1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/mm_inline.h> 25 #include <linux/swap.h> 26 #include <linux/writeback.h> 27 #include <linux/buffer_head.h> 28 #include <linux/module.h> 29 #include <linux/syscalls.h> 30 #include <linux/uio.h> 31 #include <linux/security.h> 32 33 /* 34 * Attempt to steal a page from a pipe buffer. This should perhaps go into 35 * a vm helper function, it's already simplified quite a bit by the 36 * addition of remove_mapping(). If success is returned, the caller may 37 * attempt to reuse this page for another destination. 38 */ 39 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 40 struct pipe_buffer *buf) 41 { 42 struct page *page = buf->page; 43 struct address_space *mapping; 44 45 lock_page(page); 46 47 mapping = page_mapping(page); 48 if (mapping) { 49 WARN_ON(!PageUptodate(page)); 50 51 /* 52 * At least for ext2 with nobh option, we need to wait on 53 * writeback completing on this page, since we'll remove it 54 * from the pagecache. Otherwise truncate wont wait on the 55 * page, allowing the disk blocks to be reused by someone else 56 * before we actually wrote our data to them. fs corruption 57 * ensues. 58 */ 59 wait_on_page_writeback(page); 60 61 if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL)) 62 goto out_unlock; 63 64 /* 65 * If we succeeded in removing the mapping, set LRU flag 66 * and return good. 67 */ 68 if (remove_mapping(mapping, page)) { 69 buf->flags |= PIPE_BUF_FLAG_LRU; 70 return 0; 71 } 72 } 73 74 /* 75 * Raced with truncate or failed to remove page from current 76 * address space, unlock and return failure. 77 */ 78 out_unlock: 79 unlock_page(page); 80 return 1; 81 } 82 83 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 84 struct pipe_buffer *buf) 85 { 86 page_cache_release(buf->page); 87 buf->flags &= ~PIPE_BUF_FLAG_LRU; 88 } 89 90 /* 91 * Check whether the contents of buf is OK to access. Since the content 92 * is a page cache page, IO may be in flight. 93 */ 94 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 95 struct pipe_buffer *buf) 96 { 97 struct page *page = buf->page; 98 int err; 99 100 if (!PageUptodate(page)) { 101 lock_page(page); 102 103 /* 104 * Page got truncated/unhashed. This will cause a 0-byte 105 * splice, if this is the first page. 106 */ 107 if (!page->mapping) { 108 err = -ENODATA; 109 goto error; 110 } 111 112 /* 113 * Uh oh, read-error from disk. 114 */ 115 if (!PageUptodate(page)) { 116 err = -EIO; 117 goto error; 118 } 119 120 /* 121 * Page is ok afterall, we are done. 122 */ 123 unlock_page(page); 124 } 125 126 return 0; 127 error: 128 unlock_page(page); 129 return err; 130 } 131 132 static const struct pipe_buf_operations page_cache_pipe_buf_ops = { 133 .can_merge = 0, 134 .map = generic_pipe_buf_map, 135 .unmap = generic_pipe_buf_unmap, 136 .confirm = page_cache_pipe_buf_confirm, 137 .release = page_cache_pipe_buf_release, 138 .steal = page_cache_pipe_buf_steal, 139 .get = generic_pipe_buf_get, 140 }; 141 142 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 143 struct pipe_buffer *buf) 144 { 145 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 146 return 1; 147 148 buf->flags |= PIPE_BUF_FLAG_LRU; 149 return generic_pipe_buf_steal(pipe, buf); 150 } 151 152 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 153 .can_merge = 0, 154 .map = generic_pipe_buf_map, 155 .unmap = generic_pipe_buf_unmap, 156 .confirm = generic_pipe_buf_confirm, 157 .release = page_cache_pipe_buf_release, 158 .steal = user_page_pipe_buf_steal, 159 .get = generic_pipe_buf_get, 160 }; 161 162 /** 163 * splice_to_pipe - fill passed data into a pipe 164 * @pipe: pipe to fill 165 * @spd: data to fill 166 * 167 * Description: 168 * @spd contains a map of pages and len/offset tuples, along with 169 * the struct pipe_buf_operations associated with these pages. This 170 * function will link that data to the pipe. 171 * 172 */ 173 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 174 struct splice_pipe_desc *spd) 175 { 176 unsigned int spd_pages = spd->nr_pages; 177 int ret, do_wakeup, page_nr; 178 179 ret = 0; 180 do_wakeup = 0; 181 page_nr = 0; 182 183 if (pipe->inode) 184 mutex_lock(&pipe->inode->i_mutex); 185 186 for (;;) { 187 if (!pipe->readers) { 188 send_sig(SIGPIPE, current, 0); 189 if (!ret) 190 ret = -EPIPE; 191 break; 192 } 193 194 if (pipe->nrbufs < PIPE_BUFFERS) { 195 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1); 196 struct pipe_buffer *buf = pipe->bufs + newbuf; 197 198 buf->page = spd->pages[page_nr]; 199 buf->offset = spd->partial[page_nr].offset; 200 buf->len = spd->partial[page_nr].len; 201 buf->private = spd->partial[page_nr].private; 202 buf->ops = spd->ops; 203 if (spd->flags & SPLICE_F_GIFT) 204 buf->flags |= PIPE_BUF_FLAG_GIFT; 205 206 pipe->nrbufs++; 207 page_nr++; 208 ret += buf->len; 209 210 if (pipe->inode) 211 do_wakeup = 1; 212 213 if (!--spd->nr_pages) 214 break; 215 if (pipe->nrbufs < PIPE_BUFFERS) 216 continue; 217 218 break; 219 } 220 221 if (spd->flags & SPLICE_F_NONBLOCK) { 222 if (!ret) 223 ret = -EAGAIN; 224 break; 225 } 226 227 if (signal_pending(current)) { 228 if (!ret) 229 ret = -ERESTARTSYS; 230 break; 231 } 232 233 if (do_wakeup) { 234 smp_mb(); 235 if (waitqueue_active(&pipe->wait)) 236 wake_up_interruptible_sync(&pipe->wait); 237 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 238 do_wakeup = 0; 239 } 240 241 pipe->waiting_writers++; 242 pipe_wait(pipe); 243 pipe->waiting_writers--; 244 } 245 246 if (pipe->inode) { 247 mutex_unlock(&pipe->inode->i_mutex); 248 249 if (do_wakeup) { 250 smp_mb(); 251 if (waitqueue_active(&pipe->wait)) 252 wake_up_interruptible(&pipe->wait); 253 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 254 } 255 } 256 257 while (page_nr < spd_pages) 258 spd->spd_release(spd, page_nr++); 259 260 return ret; 261 } 262 263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 264 { 265 page_cache_release(spd->pages[i]); 266 } 267 268 static int 269 __generic_file_splice_read(struct file *in, loff_t *ppos, 270 struct pipe_inode_info *pipe, size_t len, 271 unsigned int flags) 272 { 273 struct address_space *mapping = in->f_mapping; 274 unsigned int loff, nr_pages, req_pages; 275 struct page *pages[PIPE_BUFFERS]; 276 struct partial_page partial[PIPE_BUFFERS]; 277 struct page *page; 278 pgoff_t index, end_index; 279 loff_t isize; 280 int error, page_nr; 281 struct splice_pipe_desc spd = { 282 .pages = pages, 283 .partial = partial, 284 .flags = flags, 285 .ops = &page_cache_pipe_buf_ops, 286 .spd_release = spd_release_page, 287 }; 288 289 index = *ppos >> PAGE_CACHE_SHIFT; 290 loff = *ppos & ~PAGE_CACHE_MASK; 291 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 292 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS); 293 294 /* 295 * Lookup the (hopefully) full range of pages we need. 296 */ 297 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages); 298 index += spd.nr_pages; 299 300 /* 301 * If find_get_pages_contig() returned fewer pages than we needed, 302 * readahead/allocate the rest and fill in the holes. 303 */ 304 if (spd.nr_pages < nr_pages) 305 page_cache_sync_readahead(mapping, &in->f_ra, in, 306 index, req_pages - spd.nr_pages); 307 308 error = 0; 309 while (spd.nr_pages < nr_pages) { 310 /* 311 * Page could be there, find_get_pages_contig() breaks on 312 * the first hole. 313 */ 314 page = find_get_page(mapping, index); 315 if (!page) { 316 /* 317 * page didn't exist, allocate one. 318 */ 319 page = page_cache_alloc_cold(mapping); 320 if (!page) 321 break; 322 323 error = add_to_page_cache_lru(page, mapping, index, 324 mapping_gfp_mask(mapping)); 325 if (unlikely(error)) { 326 page_cache_release(page); 327 if (error == -EEXIST) 328 continue; 329 break; 330 } 331 /* 332 * add_to_page_cache() locks the page, unlock it 333 * to avoid convoluting the logic below even more. 334 */ 335 unlock_page(page); 336 } 337 338 pages[spd.nr_pages++] = page; 339 index++; 340 } 341 342 /* 343 * Now loop over the map and see if we need to start IO on any 344 * pages, fill in the partial map, etc. 345 */ 346 index = *ppos >> PAGE_CACHE_SHIFT; 347 nr_pages = spd.nr_pages; 348 spd.nr_pages = 0; 349 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 350 unsigned int this_len; 351 352 if (!len) 353 break; 354 355 /* 356 * this_len is the max we'll use from this page 357 */ 358 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 359 page = pages[page_nr]; 360 361 if (PageReadahead(page)) 362 page_cache_async_readahead(mapping, &in->f_ra, in, 363 page, index, req_pages - page_nr); 364 365 /* 366 * If the page isn't uptodate, we may need to start io on it 367 */ 368 if (!PageUptodate(page)) { 369 /* 370 * If in nonblock mode then dont block on waiting 371 * for an in-flight io page 372 */ 373 if (flags & SPLICE_F_NONBLOCK) { 374 if (!trylock_page(page)) { 375 error = -EAGAIN; 376 break; 377 } 378 } else 379 lock_page(page); 380 381 /* 382 * Page was truncated, or invalidated by the 383 * filesystem. Redo the find/create, but this time the 384 * page is kept locked, so there's no chance of another 385 * race with truncate/invalidate. 386 */ 387 if (!page->mapping) { 388 unlock_page(page); 389 page = find_or_create_page(mapping, index, 390 mapping_gfp_mask(mapping)); 391 392 if (!page) { 393 error = -ENOMEM; 394 break; 395 } 396 page_cache_release(pages[page_nr]); 397 pages[page_nr] = page; 398 } 399 /* 400 * page was already under io and is now done, great 401 */ 402 if (PageUptodate(page)) { 403 unlock_page(page); 404 goto fill_it; 405 } 406 407 /* 408 * need to read in the page 409 */ 410 error = mapping->a_ops->readpage(in, page); 411 if (unlikely(error)) { 412 /* 413 * We really should re-lookup the page here, 414 * but it complicates things a lot. Instead 415 * lets just do what we already stored, and 416 * we'll get it the next time we are called. 417 */ 418 if (error == AOP_TRUNCATED_PAGE) 419 error = 0; 420 421 break; 422 } 423 } 424 fill_it: 425 /* 426 * i_size must be checked after PageUptodate. 427 */ 428 isize = i_size_read(mapping->host); 429 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 430 if (unlikely(!isize || index > end_index)) 431 break; 432 433 /* 434 * if this is the last page, see if we need to shrink 435 * the length and stop 436 */ 437 if (end_index == index) { 438 unsigned int plen; 439 440 /* 441 * max good bytes in this page 442 */ 443 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 444 if (plen <= loff) 445 break; 446 447 /* 448 * force quit after adding this page 449 */ 450 this_len = min(this_len, plen - loff); 451 len = this_len; 452 } 453 454 partial[page_nr].offset = loff; 455 partial[page_nr].len = this_len; 456 len -= this_len; 457 loff = 0; 458 spd.nr_pages++; 459 index++; 460 } 461 462 /* 463 * Release any pages at the end, if we quit early. 'page_nr' is how far 464 * we got, 'nr_pages' is how many pages are in the map. 465 */ 466 while (page_nr < nr_pages) 467 page_cache_release(pages[page_nr++]); 468 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 469 470 if (spd.nr_pages) 471 return splice_to_pipe(pipe, &spd); 472 473 return error; 474 } 475 476 /** 477 * generic_file_splice_read - splice data from file to a pipe 478 * @in: file to splice from 479 * @ppos: position in @in 480 * @pipe: pipe to splice to 481 * @len: number of bytes to splice 482 * @flags: splice modifier flags 483 * 484 * Description: 485 * Will read pages from given file and fill them into a pipe. Can be 486 * used as long as the address_space operations for the source implements 487 * a readpage() hook. 488 * 489 */ 490 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 491 struct pipe_inode_info *pipe, size_t len, 492 unsigned int flags) 493 { 494 loff_t isize, left; 495 int ret; 496 497 isize = i_size_read(in->f_mapping->host); 498 if (unlikely(*ppos >= isize)) 499 return 0; 500 501 left = isize - *ppos; 502 if (unlikely(left < len)) 503 len = left; 504 505 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 506 if (ret > 0) 507 *ppos += ret; 508 509 return ret; 510 } 511 512 EXPORT_SYMBOL(generic_file_splice_read); 513 514 /* 515 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 516 * using sendpage(). Return the number of bytes sent. 517 */ 518 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 519 struct pipe_buffer *buf, struct splice_desc *sd) 520 { 521 struct file *file = sd->u.file; 522 loff_t pos = sd->pos; 523 int ret, more; 524 525 ret = buf->ops->confirm(pipe, buf); 526 if (!ret) { 527 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len; 528 529 ret = file->f_op->sendpage(file, buf->page, buf->offset, 530 sd->len, &pos, more); 531 } 532 533 return ret; 534 } 535 536 /* 537 * This is a little more tricky than the file -> pipe splicing. There are 538 * basically three cases: 539 * 540 * - Destination page already exists in the address space and there 541 * are users of it. For that case we have no other option that 542 * copying the data. Tough luck. 543 * - Destination page already exists in the address space, but there 544 * are no users of it. Make sure it's uptodate, then drop it. Fall 545 * through to last case. 546 * - Destination page does not exist, we can add the pipe page to 547 * the page cache and avoid the copy. 548 * 549 * If asked to move pages to the output file (SPLICE_F_MOVE is set in 550 * sd->flags), we attempt to migrate pages from the pipe to the output 551 * file address space page cache. This is possible if no one else has 552 * the pipe page referenced outside of the pipe and page cache. If 553 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create 554 * a new page in the output file page cache and fill/dirty that. 555 */ 556 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 557 struct splice_desc *sd) 558 { 559 struct file *file = sd->u.file; 560 struct address_space *mapping = file->f_mapping; 561 unsigned int offset, this_len; 562 struct page *page; 563 void *fsdata; 564 int ret; 565 566 /* 567 * make sure the data in this buffer is uptodate 568 */ 569 ret = buf->ops->confirm(pipe, buf); 570 if (unlikely(ret)) 571 return ret; 572 573 offset = sd->pos & ~PAGE_CACHE_MASK; 574 575 this_len = sd->len; 576 if (this_len + offset > PAGE_CACHE_SIZE) 577 this_len = PAGE_CACHE_SIZE - offset; 578 579 ret = pagecache_write_begin(file, mapping, sd->pos, this_len, 580 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 581 if (unlikely(ret)) 582 goto out; 583 584 if (buf->page != page) { 585 /* 586 * Careful, ->map() uses KM_USER0! 587 */ 588 char *src = buf->ops->map(pipe, buf, 1); 589 char *dst = kmap_atomic(page, KM_USER1); 590 591 memcpy(dst + offset, src + buf->offset, this_len); 592 flush_dcache_page(page); 593 kunmap_atomic(dst, KM_USER1); 594 buf->ops->unmap(pipe, buf, src); 595 } 596 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len, 597 page, fsdata); 598 out: 599 return ret; 600 } 601 602 /** 603 * __splice_from_pipe - splice data from a pipe to given actor 604 * @pipe: pipe to splice from 605 * @sd: information to @actor 606 * @actor: handler that splices the data 607 * 608 * Description: 609 * This function does little more than loop over the pipe and call 610 * @actor to do the actual moving of a single struct pipe_buffer to 611 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 612 * pipe_to_user. 613 * 614 */ 615 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 616 splice_actor *actor) 617 { 618 int ret, do_wakeup, err; 619 620 ret = 0; 621 do_wakeup = 0; 622 623 for (;;) { 624 if (pipe->nrbufs) { 625 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 626 const struct pipe_buf_operations *ops = buf->ops; 627 628 sd->len = buf->len; 629 if (sd->len > sd->total_len) 630 sd->len = sd->total_len; 631 632 err = actor(pipe, buf, sd); 633 if (err <= 0) { 634 if (!ret && err != -ENODATA) 635 ret = err; 636 637 break; 638 } 639 640 ret += err; 641 buf->offset += err; 642 buf->len -= err; 643 644 sd->len -= err; 645 sd->pos += err; 646 sd->total_len -= err; 647 if (sd->len) 648 continue; 649 650 if (!buf->len) { 651 buf->ops = NULL; 652 ops->release(pipe, buf); 653 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1); 654 pipe->nrbufs--; 655 if (pipe->inode) 656 do_wakeup = 1; 657 } 658 659 if (!sd->total_len) 660 break; 661 } 662 663 if (pipe->nrbufs) 664 continue; 665 if (!pipe->writers) 666 break; 667 if (!pipe->waiting_writers) { 668 if (ret) 669 break; 670 } 671 672 if (sd->flags & SPLICE_F_NONBLOCK) { 673 if (!ret) 674 ret = -EAGAIN; 675 break; 676 } 677 678 if (signal_pending(current)) { 679 if (!ret) 680 ret = -ERESTARTSYS; 681 break; 682 } 683 684 if (do_wakeup) { 685 smp_mb(); 686 if (waitqueue_active(&pipe->wait)) 687 wake_up_interruptible_sync(&pipe->wait); 688 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 689 do_wakeup = 0; 690 } 691 692 pipe_wait(pipe); 693 } 694 695 if (do_wakeup) { 696 smp_mb(); 697 if (waitqueue_active(&pipe->wait)) 698 wake_up_interruptible(&pipe->wait); 699 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 700 } 701 702 return ret; 703 } 704 EXPORT_SYMBOL(__splice_from_pipe); 705 706 /** 707 * splice_from_pipe - splice data from a pipe to a file 708 * @pipe: pipe to splice from 709 * @out: file to splice to 710 * @ppos: position in @out 711 * @len: how many bytes to splice 712 * @flags: splice modifier flags 713 * @actor: handler that splices the data 714 * 715 * Description: 716 * See __splice_from_pipe. This function locks the input and output inodes, 717 * otherwise it's identical to __splice_from_pipe(). 718 * 719 */ 720 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 721 loff_t *ppos, size_t len, unsigned int flags, 722 splice_actor *actor) 723 { 724 ssize_t ret; 725 struct inode *inode = out->f_mapping->host; 726 struct splice_desc sd = { 727 .total_len = len, 728 .flags = flags, 729 .pos = *ppos, 730 .u.file = out, 731 }; 732 733 /* 734 * The actor worker might be calling ->write_begin and 735 * ->write_end. Most of the time, these expect i_mutex to 736 * be held. Since this may result in an ABBA deadlock with 737 * pipe->inode, we have to order lock acquiry here. 738 */ 739 inode_double_lock(inode, pipe->inode); 740 ret = __splice_from_pipe(pipe, &sd, actor); 741 inode_double_unlock(inode, pipe->inode); 742 743 return ret; 744 } 745 746 /** 747 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes 748 * @pipe: pipe info 749 * @out: file to write to 750 * @ppos: position in @out 751 * @len: number of bytes to splice 752 * @flags: splice modifier flags 753 * 754 * Description: 755 * Will either move or copy pages (determined by @flags options) from 756 * the given pipe inode to the given file. The caller is responsible 757 * for acquiring i_mutex on both inodes. 758 * 759 */ 760 ssize_t 761 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out, 762 loff_t *ppos, size_t len, unsigned int flags) 763 { 764 struct address_space *mapping = out->f_mapping; 765 struct inode *inode = mapping->host; 766 struct splice_desc sd = { 767 .total_len = len, 768 .flags = flags, 769 .pos = *ppos, 770 .u.file = out, 771 }; 772 ssize_t ret; 773 int err; 774 775 err = file_remove_suid(out); 776 if (unlikely(err)) 777 return err; 778 779 ret = __splice_from_pipe(pipe, &sd, pipe_to_file); 780 if (ret > 0) { 781 unsigned long nr_pages; 782 783 *ppos += ret; 784 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 785 786 /* 787 * If file or inode is SYNC and we actually wrote some data, 788 * sync it. 789 */ 790 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) { 791 err = generic_osync_inode(inode, mapping, 792 OSYNC_METADATA|OSYNC_DATA); 793 794 if (err) 795 ret = err; 796 } 797 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 798 } 799 800 return ret; 801 } 802 803 EXPORT_SYMBOL(generic_file_splice_write_nolock); 804 805 /** 806 * generic_file_splice_write - splice data from a pipe to a file 807 * @pipe: pipe info 808 * @out: file to write to 809 * @ppos: position in @out 810 * @len: number of bytes to splice 811 * @flags: splice modifier flags 812 * 813 * Description: 814 * Will either move or copy pages (determined by @flags options) from 815 * the given pipe inode to the given file. 816 * 817 */ 818 ssize_t 819 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 820 loff_t *ppos, size_t len, unsigned int flags) 821 { 822 struct address_space *mapping = out->f_mapping; 823 struct inode *inode = mapping->host; 824 struct splice_desc sd = { 825 .total_len = len, 826 .flags = flags, 827 .pos = *ppos, 828 .u.file = out, 829 }; 830 ssize_t ret; 831 832 inode_double_lock(inode, pipe->inode); 833 ret = file_remove_suid(out); 834 if (likely(!ret)) 835 ret = __splice_from_pipe(pipe, &sd, pipe_to_file); 836 inode_double_unlock(inode, pipe->inode); 837 if (ret > 0) { 838 unsigned long nr_pages; 839 840 *ppos += ret; 841 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 842 843 /* 844 * If file or inode is SYNC and we actually wrote some data, 845 * sync it. 846 */ 847 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) { 848 int err; 849 850 mutex_lock(&inode->i_mutex); 851 err = generic_osync_inode(inode, mapping, 852 OSYNC_METADATA|OSYNC_DATA); 853 mutex_unlock(&inode->i_mutex); 854 855 if (err) 856 ret = err; 857 } 858 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 859 } 860 861 return ret; 862 } 863 864 EXPORT_SYMBOL(generic_file_splice_write); 865 866 /** 867 * generic_splice_sendpage - splice data from a pipe to a socket 868 * @pipe: pipe to splice from 869 * @out: socket to write to 870 * @ppos: position in @out 871 * @len: number of bytes to splice 872 * @flags: splice modifier flags 873 * 874 * Description: 875 * Will send @len bytes from the pipe to a network socket. No data copying 876 * is involved. 877 * 878 */ 879 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 880 loff_t *ppos, size_t len, unsigned int flags) 881 { 882 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 883 } 884 885 EXPORT_SYMBOL(generic_splice_sendpage); 886 887 /* 888 * Attempt to initiate a splice from pipe to file. 889 */ 890 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 891 loff_t *ppos, size_t len, unsigned int flags) 892 { 893 int ret; 894 895 if (unlikely(!out->f_op || !out->f_op->splice_write)) 896 return -EINVAL; 897 898 if (unlikely(!(out->f_mode & FMODE_WRITE))) 899 return -EBADF; 900 901 if (unlikely(out->f_flags & O_APPEND)) 902 return -EINVAL; 903 904 ret = rw_verify_area(WRITE, out, ppos, len); 905 if (unlikely(ret < 0)) 906 return ret; 907 908 return out->f_op->splice_write(pipe, out, ppos, len, flags); 909 } 910 911 /* 912 * Attempt to initiate a splice from a file to a pipe. 913 */ 914 static long do_splice_to(struct file *in, loff_t *ppos, 915 struct pipe_inode_info *pipe, size_t len, 916 unsigned int flags) 917 { 918 int ret; 919 920 if (unlikely(!in->f_op || !in->f_op->splice_read)) 921 return -EINVAL; 922 923 if (unlikely(!(in->f_mode & FMODE_READ))) 924 return -EBADF; 925 926 ret = rw_verify_area(READ, in, ppos, len); 927 if (unlikely(ret < 0)) 928 return ret; 929 930 return in->f_op->splice_read(in, ppos, pipe, len, flags); 931 } 932 933 /** 934 * splice_direct_to_actor - splices data directly between two non-pipes 935 * @in: file to splice from 936 * @sd: actor information on where to splice to 937 * @actor: handles the data splicing 938 * 939 * Description: 940 * This is a special case helper to splice directly between two 941 * points, without requiring an explicit pipe. Internally an allocated 942 * pipe is cached in the process, and reused during the lifetime of 943 * that process. 944 * 945 */ 946 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 947 splice_direct_actor *actor) 948 { 949 struct pipe_inode_info *pipe; 950 long ret, bytes; 951 umode_t i_mode; 952 size_t len; 953 int i, flags; 954 955 /* 956 * We require the input being a regular file, as we don't want to 957 * randomly drop data for eg socket -> socket splicing. Use the 958 * piped splicing for that! 959 */ 960 i_mode = in->f_path.dentry->d_inode->i_mode; 961 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 962 return -EINVAL; 963 964 /* 965 * neither in nor out is a pipe, setup an internal pipe attached to 966 * 'out' and transfer the wanted data from 'in' to 'out' through that 967 */ 968 pipe = current->splice_pipe; 969 if (unlikely(!pipe)) { 970 pipe = alloc_pipe_info(NULL); 971 if (!pipe) 972 return -ENOMEM; 973 974 /* 975 * We don't have an immediate reader, but we'll read the stuff 976 * out of the pipe right after the splice_to_pipe(). So set 977 * PIPE_READERS appropriately. 978 */ 979 pipe->readers = 1; 980 981 current->splice_pipe = pipe; 982 } 983 984 /* 985 * Do the splice. 986 */ 987 ret = 0; 988 bytes = 0; 989 len = sd->total_len; 990 flags = sd->flags; 991 992 /* 993 * Don't block on output, we have to drain the direct pipe. 994 */ 995 sd->flags &= ~SPLICE_F_NONBLOCK; 996 997 while (len) { 998 size_t read_len; 999 loff_t pos = sd->pos, prev_pos = pos; 1000 1001 ret = do_splice_to(in, &pos, pipe, len, flags); 1002 if (unlikely(ret <= 0)) 1003 goto out_release; 1004 1005 read_len = ret; 1006 sd->total_len = read_len; 1007 1008 /* 1009 * NOTE: nonblocking mode only applies to the input. We 1010 * must not do the output in nonblocking mode as then we 1011 * could get stuck data in the internal pipe: 1012 */ 1013 ret = actor(pipe, sd); 1014 if (unlikely(ret <= 0)) { 1015 sd->pos = prev_pos; 1016 goto out_release; 1017 } 1018 1019 bytes += ret; 1020 len -= ret; 1021 sd->pos = pos; 1022 1023 if (ret < read_len) { 1024 sd->pos = prev_pos + ret; 1025 goto out_release; 1026 } 1027 } 1028 1029 done: 1030 pipe->nrbufs = pipe->curbuf = 0; 1031 file_accessed(in); 1032 return bytes; 1033 1034 out_release: 1035 /* 1036 * If we did an incomplete transfer we must release 1037 * the pipe buffers in question: 1038 */ 1039 for (i = 0; i < PIPE_BUFFERS; i++) { 1040 struct pipe_buffer *buf = pipe->bufs + i; 1041 1042 if (buf->ops) { 1043 buf->ops->release(pipe, buf); 1044 buf->ops = NULL; 1045 } 1046 } 1047 1048 if (!bytes) 1049 bytes = ret; 1050 1051 goto done; 1052 } 1053 EXPORT_SYMBOL(splice_direct_to_actor); 1054 1055 static int direct_splice_actor(struct pipe_inode_info *pipe, 1056 struct splice_desc *sd) 1057 { 1058 struct file *file = sd->u.file; 1059 1060 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags); 1061 } 1062 1063 /** 1064 * do_splice_direct - splices data directly between two files 1065 * @in: file to splice from 1066 * @ppos: input file offset 1067 * @out: file to splice to 1068 * @len: number of bytes to splice 1069 * @flags: splice modifier flags 1070 * 1071 * Description: 1072 * For use by do_sendfile(). splice can easily emulate sendfile, but 1073 * doing it in the application would incur an extra system call 1074 * (splice in + splice out, as compared to just sendfile()). So this helper 1075 * can splice directly through a process-private pipe. 1076 * 1077 */ 1078 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1079 size_t len, unsigned int flags) 1080 { 1081 struct splice_desc sd = { 1082 .len = len, 1083 .total_len = len, 1084 .flags = flags, 1085 .pos = *ppos, 1086 .u.file = out, 1087 }; 1088 long ret; 1089 1090 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1091 if (ret > 0) 1092 *ppos = sd.pos; 1093 1094 return ret; 1095 } 1096 1097 /* 1098 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same 1099 * location, so checking ->i_pipe is not enough to verify that this is a 1100 * pipe. 1101 */ 1102 static inline struct pipe_inode_info *pipe_info(struct inode *inode) 1103 { 1104 if (S_ISFIFO(inode->i_mode)) 1105 return inode->i_pipe; 1106 1107 return NULL; 1108 } 1109 1110 /* 1111 * Determine where to splice to/from. 1112 */ 1113 static long do_splice(struct file *in, loff_t __user *off_in, 1114 struct file *out, loff_t __user *off_out, 1115 size_t len, unsigned int flags) 1116 { 1117 struct pipe_inode_info *pipe; 1118 loff_t offset, *off; 1119 long ret; 1120 1121 pipe = pipe_info(in->f_path.dentry->d_inode); 1122 if (pipe) { 1123 if (off_in) 1124 return -ESPIPE; 1125 if (off_out) { 1126 if (out->f_op->llseek == no_llseek) 1127 return -EINVAL; 1128 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1129 return -EFAULT; 1130 off = &offset; 1131 } else 1132 off = &out->f_pos; 1133 1134 ret = do_splice_from(pipe, out, off, len, flags); 1135 1136 if (off_out && copy_to_user(off_out, off, sizeof(loff_t))) 1137 ret = -EFAULT; 1138 1139 return ret; 1140 } 1141 1142 pipe = pipe_info(out->f_path.dentry->d_inode); 1143 if (pipe) { 1144 if (off_out) 1145 return -ESPIPE; 1146 if (off_in) { 1147 if (in->f_op->llseek == no_llseek) 1148 return -EINVAL; 1149 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1150 return -EFAULT; 1151 off = &offset; 1152 } else 1153 off = &in->f_pos; 1154 1155 ret = do_splice_to(in, off, pipe, len, flags); 1156 1157 if (off_in && copy_to_user(off_in, off, sizeof(loff_t))) 1158 ret = -EFAULT; 1159 1160 return ret; 1161 } 1162 1163 return -EINVAL; 1164 } 1165 1166 /* 1167 * Map an iov into an array of pages and offset/length tupples. With the 1168 * partial_page structure, we can map several non-contiguous ranges into 1169 * our ones pages[] map instead of splitting that operation into pieces. 1170 * Could easily be exported as a generic helper for other users, in which 1171 * case one would probably want to add a 'max_nr_pages' parameter as well. 1172 */ 1173 static int get_iovec_page_array(const struct iovec __user *iov, 1174 unsigned int nr_vecs, struct page **pages, 1175 struct partial_page *partial, int aligned) 1176 { 1177 int buffers = 0, error = 0; 1178 1179 while (nr_vecs) { 1180 unsigned long off, npages; 1181 struct iovec entry; 1182 void __user *base; 1183 size_t len; 1184 int i; 1185 1186 error = -EFAULT; 1187 if (copy_from_user(&entry, iov, sizeof(entry))) 1188 break; 1189 1190 base = entry.iov_base; 1191 len = entry.iov_len; 1192 1193 /* 1194 * Sanity check this iovec. 0 read succeeds. 1195 */ 1196 error = 0; 1197 if (unlikely(!len)) 1198 break; 1199 error = -EFAULT; 1200 if (!access_ok(VERIFY_READ, base, len)) 1201 break; 1202 1203 /* 1204 * Get this base offset and number of pages, then map 1205 * in the user pages. 1206 */ 1207 off = (unsigned long) base & ~PAGE_MASK; 1208 1209 /* 1210 * If asked for alignment, the offset must be zero and the 1211 * length a multiple of the PAGE_SIZE. 1212 */ 1213 error = -EINVAL; 1214 if (aligned && (off || len & ~PAGE_MASK)) 1215 break; 1216 1217 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1218 if (npages > PIPE_BUFFERS - buffers) 1219 npages = PIPE_BUFFERS - buffers; 1220 1221 error = get_user_pages_fast((unsigned long)base, npages, 1222 0, &pages[buffers]); 1223 1224 if (unlikely(error <= 0)) 1225 break; 1226 1227 /* 1228 * Fill this contiguous range into the partial page map. 1229 */ 1230 for (i = 0; i < error; i++) { 1231 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1232 1233 partial[buffers].offset = off; 1234 partial[buffers].len = plen; 1235 1236 off = 0; 1237 len -= plen; 1238 buffers++; 1239 } 1240 1241 /* 1242 * We didn't complete this iov, stop here since it probably 1243 * means we have to move some of this into a pipe to 1244 * be able to continue. 1245 */ 1246 if (len) 1247 break; 1248 1249 /* 1250 * Don't continue if we mapped fewer pages than we asked for, 1251 * or if we mapped the max number of pages that we have 1252 * room for. 1253 */ 1254 if (error < npages || buffers == PIPE_BUFFERS) 1255 break; 1256 1257 nr_vecs--; 1258 iov++; 1259 } 1260 1261 if (buffers) 1262 return buffers; 1263 1264 return error; 1265 } 1266 1267 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1268 struct splice_desc *sd) 1269 { 1270 char *src; 1271 int ret; 1272 1273 ret = buf->ops->confirm(pipe, buf); 1274 if (unlikely(ret)) 1275 return ret; 1276 1277 /* 1278 * See if we can use the atomic maps, by prefaulting in the 1279 * pages and doing an atomic copy 1280 */ 1281 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) { 1282 src = buf->ops->map(pipe, buf, 1); 1283 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset, 1284 sd->len); 1285 buf->ops->unmap(pipe, buf, src); 1286 if (!ret) { 1287 ret = sd->len; 1288 goto out; 1289 } 1290 } 1291 1292 /* 1293 * No dice, use slow non-atomic map and copy 1294 */ 1295 src = buf->ops->map(pipe, buf, 0); 1296 1297 ret = sd->len; 1298 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len)) 1299 ret = -EFAULT; 1300 1301 buf->ops->unmap(pipe, buf, src); 1302 out: 1303 if (ret > 0) 1304 sd->u.userptr += ret; 1305 return ret; 1306 } 1307 1308 /* 1309 * For lack of a better implementation, implement vmsplice() to userspace 1310 * as a simple copy of the pipes pages to the user iov. 1311 */ 1312 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov, 1313 unsigned long nr_segs, unsigned int flags) 1314 { 1315 struct pipe_inode_info *pipe; 1316 struct splice_desc sd; 1317 ssize_t size; 1318 int error; 1319 long ret; 1320 1321 pipe = pipe_info(file->f_path.dentry->d_inode); 1322 if (!pipe) 1323 return -EBADF; 1324 1325 if (pipe->inode) 1326 mutex_lock(&pipe->inode->i_mutex); 1327 1328 error = ret = 0; 1329 while (nr_segs) { 1330 void __user *base; 1331 size_t len; 1332 1333 /* 1334 * Get user address base and length for this iovec. 1335 */ 1336 error = get_user(base, &iov->iov_base); 1337 if (unlikely(error)) 1338 break; 1339 error = get_user(len, &iov->iov_len); 1340 if (unlikely(error)) 1341 break; 1342 1343 /* 1344 * Sanity check this iovec. 0 read succeeds. 1345 */ 1346 if (unlikely(!len)) 1347 break; 1348 if (unlikely(!base)) { 1349 error = -EFAULT; 1350 break; 1351 } 1352 1353 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) { 1354 error = -EFAULT; 1355 break; 1356 } 1357 1358 sd.len = 0; 1359 sd.total_len = len; 1360 sd.flags = flags; 1361 sd.u.userptr = base; 1362 sd.pos = 0; 1363 1364 size = __splice_from_pipe(pipe, &sd, pipe_to_user); 1365 if (size < 0) { 1366 if (!ret) 1367 ret = size; 1368 1369 break; 1370 } 1371 1372 ret += size; 1373 1374 if (size < len) 1375 break; 1376 1377 nr_segs--; 1378 iov++; 1379 } 1380 1381 if (pipe->inode) 1382 mutex_unlock(&pipe->inode->i_mutex); 1383 1384 if (!ret) 1385 ret = error; 1386 1387 return ret; 1388 } 1389 1390 /* 1391 * vmsplice splices a user address range into a pipe. It can be thought of 1392 * as splice-from-memory, where the regular splice is splice-from-file (or 1393 * to file). In both cases the output is a pipe, naturally. 1394 */ 1395 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1396 unsigned long nr_segs, unsigned int flags) 1397 { 1398 struct pipe_inode_info *pipe; 1399 struct page *pages[PIPE_BUFFERS]; 1400 struct partial_page partial[PIPE_BUFFERS]; 1401 struct splice_pipe_desc spd = { 1402 .pages = pages, 1403 .partial = partial, 1404 .flags = flags, 1405 .ops = &user_page_pipe_buf_ops, 1406 .spd_release = spd_release_page, 1407 }; 1408 1409 pipe = pipe_info(file->f_path.dentry->d_inode); 1410 if (!pipe) 1411 return -EBADF; 1412 1413 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial, 1414 flags & SPLICE_F_GIFT); 1415 if (spd.nr_pages <= 0) 1416 return spd.nr_pages; 1417 1418 return splice_to_pipe(pipe, &spd); 1419 } 1420 1421 /* 1422 * Note that vmsplice only really supports true splicing _from_ user memory 1423 * to a pipe, not the other way around. Splicing from user memory is a simple 1424 * operation that can be supported without any funky alignment restrictions 1425 * or nasty vm tricks. We simply map in the user memory and fill them into 1426 * a pipe. The reverse isn't quite as easy, though. There are two possible 1427 * solutions for that: 1428 * 1429 * - memcpy() the data internally, at which point we might as well just 1430 * do a regular read() on the buffer anyway. 1431 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1432 * has restriction limitations on both ends of the pipe). 1433 * 1434 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1435 * 1436 */ 1437 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov, 1438 unsigned long nr_segs, unsigned int flags) 1439 { 1440 struct file *file; 1441 long error; 1442 int fput; 1443 1444 if (unlikely(nr_segs > UIO_MAXIOV)) 1445 return -EINVAL; 1446 else if (unlikely(!nr_segs)) 1447 return 0; 1448 1449 error = -EBADF; 1450 file = fget_light(fd, &fput); 1451 if (file) { 1452 if (file->f_mode & FMODE_WRITE) 1453 error = vmsplice_to_pipe(file, iov, nr_segs, flags); 1454 else if (file->f_mode & FMODE_READ) 1455 error = vmsplice_to_user(file, iov, nr_segs, flags); 1456 1457 fput_light(file, fput); 1458 } 1459 1460 return error; 1461 } 1462 1463 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in, 1464 int fd_out, loff_t __user *off_out, 1465 size_t len, unsigned int flags) 1466 { 1467 long error; 1468 struct file *in, *out; 1469 int fput_in, fput_out; 1470 1471 if (unlikely(!len)) 1472 return 0; 1473 1474 error = -EBADF; 1475 in = fget_light(fd_in, &fput_in); 1476 if (in) { 1477 if (in->f_mode & FMODE_READ) { 1478 out = fget_light(fd_out, &fput_out); 1479 if (out) { 1480 if (out->f_mode & FMODE_WRITE) 1481 error = do_splice(in, off_in, 1482 out, off_out, 1483 len, flags); 1484 fput_light(out, fput_out); 1485 } 1486 } 1487 1488 fput_light(in, fput_in); 1489 } 1490 1491 return error; 1492 } 1493 1494 /* 1495 * Make sure there's data to read. Wait for input if we can, otherwise 1496 * return an appropriate error. 1497 */ 1498 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1499 { 1500 int ret; 1501 1502 /* 1503 * Check ->nrbufs without the inode lock first. This function 1504 * is speculative anyways, so missing one is ok. 1505 */ 1506 if (pipe->nrbufs) 1507 return 0; 1508 1509 ret = 0; 1510 mutex_lock(&pipe->inode->i_mutex); 1511 1512 while (!pipe->nrbufs) { 1513 if (signal_pending(current)) { 1514 ret = -ERESTARTSYS; 1515 break; 1516 } 1517 if (!pipe->writers) 1518 break; 1519 if (!pipe->waiting_writers) { 1520 if (flags & SPLICE_F_NONBLOCK) { 1521 ret = -EAGAIN; 1522 break; 1523 } 1524 } 1525 pipe_wait(pipe); 1526 } 1527 1528 mutex_unlock(&pipe->inode->i_mutex); 1529 return ret; 1530 } 1531 1532 /* 1533 * Make sure there's writeable room. Wait for room if we can, otherwise 1534 * return an appropriate error. 1535 */ 1536 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1537 { 1538 int ret; 1539 1540 /* 1541 * Check ->nrbufs without the inode lock first. This function 1542 * is speculative anyways, so missing one is ok. 1543 */ 1544 if (pipe->nrbufs < PIPE_BUFFERS) 1545 return 0; 1546 1547 ret = 0; 1548 mutex_lock(&pipe->inode->i_mutex); 1549 1550 while (pipe->nrbufs >= PIPE_BUFFERS) { 1551 if (!pipe->readers) { 1552 send_sig(SIGPIPE, current, 0); 1553 ret = -EPIPE; 1554 break; 1555 } 1556 if (flags & SPLICE_F_NONBLOCK) { 1557 ret = -EAGAIN; 1558 break; 1559 } 1560 if (signal_pending(current)) { 1561 ret = -ERESTARTSYS; 1562 break; 1563 } 1564 pipe->waiting_writers++; 1565 pipe_wait(pipe); 1566 pipe->waiting_writers--; 1567 } 1568 1569 mutex_unlock(&pipe->inode->i_mutex); 1570 return ret; 1571 } 1572 1573 /* 1574 * Link contents of ipipe to opipe. 1575 */ 1576 static int link_pipe(struct pipe_inode_info *ipipe, 1577 struct pipe_inode_info *opipe, 1578 size_t len, unsigned int flags) 1579 { 1580 struct pipe_buffer *ibuf, *obuf; 1581 int ret = 0, i = 0, nbuf; 1582 1583 /* 1584 * Potential ABBA deadlock, work around it by ordering lock 1585 * grabbing by inode address. Otherwise two different processes 1586 * could deadlock (one doing tee from A -> B, the other from B -> A). 1587 */ 1588 inode_double_lock(ipipe->inode, opipe->inode); 1589 1590 do { 1591 if (!opipe->readers) { 1592 send_sig(SIGPIPE, current, 0); 1593 if (!ret) 1594 ret = -EPIPE; 1595 break; 1596 } 1597 1598 /* 1599 * If we have iterated all input buffers or ran out of 1600 * output room, break. 1601 */ 1602 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) 1603 break; 1604 1605 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1)); 1606 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1); 1607 1608 /* 1609 * Get a reference to this pipe buffer, 1610 * so we can copy the contents over. 1611 */ 1612 ibuf->ops->get(ipipe, ibuf); 1613 1614 obuf = opipe->bufs + nbuf; 1615 *obuf = *ibuf; 1616 1617 /* 1618 * Don't inherit the gift flag, we need to 1619 * prevent multiple steals of this page. 1620 */ 1621 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1622 1623 if (obuf->len > len) 1624 obuf->len = len; 1625 1626 opipe->nrbufs++; 1627 ret += obuf->len; 1628 len -= obuf->len; 1629 i++; 1630 } while (len); 1631 1632 /* 1633 * return EAGAIN if we have the potential of some data in the 1634 * future, otherwise just return 0 1635 */ 1636 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1637 ret = -EAGAIN; 1638 1639 inode_double_unlock(ipipe->inode, opipe->inode); 1640 1641 /* 1642 * If we put data in the output pipe, wakeup any potential readers. 1643 */ 1644 if (ret > 0) { 1645 smp_mb(); 1646 if (waitqueue_active(&opipe->wait)) 1647 wake_up_interruptible(&opipe->wait); 1648 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); 1649 } 1650 1651 return ret; 1652 } 1653 1654 /* 1655 * This is a tee(1) implementation that works on pipes. It doesn't copy 1656 * any data, it simply references the 'in' pages on the 'out' pipe. 1657 * The 'flags' used are the SPLICE_F_* variants, currently the only 1658 * applicable one is SPLICE_F_NONBLOCK. 1659 */ 1660 static long do_tee(struct file *in, struct file *out, size_t len, 1661 unsigned int flags) 1662 { 1663 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode); 1664 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode); 1665 int ret = -EINVAL; 1666 1667 /* 1668 * Duplicate the contents of ipipe to opipe without actually 1669 * copying the data. 1670 */ 1671 if (ipipe && opipe && ipipe != opipe) { 1672 /* 1673 * Keep going, unless we encounter an error. The ipipe/opipe 1674 * ordering doesn't really matter. 1675 */ 1676 ret = link_ipipe_prep(ipipe, flags); 1677 if (!ret) { 1678 ret = link_opipe_prep(opipe, flags); 1679 if (!ret) 1680 ret = link_pipe(ipipe, opipe, len, flags); 1681 } 1682 } 1683 1684 return ret; 1685 } 1686 1687 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags) 1688 { 1689 struct file *in; 1690 int error, fput_in; 1691 1692 if (unlikely(!len)) 1693 return 0; 1694 1695 error = -EBADF; 1696 in = fget_light(fdin, &fput_in); 1697 if (in) { 1698 if (in->f_mode & FMODE_READ) { 1699 int fput_out; 1700 struct file *out = fget_light(fdout, &fput_out); 1701 1702 if (out) { 1703 if (out->f_mode & FMODE_WRITE) 1704 error = do_tee(in, out, len, flags); 1705 fput_light(out, fput_out); 1706 } 1707 } 1708 fput_light(in, fput_in); 1709 } 1710 1711 return error; 1712 } 1713