. 581 */ 582 static void splice_from_pipe_begin(struct splice_desc *sd) 583 { 584 sd->num_spliced = 0; 585 sd->need_wakeup = false; 586 } 587 588 /** 589 * splice_from_pipe_end - finish splicing from pipe 590 * @pipe: pipe to splice from 591 * @sd: information about the splice operation 592 * 593 * Description: 594 * This function will wake up pipe writers if necessary. It should 595 * be called after a loop containing splice_from_pipe_next() and 596 * splice_from_pipe_feed(). 597 */ 598 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 599 { 600 if (sd->need_wakeup) 601 wakeup_pipe_writers(pipe); 602 } 603 604 /** 605 * __splice_from_pipe - splice data from a pipe to given actor 606 * @pipe: pipe to splice from 607 * @sd: information to @actor 608 * @actor: handler that splices the data 609 * 610 * Description: 611 * This function does little more than loop over the pipe and call 612 * @actor to do the actual moving of a single struct pipe_buffer to 613 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 614 * pipe_to_user. 615 * 616 */ 617 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 618 splice_actor *actor) 619 { 620 int ret; 621 622 splice_from_pipe_begin(sd); 623 do { 624 cond_resched(); 625 ret = splice_from_pipe_next(pipe, sd); 626 if (ret > 0) 627 ret = splice_from_pipe_feed(pipe, sd, actor); 628 } while (ret > 0); 629 splice_from_pipe_end(pipe, sd); 630 631 return sd->num_spliced ? sd->num_spliced : ret; 632 } 633 EXPORT_SYMBOL(__splice_from_pipe); 634 635 /** 636 * splice_from_pipe - splice data from a pipe to a file 637 * @pipe: pipe to splice from 638 * @out: file to splice to 639 * @ppos: position in @out 640 * @len: how many bytes to splice 641 * @flags: splice modifier flags 642 * @actor: handler that splices the data 643 * 644 * Description: 645 * See __splice_from_pipe. This function locks the pipe inode, 646 * otherwise it's identical to __splice_from_pipe(). 647 * 648 */ 649 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 650 loff_t *ppos, size_t len, unsigned int flags, 651 splice_actor *actor) 652 { 653 ssize_t ret; 654 struct splice_desc sd = { 655 .total_len = len, 656 .flags = flags, 657 .pos = *ppos, 658 .u.file = out, 659 }; 660 661 pipe_lock(pipe); 662 ret = __splice_from_pipe(pipe, &sd, actor); 663 pipe_unlock(pipe); 664 665 return ret; 666 } 667 668 /** 669 * iter_file_splice_write - splice data from a pipe to a file 670 * @pipe: pipe info 671 * @out: file to write to 672 * @ppos: position in @out 673 * @len: number of bytes to splice 674 * @flags: splice modifier flags 675 * 676 * Description: 677 * Will either move or copy pages (determined by @flags options) from 678 * the given pipe inode to the given file. 679 * This one is ->write_iter-based. 680 * 681 */ 682 ssize_t 683 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 684 loff_t *ppos, size_t len, unsigned int flags) 685 { 686 struct splice_desc sd = { 687 .total_len = len, 688 .flags = flags, 689 .pos = *ppos, 690 .u.file = out, 691 }; 692 int nbufs = pipe->buffers; 693 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 694 GFP_KERNEL); 695 ssize_t ret; 696 697 if (unlikely(!array)) 698 return -ENOMEM; 699 700 pipe_lock(pipe); 701 702 splice_from_pipe_begin(&sd); 703 while (sd.total_len) { 704 struct iov_iter from; 705 size_t left; 706 int n, idx; 707 708 ret = splice_from_pipe_next(pipe, &sd); 709 if (ret <= 0) 710 break; 711 712 if (unlikely(nbufs < pipe->buffers)) { 713 kfree(array); 714 nbufs = pipe->buffers; 715 array = kcalloc(nbufs, sizeof(struct bio_vec), 716 GFP_KERNEL); 717 if (!array) { 718 ret = -ENOMEM; 719 break; 720 } 721 } 722 723 /* build the vector */ 724 left = sd.total_len; 725 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) { 726 struct pipe_buffer *buf = pipe->bufs + idx; 727 size_t this_len = buf->len; 728 729 if (this_len > left) 730 this_len = left; 731 732 if (idx == pipe->buffers - 1) 733 idx = -1; 734 735 ret = pipe_buf_confirm(pipe, buf); 736 if (unlikely(ret)) { 737 if (ret == -ENODATA) 738 ret = 0; 739 goto done; 740 } 741 742 array[n].bv_page = buf->page; 743 array[n].bv_len = this_len; 744 array[n].bv_offset = buf->offset; 745 left -= this_len; 746 } 747 748 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n, 749 sd.total_len - left); 750 ret = vfs_iter_write(out, &from, &sd.pos, 0); 751 if (ret <= 0) 752 break; 753 754 sd.num_spliced += ret; 755 sd.total_len -= ret; 756 *ppos = sd.pos; 757 758 /* dismiss the fully eaten buffers, adjust the partial one */ 759 while (ret) { 760 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 761 if (ret >= buf->len) { 762 ret -= buf->len; 763 buf->len = 0; 764 pipe_buf_release(pipe, buf); 765 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 766 pipe->nrbufs--; 767 if (pipe->files) 768 sd.need_wakeup = true; 769 } else { 770 buf->offset += ret; 771 buf->len -= ret; 772 ret = 0; 773 } 774 } 775 } 776 done: 777 kfree(array); 778 splice_from_pipe_end(pipe, &sd); 779 780 pipe_unlock(pipe); 781 782 if (sd.num_spliced) 783 ret = sd.num_spliced; 784 785 return ret; 786 } 787 788 EXPORT_SYMBOL(iter_file_splice_write); 789 790 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 791 struct splice_desc *sd) 792 { 793 int ret; 794 void *data; 795 loff_t tmp = sd->pos; 796 797 data = kmap(buf->page); 798 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp); 799 kunmap(buf->page); 800 801 return ret; 802 } 803 804 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 805 struct file *out, loff_t *ppos, 806 size_t len, unsigned int flags) 807 { 808 ssize_t ret; 809 810 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 811 if (ret > 0) 812 *ppos += ret; 813 814 return ret; 815 } 816 817 /** 818 * generic_splice_sendpage - splice data from a pipe to a socket 819 * @pipe: pipe to splice from 820 * @out: socket to write to 821 * @ppos: position in @out 822 * @len: number of bytes to splice 823 * @flags: splice modifier flags 824 * 825 * Description: 826 * Will send @len bytes from the pipe to a network socket. No data copying 827 * is involved. 828 * 829 */ 830 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 831 loff_t *ppos, size_t len, unsigned int flags) 832 { 833 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 834 } 835 836 EXPORT_SYMBOL(generic_splice_sendpage); 837 838 /* 839 * Attempt to initiate a splice from pipe to file. 840 */ 841 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 842 loff_t *ppos, size_t len, unsigned int flags) 843 { 844 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 845 loff_t *, size_t, unsigned int); 846 847 if (out->f_op->splice_write) 848 splice_write = out->f_op->splice_write; 849 else 850 splice_write = default_file_splice_write; 851 852 return splice_write(pipe, out, ppos, len, flags); 853 } 854 855 /* 856 * Attempt to initiate a splice from a file to a pipe. 857 */ 858 static long do_splice_to(struct file *in, loff_t *ppos, 859 struct pipe_inode_info *pipe, size_t len, 860 unsigned int flags) 861 { 862 ssize_t (*splice_read)(struct file *, loff_t *, 863 struct pipe_inode_info *, size_t, unsigned int); 864 int ret; 865 866 if (unlikely(!(in->f_mode & FMODE_READ))) 867 return -EBADF; 868 869 ret = rw_verify_area(READ, in, ppos, len); 870 if (unlikely(ret < 0)) 871 return ret; 872 873 if (unlikely(len > MAX_RW_COUNT)) 874 len = MAX_RW_COUNT; 875 876 if (in->f_op->splice_read) 877 splice_read = in->f_op->splice_read; 878 else 879 splice_read = default_file_splice_read; 880 881 return splice_read(in, ppos, pipe, len, flags); 882 } 883 884 /** 885 * splice_direct_to_actor - splices data directly between two non-pipes 886 * @in: file to splice from 887 * @sd: actor information on where to splice to 888 * @actor: handles the data splicing 889 * 890 * Description: 891 * This is a special case helper to splice directly between two 892 * points, without requiring an explicit pipe. Internally an allocated 893 * pipe is cached in the process, and reused during the lifetime of 894 * that process. 895 * 896 */ 897 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 898 splice_direct_actor *actor) 899 { 900 struct pipe_inode_info *pipe; 901 long ret, bytes; 902 umode_t i_mode; 903 size_t len; 904 int i, flags, more; 905 906 /* 907 * We require the input being a regular file, as we don't want to 908 * randomly drop data for eg socket -> socket splicing. Use the 909 * piped splicing for that! 910 */ 911 i_mode = file_inode(in)->i_mode; 912 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 913 return -EINVAL; 914 915 /* 916 * neither in nor out is a pipe, setup an internal pipe attached to 917 * 'out' and transfer the wanted data from 'in' to 'out' through that 918 */ 919 pipe = current->splice_pipe; 920 if (unlikely(!pipe)) { 921 pipe = alloc_pipe_info(); 922 if (!pipe) 923 return -ENOMEM; 924 925 /* 926 * We don't have an immediate reader, but we'll read the stuff 927 * out of the pipe right after the splice_to_pipe(). So set 928 * PIPE_READERS appropriately. 929 */ 930 pipe->readers = 1; 931 932 current->splice_pipe = pipe; 933 } 934 935 /* 936 * Do the splice. 937 */ 938 ret = 0; 939 bytes = 0; 940 len = sd->total_len; 941 flags = sd->flags; 942 943 /* 944 * Don't block on output, we have to drain the direct pipe. 945 */ 946 sd->flags &= ~SPLICE_F_NONBLOCK; 947 more = sd->flags & SPLICE_F_MORE; 948 949 while (len) { 950 size_t read_len; 951 loff_t pos = sd->pos, prev_pos = pos; 952 953 ret = do_splice_to(in, &pos, pipe, len, flags); 954 if (unlikely(ret <= 0)) 955 goto out_release; 956 957 read_len = ret; 958 sd->total_len = read_len; 959 960 /* 961 * If more data is pending, set SPLICE_F_MORE 962 * If this is the last data and SPLICE_F_MORE was not set 963 * initially, clears it. 964 */ 965 if (read_len < len) 966 sd->flags |= SPLICE_F_MORE; 967 else if (!more) 968 sd->flags &= ~SPLICE_F_MORE; 969 /* 970 * NOTE: nonblocking mode only applies to the input. We 971 * must not do the output in nonblocking mode as then we 972 * could get stuck data in the internal pipe: 973 */ 974 ret = actor(pipe, sd); 975 if (unlikely(ret <= 0)) { 976 sd->pos = prev_pos; 977 goto out_release; 978 } 979 980 bytes += ret; 981 len -= ret; 982 sd->pos = pos; 983 984 if (ret < read_len) { 985 sd->pos = prev_pos + ret; 986 goto out_release; 987 } 988 } 989 990 done: 991 pipe->nrbufs = pipe->curbuf = 0; 992 file_accessed(in); 993 return bytes; 994 995 out_release: 996 /* 997 * If we did an incomplete transfer we must release 998 * the pipe buffers in question: 999 */ 1000 for (i = 0; i < pipe->buffers; i++) { 1001 struct pipe_buffer *buf = pipe->bufs + i; 1002 1003 if (buf->ops) 1004 pipe_buf_release(pipe, buf); 1005 } 1006 1007 if (!bytes) 1008 bytes = ret; 1009 1010 goto done; 1011 } 1012 EXPORT_SYMBOL(splice_direct_to_actor); 1013 1014 static int direct_splice_actor(struct pipe_inode_info *pipe, 1015 struct splice_desc *sd) 1016 { 1017 struct file *file = sd->u.file; 1018 1019 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1020 sd->flags); 1021 } 1022 1023 /** 1024 * do_splice_direct - splices data directly between two files 1025 * @in: file to splice from 1026 * @ppos: input file offset 1027 * @out: file to splice to 1028 * @opos: output file offset 1029 * @len: number of bytes to splice 1030 * @flags: splice modifier flags 1031 * 1032 * Description: 1033 * For use by do_sendfile(). splice can easily emulate sendfile, but 1034 * doing it in the application would incur an extra system call 1035 * (splice in + splice out, as compared to just sendfile()). So this helper 1036 * can splice directly through a process-private pipe. 1037 * 1038 */ 1039 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1040 loff_t *opos, size_t len, unsigned int flags) 1041 { 1042 struct splice_desc sd = { 1043 .len = len, 1044 .total_len = len, 1045 .flags = flags, 1046 .pos = *ppos, 1047 .u.file = out, 1048 .opos = opos, 1049 }; 1050 long ret; 1051 1052 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1053 return -EBADF; 1054 1055 if (unlikely(out->f_flags & O_APPEND)) 1056 return -EINVAL; 1057 1058 ret = rw_verify_area(WRITE, out, opos, len); 1059 if (unlikely(ret < 0)) 1060 return ret; 1061 1062 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1063 if (ret > 0) 1064 *ppos = sd.pos; 1065 1066 return ret; 1067 } 1068 EXPORT_SYMBOL(do_splice_direct); 1069 1070 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 1071 { 1072 for (;;) { 1073 if (unlikely(!pipe->readers)) { 1074 send_sig(SIGPIPE, current, 0); 1075 return -EPIPE; 1076 } 1077 if (pipe->nrbufs != pipe->buffers) 1078 return 0; 1079 if (flags & SPLICE_F_NONBLOCK) 1080 return -EAGAIN; 1081 if (signal_pending(current)) 1082 return -ERESTARTSYS; 1083 pipe->waiting_writers++; 1084 pipe_wait(pipe); 1085 pipe->waiting_writers--; 1086 } 1087 } 1088 1089 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1090 struct pipe_inode_info *opipe, 1091 size_t len, unsigned int flags); 1092 1093 /* 1094 * Determine where to splice to/from. 1095 */ 1096 static long do_splice(struct file *in, loff_t __user *off_in, 1097 struct file *out, loff_t __user *off_out, 1098 size_t len, unsigned int flags) 1099 { 1100 struct pipe_inode_info *ipipe; 1101 struct pipe_inode_info *opipe; 1102 loff_t offset; 1103 long ret; 1104 1105 ipipe = get_pipe_info(in); 1106 opipe = get_pipe_info(out); 1107 1108 if (ipipe && opipe) { 1109 if (off_in || off_out) 1110 return -ESPIPE; 1111 1112 if (!(in->f_mode & FMODE_READ)) 1113 return -EBADF; 1114 1115 if (!(out->f_mode & FMODE_WRITE)) 1116 return -EBADF; 1117 1118 /* Splicing to self would be fun, but... */ 1119 if (ipipe == opipe) 1120 return -EINVAL; 1121 1122 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1123 } 1124 1125 if (ipipe) { 1126 if (off_in) 1127 return -ESPIPE; 1128 if (off_out) { 1129 if (!(out->f_mode & FMODE_PWRITE)) 1130 return -EINVAL; 1131 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1132 return -EFAULT; 1133 } else { 1134 offset = out->f_pos; 1135 } 1136 1137 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1138 return -EBADF; 1139 1140 if (unlikely(out->f_flags & O_APPEND)) 1141 return -EINVAL; 1142 1143 ret = rw_verify_area(WRITE, out, &offset, len); 1144 if (unlikely(ret < 0)) 1145 return ret; 1146 1147 file_start_write(out); 1148 ret = do_splice_from(ipipe, out, &offset, len, flags); 1149 file_end_write(out); 1150 1151 if (!off_out) 1152 out->f_pos = offset; 1153 else if (copy_to_user(off_out, &offset, sizeof(loff_t))) 1154 ret = -EFAULT; 1155 1156 return ret; 1157 } 1158 1159 if (opipe) { 1160 if (off_out) 1161 return -ESPIPE; 1162 if (off_in) { 1163 if (!(in->f_mode & FMODE_PREAD)) 1164 return -EINVAL; 1165 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1166 return -EFAULT; 1167 } else { 1168 offset = in->f_pos; 1169 } 1170 1171 pipe_lock(opipe); 1172 ret = wait_for_space(opipe, flags); 1173 if (!ret) 1174 ret = do_splice_to(in, &offset, opipe, len, flags); 1175 pipe_unlock(opipe); 1176 if (ret > 0) 1177 wakeup_pipe_readers(opipe); 1178 if (!off_in) 1179 in->f_pos = offset; 1180 else if (copy_to_user(off_in, &offset, sizeof(loff_t))) 1181 ret = -EFAULT; 1182 1183 return ret; 1184 } 1185 1186 return -EINVAL; 1187 } 1188 1189 static int iter_to_pipe(struct iov_iter *from, 1190 struct pipe_inode_info *pipe, 1191 unsigned flags) 1192 { 1193 struct pipe_buffer buf = { 1194 .ops = &user_page_pipe_buf_ops, 1195 .flags = flags 1196 }; 1197 size_t total = 0; 1198 int ret = 0; 1199 bool failed = false; 1200 1201 while (iov_iter_count(from) && !failed) { 1202 struct page *pages[16]; 1203 ssize_t copied; 1204 size_t start; 1205 int n; 1206 1207 copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start); 1208 if (copied <= 0) { 1209 ret = copied; 1210 break; 1211 } 1212 1213 for (n = 0; copied; n++, start = 0) { 1214 int size = min_t(int, copied, PAGE_SIZE - start); 1215 if (!failed) { 1216 buf.page = pages[n]; 1217 buf.offset = start; 1218 buf.len = size; 1219 ret = add_to_pipe(pipe, &buf); 1220 if (unlikely(ret < 0)) { 1221 failed = true; 1222 } else { 1223 iov_iter_advance(from, ret); 1224 total += ret; 1225 } 1226 } else { 1227 put_page(pages[n]); 1228 } 1229 copied -= size; 1230 } 1231 } 1232 return total ? total : ret; 1233 } 1234 1235 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1236 struct splice_desc *sd) 1237 { 1238 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1239 return n == sd->len ? n : -EFAULT; 1240 } 1241 1242 /* 1243 * For lack of a better implementation, implement vmsplice() to userspace 1244 * as a simple copy of the pipes pages to the user iov. 1245 */ 1246 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov, 1247 unsigned long nr_segs, unsigned int flags) 1248 { 1249 struct pipe_inode_info *pipe; 1250 struct splice_desc sd; 1251 long ret; 1252 struct iovec iovstack[UIO_FASTIOV]; 1253 struct iovec *iov = iovstack; 1254 struct iov_iter iter; 1255 1256 pipe = get_pipe_info(file); 1257 if (!pipe) 1258 return -EBADF; 1259 1260 ret = import_iovec(READ, uiov, nr_segs, 1261 ARRAY_SIZE(iovstack), &iov, &iter); 1262 if (ret < 0) 1263 return ret; 1264 1265 sd.total_len = iov_iter_count(&iter); 1266 sd.len = 0; 1267 sd.flags = flags; 1268 sd.u.data = &iter; 1269 sd.pos = 0; 1270 1271 if (sd.total_len) { 1272 pipe_lock(pipe); 1273 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1274 pipe_unlock(pipe); 1275 } 1276 1277 kfree(iov); 1278 return ret; 1279 } 1280 1281 /* 1282 * vmsplice splices a user address range into a pipe. It can be thought of 1283 * as splice-from-memory, where the regular splice is splice-from-file (or 1284 * to file). In both cases the output is a pipe, naturally. 1285 */ 1286 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *uiov, 1287 unsigned long nr_segs, unsigned int flags) 1288 { 1289 struct pipe_inode_info *pipe; 1290 struct iovec iovstack[UIO_FASTIOV]; 1291 struct iovec *iov = iovstack; 1292 struct iov_iter from; 1293 long ret; 1294 unsigned buf_flag = 0; 1295 1296 if (flags & SPLICE_F_GIFT) 1297 buf_flag = PIPE_BUF_FLAG_GIFT; 1298 1299 pipe = get_pipe_info(file); 1300 if (!pipe) 1301 return -EBADF; 1302 1303 ret = import_iovec(WRITE, uiov, nr_segs, 1304 ARRAY_SIZE(iovstack), &iov, &from); 1305 if (ret < 0) 1306 return ret; 1307 1308 pipe_lock(pipe); 1309 ret = wait_for_space(pipe, flags); 1310 if (!ret) 1311 ret = iter_to_pipe(&from, pipe, buf_flag); 1312 pipe_unlock(pipe); 1313 if (ret > 0) 1314 wakeup_pipe_readers(pipe); 1315 kfree(iov); 1316 return ret; 1317 } 1318 1319 /* 1320 * Note that vmsplice only really supports true splicing _from_ user memory 1321 * to a pipe, not the other way around. Splicing from user memory is a simple 1322 * operation that can be supported without any funky alignment restrictions 1323 * or nasty vm tricks. We simply map in the user memory and fill them into 1324 * a pipe. The reverse isn't quite as easy, though. There are two possible 1325 * solutions for that: 1326 * 1327 * - memcpy() the data internally, at which point we might as well just 1328 * do a regular read() on the buffer anyway. 1329 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1330 * has restriction limitations on both ends of the pipe). 1331 * 1332 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1333 * 1334 */ 1335 static long do_vmsplice(int fd, const struct iovec __user *iov, 1336 unsigned long nr_segs, unsigned int flags) 1337 { 1338 struct fd f; 1339 long error; 1340 1341 if (unlikely(flags & ~SPLICE_F_ALL)) 1342 return -EINVAL; 1343 if (unlikely(nr_segs > UIO_MAXIOV)) 1344 return -EINVAL; 1345 else if (unlikely(!nr_segs)) 1346 return 0; 1347 1348 error = -EBADF; 1349 f = fdget(fd); 1350 if (f.file) { 1351 if (f.file->f_mode & FMODE_WRITE) 1352 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags); 1353 else if (f.file->f_mode & FMODE_READ) 1354 error = vmsplice_to_user(f.file, iov, nr_segs, flags); 1355 1356 fdput(f); 1357 } 1358 1359 return error; 1360 } 1361 1362 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1363 unsigned long, nr_segs, unsigned int, flags) 1364 { 1365 return do_vmsplice(fd, iov, nr_segs, flags); 1366 } 1367 1368 #ifdef CONFIG_COMPAT 1369 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32, 1370 unsigned int, nr_segs, unsigned int, flags) 1371 { 1372 unsigned i; 1373 struct iovec __user *iov; 1374 if (nr_segs > UIO_MAXIOV) 1375 return -EINVAL; 1376 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec)); 1377 for (i = 0; i < nr_segs; i++) { 1378 struct compat_iovec v; 1379 if (get_user(v.iov_base, &iov32[i].iov_base) || 1380 get_user(v.iov_len, &iov32[i].iov_len) || 1381 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) || 1382 put_user(v.iov_len, &iov[i].iov_len)) 1383 return -EFAULT; 1384 } 1385 return do_vmsplice(fd, iov, nr_segs, flags); 1386 } 1387 #endif 1388 1389 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1390 int, fd_out, loff_t __user *, off_out, 1391 size_t, len, unsigned int, flags) 1392 { 1393 struct fd in, out; 1394 long error; 1395 1396 if (unlikely(!len)) 1397 return 0; 1398 1399 if (unlikely(flags & ~SPLICE_F_ALL)) 1400 return -EINVAL; 1401 1402 error = -EBADF; 1403 in = fdget(fd_in); 1404 if (in.file) { 1405 if (in.file->f_mode & FMODE_READ) { 1406 out = fdget(fd_out); 1407 if (out.file) { 1408 if (out.file->f_mode & FMODE_WRITE) 1409 error = do_splice(in.file, off_in, 1410 out.file, off_out, 1411 len, flags); 1412 fdput(out); 1413 } 1414 } 1415 fdput(in); 1416 } 1417 return error; 1418 } 1419 1420 /* 1421 * Make sure there's data to read. Wait for input if we can, otherwise 1422 * return an appropriate error. 1423 */ 1424 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1425 { 1426 int ret; 1427 1428 /* 1429 * Check ->nrbufs without the inode lock first. This function 1430 * is speculative anyways, so missing one is ok. 1431 */ 1432 if (pipe->nrbufs) 1433 return 0; 1434 1435 ret = 0; 1436 pipe_lock(pipe); 1437 1438 while (!pipe->nrbufs) { 1439 if (signal_pending(current)) { 1440 ret = -ERESTARTSYS; 1441 break; 1442 } 1443 if (!pipe->writers) 1444 break; 1445 if (!pipe->waiting_writers) { 1446 if (flags & SPLICE_F_NONBLOCK) { 1447 ret = -EAGAIN; 1448 break; 1449 } 1450 } 1451 pipe_wait(pipe); 1452 } 1453 1454 pipe_unlock(pipe); 1455 return ret; 1456 } 1457 1458 /* 1459 * Make sure there's writeable room. Wait for room if we can, otherwise 1460 * return an appropriate error. 1461 */ 1462 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1463 { 1464 int ret; 1465 1466 /* 1467 * Check ->nrbufs without the inode lock first. This function 1468 * is speculative anyways, so missing one is ok. 1469 */ 1470 if (pipe->nrbufs < pipe->buffers) 1471 return 0; 1472 1473 ret = 0; 1474 pipe_lock(pipe); 1475 1476 while (pipe->nrbufs >= pipe->buffers) { 1477 if (!pipe->readers) { 1478 send_sig(SIGPIPE, current, 0); 1479 ret = -EPIPE; 1480 break; 1481 } 1482 if (flags & SPLICE_F_NONBLOCK) { 1483 ret = -EAGAIN; 1484 break; 1485 } 1486 if (signal_pending(current)) { 1487 ret = -ERESTARTSYS; 1488 break; 1489 } 1490 pipe->waiting_writers++; 1491 pipe_wait(pipe); 1492 pipe->waiting_writers--; 1493 } 1494 1495 pipe_unlock(pipe); 1496 return ret; 1497 } 1498 1499 /* 1500 * Splice contents of ipipe to opipe. 1501 */ 1502 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1503 struct pipe_inode_info *opipe, 1504 size_t len, unsigned int flags) 1505 { 1506 struct pipe_buffer *ibuf, *obuf; 1507 int ret = 0, nbuf; 1508 bool input_wakeup = false; 1509 1510 1511 retry: 1512 ret = ipipe_prep(ipipe, flags); 1513 if (ret) 1514 return ret; 1515 1516 ret = opipe_prep(opipe, flags); 1517 if (ret) 1518 return ret; 1519 1520 /* 1521 * Potential ABBA deadlock, work around it by ordering lock 1522 * grabbing by pipe info address. Otherwise two different processes 1523 * could deadlock (one doing tee from A -> B, the other from B -> A). 1524 */ 1525 pipe_double_lock(ipipe, opipe); 1526 1527 do { 1528 if (!opipe->readers) { 1529 send_sig(SIGPIPE, current, 0); 1530 if (!ret) 1531 ret = -EPIPE; 1532 break; 1533 } 1534 1535 if (!ipipe->nrbufs && !ipipe->writers) 1536 break; 1537 1538 /* 1539 * Cannot make any progress, because either the input 1540 * pipe is empty or the output pipe is full. 1541 */ 1542 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) { 1543 /* Already processed some buffers, break */ 1544 if (ret) 1545 break; 1546 1547 if (flags & SPLICE_F_NONBLOCK) { 1548 ret = -EAGAIN; 1549 break; 1550 } 1551 1552 /* 1553 * We raced with another reader/writer and haven't 1554 * managed to process any buffers. A zero return 1555 * value means EOF, so retry instead. 1556 */ 1557 pipe_unlock(ipipe); 1558 pipe_unlock(opipe); 1559 goto retry; 1560 } 1561 1562 ibuf = ipipe->bufs + ipipe->curbuf; 1563 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1564 obuf = opipe->bufs + nbuf; 1565 1566 if (len >= ibuf->len) { 1567 /* 1568 * Simply move the whole buffer from ipipe to opipe 1569 */ 1570 *obuf = *ibuf; 1571 ibuf->ops = NULL; 1572 opipe->nrbufs++; 1573 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1); 1574 ipipe->nrbufs--; 1575 input_wakeup = true; 1576 } else { 1577 /* 1578 * Get a reference to this pipe buffer, 1579 * so we can copy the contents over. 1580 */ 1581 pipe_buf_get(ipipe, ibuf); 1582 *obuf = *ibuf; 1583 1584 /* 1585 * Don't inherit the gift flag, we need to 1586 * prevent multiple steals of this page. 1587 */ 1588 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1589 1590 obuf->len = len; 1591 opipe->nrbufs++; 1592 ibuf->offset += obuf->len; 1593 ibuf->len -= obuf->len; 1594 } 1595 ret += obuf->len; 1596 len -= obuf->len; 1597 } while (len); 1598 1599 pipe_unlock(ipipe); 1600 pipe_unlock(opipe); 1601 1602 /* 1603 * If we put data in the output pipe, wakeup any potential readers. 1604 */ 1605 if (ret > 0) 1606 wakeup_pipe_readers(opipe); 1607 1608 if (input_wakeup) 1609 wakeup_pipe_writers(ipipe); 1610 1611 return ret; 1612 } 1613 1614 /* 1615 * Link contents of ipipe to opipe. 1616 */ 1617 static int link_pipe(struct pipe_inode_info *ipipe, 1618 struct pipe_inode_info *opipe, 1619 size_t len, unsigned int flags) 1620 { 1621 struct pipe_buffer *ibuf, *obuf; 1622 int ret = 0, i = 0, nbuf; 1623 1624 /* 1625 * Potential ABBA deadlock, work around it by ordering lock 1626 * grabbing by pipe info address. Otherwise two different processes 1627 * could deadlock (one doing tee from A -> B, the other from B -> A). 1628 */ 1629 pipe_double_lock(ipipe, opipe); 1630 1631 do { 1632 if (!opipe->readers) { 1633 send_sig(SIGPIPE, current, 0); 1634 if (!ret) 1635 ret = -EPIPE; 1636 break; 1637 } 1638 1639 /* 1640 * If we have iterated all input buffers or ran out of 1641 * output room, break. 1642 */ 1643 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) 1644 break; 1645 1646 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1)); 1647 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1648 1649 /* 1650 * Get a reference to this pipe buffer, 1651 * so we can copy the contents over. 1652 */ 1653 pipe_buf_get(ipipe, ibuf); 1654 1655 obuf = opipe->bufs + nbuf; 1656 *obuf = *ibuf; 1657 1658 /* 1659 * Don't inherit the gift flag, we need to 1660 * prevent multiple steals of this page. 1661 */ 1662 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1663 1664 if (obuf->len > len) 1665 obuf->len = len; 1666 1667 opipe->nrbufs++; 1668 ret += obuf->len; 1669 len -= obuf->len; 1670 i++; 1671 } while (len); 1672 1673 /* 1674 * return EAGAIN if we have the potential of some data in the 1675 * future, otherwise just return 0 1676 */ 1677 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1678 ret = -EAGAIN; 1679 1680 pipe_unlock(ipipe); 1681 pipe_unlock(opipe); 1682 1683 /* 1684 * If we put data in the output pipe, wakeup any potential readers. 1685 */ 1686 if (ret > 0) 1687 wakeup_pipe_readers(opipe); 1688 1689 return ret; 1690 } 1691 1692 /* 1693 * This is a tee(1) implementation that works on pipes. It doesn't copy 1694 * any data, it simply references the 'in' pages on the 'out' pipe. 1695 * The 'flags' used are the SPLICE_F_* variants, currently the only 1696 * applicable one is SPLICE_F_NONBLOCK. 1697 */ 1698 static long do_tee(struct file *in, struct file *out, size_t len, 1699 unsigned int flags) 1700 { 1701 struct pipe_inode_info *ipipe = get_pipe_info(in); 1702 struct pipe_inode_info *opipe = get_pipe_info(out); 1703 int ret = -EINVAL; 1704 1705 /* 1706 * Duplicate the contents of ipipe to opipe without actually 1707 * copying the data. 1708 */ 1709 if (ipipe && opipe && ipipe != opipe) { 1710 /* 1711 * Keep going, unless we encounter an error. The ipipe/opipe 1712 * ordering doesn't really matter. 1713 */ 1714 ret = ipipe_prep(ipipe, flags); 1715 if (!ret) { 1716 ret = opipe_prep(opipe, flags); 1717 if (!ret) 1718 ret = link_pipe(ipipe, opipe, len, flags); 1719 } 1720 } 1721 1722 return ret; 1723 } 1724 1725 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1726 { 1727 struct fd in; 1728 int error; 1729 1730 if (unlikely(flags & ~SPLICE_F_ALL)) 1731 return -EINVAL; 1732 1733 if (unlikely(!len)) 1734 return 0; 1735 1736 error = -EBADF; 1737 in = fdget(fdin); 1738 if (in.file) { 1739 if (in.file->f_mode & FMODE_READ) { 1740 struct fd out = fdget(fdout); 1741 if (out.file) { 1742 if (out.file->f_mode & FMODE_WRITE) 1743 error = do_tee(in.file, out.file, 1744 len, flags); 1745 fdput(out); 1746 } 1747 } 1748 fdput(in); 1749 } 1750 1751 return error; 1752 } 1753