1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * "splice": joining two ropes together by interweaving their strands. 4 * 5 * This is the "extended pipe" functionality, where a pipe is used as 6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 7 * buffer that you can use to transfer data from one end to the other. 8 * 9 * The traditional unix read/write is extended with a "splice()" operation 10 * that transfers data buffers to or from a pipe buffer. 11 * 12 * Named by Larry McVoy, original implementation from Linus, extended by 13 * Jens to support splicing to files, network, direct splicing, etc and 14 * fixing lots of bugs. 15 * 16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 19 * 20 */ 21 #include <linux/bvec.h> 22 #include <linux/fs.h> 23 #include <linux/file.h> 24 #include <linux/pagemap.h> 25 #include <linux/splice.h> 26 #include <linux/memcontrol.h> 27 #include <linux/mm_inline.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/export.h> 31 #include <linux/syscalls.h> 32 #include <linux/uio.h> 33 #include <linux/security.h> 34 #include <linux/gfp.h> 35 #include <linux/socket.h> 36 #include <linux/compat.h> 37 #include <linux/sched/signal.h> 38 39 #include "internal.h" 40 41 /* 42 * Attempt to steal a page from a pipe buffer. This should perhaps go into 43 * a vm helper function, it's already simplified quite a bit by the 44 * addition of remove_mapping(). If success is returned, the caller may 45 * attempt to reuse this page for another destination. 46 */ 47 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 48 struct pipe_buffer *buf) 49 { 50 struct page *page = buf->page; 51 struct address_space *mapping; 52 53 lock_page(page); 54 55 mapping = page_mapping(page); 56 if (mapping) { 57 WARN_ON(!PageUptodate(page)); 58 59 /* 60 * At least for ext2 with nobh option, we need to wait on 61 * writeback completing on this page, since we'll remove it 62 * from the pagecache. Otherwise truncate wont wait on the 63 * page, allowing the disk blocks to be reused by someone else 64 * before we actually wrote our data to them. fs corruption 65 * ensues. 66 */ 67 wait_on_page_writeback(page); 68 69 if (page_has_private(page) && 70 !try_to_release_page(page, GFP_KERNEL)) 71 goto out_unlock; 72 73 /* 74 * If we succeeded in removing the mapping, set LRU flag 75 * and return good. 76 */ 77 if (remove_mapping(mapping, page)) { 78 buf->flags |= PIPE_BUF_FLAG_LRU; 79 return 0; 80 } 81 } 82 83 /* 84 * Raced with truncate or failed to remove page from current 85 * address space, unlock and return failure. 86 */ 87 out_unlock: 88 unlock_page(page); 89 return 1; 90 } 91 92 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 93 struct pipe_buffer *buf) 94 { 95 put_page(buf->page); 96 buf->flags &= ~PIPE_BUF_FLAG_LRU; 97 } 98 99 /* 100 * Check whether the contents of buf is OK to access. Since the content 101 * is a page cache page, IO may be in flight. 102 */ 103 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 104 struct pipe_buffer *buf) 105 { 106 struct page *page = buf->page; 107 int err; 108 109 if (!PageUptodate(page)) { 110 lock_page(page); 111 112 /* 113 * Page got truncated/unhashed. This will cause a 0-byte 114 * splice, if this is the first page. 115 */ 116 if (!page->mapping) { 117 err = -ENODATA; 118 goto error; 119 } 120 121 /* 122 * Uh oh, read-error from disk. 123 */ 124 if (!PageUptodate(page)) { 125 err = -EIO; 126 goto error; 127 } 128 129 /* 130 * Page is ok afterall, we are done. 131 */ 132 unlock_page(page); 133 } 134 135 return 0; 136 error: 137 unlock_page(page); 138 return err; 139 } 140 141 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 142 .confirm = page_cache_pipe_buf_confirm, 143 .release = page_cache_pipe_buf_release, 144 .steal = page_cache_pipe_buf_steal, 145 .get = generic_pipe_buf_get, 146 }; 147 148 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 149 struct pipe_buffer *buf) 150 { 151 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 152 return 1; 153 154 buf->flags |= PIPE_BUF_FLAG_LRU; 155 return generic_pipe_buf_steal(pipe, buf); 156 } 157 158 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 159 .confirm = generic_pipe_buf_confirm, 160 .release = page_cache_pipe_buf_release, 161 .steal = user_page_pipe_buf_steal, 162 .get = generic_pipe_buf_get, 163 }; 164 165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 166 { 167 smp_mb(); 168 if (waitqueue_active(&pipe->wait)) 169 wake_up_interruptible(&pipe->wait); 170 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 171 } 172 173 /** 174 * splice_to_pipe - fill passed data into a pipe 175 * @pipe: pipe to fill 176 * @spd: data to fill 177 * 178 * Description: 179 * @spd contains a map of pages and len/offset tuples, along with 180 * the struct pipe_buf_operations associated with these pages. This 181 * function will link that data to the pipe. 182 * 183 */ 184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 185 struct splice_pipe_desc *spd) 186 { 187 unsigned int spd_pages = spd->nr_pages; 188 int ret = 0, page_nr = 0; 189 190 if (!spd_pages) 191 return 0; 192 193 if (unlikely(!pipe->readers)) { 194 send_sig(SIGPIPE, current, 0); 195 ret = -EPIPE; 196 goto out; 197 } 198 199 while (pipe->nrbufs < pipe->buffers) { 200 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 201 struct pipe_buffer *buf = pipe->bufs + newbuf; 202 203 buf->page = spd->pages[page_nr]; 204 buf->offset = spd->partial[page_nr].offset; 205 buf->len = spd->partial[page_nr].len; 206 buf->private = spd->partial[page_nr].private; 207 buf->ops = spd->ops; 208 buf->flags = 0; 209 210 pipe->nrbufs++; 211 page_nr++; 212 ret += buf->len; 213 214 if (!--spd->nr_pages) 215 break; 216 } 217 218 if (!ret) 219 ret = -EAGAIN; 220 221 out: 222 while (page_nr < spd_pages) 223 spd->spd_release(spd, page_nr++); 224 225 return ret; 226 } 227 EXPORT_SYMBOL_GPL(splice_to_pipe); 228 229 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 230 { 231 int ret; 232 233 if (unlikely(!pipe->readers)) { 234 send_sig(SIGPIPE, current, 0); 235 ret = -EPIPE; 236 } else if (pipe->nrbufs == pipe->buffers) { 237 ret = -EAGAIN; 238 } else { 239 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 240 pipe->bufs[newbuf] = *buf; 241 pipe->nrbufs++; 242 return buf->len; 243 } 244 pipe_buf_release(pipe, buf); 245 return ret; 246 } 247 EXPORT_SYMBOL(add_to_pipe); 248 249 /* 250 * Check if we need to grow the arrays holding pages and partial page 251 * descriptions. 252 */ 253 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 254 { 255 unsigned int buffers = READ_ONCE(pipe->buffers); 256 257 spd->nr_pages_max = buffers; 258 if (buffers <= PIPE_DEF_BUFFERS) 259 return 0; 260 261 spd->pages = kmalloc_array(buffers, sizeof(struct page *), GFP_KERNEL); 262 spd->partial = kmalloc_array(buffers, sizeof(struct partial_page), 263 GFP_KERNEL); 264 265 if (spd->pages && spd->partial) 266 return 0; 267 268 kfree(spd->pages); 269 kfree(spd->partial); 270 return -ENOMEM; 271 } 272 273 void splice_shrink_spd(struct splice_pipe_desc *spd) 274 { 275 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 276 return; 277 278 kfree(spd->pages); 279 kfree(spd->partial); 280 } 281 282 /** 283 * generic_file_splice_read - splice data from file to a pipe 284 * @in: file to splice from 285 * @ppos: position in @in 286 * @pipe: pipe to splice to 287 * @len: number of bytes to splice 288 * @flags: splice modifier flags 289 * 290 * Description: 291 * Will read pages from given file and fill them into a pipe. Can be 292 * used as long as it has more or less sane ->read_iter(). 293 * 294 */ 295 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 296 struct pipe_inode_info *pipe, size_t len, 297 unsigned int flags) 298 { 299 struct iov_iter to; 300 struct kiocb kiocb; 301 int idx, ret; 302 303 iov_iter_pipe(&to, READ, pipe, len); 304 idx = to.idx; 305 init_sync_kiocb(&kiocb, in); 306 kiocb.ki_pos = *ppos; 307 ret = call_read_iter(in, &kiocb, &to); 308 if (ret > 0) { 309 *ppos = kiocb.ki_pos; 310 file_accessed(in); 311 } else if (ret < 0) { 312 to.idx = idx; 313 to.iov_offset = 0; 314 iov_iter_advance(&to, 0); /* to free what was emitted */ 315 /* 316 * callers of ->splice_read() expect -EAGAIN on 317 * "can't put anything in there", rather than -EFAULT. 318 */ 319 if (ret == -EFAULT) 320 ret = -EAGAIN; 321 } 322 323 return ret; 324 } 325 EXPORT_SYMBOL(generic_file_splice_read); 326 327 const struct pipe_buf_operations default_pipe_buf_ops = { 328 .confirm = generic_pipe_buf_confirm, 329 .release = generic_pipe_buf_release, 330 .steal = generic_pipe_buf_steal, 331 .get = generic_pipe_buf_get, 332 }; 333 334 int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe, 335 struct pipe_buffer *buf) 336 { 337 return 1; 338 } 339 340 /* Pipe buffer operations for a socket and similar. */ 341 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 342 .confirm = generic_pipe_buf_confirm, 343 .release = generic_pipe_buf_release, 344 .steal = generic_pipe_buf_nosteal, 345 .get = generic_pipe_buf_get, 346 }; 347 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 348 349 static ssize_t kernel_readv(struct file *file, const struct kvec *vec, 350 unsigned long vlen, loff_t offset) 351 { 352 mm_segment_t old_fs; 353 loff_t pos = offset; 354 ssize_t res; 355 356 old_fs = get_fs(); 357 set_fs(KERNEL_DS); 358 /* The cast to a user pointer is valid due to the set_fs() */ 359 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0); 360 set_fs(old_fs); 361 362 return res; 363 } 364 365 static ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 366 struct pipe_inode_info *pipe, size_t len, 367 unsigned int flags) 368 { 369 struct kvec *vec, __vec[PIPE_DEF_BUFFERS]; 370 struct iov_iter to; 371 struct page **pages; 372 unsigned int nr_pages; 373 size_t offset, base, copied = 0; 374 ssize_t res; 375 int i; 376 377 if (pipe->nrbufs == pipe->buffers) 378 return -EAGAIN; 379 380 /* 381 * Try to keep page boundaries matching to source pagecache ones - 382 * it probably won't be much help, but... 383 */ 384 offset = *ppos & ~PAGE_MASK; 385 386 iov_iter_pipe(&to, READ, pipe, len + offset); 387 388 res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &base); 389 if (res <= 0) 390 return -ENOMEM; 391 392 nr_pages = DIV_ROUND_UP(res + base, PAGE_SIZE); 393 394 vec = __vec; 395 if (nr_pages > PIPE_DEF_BUFFERS) { 396 vec = kmalloc_array(nr_pages, sizeof(struct kvec), GFP_KERNEL); 397 if (unlikely(!vec)) { 398 res = -ENOMEM; 399 goto out; 400 } 401 } 402 403 pipe->bufs[to.idx].offset = offset; 404 pipe->bufs[to.idx].len -= offset; 405 406 for (i = 0; i < nr_pages; i++) { 407 size_t this_len = min_t(size_t, len, PAGE_SIZE - offset); 408 vec[i].iov_base = page_address(pages[i]) + offset; 409 vec[i].iov_len = this_len; 410 len -= this_len; 411 offset = 0; 412 } 413 414 res = kernel_readv(in, vec, nr_pages, *ppos); 415 if (res > 0) { 416 copied = res; 417 *ppos += res; 418 } 419 420 if (vec != __vec) 421 kfree(vec); 422 out: 423 for (i = 0; i < nr_pages; i++) 424 put_page(pages[i]); 425 kvfree(pages); 426 iov_iter_advance(&to, copied); /* truncates and discards */ 427 return res; 428 } 429 430 /* 431 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 432 * using sendpage(). Return the number of bytes sent. 433 */ 434 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 435 struct pipe_buffer *buf, struct splice_desc *sd) 436 { 437 struct file *file = sd->u.file; 438 loff_t pos = sd->pos; 439 int more; 440 441 if (!likely(file->f_op->sendpage)) 442 return -EINVAL; 443 444 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0; 445 446 if (sd->len < sd->total_len && pipe->nrbufs > 1) 447 more |= MSG_SENDPAGE_NOTLAST; 448 449 return file->f_op->sendpage(file, buf->page, buf->offset, 450 sd->len, &pos, more); 451 } 452 453 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 454 { 455 smp_mb(); 456 if (waitqueue_active(&pipe->wait)) 457 wake_up_interruptible(&pipe->wait); 458 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 459 } 460 461 /** 462 * splice_from_pipe_feed - feed available data from a pipe to a file 463 * @pipe: pipe to splice from 464 * @sd: information to @actor 465 * @actor: handler that splices the data 466 * 467 * Description: 468 * This function loops over the pipe and calls @actor to do the 469 * actual moving of a single struct pipe_buffer to the desired 470 * destination. It returns when there's no more buffers left in 471 * the pipe or if the requested number of bytes (@sd->total_len) 472 * have been copied. It returns a positive number (one) if the 473 * pipe needs to be filled with more data, zero if the required 474 * number of bytes have been copied and -errno on error. 475 * 476 * This, together with splice_from_pipe_{begin,end,next}, may be 477 * used to implement the functionality of __splice_from_pipe() when 478 * locking is required around copying the pipe buffers to the 479 * destination. 480 */ 481 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 482 splice_actor *actor) 483 { 484 int ret; 485 486 while (pipe->nrbufs) { 487 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 488 489 sd->len = buf->len; 490 if (sd->len > sd->total_len) 491 sd->len = sd->total_len; 492 493 ret = pipe_buf_confirm(pipe, buf); 494 if (unlikely(ret)) { 495 if (ret == -ENODATA) 496 ret = 0; 497 return ret; 498 } 499 500 ret = actor(pipe, buf, sd); 501 if (ret <= 0) 502 return ret; 503 504 buf->offset += ret; 505 buf->len -= ret; 506 507 sd->num_spliced += ret; 508 sd->len -= ret; 509 sd->pos += ret; 510 sd->total_len -= ret; 511 512 if (!buf->len) { 513 pipe_buf_release(pipe, buf); 514 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 515 pipe->nrbufs--; 516 if (pipe->files) 517 sd->need_wakeup = true; 518 } 519 520 if (!sd->total_len) 521 return 0; 522 } 523 524 return 1; 525 } 526 527 /** 528 * splice_from_pipe_next - wait for some data to splice from 529 * @pipe: pipe to splice from 530 * @sd: information about the splice operation 531 * 532 * Description: 533 * This function will wait for some data and return a positive 534 * value (one) if pipe buffers are available. It will return zero 535 * or -errno if no more data needs to be spliced. 536 */ 537 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 538 { 539 /* 540 * Check for signal early to make process killable when there are 541 * always buffers available 542 */ 543 if (signal_pending(current)) 544 return -ERESTARTSYS; 545 546 while (!pipe->nrbufs) { 547 if (!pipe->writers) 548 return 0; 549 550 if (!pipe->waiting_writers && sd->num_spliced) 551 return 0; 552 553 if (sd->flags & SPLICE_F_NONBLOCK) 554 return -EAGAIN; 555 556 if (signal_pending(current)) 557 return -ERESTARTSYS; 558 559 if (sd->need_wakeup) { 560 wakeup_pipe_writers(pipe); 561 sd->need_wakeup = false; 562 } 563 564 pipe_wait(pipe); 565 } 566 567 return 1; 568 } 569 570 /** 571 * splice_from_pipe_begin - start splicing from pipe 572 * @sd: information about the splice operation 573 * 574 * Description: 575 * This function should be called before a loop containing 576 * splice_from_pipe_next() and splice_from_pipe_feed() to 577 * initialize the necessary fields of @sd. 578 */ 579 static void splice_from_pipe_begin(struct splice_desc *sd) 580 { 581 sd->num_spliced = 0; 582 sd->need_wakeup = false; 583 } 584 585 /** 586 * splice_from_pipe_end - finish splicing from pipe 587 * @pipe: pipe to splice from 588 * @sd: information about the splice operation 589 * 590 * Description: 591 * This function will wake up pipe writers if necessary. It should 592 * be called after a loop containing splice_from_pipe_next() and 593 * splice_from_pipe_feed(). 594 */ 595 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 596 { 597 if (sd->need_wakeup) 598 wakeup_pipe_writers(pipe); 599 } 600 601 /** 602 * __splice_from_pipe - splice data from a pipe to given actor 603 * @pipe: pipe to splice from 604 * @sd: information to @actor 605 * @actor: handler that splices the data 606 * 607 * Description: 608 * This function does little more than loop over the pipe and call 609 * @actor to do the actual moving of a single struct pipe_buffer to 610 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 611 * pipe_to_user. 612 * 613 */ 614 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 615 splice_actor *actor) 616 { 617 int ret; 618 619 splice_from_pipe_begin(sd); 620 do { 621 cond_resched(); 622 ret = splice_from_pipe_next(pipe, sd); 623 if (ret > 0) 624 ret = splice_from_pipe_feed(pipe, sd, actor); 625 } while (ret > 0); 626 splice_from_pipe_end(pipe, sd); 627 628 return sd->num_spliced ? sd->num_spliced : ret; 629 } 630 EXPORT_SYMBOL(__splice_from_pipe); 631 632 /** 633 * splice_from_pipe - splice data from a pipe to a file 634 * @pipe: pipe to splice from 635 * @out: file to splice to 636 * @ppos: position in @out 637 * @len: how many bytes to splice 638 * @flags: splice modifier flags 639 * @actor: handler that splices the data 640 * 641 * Description: 642 * See __splice_from_pipe. This function locks the pipe inode, 643 * otherwise it's identical to __splice_from_pipe(). 644 * 645 */ 646 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 647 loff_t *ppos, size_t len, unsigned int flags, 648 splice_actor *actor) 649 { 650 ssize_t ret; 651 struct splice_desc sd = { 652 .total_len = len, 653 .flags = flags, 654 .pos = *ppos, 655 .u.file = out, 656 }; 657 658 pipe_lock(pipe); 659 ret = __splice_from_pipe(pipe, &sd, actor); 660 pipe_unlock(pipe); 661 662 return ret; 663 } 664 665 /** 666 * iter_file_splice_write - splice data from a pipe to a file 667 * @pipe: pipe info 668 * @out: file to write to 669 * @ppos: position in @out 670 * @len: number of bytes to splice 671 * @flags: splice modifier flags 672 * 673 * Description: 674 * Will either move or copy pages (determined by @flags options) from 675 * the given pipe inode to the given file. 676 * This one is ->write_iter-based. 677 * 678 */ 679 ssize_t 680 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 681 loff_t *ppos, size_t len, unsigned int flags) 682 { 683 struct splice_desc sd = { 684 .total_len = len, 685 .flags = flags, 686 .pos = *ppos, 687 .u.file = out, 688 }; 689 int nbufs = pipe->buffers; 690 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 691 GFP_KERNEL); 692 ssize_t ret; 693 694 if (unlikely(!array)) 695 return -ENOMEM; 696 697 pipe_lock(pipe); 698 699 splice_from_pipe_begin(&sd); 700 while (sd.total_len) { 701 struct iov_iter from; 702 size_t left; 703 int n, idx; 704 705 ret = splice_from_pipe_next(pipe, &sd); 706 if (ret <= 0) 707 break; 708 709 if (unlikely(nbufs < pipe->buffers)) { 710 kfree(array); 711 nbufs = pipe->buffers; 712 array = kcalloc(nbufs, sizeof(struct bio_vec), 713 GFP_KERNEL); 714 if (!array) { 715 ret = -ENOMEM; 716 break; 717 } 718 } 719 720 /* build the vector */ 721 left = sd.total_len; 722 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) { 723 struct pipe_buffer *buf = pipe->bufs + idx; 724 size_t this_len = buf->len; 725 726 if (this_len > left) 727 this_len = left; 728 729 if (idx == pipe->buffers - 1) 730 idx = -1; 731 732 ret = pipe_buf_confirm(pipe, buf); 733 if (unlikely(ret)) { 734 if (ret == -ENODATA) 735 ret = 0; 736 goto done; 737 } 738 739 array[n].bv_page = buf->page; 740 array[n].bv_len = this_len; 741 array[n].bv_offset = buf->offset; 742 left -= this_len; 743 } 744 745 iov_iter_bvec(&from, WRITE, array, n, sd.total_len - left); 746 ret = vfs_iter_write(out, &from, &sd.pos, 0); 747 if (ret <= 0) 748 break; 749 750 sd.num_spliced += ret; 751 sd.total_len -= ret; 752 *ppos = sd.pos; 753 754 /* dismiss the fully eaten buffers, adjust the partial one */ 755 while (ret) { 756 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 757 if (ret >= buf->len) { 758 ret -= buf->len; 759 buf->len = 0; 760 pipe_buf_release(pipe, buf); 761 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 762 pipe->nrbufs--; 763 if (pipe->files) 764 sd.need_wakeup = true; 765 } else { 766 buf->offset += ret; 767 buf->len -= ret; 768 ret = 0; 769 } 770 } 771 } 772 done: 773 kfree(array); 774 splice_from_pipe_end(pipe, &sd); 775 776 pipe_unlock(pipe); 777 778 if (sd.num_spliced) 779 ret = sd.num_spliced; 780 781 return ret; 782 } 783 784 EXPORT_SYMBOL(iter_file_splice_write); 785 786 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 787 struct splice_desc *sd) 788 { 789 int ret; 790 void *data; 791 loff_t tmp = sd->pos; 792 793 data = kmap(buf->page); 794 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp); 795 kunmap(buf->page); 796 797 return ret; 798 } 799 800 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 801 struct file *out, loff_t *ppos, 802 size_t len, unsigned int flags) 803 { 804 ssize_t ret; 805 806 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 807 if (ret > 0) 808 *ppos += ret; 809 810 return ret; 811 } 812 813 /** 814 * generic_splice_sendpage - splice data from a pipe to a socket 815 * @pipe: pipe to splice from 816 * @out: socket to write to 817 * @ppos: position in @out 818 * @len: number of bytes to splice 819 * @flags: splice modifier flags 820 * 821 * Description: 822 * Will send @len bytes from the pipe to a network socket. No data copying 823 * is involved. 824 * 825 */ 826 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 827 loff_t *ppos, size_t len, unsigned int flags) 828 { 829 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 830 } 831 832 EXPORT_SYMBOL(generic_splice_sendpage); 833 834 /* 835 * Attempt to initiate a splice from pipe to file. 836 */ 837 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 838 loff_t *ppos, size_t len, unsigned int flags) 839 { 840 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 841 loff_t *, size_t, unsigned int); 842 843 if (out->f_op->splice_write) 844 splice_write = out->f_op->splice_write; 845 else 846 splice_write = default_file_splice_write; 847 848 return splice_write(pipe, out, ppos, len, flags); 849 } 850 851 /* 852 * Attempt to initiate a splice from a file to a pipe. 853 */ 854 static long do_splice_to(struct file *in, loff_t *ppos, 855 struct pipe_inode_info *pipe, size_t len, 856 unsigned int flags) 857 { 858 ssize_t (*splice_read)(struct file *, loff_t *, 859 struct pipe_inode_info *, size_t, unsigned int); 860 int ret; 861 862 if (unlikely(!(in->f_mode & FMODE_READ))) 863 return -EBADF; 864 865 ret = rw_verify_area(READ, in, ppos, len); 866 if (unlikely(ret < 0)) 867 return ret; 868 869 if (unlikely(len > MAX_RW_COUNT)) 870 len = MAX_RW_COUNT; 871 872 if (in->f_op->splice_read) 873 splice_read = in->f_op->splice_read; 874 else 875 splice_read = default_file_splice_read; 876 877 return splice_read(in, ppos, pipe, len, flags); 878 } 879 880 /** 881 * splice_direct_to_actor - splices data directly between two non-pipes 882 * @in: file to splice from 883 * @sd: actor information on where to splice to 884 * @actor: handles the data splicing 885 * 886 * Description: 887 * This is a special case helper to splice directly between two 888 * points, without requiring an explicit pipe. Internally an allocated 889 * pipe is cached in the process, and reused during the lifetime of 890 * that process. 891 * 892 */ 893 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 894 splice_direct_actor *actor) 895 { 896 struct pipe_inode_info *pipe; 897 long ret, bytes; 898 umode_t i_mode; 899 size_t len; 900 int i, flags, more; 901 902 /* 903 * We require the input being a regular file, as we don't want to 904 * randomly drop data for eg socket -> socket splicing. Use the 905 * piped splicing for that! 906 */ 907 i_mode = file_inode(in)->i_mode; 908 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 909 return -EINVAL; 910 911 /* 912 * neither in nor out is a pipe, setup an internal pipe attached to 913 * 'out' and transfer the wanted data from 'in' to 'out' through that 914 */ 915 pipe = current->splice_pipe; 916 if (unlikely(!pipe)) { 917 pipe = alloc_pipe_info(); 918 if (!pipe) 919 return -ENOMEM; 920 921 /* 922 * We don't have an immediate reader, but we'll read the stuff 923 * out of the pipe right after the splice_to_pipe(). So set 924 * PIPE_READERS appropriately. 925 */ 926 pipe->readers = 1; 927 928 current->splice_pipe = pipe; 929 } 930 931 /* 932 * Do the splice. 933 */ 934 ret = 0; 935 bytes = 0; 936 len = sd->total_len; 937 flags = sd->flags; 938 939 /* 940 * Don't block on output, we have to drain the direct pipe. 941 */ 942 sd->flags &= ~SPLICE_F_NONBLOCK; 943 more = sd->flags & SPLICE_F_MORE; 944 945 WARN_ON_ONCE(pipe->nrbufs != 0); 946 947 while (len) { 948 size_t read_len; 949 loff_t pos = sd->pos, prev_pos = pos; 950 951 /* Don't try to read more the pipe has space for. */ 952 read_len = min_t(size_t, len, 953 (pipe->buffers - pipe->nrbufs) << PAGE_SHIFT); 954 ret = do_splice_to(in, &pos, pipe, read_len, flags); 955 if (unlikely(ret <= 0)) 956 goto out_release; 957 958 read_len = ret; 959 sd->total_len = read_len; 960 961 /* 962 * If more data is pending, set SPLICE_F_MORE 963 * If this is the last data and SPLICE_F_MORE was not set 964 * initially, clears it. 965 */ 966 if (read_len < len) 967 sd->flags |= SPLICE_F_MORE; 968 else if (!more) 969 sd->flags &= ~SPLICE_F_MORE; 970 /* 971 * NOTE: nonblocking mode only applies to the input. We 972 * must not do the output in nonblocking mode as then we 973 * could get stuck data in the internal pipe: 974 */ 975 ret = actor(pipe, sd); 976 if (unlikely(ret <= 0)) { 977 sd->pos = prev_pos; 978 goto out_release; 979 } 980 981 bytes += ret; 982 len -= ret; 983 sd->pos = pos; 984 985 if (ret < read_len) { 986 sd->pos = prev_pos + ret; 987 goto out_release; 988 } 989 } 990 991 done: 992 pipe->nrbufs = pipe->curbuf = 0; 993 file_accessed(in); 994 return bytes; 995 996 out_release: 997 /* 998 * If we did an incomplete transfer we must release 999 * the pipe buffers in question: 1000 */ 1001 for (i = 0; i < pipe->buffers; i++) { 1002 struct pipe_buffer *buf = pipe->bufs + i; 1003 1004 if (buf->ops) 1005 pipe_buf_release(pipe, buf); 1006 } 1007 1008 if (!bytes) 1009 bytes = ret; 1010 1011 goto done; 1012 } 1013 EXPORT_SYMBOL(splice_direct_to_actor); 1014 1015 static int direct_splice_actor(struct pipe_inode_info *pipe, 1016 struct splice_desc *sd) 1017 { 1018 struct file *file = sd->u.file; 1019 1020 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1021 sd->flags); 1022 } 1023 1024 /** 1025 * do_splice_direct - splices data directly between two files 1026 * @in: file to splice from 1027 * @ppos: input file offset 1028 * @out: file to splice to 1029 * @opos: output file offset 1030 * @len: number of bytes to splice 1031 * @flags: splice modifier flags 1032 * 1033 * Description: 1034 * For use by do_sendfile(). splice can easily emulate sendfile, but 1035 * doing it in the application would incur an extra system call 1036 * (splice in + splice out, as compared to just sendfile()). So this helper 1037 * can splice directly through a process-private pipe. 1038 * 1039 */ 1040 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1041 loff_t *opos, size_t len, unsigned int flags) 1042 { 1043 struct splice_desc sd = { 1044 .len = len, 1045 .total_len = len, 1046 .flags = flags, 1047 .pos = *ppos, 1048 .u.file = out, 1049 .opos = opos, 1050 }; 1051 long ret; 1052 1053 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1054 return -EBADF; 1055 1056 if (unlikely(out->f_flags & O_APPEND)) 1057 return -EINVAL; 1058 1059 ret = rw_verify_area(WRITE, out, opos, len); 1060 if (unlikely(ret < 0)) 1061 return ret; 1062 1063 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1064 if (ret > 0) 1065 *ppos = sd.pos; 1066 1067 return ret; 1068 } 1069 EXPORT_SYMBOL(do_splice_direct); 1070 1071 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 1072 { 1073 for (;;) { 1074 if (unlikely(!pipe->readers)) { 1075 send_sig(SIGPIPE, current, 0); 1076 return -EPIPE; 1077 } 1078 if (pipe->nrbufs != pipe->buffers) 1079 return 0; 1080 if (flags & SPLICE_F_NONBLOCK) 1081 return -EAGAIN; 1082 if (signal_pending(current)) 1083 return -ERESTARTSYS; 1084 pipe->waiting_writers++; 1085 pipe_wait(pipe); 1086 pipe->waiting_writers--; 1087 } 1088 } 1089 1090 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1091 struct pipe_inode_info *opipe, 1092 size_t len, unsigned int flags); 1093 1094 /* 1095 * Determine where to splice to/from. 1096 */ 1097 static long do_splice(struct file *in, loff_t __user *off_in, 1098 struct file *out, loff_t __user *off_out, 1099 size_t len, unsigned int flags) 1100 { 1101 struct pipe_inode_info *ipipe; 1102 struct pipe_inode_info *opipe; 1103 loff_t offset; 1104 long ret; 1105 1106 ipipe = get_pipe_info(in); 1107 opipe = get_pipe_info(out); 1108 1109 if (ipipe && opipe) { 1110 if (off_in || off_out) 1111 return -ESPIPE; 1112 1113 if (!(in->f_mode & FMODE_READ)) 1114 return -EBADF; 1115 1116 if (!(out->f_mode & FMODE_WRITE)) 1117 return -EBADF; 1118 1119 /* Splicing to self would be fun, but... */ 1120 if (ipipe == opipe) 1121 return -EINVAL; 1122 1123 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1124 flags |= SPLICE_F_NONBLOCK; 1125 1126 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1127 } 1128 1129 if (ipipe) { 1130 if (off_in) 1131 return -ESPIPE; 1132 if (off_out) { 1133 if (!(out->f_mode & FMODE_PWRITE)) 1134 return -EINVAL; 1135 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1136 return -EFAULT; 1137 } else { 1138 offset = out->f_pos; 1139 } 1140 1141 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1142 return -EBADF; 1143 1144 if (unlikely(out->f_flags & O_APPEND)) 1145 return -EINVAL; 1146 1147 ret = rw_verify_area(WRITE, out, &offset, len); 1148 if (unlikely(ret < 0)) 1149 return ret; 1150 1151 if (in->f_flags & O_NONBLOCK) 1152 flags |= SPLICE_F_NONBLOCK; 1153 1154 file_start_write(out); 1155 ret = do_splice_from(ipipe, out, &offset, len, flags); 1156 file_end_write(out); 1157 1158 if (!off_out) 1159 out->f_pos = offset; 1160 else if (copy_to_user(off_out, &offset, sizeof(loff_t))) 1161 ret = -EFAULT; 1162 1163 return ret; 1164 } 1165 1166 if (opipe) { 1167 if (off_out) 1168 return -ESPIPE; 1169 if (off_in) { 1170 if (!(in->f_mode & FMODE_PREAD)) 1171 return -EINVAL; 1172 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1173 return -EFAULT; 1174 } else { 1175 offset = in->f_pos; 1176 } 1177 1178 if (out->f_flags & O_NONBLOCK) 1179 flags |= SPLICE_F_NONBLOCK; 1180 1181 pipe_lock(opipe); 1182 ret = wait_for_space(opipe, flags); 1183 if (!ret) 1184 ret = do_splice_to(in, &offset, opipe, len, flags); 1185 pipe_unlock(opipe); 1186 if (ret > 0) 1187 wakeup_pipe_readers(opipe); 1188 if (!off_in) 1189 in->f_pos = offset; 1190 else if (copy_to_user(off_in, &offset, sizeof(loff_t))) 1191 ret = -EFAULT; 1192 1193 return ret; 1194 } 1195 1196 return -EINVAL; 1197 } 1198 1199 static int iter_to_pipe(struct iov_iter *from, 1200 struct pipe_inode_info *pipe, 1201 unsigned flags) 1202 { 1203 struct pipe_buffer buf = { 1204 .ops = &user_page_pipe_buf_ops, 1205 .flags = flags 1206 }; 1207 size_t total = 0; 1208 int ret = 0; 1209 bool failed = false; 1210 1211 while (iov_iter_count(from) && !failed) { 1212 struct page *pages[16]; 1213 ssize_t copied; 1214 size_t start; 1215 int n; 1216 1217 copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start); 1218 if (copied <= 0) { 1219 ret = copied; 1220 break; 1221 } 1222 1223 for (n = 0; copied; n++, start = 0) { 1224 int size = min_t(int, copied, PAGE_SIZE - start); 1225 if (!failed) { 1226 buf.page = pages[n]; 1227 buf.offset = start; 1228 buf.len = size; 1229 ret = add_to_pipe(pipe, &buf); 1230 if (unlikely(ret < 0)) { 1231 failed = true; 1232 } else { 1233 iov_iter_advance(from, ret); 1234 total += ret; 1235 } 1236 } else { 1237 put_page(pages[n]); 1238 } 1239 copied -= size; 1240 } 1241 } 1242 return total ? total : ret; 1243 } 1244 1245 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1246 struct splice_desc *sd) 1247 { 1248 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1249 return n == sd->len ? n : -EFAULT; 1250 } 1251 1252 /* 1253 * For lack of a better implementation, implement vmsplice() to userspace 1254 * as a simple copy of the pipes pages to the user iov. 1255 */ 1256 static long vmsplice_to_user(struct file *file, struct iov_iter *iter, 1257 unsigned int flags) 1258 { 1259 struct pipe_inode_info *pipe = get_pipe_info(file); 1260 struct splice_desc sd = { 1261 .total_len = iov_iter_count(iter), 1262 .flags = flags, 1263 .u.data = iter 1264 }; 1265 long ret = 0; 1266 1267 if (!pipe) 1268 return -EBADF; 1269 1270 if (sd.total_len) { 1271 pipe_lock(pipe); 1272 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1273 pipe_unlock(pipe); 1274 } 1275 1276 return ret; 1277 } 1278 1279 /* 1280 * vmsplice splices a user address range into a pipe. It can be thought of 1281 * as splice-from-memory, where the regular splice is splice-from-file (or 1282 * to file). In both cases the output is a pipe, naturally. 1283 */ 1284 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter, 1285 unsigned int flags) 1286 { 1287 struct pipe_inode_info *pipe; 1288 long ret = 0; 1289 unsigned buf_flag = 0; 1290 1291 if (flags & SPLICE_F_GIFT) 1292 buf_flag = PIPE_BUF_FLAG_GIFT; 1293 1294 pipe = get_pipe_info(file); 1295 if (!pipe) 1296 return -EBADF; 1297 1298 pipe_lock(pipe); 1299 ret = wait_for_space(pipe, flags); 1300 if (!ret) 1301 ret = iter_to_pipe(iter, pipe, buf_flag); 1302 pipe_unlock(pipe); 1303 if (ret > 0) 1304 wakeup_pipe_readers(pipe); 1305 return ret; 1306 } 1307 1308 static int vmsplice_type(struct fd f, int *type) 1309 { 1310 if (!f.file) 1311 return -EBADF; 1312 if (f.file->f_mode & FMODE_WRITE) { 1313 *type = WRITE; 1314 } else if (f.file->f_mode & FMODE_READ) { 1315 *type = READ; 1316 } else { 1317 fdput(f); 1318 return -EBADF; 1319 } 1320 return 0; 1321 } 1322 1323 /* 1324 * Note that vmsplice only really supports true splicing _from_ user memory 1325 * to a pipe, not the other way around. Splicing from user memory is a simple 1326 * operation that can be supported without any funky alignment restrictions 1327 * or nasty vm tricks. We simply map in the user memory and fill them into 1328 * a pipe. The reverse isn't quite as easy, though. There are two possible 1329 * solutions for that: 1330 * 1331 * - memcpy() the data internally, at which point we might as well just 1332 * do a regular read() on the buffer anyway. 1333 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1334 * has restriction limitations on both ends of the pipe). 1335 * 1336 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1337 * 1338 */ 1339 static long do_vmsplice(struct file *f, struct iov_iter *iter, unsigned int flags) 1340 { 1341 if (unlikely(flags & ~SPLICE_F_ALL)) 1342 return -EINVAL; 1343 1344 if (!iov_iter_count(iter)) 1345 return 0; 1346 1347 if (iov_iter_rw(iter) == WRITE) 1348 return vmsplice_to_pipe(f, iter, flags); 1349 else 1350 return vmsplice_to_user(f, iter, flags); 1351 } 1352 1353 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov, 1354 unsigned long, nr_segs, unsigned int, flags) 1355 { 1356 struct iovec iovstack[UIO_FASTIOV]; 1357 struct iovec *iov = iovstack; 1358 struct iov_iter iter; 1359 long error; 1360 struct fd f; 1361 int type; 1362 1363 f = fdget(fd); 1364 error = vmsplice_type(f, &type); 1365 if (error) 1366 return error; 1367 1368 error = import_iovec(type, uiov, nr_segs, 1369 ARRAY_SIZE(iovstack), &iov, &iter); 1370 if (!error) { 1371 error = do_vmsplice(f.file, &iter, flags); 1372 kfree(iov); 1373 } 1374 fdput(f); 1375 return error; 1376 } 1377 1378 #ifdef CONFIG_COMPAT 1379 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32, 1380 unsigned int, nr_segs, unsigned int, flags) 1381 { 1382 struct iovec iovstack[UIO_FASTIOV]; 1383 struct iovec *iov = iovstack; 1384 struct iov_iter iter; 1385 long error; 1386 struct fd f; 1387 int type; 1388 1389 f = fdget(fd); 1390 error = vmsplice_type(f, &type); 1391 if (error) 1392 return error; 1393 1394 error = compat_import_iovec(type, iov32, nr_segs, 1395 ARRAY_SIZE(iovstack), &iov, &iter); 1396 if (!error) { 1397 error = do_vmsplice(f.file, &iter, flags); 1398 kfree(iov); 1399 } 1400 fdput(f); 1401 return error; 1402 } 1403 #endif 1404 1405 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1406 int, fd_out, loff_t __user *, off_out, 1407 size_t, len, unsigned int, flags) 1408 { 1409 struct fd in, out; 1410 long error; 1411 1412 if (unlikely(!len)) 1413 return 0; 1414 1415 if (unlikely(flags & ~SPLICE_F_ALL)) 1416 return -EINVAL; 1417 1418 error = -EBADF; 1419 in = fdget(fd_in); 1420 if (in.file) { 1421 if (in.file->f_mode & FMODE_READ) { 1422 out = fdget(fd_out); 1423 if (out.file) { 1424 if (out.file->f_mode & FMODE_WRITE) 1425 error = do_splice(in.file, off_in, 1426 out.file, off_out, 1427 len, flags); 1428 fdput(out); 1429 } 1430 } 1431 fdput(in); 1432 } 1433 return error; 1434 } 1435 1436 /* 1437 * Make sure there's data to read. Wait for input if we can, otherwise 1438 * return an appropriate error. 1439 */ 1440 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1441 { 1442 int ret; 1443 1444 /* 1445 * Check ->nrbufs without the inode lock first. This function 1446 * is speculative anyways, so missing one is ok. 1447 */ 1448 if (pipe->nrbufs) 1449 return 0; 1450 1451 ret = 0; 1452 pipe_lock(pipe); 1453 1454 while (!pipe->nrbufs) { 1455 if (signal_pending(current)) { 1456 ret = -ERESTARTSYS; 1457 break; 1458 } 1459 if (!pipe->writers) 1460 break; 1461 if (!pipe->waiting_writers) { 1462 if (flags & SPLICE_F_NONBLOCK) { 1463 ret = -EAGAIN; 1464 break; 1465 } 1466 } 1467 pipe_wait(pipe); 1468 } 1469 1470 pipe_unlock(pipe); 1471 return ret; 1472 } 1473 1474 /* 1475 * Make sure there's writeable room. Wait for room if we can, otherwise 1476 * return an appropriate error. 1477 */ 1478 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1479 { 1480 int ret; 1481 1482 /* 1483 * Check ->nrbufs without the inode lock first. This function 1484 * is speculative anyways, so missing one is ok. 1485 */ 1486 if (pipe->nrbufs < pipe->buffers) 1487 return 0; 1488 1489 ret = 0; 1490 pipe_lock(pipe); 1491 1492 while (pipe->nrbufs >= pipe->buffers) { 1493 if (!pipe->readers) { 1494 send_sig(SIGPIPE, current, 0); 1495 ret = -EPIPE; 1496 break; 1497 } 1498 if (flags & SPLICE_F_NONBLOCK) { 1499 ret = -EAGAIN; 1500 break; 1501 } 1502 if (signal_pending(current)) { 1503 ret = -ERESTARTSYS; 1504 break; 1505 } 1506 pipe->waiting_writers++; 1507 pipe_wait(pipe); 1508 pipe->waiting_writers--; 1509 } 1510 1511 pipe_unlock(pipe); 1512 return ret; 1513 } 1514 1515 /* 1516 * Splice contents of ipipe to opipe. 1517 */ 1518 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1519 struct pipe_inode_info *opipe, 1520 size_t len, unsigned int flags) 1521 { 1522 struct pipe_buffer *ibuf, *obuf; 1523 int ret = 0, nbuf; 1524 bool input_wakeup = false; 1525 1526 1527 retry: 1528 ret = ipipe_prep(ipipe, flags); 1529 if (ret) 1530 return ret; 1531 1532 ret = opipe_prep(opipe, flags); 1533 if (ret) 1534 return ret; 1535 1536 /* 1537 * Potential ABBA deadlock, work around it by ordering lock 1538 * grabbing by pipe info address. Otherwise two different processes 1539 * could deadlock (one doing tee from A -> B, the other from B -> A). 1540 */ 1541 pipe_double_lock(ipipe, opipe); 1542 1543 do { 1544 if (!opipe->readers) { 1545 send_sig(SIGPIPE, current, 0); 1546 if (!ret) 1547 ret = -EPIPE; 1548 break; 1549 } 1550 1551 if (!ipipe->nrbufs && !ipipe->writers) 1552 break; 1553 1554 /* 1555 * Cannot make any progress, because either the input 1556 * pipe is empty or the output pipe is full. 1557 */ 1558 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) { 1559 /* Already processed some buffers, break */ 1560 if (ret) 1561 break; 1562 1563 if (flags & SPLICE_F_NONBLOCK) { 1564 ret = -EAGAIN; 1565 break; 1566 } 1567 1568 /* 1569 * We raced with another reader/writer and haven't 1570 * managed to process any buffers. A zero return 1571 * value means EOF, so retry instead. 1572 */ 1573 pipe_unlock(ipipe); 1574 pipe_unlock(opipe); 1575 goto retry; 1576 } 1577 1578 ibuf = ipipe->bufs + ipipe->curbuf; 1579 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1580 obuf = opipe->bufs + nbuf; 1581 1582 if (len >= ibuf->len) { 1583 /* 1584 * Simply move the whole buffer from ipipe to opipe 1585 */ 1586 *obuf = *ibuf; 1587 ibuf->ops = NULL; 1588 opipe->nrbufs++; 1589 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1); 1590 ipipe->nrbufs--; 1591 input_wakeup = true; 1592 } else { 1593 /* 1594 * Get a reference to this pipe buffer, 1595 * so we can copy the contents over. 1596 */ 1597 if (!pipe_buf_get(ipipe, ibuf)) { 1598 if (ret == 0) 1599 ret = -EFAULT; 1600 break; 1601 } 1602 *obuf = *ibuf; 1603 1604 /* 1605 * Don't inherit the gift flag, we need to 1606 * prevent multiple steals of this page. 1607 */ 1608 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1609 1610 pipe_buf_mark_unmergeable(obuf); 1611 1612 obuf->len = len; 1613 opipe->nrbufs++; 1614 ibuf->offset += obuf->len; 1615 ibuf->len -= obuf->len; 1616 } 1617 ret += obuf->len; 1618 len -= obuf->len; 1619 } while (len); 1620 1621 pipe_unlock(ipipe); 1622 pipe_unlock(opipe); 1623 1624 /* 1625 * If we put data in the output pipe, wakeup any potential readers. 1626 */ 1627 if (ret > 0) 1628 wakeup_pipe_readers(opipe); 1629 1630 if (input_wakeup) 1631 wakeup_pipe_writers(ipipe); 1632 1633 return ret; 1634 } 1635 1636 /* 1637 * Link contents of ipipe to opipe. 1638 */ 1639 static int link_pipe(struct pipe_inode_info *ipipe, 1640 struct pipe_inode_info *opipe, 1641 size_t len, unsigned int flags) 1642 { 1643 struct pipe_buffer *ibuf, *obuf; 1644 int ret = 0, i = 0, nbuf; 1645 1646 /* 1647 * Potential ABBA deadlock, work around it by ordering lock 1648 * grabbing by pipe info address. Otherwise two different processes 1649 * could deadlock (one doing tee from A -> B, the other from B -> A). 1650 */ 1651 pipe_double_lock(ipipe, opipe); 1652 1653 do { 1654 if (!opipe->readers) { 1655 send_sig(SIGPIPE, current, 0); 1656 if (!ret) 1657 ret = -EPIPE; 1658 break; 1659 } 1660 1661 /* 1662 * If we have iterated all input buffers or ran out of 1663 * output room, break. 1664 */ 1665 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) 1666 break; 1667 1668 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1)); 1669 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1670 1671 /* 1672 * Get a reference to this pipe buffer, 1673 * so we can copy the contents over. 1674 */ 1675 if (!pipe_buf_get(ipipe, ibuf)) { 1676 if (ret == 0) 1677 ret = -EFAULT; 1678 break; 1679 } 1680 1681 obuf = opipe->bufs + nbuf; 1682 *obuf = *ibuf; 1683 1684 /* 1685 * Don't inherit the gift flag, we need to 1686 * prevent multiple steals of this page. 1687 */ 1688 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1689 1690 pipe_buf_mark_unmergeable(obuf); 1691 1692 if (obuf->len > len) 1693 obuf->len = len; 1694 1695 opipe->nrbufs++; 1696 ret += obuf->len; 1697 len -= obuf->len; 1698 i++; 1699 } while (len); 1700 1701 /* 1702 * return EAGAIN if we have the potential of some data in the 1703 * future, otherwise just return 0 1704 */ 1705 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1706 ret = -EAGAIN; 1707 1708 pipe_unlock(ipipe); 1709 pipe_unlock(opipe); 1710 1711 /* 1712 * If we put data in the output pipe, wakeup any potential readers. 1713 */ 1714 if (ret > 0) 1715 wakeup_pipe_readers(opipe); 1716 1717 return ret; 1718 } 1719 1720 /* 1721 * This is a tee(1) implementation that works on pipes. It doesn't copy 1722 * any data, it simply references the 'in' pages on the 'out' pipe. 1723 * The 'flags' used are the SPLICE_F_* variants, currently the only 1724 * applicable one is SPLICE_F_NONBLOCK. 1725 */ 1726 static long do_tee(struct file *in, struct file *out, size_t len, 1727 unsigned int flags) 1728 { 1729 struct pipe_inode_info *ipipe = get_pipe_info(in); 1730 struct pipe_inode_info *opipe = get_pipe_info(out); 1731 int ret = -EINVAL; 1732 1733 /* 1734 * Duplicate the contents of ipipe to opipe without actually 1735 * copying the data. 1736 */ 1737 if (ipipe && opipe && ipipe != opipe) { 1738 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1739 flags |= SPLICE_F_NONBLOCK; 1740 1741 /* 1742 * Keep going, unless we encounter an error. The ipipe/opipe 1743 * ordering doesn't really matter. 1744 */ 1745 ret = ipipe_prep(ipipe, flags); 1746 if (!ret) { 1747 ret = opipe_prep(opipe, flags); 1748 if (!ret) 1749 ret = link_pipe(ipipe, opipe, len, flags); 1750 } 1751 } 1752 1753 return ret; 1754 } 1755 1756 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1757 { 1758 struct fd in; 1759 int error; 1760 1761 if (unlikely(flags & ~SPLICE_F_ALL)) 1762 return -EINVAL; 1763 1764 if (unlikely(!len)) 1765 return 0; 1766 1767 error = -EBADF; 1768 in = fdget(fdin); 1769 if (in.file) { 1770 if (in.file->f_mode & FMODE_READ) { 1771 struct fd out = fdget(fdout); 1772 if (out.file) { 1773 if (out.file->f_mode & FMODE_WRITE) 1774 error = do_tee(in.file, out.file, 1775 len, flags); 1776 fdput(out); 1777 } 1778 } 1779 fdput(in); 1780 } 1781 1782 return error; 1783 } 1784