1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * "splice": joining two ropes together by interweaving their strands. 4 * 5 * This is the "extended pipe" functionality, where a pipe is used as 6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 7 * buffer that you can use to transfer data from one end to the other. 8 * 9 * The traditional unix read/write is extended with a "splice()" operation 10 * that transfers data buffers to or from a pipe buffer. 11 * 12 * Named by Larry McVoy, original implementation from Linus, extended by 13 * Jens to support splicing to files, network, direct splicing, etc and 14 * fixing lots of bugs. 15 * 16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 19 * 20 */ 21 #include <linux/bvec.h> 22 #include <linux/fs.h> 23 #include <linux/file.h> 24 #include <linux/pagemap.h> 25 #include <linux/splice.h> 26 #include <linux/memcontrol.h> 27 #include <linux/mm_inline.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/export.h> 31 #include <linux/syscalls.h> 32 #include <linux/uio.h> 33 #include <linux/security.h> 34 #include <linux/gfp.h> 35 #include <linux/socket.h> 36 #include <linux/compat.h> 37 #include <linux/sched/signal.h> 38 39 #include "internal.h" 40 41 /* 42 * Attempt to steal a page from a pipe buffer. This should perhaps go into 43 * a vm helper function, it's already simplified quite a bit by the 44 * addition of remove_mapping(). If success is returned, the caller may 45 * attempt to reuse this page for another destination. 46 */ 47 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 48 struct pipe_buffer *buf) 49 { 50 struct page *page = buf->page; 51 struct address_space *mapping; 52 53 lock_page(page); 54 55 mapping = page_mapping(page); 56 if (mapping) { 57 WARN_ON(!PageUptodate(page)); 58 59 /* 60 * At least for ext2 with nobh option, we need to wait on 61 * writeback completing on this page, since we'll remove it 62 * from the pagecache. Otherwise truncate wont wait on the 63 * page, allowing the disk blocks to be reused by someone else 64 * before we actually wrote our data to them. fs corruption 65 * ensues. 66 */ 67 wait_on_page_writeback(page); 68 69 if (page_has_private(page) && 70 !try_to_release_page(page, GFP_KERNEL)) 71 goto out_unlock; 72 73 /* 74 * If we succeeded in removing the mapping, set LRU flag 75 * and return good. 76 */ 77 if (remove_mapping(mapping, page)) { 78 buf->flags |= PIPE_BUF_FLAG_LRU; 79 return 0; 80 } 81 } 82 83 /* 84 * Raced with truncate or failed to remove page from current 85 * address space, unlock and return failure. 86 */ 87 out_unlock: 88 unlock_page(page); 89 return 1; 90 } 91 92 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 93 struct pipe_buffer *buf) 94 { 95 put_page(buf->page); 96 buf->flags &= ~PIPE_BUF_FLAG_LRU; 97 } 98 99 /* 100 * Check whether the contents of buf is OK to access. Since the content 101 * is a page cache page, IO may be in flight. 102 */ 103 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 104 struct pipe_buffer *buf) 105 { 106 struct page *page = buf->page; 107 int err; 108 109 if (!PageUptodate(page)) { 110 lock_page(page); 111 112 /* 113 * Page got truncated/unhashed. This will cause a 0-byte 114 * splice, if this is the first page. 115 */ 116 if (!page->mapping) { 117 err = -ENODATA; 118 goto error; 119 } 120 121 /* 122 * Uh oh, read-error from disk. 123 */ 124 if (!PageUptodate(page)) { 125 err = -EIO; 126 goto error; 127 } 128 129 /* 130 * Page is ok afterall, we are done. 131 */ 132 unlock_page(page); 133 } 134 135 return 0; 136 error: 137 unlock_page(page); 138 return err; 139 } 140 141 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 142 .confirm = page_cache_pipe_buf_confirm, 143 .release = page_cache_pipe_buf_release, 144 .steal = page_cache_pipe_buf_steal, 145 .get = generic_pipe_buf_get, 146 }; 147 148 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 149 struct pipe_buffer *buf) 150 { 151 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 152 return 1; 153 154 buf->flags |= PIPE_BUF_FLAG_LRU; 155 return generic_pipe_buf_steal(pipe, buf); 156 } 157 158 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 159 .confirm = generic_pipe_buf_confirm, 160 .release = page_cache_pipe_buf_release, 161 .steal = user_page_pipe_buf_steal, 162 .get = generic_pipe_buf_get, 163 }; 164 165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 166 { 167 smp_mb(); 168 if (waitqueue_active(&pipe->rd_wait)) 169 wake_up_interruptible(&pipe->rd_wait); 170 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 171 } 172 173 /** 174 * splice_to_pipe - fill passed data into a pipe 175 * @pipe: pipe to fill 176 * @spd: data to fill 177 * 178 * Description: 179 * @spd contains a map of pages and len/offset tuples, along with 180 * the struct pipe_buf_operations associated with these pages. This 181 * function will link that data to the pipe. 182 * 183 */ 184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 185 struct splice_pipe_desc *spd) 186 { 187 unsigned int spd_pages = spd->nr_pages; 188 unsigned int tail = pipe->tail; 189 unsigned int head = pipe->head; 190 unsigned int mask = pipe->ring_size - 1; 191 int ret = 0, page_nr = 0; 192 193 if (!spd_pages) 194 return 0; 195 196 if (unlikely(!pipe->readers)) { 197 send_sig(SIGPIPE, current, 0); 198 ret = -EPIPE; 199 goto out; 200 } 201 202 while (!pipe_full(head, tail, pipe->max_usage)) { 203 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 204 205 buf->page = spd->pages[page_nr]; 206 buf->offset = spd->partial[page_nr].offset; 207 buf->len = spd->partial[page_nr].len; 208 buf->private = spd->partial[page_nr].private; 209 buf->ops = spd->ops; 210 buf->flags = 0; 211 212 head++; 213 pipe->head = head; 214 page_nr++; 215 ret += buf->len; 216 217 if (!--spd->nr_pages) 218 break; 219 } 220 221 if (!ret) 222 ret = -EAGAIN; 223 224 out: 225 while (page_nr < spd_pages) 226 spd->spd_release(spd, page_nr++); 227 228 return ret; 229 } 230 EXPORT_SYMBOL_GPL(splice_to_pipe); 231 232 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 233 { 234 unsigned int head = pipe->head; 235 unsigned int tail = pipe->tail; 236 unsigned int mask = pipe->ring_size - 1; 237 int ret; 238 239 if (unlikely(!pipe->readers)) { 240 send_sig(SIGPIPE, current, 0); 241 ret = -EPIPE; 242 } else if (pipe_full(head, tail, pipe->max_usage)) { 243 ret = -EAGAIN; 244 } else { 245 pipe->bufs[head & mask] = *buf; 246 pipe->head = head + 1; 247 return buf->len; 248 } 249 pipe_buf_release(pipe, buf); 250 return ret; 251 } 252 EXPORT_SYMBOL(add_to_pipe); 253 254 /* 255 * Check if we need to grow the arrays holding pages and partial page 256 * descriptions. 257 */ 258 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 259 { 260 unsigned int max_usage = READ_ONCE(pipe->max_usage); 261 262 spd->nr_pages_max = max_usage; 263 if (max_usage <= PIPE_DEF_BUFFERS) 264 return 0; 265 266 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL); 267 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page), 268 GFP_KERNEL); 269 270 if (spd->pages && spd->partial) 271 return 0; 272 273 kfree(spd->pages); 274 kfree(spd->partial); 275 return -ENOMEM; 276 } 277 278 void splice_shrink_spd(struct splice_pipe_desc *spd) 279 { 280 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 281 return; 282 283 kfree(spd->pages); 284 kfree(spd->partial); 285 } 286 287 /** 288 * generic_file_splice_read - splice data from file to a pipe 289 * @in: file to splice from 290 * @ppos: position in @in 291 * @pipe: pipe to splice to 292 * @len: number of bytes to splice 293 * @flags: splice modifier flags 294 * 295 * Description: 296 * Will read pages from given file and fill them into a pipe. Can be 297 * used as long as it has more or less sane ->read_iter(). 298 * 299 */ 300 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 301 struct pipe_inode_info *pipe, size_t len, 302 unsigned int flags) 303 { 304 struct iov_iter to; 305 struct kiocb kiocb; 306 unsigned int i_head; 307 int ret; 308 309 iov_iter_pipe(&to, READ, pipe, len); 310 i_head = to.head; 311 init_sync_kiocb(&kiocb, in); 312 kiocb.ki_pos = *ppos; 313 ret = call_read_iter(in, &kiocb, &to); 314 if (ret > 0) { 315 *ppos = kiocb.ki_pos; 316 file_accessed(in); 317 } else if (ret < 0) { 318 to.head = i_head; 319 to.iov_offset = 0; 320 iov_iter_advance(&to, 0); /* to free what was emitted */ 321 /* 322 * callers of ->splice_read() expect -EAGAIN on 323 * "can't put anything in there", rather than -EFAULT. 324 */ 325 if (ret == -EFAULT) 326 ret = -EAGAIN; 327 } 328 329 return ret; 330 } 331 EXPORT_SYMBOL(generic_file_splice_read); 332 333 const struct pipe_buf_operations default_pipe_buf_ops = { 334 .confirm = generic_pipe_buf_confirm, 335 .release = generic_pipe_buf_release, 336 .steal = generic_pipe_buf_steal, 337 .get = generic_pipe_buf_get, 338 }; 339 340 int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe, 341 struct pipe_buffer *buf) 342 { 343 return 1; 344 } 345 346 /* Pipe buffer operations for a socket and similar. */ 347 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 348 .confirm = generic_pipe_buf_confirm, 349 .release = generic_pipe_buf_release, 350 .steal = generic_pipe_buf_nosteal, 351 .get = generic_pipe_buf_get, 352 }; 353 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 354 355 static ssize_t kernel_readv(struct file *file, const struct kvec *vec, 356 unsigned long vlen, loff_t offset) 357 { 358 mm_segment_t old_fs; 359 loff_t pos = offset; 360 ssize_t res; 361 362 old_fs = get_fs(); 363 set_fs(KERNEL_DS); 364 /* The cast to a user pointer is valid due to the set_fs() */ 365 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0); 366 set_fs(old_fs); 367 368 return res; 369 } 370 371 static ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 372 struct pipe_inode_info *pipe, size_t len, 373 unsigned int flags) 374 { 375 struct kvec *vec, __vec[PIPE_DEF_BUFFERS]; 376 struct iov_iter to; 377 struct page **pages; 378 unsigned int nr_pages; 379 unsigned int mask; 380 size_t offset, base, copied = 0; 381 ssize_t res; 382 int i; 383 384 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 385 return -EAGAIN; 386 387 /* 388 * Try to keep page boundaries matching to source pagecache ones - 389 * it probably won't be much help, but... 390 */ 391 offset = *ppos & ~PAGE_MASK; 392 393 iov_iter_pipe(&to, READ, pipe, len + offset); 394 395 res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &base); 396 if (res <= 0) 397 return -ENOMEM; 398 399 nr_pages = DIV_ROUND_UP(res + base, PAGE_SIZE); 400 401 vec = __vec; 402 if (nr_pages > PIPE_DEF_BUFFERS) { 403 vec = kmalloc_array(nr_pages, sizeof(struct kvec), GFP_KERNEL); 404 if (unlikely(!vec)) { 405 res = -ENOMEM; 406 goto out; 407 } 408 } 409 410 mask = pipe->ring_size - 1; 411 pipe->bufs[to.head & mask].offset = offset; 412 pipe->bufs[to.head & mask].len -= offset; 413 414 for (i = 0; i < nr_pages; i++) { 415 size_t this_len = min_t(size_t, len, PAGE_SIZE - offset); 416 vec[i].iov_base = page_address(pages[i]) + offset; 417 vec[i].iov_len = this_len; 418 len -= this_len; 419 offset = 0; 420 } 421 422 res = kernel_readv(in, vec, nr_pages, *ppos); 423 if (res > 0) { 424 copied = res; 425 *ppos += res; 426 } 427 428 if (vec != __vec) 429 kfree(vec); 430 out: 431 for (i = 0; i < nr_pages; i++) 432 put_page(pages[i]); 433 kvfree(pages); 434 iov_iter_advance(&to, copied); /* truncates and discards */ 435 return res; 436 } 437 438 /* 439 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 440 * using sendpage(). Return the number of bytes sent. 441 */ 442 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 443 struct pipe_buffer *buf, struct splice_desc *sd) 444 { 445 struct file *file = sd->u.file; 446 loff_t pos = sd->pos; 447 int more; 448 449 if (!likely(file->f_op->sendpage)) 450 return -EINVAL; 451 452 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0; 453 454 if (sd->len < sd->total_len && 455 pipe_occupancy(pipe->head, pipe->tail) > 1) 456 more |= MSG_SENDPAGE_NOTLAST; 457 458 return file->f_op->sendpage(file, buf->page, buf->offset, 459 sd->len, &pos, more); 460 } 461 462 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 463 { 464 smp_mb(); 465 if (waitqueue_active(&pipe->wr_wait)) 466 wake_up_interruptible(&pipe->wr_wait); 467 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 468 } 469 470 /** 471 * splice_from_pipe_feed - feed available data from a pipe to a file 472 * @pipe: pipe to splice from 473 * @sd: information to @actor 474 * @actor: handler that splices the data 475 * 476 * Description: 477 * This function loops over the pipe and calls @actor to do the 478 * actual moving of a single struct pipe_buffer to the desired 479 * destination. It returns when there's no more buffers left in 480 * the pipe or if the requested number of bytes (@sd->total_len) 481 * have been copied. It returns a positive number (one) if the 482 * pipe needs to be filled with more data, zero if the required 483 * number of bytes have been copied and -errno on error. 484 * 485 * This, together with splice_from_pipe_{begin,end,next}, may be 486 * used to implement the functionality of __splice_from_pipe() when 487 * locking is required around copying the pipe buffers to the 488 * destination. 489 */ 490 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 491 splice_actor *actor) 492 { 493 unsigned int head = pipe->head; 494 unsigned int tail = pipe->tail; 495 unsigned int mask = pipe->ring_size - 1; 496 int ret; 497 498 while (!pipe_empty(head, tail)) { 499 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 500 501 sd->len = buf->len; 502 if (sd->len > sd->total_len) 503 sd->len = sd->total_len; 504 505 ret = pipe_buf_confirm(pipe, buf); 506 if (unlikely(ret)) { 507 if (ret == -ENODATA) 508 ret = 0; 509 return ret; 510 } 511 512 ret = actor(pipe, buf, sd); 513 if (ret <= 0) 514 return ret; 515 516 buf->offset += ret; 517 buf->len -= ret; 518 519 sd->num_spliced += ret; 520 sd->len -= ret; 521 sd->pos += ret; 522 sd->total_len -= ret; 523 524 if (!buf->len) { 525 pipe_buf_release(pipe, buf); 526 tail++; 527 pipe->tail = tail; 528 if (pipe->files) 529 sd->need_wakeup = true; 530 } 531 532 if (!sd->total_len) 533 return 0; 534 } 535 536 return 1; 537 } 538 539 /** 540 * splice_from_pipe_next - wait for some data to splice from 541 * @pipe: pipe to splice from 542 * @sd: information about the splice operation 543 * 544 * Description: 545 * This function will wait for some data and return a positive 546 * value (one) if pipe buffers are available. It will return zero 547 * or -errno if no more data needs to be spliced. 548 */ 549 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 550 { 551 /* 552 * Check for signal early to make process killable when there are 553 * always buffers available 554 */ 555 if (signal_pending(current)) 556 return -ERESTARTSYS; 557 558 while (pipe_empty(pipe->head, pipe->tail)) { 559 if (!pipe->writers) 560 return 0; 561 562 if (sd->num_spliced) 563 return 0; 564 565 if (sd->flags & SPLICE_F_NONBLOCK) 566 return -EAGAIN; 567 568 if (signal_pending(current)) 569 return -ERESTARTSYS; 570 571 if (sd->need_wakeup) { 572 wakeup_pipe_writers(pipe); 573 sd->need_wakeup = false; 574 } 575 576 pipe_wait(pipe); 577 } 578 579 return 1; 580 } 581 582 /** 583 * splice_from_pipe_begin - start splicing from pipe 584 * @sd: information about the splice operation 585 * 586 * Description: 587 * This function should be called before a loop containing 588 * splice_from_pipe_next() and splice_from_pipe_feed() to 589 * initialize the necessary fields of @sd. 590 */ 591 static void splice_from_pipe_begin(struct splice_desc *sd) 592 { 593 sd->num_spliced = 0; 594 sd->need_wakeup = false; 595 } 596 597 /** 598 * splice_from_pipe_end - finish splicing from pipe 599 * @pipe: pipe to splice from 600 * @sd: information about the splice operation 601 * 602 * Description: 603 * This function will wake up pipe writers if necessary. It should 604 * be called after a loop containing splice_from_pipe_next() and 605 * splice_from_pipe_feed(). 606 */ 607 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 608 { 609 if (sd->need_wakeup) 610 wakeup_pipe_writers(pipe); 611 } 612 613 /** 614 * __splice_from_pipe - splice data from a pipe to given actor 615 * @pipe: pipe to splice from 616 * @sd: information to @actor 617 * @actor: handler that splices the data 618 * 619 * Description: 620 * This function does little more than loop over the pipe and call 621 * @actor to do the actual moving of a single struct pipe_buffer to 622 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 623 * pipe_to_user. 624 * 625 */ 626 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 627 splice_actor *actor) 628 { 629 int ret; 630 631 splice_from_pipe_begin(sd); 632 do { 633 cond_resched(); 634 ret = splice_from_pipe_next(pipe, sd); 635 if (ret > 0) 636 ret = splice_from_pipe_feed(pipe, sd, actor); 637 } while (ret > 0); 638 splice_from_pipe_end(pipe, sd); 639 640 return sd->num_spliced ? sd->num_spliced : ret; 641 } 642 EXPORT_SYMBOL(__splice_from_pipe); 643 644 /** 645 * splice_from_pipe - splice data from a pipe to a file 646 * @pipe: pipe to splice from 647 * @out: file to splice to 648 * @ppos: position in @out 649 * @len: how many bytes to splice 650 * @flags: splice modifier flags 651 * @actor: handler that splices the data 652 * 653 * Description: 654 * See __splice_from_pipe. This function locks the pipe inode, 655 * otherwise it's identical to __splice_from_pipe(). 656 * 657 */ 658 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 659 loff_t *ppos, size_t len, unsigned int flags, 660 splice_actor *actor) 661 { 662 ssize_t ret; 663 struct splice_desc sd = { 664 .total_len = len, 665 .flags = flags, 666 .pos = *ppos, 667 .u.file = out, 668 }; 669 670 pipe_lock(pipe); 671 ret = __splice_from_pipe(pipe, &sd, actor); 672 pipe_unlock(pipe); 673 674 return ret; 675 } 676 677 /** 678 * iter_file_splice_write - splice data from a pipe to a file 679 * @pipe: pipe info 680 * @out: file to write to 681 * @ppos: position in @out 682 * @len: number of bytes to splice 683 * @flags: splice modifier flags 684 * 685 * Description: 686 * Will either move or copy pages (determined by @flags options) from 687 * the given pipe inode to the given file. 688 * This one is ->write_iter-based. 689 * 690 */ 691 ssize_t 692 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 693 loff_t *ppos, size_t len, unsigned int flags) 694 { 695 struct splice_desc sd = { 696 .total_len = len, 697 .flags = flags, 698 .pos = *ppos, 699 .u.file = out, 700 }; 701 int nbufs = pipe->max_usage; 702 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 703 GFP_KERNEL); 704 ssize_t ret; 705 706 if (unlikely(!array)) 707 return -ENOMEM; 708 709 pipe_lock(pipe); 710 711 splice_from_pipe_begin(&sd); 712 while (sd.total_len) { 713 struct iov_iter from; 714 unsigned int head, tail, mask; 715 size_t left; 716 int n; 717 718 ret = splice_from_pipe_next(pipe, &sd); 719 if (ret <= 0) 720 break; 721 722 if (unlikely(nbufs < pipe->max_usage)) { 723 kfree(array); 724 nbufs = pipe->max_usage; 725 array = kcalloc(nbufs, sizeof(struct bio_vec), 726 GFP_KERNEL); 727 if (!array) { 728 ret = -ENOMEM; 729 break; 730 } 731 } 732 733 head = pipe->head; 734 tail = pipe->tail; 735 mask = pipe->ring_size - 1; 736 737 /* build the vector */ 738 left = sd.total_len; 739 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++, n++) { 740 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 741 size_t this_len = buf->len; 742 743 if (this_len > left) 744 this_len = left; 745 746 ret = pipe_buf_confirm(pipe, buf); 747 if (unlikely(ret)) { 748 if (ret == -ENODATA) 749 ret = 0; 750 goto done; 751 } 752 753 array[n].bv_page = buf->page; 754 array[n].bv_len = this_len; 755 array[n].bv_offset = buf->offset; 756 left -= this_len; 757 } 758 759 iov_iter_bvec(&from, WRITE, array, n, sd.total_len - left); 760 ret = vfs_iter_write(out, &from, &sd.pos, 0); 761 if (ret <= 0) 762 break; 763 764 sd.num_spliced += ret; 765 sd.total_len -= ret; 766 *ppos = sd.pos; 767 768 /* dismiss the fully eaten buffers, adjust the partial one */ 769 tail = pipe->tail; 770 while (ret) { 771 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 772 if (ret >= buf->len) { 773 ret -= buf->len; 774 buf->len = 0; 775 pipe_buf_release(pipe, buf); 776 tail++; 777 pipe->tail = tail; 778 if (pipe->files) 779 sd.need_wakeup = true; 780 } else { 781 buf->offset += ret; 782 buf->len -= ret; 783 ret = 0; 784 } 785 } 786 } 787 done: 788 kfree(array); 789 splice_from_pipe_end(pipe, &sd); 790 791 pipe_unlock(pipe); 792 793 if (sd.num_spliced) 794 ret = sd.num_spliced; 795 796 return ret; 797 } 798 799 EXPORT_SYMBOL(iter_file_splice_write); 800 801 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 802 struct splice_desc *sd) 803 { 804 int ret; 805 void *data; 806 loff_t tmp = sd->pos; 807 808 data = kmap(buf->page); 809 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp); 810 kunmap(buf->page); 811 812 return ret; 813 } 814 815 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 816 struct file *out, loff_t *ppos, 817 size_t len, unsigned int flags) 818 { 819 ssize_t ret; 820 821 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 822 if (ret > 0) 823 *ppos += ret; 824 825 return ret; 826 } 827 828 /** 829 * generic_splice_sendpage - splice data from a pipe to a socket 830 * @pipe: pipe to splice from 831 * @out: socket to write to 832 * @ppos: position in @out 833 * @len: number of bytes to splice 834 * @flags: splice modifier flags 835 * 836 * Description: 837 * Will send @len bytes from the pipe to a network socket. No data copying 838 * is involved. 839 * 840 */ 841 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 842 loff_t *ppos, size_t len, unsigned int flags) 843 { 844 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 845 } 846 847 EXPORT_SYMBOL(generic_splice_sendpage); 848 849 /* 850 * Attempt to initiate a splice from pipe to file. 851 */ 852 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 853 loff_t *ppos, size_t len, unsigned int flags) 854 { 855 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 856 loff_t *, size_t, unsigned int); 857 858 if (out->f_op->splice_write) 859 splice_write = out->f_op->splice_write; 860 else 861 splice_write = default_file_splice_write; 862 863 return splice_write(pipe, out, ppos, len, flags); 864 } 865 866 /* 867 * Attempt to initiate a splice from a file to a pipe. 868 */ 869 static long do_splice_to(struct file *in, loff_t *ppos, 870 struct pipe_inode_info *pipe, size_t len, 871 unsigned int flags) 872 { 873 ssize_t (*splice_read)(struct file *, loff_t *, 874 struct pipe_inode_info *, size_t, unsigned int); 875 int ret; 876 877 if (unlikely(!(in->f_mode & FMODE_READ))) 878 return -EBADF; 879 880 ret = rw_verify_area(READ, in, ppos, len); 881 if (unlikely(ret < 0)) 882 return ret; 883 884 if (unlikely(len > MAX_RW_COUNT)) 885 len = MAX_RW_COUNT; 886 887 if (in->f_op->splice_read) 888 splice_read = in->f_op->splice_read; 889 else 890 splice_read = default_file_splice_read; 891 892 return splice_read(in, ppos, pipe, len, flags); 893 } 894 895 /** 896 * splice_direct_to_actor - splices data directly between two non-pipes 897 * @in: file to splice from 898 * @sd: actor information on where to splice to 899 * @actor: handles the data splicing 900 * 901 * Description: 902 * This is a special case helper to splice directly between two 903 * points, without requiring an explicit pipe. Internally an allocated 904 * pipe is cached in the process, and reused during the lifetime of 905 * that process. 906 * 907 */ 908 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 909 splice_direct_actor *actor) 910 { 911 struct pipe_inode_info *pipe; 912 long ret, bytes; 913 umode_t i_mode; 914 size_t len; 915 int i, flags, more; 916 917 /* 918 * We require the input being a regular file, as we don't want to 919 * randomly drop data for eg socket -> socket splicing. Use the 920 * piped splicing for that! 921 */ 922 i_mode = file_inode(in)->i_mode; 923 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 924 return -EINVAL; 925 926 /* 927 * neither in nor out is a pipe, setup an internal pipe attached to 928 * 'out' and transfer the wanted data from 'in' to 'out' through that 929 */ 930 pipe = current->splice_pipe; 931 if (unlikely(!pipe)) { 932 pipe = alloc_pipe_info(); 933 if (!pipe) 934 return -ENOMEM; 935 936 /* 937 * We don't have an immediate reader, but we'll read the stuff 938 * out of the pipe right after the splice_to_pipe(). So set 939 * PIPE_READERS appropriately. 940 */ 941 pipe->readers = 1; 942 943 current->splice_pipe = pipe; 944 } 945 946 /* 947 * Do the splice. 948 */ 949 ret = 0; 950 bytes = 0; 951 len = sd->total_len; 952 flags = sd->flags; 953 954 /* 955 * Don't block on output, we have to drain the direct pipe. 956 */ 957 sd->flags &= ~SPLICE_F_NONBLOCK; 958 more = sd->flags & SPLICE_F_MORE; 959 960 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail)); 961 962 while (len) { 963 unsigned int p_space; 964 size_t read_len; 965 loff_t pos = sd->pos, prev_pos = pos; 966 967 /* Don't try to read more the pipe has space for. */ 968 p_space = pipe->max_usage - 969 pipe_occupancy(pipe->head, pipe->tail); 970 read_len = min_t(size_t, len, p_space << PAGE_SHIFT); 971 ret = do_splice_to(in, &pos, pipe, read_len, flags); 972 if (unlikely(ret <= 0)) 973 goto out_release; 974 975 read_len = ret; 976 sd->total_len = read_len; 977 978 /* 979 * If more data is pending, set SPLICE_F_MORE 980 * If this is the last data and SPLICE_F_MORE was not set 981 * initially, clears it. 982 */ 983 if (read_len < len) 984 sd->flags |= SPLICE_F_MORE; 985 else if (!more) 986 sd->flags &= ~SPLICE_F_MORE; 987 /* 988 * NOTE: nonblocking mode only applies to the input. We 989 * must not do the output in nonblocking mode as then we 990 * could get stuck data in the internal pipe: 991 */ 992 ret = actor(pipe, sd); 993 if (unlikely(ret <= 0)) { 994 sd->pos = prev_pos; 995 goto out_release; 996 } 997 998 bytes += ret; 999 len -= ret; 1000 sd->pos = pos; 1001 1002 if (ret < read_len) { 1003 sd->pos = prev_pos + ret; 1004 goto out_release; 1005 } 1006 } 1007 1008 done: 1009 pipe->tail = pipe->head = 0; 1010 file_accessed(in); 1011 return bytes; 1012 1013 out_release: 1014 /* 1015 * If we did an incomplete transfer we must release 1016 * the pipe buffers in question: 1017 */ 1018 for (i = 0; i < pipe->ring_size; i++) { 1019 struct pipe_buffer *buf = &pipe->bufs[i]; 1020 1021 if (buf->ops) 1022 pipe_buf_release(pipe, buf); 1023 } 1024 1025 if (!bytes) 1026 bytes = ret; 1027 1028 goto done; 1029 } 1030 EXPORT_SYMBOL(splice_direct_to_actor); 1031 1032 static int direct_splice_actor(struct pipe_inode_info *pipe, 1033 struct splice_desc *sd) 1034 { 1035 struct file *file = sd->u.file; 1036 1037 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1038 sd->flags); 1039 } 1040 1041 /** 1042 * do_splice_direct - splices data directly between two files 1043 * @in: file to splice from 1044 * @ppos: input file offset 1045 * @out: file to splice to 1046 * @opos: output file offset 1047 * @len: number of bytes to splice 1048 * @flags: splice modifier flags 1049 * 1050 * Description: 1051 * For use by do_sendfile(). splice can easily emulate sendfile, but 1052 * doing it in the application would incur an extra system call 1053 * (splice in + splice out, as compared to just sendfile()). So this helper 1054 * can splice directly through a process-private pipe. 1055 * 1056 */ 1057 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1058 loff_t *opos, size_t len, unsigned int flags) 1059 { 1060 struct splice_desc sd = { 1061 .len = len, 1062 .total_len = len, 1063 .flags = flags, 1064 .pos = *ppos, 1065 .u.file = out, 1066 .opos = opos, 1067 }; 1068 long ret; 1069 1070 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1071 return -EBADF; 1072 1073 if (unlikely(out->f_flags & O_APPEND)) 1074 return -EINVAL; 1075 1076 ret = rw_verify_area(WRITE, out, opos, len); 1077 if (unlikely(ret < 0)) 1078 return ret; 1079 1080 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1081 if (ret > 0) 1082 *ppos = sd.pos; 1083 1084 return ret; 1085 } 1086 EXPORT_SYMBOL(do_splice_direct); 1087 1088 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 1089 { 1090 for (;;) { 1091 if (unlikely(!pipe->readers)) { 1092 send_sig(SIGPIPE, current, 0); 1093 return -EPIPE; 1094 } 1095 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1096 return 0; 1097 if (flags & SPLICE_F_NONBLOCK) 1098 return -EAGAIN; 1099 if (signal_pending(current)) 1100 return -ERESTARTSYS; 1101 pipe_wait(pipe); 1102 } 1103 } 1104 1105 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1106 struct pipe_inode_info *opipe, 1107 size_t len, unsigned int flags); 1108 1109 /* 1110 * Determine where to splice to/from. 1111 */ 1112 static long do_splice(struct file *in, loff_t __user *off_in, 1113 struct file *out, loff_t __user *off_out, 1114 size_t len, unsigned int flags) 1115 { 1116 struct pipe_inode_info *ipipe; 1117 struct pipe_inode_info *opipe; 1118 loff_t offset; 1119 long ret; 1120 1121 ipipe = get_pipe_info(in); 1122 opipe = get_pipe_info(out); 1123 1124 if (ipipe && opipe) { 1125 if (off_in || off_out) 1126 return -ESPIPE; 1127 1128 if (!(in->f_mode & FMODE_READ)) 1129 return -EBADF; 1130 1131 if (!(out->f_mode & FMODE_WRITE)) 1132 return -EBADF; 1133 1134 /* Splicing to self would be fun, but... */ 1135 if (ipipe == opipe) 1136 return -EINVAL; 1137 1138 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1139 flags |= SPLICE_F_NONBLOCK; 1140 1141 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1142 } 1143 1144 if (ipipe) { 1145 if (off_in) 1146 return -ESPIPE; 1147 if (off_out) { 1148 if (!(out->f_mode & FMODE_PWRITE)) 1149 return -EINVAL; 1150 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1151 return -EFAULT; 1152 } else { 1153 offset = out->f_pos; 1154 } 1155 1156 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1157 return -EBADF; 1158 1159 if (unlikely(out->f_flags & O_APPEND)) 1160 return -EINVAL; 1161 1162 ret = rw_verify_area(WRITE, out, &offset, len); 1163 if (unlikely(ret < 0)) 1164 return ret; 1165 1166 if (in->f_flags & O_NONBLOCK) 1167 flags |= SPLICE_F_NONBLOCK; 1168 1169 file_start_write(out); 1170 ret = do_splice_from(ipipe, out, &offset, len, flags); 1171 file_end_write(out); 1172 1173 if (!off_out) 1174 out->f_pos = offset; 1175 else if (copy_to_user(off_out, &offset, sizeof(loff_t))) 1176 ret = -EFAULT; 1177 1178 return ret; 1179 } 1180 1181 if (opipe) { 1182 if (off_out) 1183 return -ESPIPE; 1184 if (off_in) { 1185 if (!(in->f_mode & FMODE_PREAD)) 1186 return -EINVAL; 1187 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1188 return -EFAULT; 1189 } else { 1190 offset = in->f_pos; 1191 } 1192 1193 if (out->f_flags & O_NONBLOCK) 1194 flags |= SPLICE_F_NONBLOCK; 1195 1196 pipe_lock(opipe); 1197 ret = wait_for_space(opipe, flags); 1198 if (!ret) { 1199 unsigned int p_space; 1200 1201 /* Don't try to read more the pipe has space for. */ 1202 p_space = opipe->max_usage - pipe_occupancy(opipe->head, opipe->tail); 1203 len = min_t(size_t, len, p_space << PAGE_SHIFT); 1204 1205 ret = do_splice_to(in, &offset, opipe, len, flags); 1206 } 1207 pipe_unlock(opipe); 1208 if (ret > 0) 1209 wakeup_pipe_readers(opipe); 1210 if (!off_in) 1211 in->f_pos = offset; 1212 else if (copy_to_user(off_in, &offset, sizeof(loff_t))) 1213 ret = -EFAULT; 1214 1215 return ret; 1216 } 1217 1218 return -EINVAL; 1219 } 1220 1221 static int iter_to_pipe(struct iov_iter *from, 1222 struct pipe_inode_info *pipe, 1223 unsigned flags) 1224 { 1225 struct pipe_buffer buf = { 1226 .ops = &user_page_pipe_buf_ops, 1227 .flags = flags 1228 }; 1229 size_t total = 0; 1230 int ret = 0; 1231 bool failed = false; 1232 1233 while (iov_iter_count(from) && !failed) { 1234 struct page *pages[16]; 1235 ssize_t copied; 1236 size_t start; 1237 int n; 1238 1239 copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start); 1240 if (copied <= 0) { 1241 ret = copied; 1242 break; 1243 } 1244 1245 for (n = 0; copied; n++, start = 0) { 1246 int size = min_t(int, copied, PAGE_SIZE - start); 1247 if (!failed) { 1248 buf.page = pages[n]; 1249 buf.offset = start; 1250 buf.len = size; 1251 ret = add_to_pipe(pipe, &buf); 1252 if (unlikely(ret < 0)) { 1253 failed = true; 1254 } else { 1255 iov_iter_advance(from, ret); 1256 total += ret; 1257 } 1258 } else { 1259 put_page(pages[n]); 1260 } 1261 copied -= size; 1262 } 1263 } 1264 return total ? total : ret; 1265 } 1266 1267 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1268 struct splice_desc *sd) 1269 { 1270 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1271 return n == sd->len ? n : -EFAULT; 1272 } 1273 1274 /* 1275 * For lack of a better implementation, implement vmsplice() to userspace 1276 * as a simple copy of the pipes pages to the user iov. 1277 */ 1278 static long vmsplice_to_user(struct file *file, struct iov_iter *iter, 1279 unsigned int flags) 1280 { 1281 struct pipe_inode_info *pipe = get_pipe_info(file); 1282 struct splice_desc sd = { 1283 .total_len = iov_iter_count(iter), 1284 .flags = flags, 1285 .u.data = iter 1286 }; 1287 long ret = 0; 1288 1289 if (!pipe) 1290 return -EBADF; 1291 1292 if (sd.total_len) { 1293 pipe_lock(pipe); 1294 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1295 pipe_unlock(pipe); 1296 } 1297 1298 return ret; 1299 } 1300 1301 /* 1302 * vmsplice splices a user address range into a pipe. It can be thought of 1303 * as splice-from-memory, where the regular splice is splice-from-file (or 1304 * to file). In both cases the output is a pipe, naturally. 1305 */ 1306 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter, 1307 unsigned int flags) 1308 { 1309 struct pipe_inode_info *pipe; 1310 long ret = 0; 1311 unsigned buf_flag = 0; 1312 1313 if (flags & SPLICE_F_GIFT) 1314 buf_flag = PIPE_BUF_FLAG_GIFT; 1315 1316 pipe = get_pipe_info(file); 1317 if (!pipe) 1318 return -EBADF; 1319 1320 pipe_lock(pipe); 1321 ret = wait_for_space(pipe, flags); 1322 if (!ret) 1323 ret = iter_to_pipe(iter, pipe, buf_flag); 1324 pipe_unlock(pipe); 1325 if (ret > 0) 1326 wakeup_pipe_readers(pipe); 1327 return ret; 1328 } 1329 1330 static int vmsplice_type(struct fd f, int *type) 1331 { 1332 if (!f.file) 1333 return -EBADF; 1334 if (f.file->f_mode & FMODE_WRITE) { 1335 *type = WRITE; 1336 } else if (f.file->f_mode & FMODE_READ) { 1337 *type = READ; 1338 } else { 1339 fdput(f); 1340 return -EBADF; 1341 } 1342 return 0; 1343 } 1344 1345 /* 1346 * Note that vmsplice only really supports true splicing _from_ user memory 1347 * to a pipe, not the other way around. Splicing from user memory is a simple 1348 * operation that can be supported without any funky alignment restrictions 1349 * or nasty vm tricks. We simply map in the user memory and fill them into 1350 * a pipe. The reverse isn't quite as easy, though. There are two possible 1351 * solutions for that: 1352 * 1353 * - memcpy() the data internally, at which point we might as well just 1354 * do a regular read() on the buffer anyway. 1355 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1356 * has restriction limitations on both ends of the pipe). 1357 * 1358 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1359 * 1360 */ 1361 static long do_vmsplice(struct file *f, struct iov_iter *iter, unsigned int flags) 1362 { 1363 if (unlikely(flags & ~SPLICE_F_ALL)) 1364 return -EINVAL; 1365 1366 if (!iov_iter_count(iter)) 1367 return 0; 1368 1369 if (iov_iter_rw(iter) == WRITE) 1370 return vmsplice_to_pipe(f, iter, flags); 1371 else 1372 return vmsplice_to_user(f, iter, flags); 1373 } 1374 1375 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov, 1376 unsigned long, nr_segs, unsigned int, flags) 1377 { 1378 struct iovec iovstack[UIO_FASTIOV]; 1379 struct iovec *iov = iovstack; 1380 struct iov_iter iter; 1381 ssize_t error; 1382 struct fd f; 1383 int type; 1384 1385 f = fdget(fd); 1386 error = vmsplice_type(f, &type); 1387 if (error) 1388 return error; 1389 1390 error = import_iovec(type, uiov, nr_segs, 1391 ARRAY_SIZE(iovstack), &iov, &iter); 1392 if (error >= 0) { 1393 error = do_vmsplice(f.file, &iter, flags); 1394 kfree(iov); 1395 } 1396 fdput(f); 1397 return error; 1398 } 1399 1400 #ifdef CONFIG_COMPAT 1401 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32, 1402 unsigned int, nr_segs, unsigned int, flags) 1403 { 1404 struct iovec iovstack[UIO_FASTIOV]; 1405 struct iovec *iov = iovstack; 1406 struct iov_iter iter; 1407 ssize_t error; 1408 struct fd f; 1409 int type; 1410 1411 f = fdget(fd); 1412 error = vmsplice_type(f, &type); 1413 if (error) 1414 return error; 1415 1416 error = compat_import_iovec(type, iov32, nr_segs, 1417 ARRAY_SIZE(iovstack), &iov, &iter); 1418 if (error >= 0) { 1419 error = do_vmsplice(f.file, &iter, flags); 1420 kfree(iov); 1421 } 1422 fdput(f); 1423 return error; 1424 } 1425 #endif 1426 1427 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1428 int, fd_out, loff_t __user *, off_out, 1429 size_t, len, unsigned int, flags) 1430 { 1431 struct fd in, out; 1432 long error; 1433 1434 if (unlikely(!len)) 1435 return 0; 1436 1437 if (unlikely(flags & ~SPLICE_F_ALL)) 1438 return -EINVAL; 1439 1440 error = -EBADF; 1441 in = fdget(fd_in); 1442 if (in.file) { 1443 if (in.file->f_mode & FMODE_READ) { 1444 out = fdget(fd_out); 1445 if (out.file) { 1446 if (out.file->f_mode & FMODE_WRITE) 1447 error = do_splice(in.file, off_in, 1448 out.file, off_out, 1449 len, flags); 1450 fdput(out); 1451 } 1452 } 1453 fdput(in); 1454 } 1455 return error; 1456 } 1457 1458 /* 1459 * Make sure there's data to read. Wait for input if we can, otherwise 1460 * return an appropriate error. 1461 */ 1462 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1463 { 1464 int ret; 1465 1466 /* 1467 * Check the pipe occupancy without the inode lock first. This function 1468 * is speculative anyways, so missing one is ok. 1469 */ 1470 if (!pipe_empty(pipe->head, pipe->tail)) 1471 return 0; 1472 1473 ret = 0; 1474 pipe_lock(pipe); 1475 1476 while (pipe_empty(pipe->head, pipe->tail)) { 1477 if (signal_pending(current)) { 1478 ret = -ERESTARTSYS; 1479 break; 1480 } 1481 if (!pipe->writers) 1482 break; 1483 if (flags & SPLICE_F_NONBLOCK) { 1484 ret = -EAGAIN; 1485 break; 1486 } 1487 pipe_wait(pipe); 1488 } 1489 1490 pipe_unlock(pipe); 1491 return ret; 1492 } 1493 1494 /* 1495 * Make sure there's writeable room. Wait for room if we can, otherwise 1496 * return an appropriate error. 1497 */ 1498 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1499 { 1500 int ret; 1501 1502 /* 1503 * Check pipe occupancy without the inode lock first. This function 1504 * is speculative anyways, so missing one is ok. 1505 */ 1506 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1507 return 0; 1508 1509 ret = 0; 1510 pipe_lock(pipe); 1511 1512 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 1513 if (!pipe->readers) { 1514 send_sig(SIGPIPE, current, 0); 1515 ret = -EPIPE; 1516 break; 1517 } 1518 if (flags & SPLICE_F_NONBLOCK) { 1519 ret = -EAGAIN; 1520 break; 1521 } 1522 if (signal_pending(current)) { 1523 ret = -ERESTARTSYS; 1524 break; 1525 } 1526 pipe_wait(pipe); 1527 } 1528 1529 pipe_unlock(pipe); 1530 return ret; 1531 } 1532 1533 /* 1534 * Splice contents of ipipe to opipe. 1535 */ 1536 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1537 struct pipe_inode_info *opipe, 1538 size_t len, unsigned int flags) 1539 { 1540 struct pipe_buffer *ibuf, *obuf; 1541 unsigned int i_head, o_head; 1542 unsigned int i_tail, o_tail; 1543 unsigned int i_mask, o_mask; 1544 int ret = 0; 1545 bool input_wakeup = false; 1546 1547 1548 retry: 1549 ret = ipipe_prep(ipipe, flags); 1550 if (ret) 1551 return ret; 1552 1553 ret = opipe_prep(opipe, flags); 1554 if (ret) 1555 return ret; 1556 1557 /* 1558 * Potential ABBA deadlock, work around it by ordering lock 1559 * grabbing by pipe info address. Otherwise two different processes 1560 * could deadlock (one doing tee from A -> B, the other from B -> A). 1561 */ 1562 pipe_double_lock(ipipe, opipe); 1563 1564 i_tail = ipipe->tail; 1565 i_mask = ipipe->ring_size - 1; 1566 o_head = opipe->head; 1567 o_mask = opipe->ring_size - 1; 1568 1569 do { 1570 size_t o_len; 1571 1572 if (!opipe->readers) { 1573 send_sig(SIGPIPE, current, 0); 1574 if (!ret) 1575 ret = -EPIPE; 1576 break; 1577 } 1578 1579 i_head = ipipe->head; 1580 o_tail = opipe->tail; 1581 1582 if (pipe_empty(i_head, i_tail) && !ipipe->writers) 1583 break; 1584 1585 /* 1586 * Cannot make any progress, because either the input 1587 * pipe is empty or the output pipe is full. 1588 */ 1589 if (pipe_empty(i_head, i_tail) || 1590 pipe_full(o_head, o_tail, opipe->max_usage)) { 1591 /* Already processed some buffers, break */ 1592 if (ret) 1593 break; 1594 1595 if (flags & SPLICE_F_NONBLOCK) { 1596 ret = -EAGAIN; 1597 break; 1598 } 1599 1600 /* 1601 * We raced with another reader/writer and haven't 1602 * managed to process any buffers. A zero return 1603 * value means EOF, so retry instead. 1604 */ 1605 pipe_unlock(ipipe); 1606 pipe_unlock(opipe); 1607 goto retry; 1608 } 1609 1610 ibuf = &ipipe->bufs[i_tail & i_mask]; 1611 obuf = &opipe->bufs[o_head & o_mask]; 1612 1613 if (len >= ibuf->len) { 1614 /* 1615 * Simply move the whole buffer from ipipe to opipe 1616 */ 1617 *obuf = *ibuf; 1618 ibuf->ops = NULL; 1619 i_tail++; 1620 ipipe->tail = i_tail; 1621 input_wakeup = true; 1622 o_len = obuf->len; 1623 o_head++; 1624 opipe->head = o_head; 1625 } else { 1626 /* 1627 * Get a reference to this pipe buffer, 1628 * so we can copy the contents over. 1629 */ 1630 if (!pipe_buf_get(ipipe, ibuf)) { 1631 if (ret == 0) 1632 ret = -EFAULT; 1633 break; 1634 } 1635 *obuf = *ibuf; 1636 1637 /* 1638 * Don't inherit the gift flag, we need to 1639 * prevent multiple steals of this page. 1640 */ 1641 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1642 1643 pipe_buf_mark_unmergeable(obuf); 1644 1645 obuf->len = len; 1646 ibuf->offset += len; 1647 ibuf->len -= len; 1648 o_len = len; 1649 o_head++; 1650 opipe->head = o_head; 1651 } 1652 ret += o_len; 1653 len -= o_len; 1654 } while (len); 1655 1656 pipe_unlock(ipipe); 1657 pipe_unlock(opipe); 1658 1659 /* 1660 * If we put data in the output pipe, wakeup any potential readers. 1661 */ 1662 if (ret > 0) 1663 wakeup_pipe_readers(opipe); 1664 1665 if (input_wakeup) 1666 wakeup_pipe_writers(ipipe); 1667 1668 return ret; 1669 } 1670 1671 /* 1672 * Link contents of ipipe to opipe. 1673 */ 1674 static int link_pipe(struct pipe_inode_info *ipipe, 1675 struct pipe_inode_info *opipe, 1676 size_t len, unsigned int flags) 1677 { 1678 struct pipe_buffer *ibuf, *obuf; 1679 unsigned int i_head, o_head; 1680 unsigned int i_tail, o_tail; 1681 unsigned int i_mask, o_mask; 1682 int ret = 0; 1683 1684 /* 1685 * Potential ABBA deadlock, work around it by ordering lock 1686 * grabbing by pipe info address. Otherwise two different processes 1687 * could deadlock (one doing tee from A -> B, the other from B -> A). 1688 */ 1689 pipe_double_lock(ipipe, opipe); 1690 1691 i_tail = ipipe->tail; 1692 i_mask = ipipe->ring_size - 1; 1693 o_head = opipe->head; 1694 o_mask = opipe->ring_size - 1; 1695 1696 do { 1697 if (!opipe->readers) { 1698 send_sig(SIGPIPE, current, 0); 1699 if (!ret) 1700 ret = -EPIPE; 1701 break; 1702 } 1703 1704 i_head = ipipe->head; 1705 o_tail = opipe->tail; 1706 1707 /* 1708 * If we have iterated all input buffers or run out of 1709 * output room, break. 1710 */ 1711 if (pipe_empty(i_head, i_tail) || 1712 pipe_full(o_head, o_tail, opipe->max_usage)) 1713 break; 1714 1715 ibuf = &ipipe->bufs[i_tail & i_mask]; 1716 obuf = &opipe->bufs[o_head & o_mask]; 1717 1718 /* 1719 * Get a reference to this pipe buffer, 1720 * so we can copy the contents over. 1721 */ 1722 if (!pipe_buf_get(ipipe, ibuf)) { 1723 if (ret == 0) 1724 ret = -EFAULT; 1725 break; 1726 } 1727 1728 *obuf = *ibuf; 1729 1730 /* 1731 * Don't inherit the gift flag, we need to 1732 * prevent multiple steals of this page. 1733 */ 1734 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1735 1736 pipe_buf_mark_unmergeable(obuf); 1737 1738 if (obuf->len > len) 1739 obuf->len = len; 1740 ret += obuf->len; 1741 len -= obuf->len; 1742 1743 o_head++; 1744 opipe->head = o_head; 1745 i_tail++; 1746 } while (len); 1747 1748 pipe_unlock(ipipe); 1749 pipe_unlock(opipe); 1750 1751 /* 1752 * If we put data in the output pipe, wakeup any potential readers. 1753 */ 1754 if (ret > 0) 1755 wakeup_pipe_readers(opipe); 1756 1757 return ret; 1758 } 1759 1760 /* 1761 * This is a tee(1) implementation that works on pipes. It doesn't copy 1762 * any data, it simply references the 'in' pages on the 'out' pipe. 1763 * The 'flags' used are the SPLICE_F_* variants, currently the only 1764 * applicable one is SPLICE_F_NONBLOCK. 1765 */ 1766 static long do_tee(struct file *in, struct file *out, size_t len, 1767 unsigned int flags) 1768 { 1769 struct pipe_inode_info *ipipe = get_pipe_info(in); 1770 struct pipe_inode_info *opipe = get_pipe_info(out); 1771 int ret = -EINVAL; 1772 1773 /* 1774 * Duplicate the contents of ipipe to opipe without actually 1775 * copying the data. 1776 */ 1777 if (ipipe && opipe && ipipe != opipe) { 1778 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1779 flags |= SPLICE_F_NONBLOCK; 1780 1781 /* 1782 * Keep going, unless we encounter an error. The ipipe/opipe 1783 * ordering doesn't really matter. 1784 */ 1785 ret = ipipe_prep(ipipe, flags); 1786 if (!ret) { 1787 ret = opipe_prep(opipe, flags); 1788 if (!ret) 1789 ret = link_pipe(ipipe, opipe, len, flags); 1790 } 1791 } 1792 1793 return ret; 1794 } 1795 1796 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1797 { 1798 struct fd in; 1799 int error; 1800 1801 if (unlikely(flags & ~SPLICE_F_ALL)) 1802 return -EINVAL; 1803 1804 if (unlikely(!len)) 1805 return 0; 1806 1807 error = -EBADF; 1808 in = fdget(fdin); 1809 if (in.file) { 1810 if (in.file->f_mode & FMODE_READ) { 1811 struct fd out = fdget(fdout); 1812 if (out.file) { 1813 if (out.file->f_mode & FMODE_WRITE) 1814 error = do_tee(in.file, out.file, 1815 len, flags); 1816 fdput(out); 1817 } 1818 } 1819 fdput(in); 1820 } 1821 1822 return error; 1823 } 1824