xref: /openbmc/linux/fs/splice.c (revision 248ed9e227e6cf59acb1aaf3aa30d530a0232c1a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * "splice": joining two ropes together by interweaving their strands.
4  *
5  * This is the "extended pipe" functionality, where a pipe is used as
6  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7  * buffer that you can use to transfer data from one end to the other.
8  *
9  * The traditional unix read/write is extended with a "splice()" operation
10  * that transfers data buffers to or from a pipe buffer.
11  *
12  * Named by Larry McVoy, original implementation from Linus, extended by
13  * Jens to support splicing to files, network, direct splicing, etc and
14  * fixing lots of bugs.
15  *
16  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19  *
20  */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/security.h>
34 #include <linux/gfp.h>
35 #include <linux/socket.h>
36 #include <linux/sched/signal.h>
37 
38 #include "internal.h"
39 
40 /*
41  * Attempt to steal a page from a pipe buffer. This should perhaps go into
42  * a vm helper function, it's already simplified quite a bit by the
43  * addition of remove_mapping(). If success is returned, the caller may
44  * attempt to reuse this page for another destination.
45  */
46 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
47 		struct pipe_buffer *buf)
48 {
49 	struct folio *folio = page_folio(buf->page);
50 	struct address_space *mapping;
51 
52 	folio_lock(folio);
53 
54 	mapping = folio_mapping(folio);
55 	if (mapping) {
56 		WARN_ON(!folio_test_uptodate(folio));
57 
58 		/*
59 		 * At least for ext2 with nobh option, we need to wait on
60 		 * writeback completing on this folio, since we'll remove it
61 		 * from the pagecache.  Otherwise truncate wont wait on the
62 		 * folio, allowing the disk blocks to be reused by someone else
63 		 * before we actually wrote our data to them. fs corruption
64 		 * ensues.
65 		 */
66 		folio_wait_writeback(folio);
67 
68 		if (folio_has_private(folio) &&
69 		    !filemap_release_folio(folio, GFP_KERNEL))
70 			goto out_unlock;
71 
72 		/*
73 		 * If we succeeded in removing the mapping, set LRU flag
74 		 * and return good.
75 		 */
76 		if (remove_mapping(mapping, folio)) {
77 			buf->flags |= PIPE_BUF_FLAG_LRU;
78 			return true;
79 		}
80 	}
81 
82 	/*
83 	 * Raced with truncate or failed to remove folio from current
84 	 * address space, unlock and return failure.
85 	 */
86 out_unlock:
87 	folio_unlock(folio);
88 	return false;
89 }
90 
91 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
92 					struct pipe_buffer *buf)
93 {
94 	put_page(buf->page);
95 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
96 }
97 
98 /*
99  * Check whether the contents of buf is OK to access. Since the content
100  * is a page cache page, IO may be in flight.
101  */
102 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
103 				       struct pipe_buffer *buf)
104 {
105 	struct page *page = buf->page;
106 	int err;
107 
108 	if (!PageUptodate(page)) {
109 		lock_page(page);
110 
111 		/*
112 		 * Page got truncated/unhashed. This will cause a 0-byte
113 		 * splice, if this is the first page.
114 		 */
115 		if (!page->mapping) {
116 			err = -ENODATA;
117 			goto error;
118 		}
119 
120 		/*
121 		 * Uh oh, read-error from disk.
122 		 */
123 		if (!PageUptodate(page)) {
124 			err = -EIO;
125 			goto error;
126 		}
127 
128 		/*
129 		 * Page is ok afterall, we are done.
130 		 */
131 		unlock_page(page);
132 	}
133 
134 	return 0;
135 error:
136 	unlock_page(page);
137 	return err;
138 }
139 
140 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
141 	.confirm	= page_cache_pipe_buf_confirm,
142 	.release	= page_cache_pipe_buf_release,
143 	.try_steal	= page_cache_pipe_buf_try_steal,
144 	.get		= generic_pipe_buf_get,
145 };
146 
147 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
148 		struct pipe_buffer *buf)
149 {
150 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
151 		return false;
152 
153 	buf->flags |= PIPE_BUF_FLAG_LRU;
154 	return generic_pipe_buf_try_steal(pipe, buf);
155 }
156 
157 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
158 	.release	= page_cache_pipe_buf_release,
159 	.try_steal	= user_page_pipe_buf_try_steal,
160 	.get		= generic_pipe_buf_get,
161 };
162 
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165 	smp_mb();
166 	if (waitqueue_active(&pipe->rd_wait))
167 		wake_up_interruptible(&pipe->rd_wait);
168 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170 
171 /**
172  * splice_to_pipe - fill passed data into a pipe
173  * @pipe:	pipe to fill
174  * @spd:	data to fill
175  *
176  * Description:
177  *    @spd contains a map of pages and len/offset tuples, along with
178  *    the struct pipe_buf_operations associated with these pages. This
179  *    function will link that data to the pipe.
180  *
181  */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 		       struct splice_pipe_desc *spd)
184 {
185 	unsigned int spd_pages = spd->nr_pages;
186 	unsigned int tail = pipe->tail;
187 	unsigned int head = pipe->head;
188 	unsigned int mask = pipe->ring_size - 1;
189 	int ret = 0, page_nr = 0;
190 
191 	if (!spd_pages)
192 		return 0;
193 
194 	if (unlikely(!pipe->readers)) {
195 		send_sig(SIGPIPE, current, 0);
196 		ret = -EPIPE;
197 		goto out;
198 	}
199 
200 	while (!pipe_full(head, tail, pipe->max_usage)) {
201 		struct pipe_buffer *buf = &pipe->bufs[head & mask];
202 
203 		buf->page = spd->pages[page_nr];
204 		buf->offset = spd->partial[page_nr].offset;
205 		buf->len = spd->partial[page_nr].len;
206 		buf->private = spd->partial[page_nr].private;
207 		buf->ops = spd->ops;
208 		buf->flags = 0;
209 
210 		head++;
211 		pipe->head = head;
212 		page_nr++;
213 		ret += buf->len;
214 
215 		if (!--spd->nr_pages)
216 			break;
217 	}
218 
219 	if (!ret)
220 		ret = -EAGAIN;
221 
222 out:
223 	while (page_nr < spd_pages)
224 		spd->spd_release(spd, page_nr++);
225 
226 	return ret;
227 }
228 EXPORT_SYMBOL_GPL(splice_to_pipe);
229 
230 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
231 {
232 	unsigned int head = pipe->head;
233 	unsigned int tail = pipe->tail;
234 	unsigned int mask = pipe->ring_size - 1;
235 	int ret;
236 
237 	if (unlikely(!pipe->readers)) {
238 		send_sig(SIGPIPE, current, 0);
239 		ret = -EPIPE;
240 	} else if (pipe_full(head, tail, pipe->max_usage)) {
241 		ret = -EAGAIN;
242 	} else {
243 		pipe->bufs[head & mask] = *buf;
244 		pipe->head = head + 1;
245 		return buf->len;
246 	}
247 	pipe_buf_release(pipe, buf);
248 	return ret;
249 }
250 EXPORT_SYMBOL(add_to_pipe);
251 
252 /*
253  * Check if we need to grow the arrays holding pages and partial page
254  * descriptions.
255  */
256 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
257 {
258 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
259 
260 	spd->nr_pages_max = max_usage;
261 	if (max_usage <= PIPE_DEF_BUFFERS)
262 		return 0;
263 
264 	spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
265 	spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
266 				     GFP_KERNEL);
267 
268 	if (spd->pages && spd->partial)
269 		return 0;
270 
271 	kfree(spd->pages);
272 	kfree(spd->partial);
273 	return -ENOMEM;
274 }
275 
276 void splice_shrink_spd(struct splice_pipe_desc *spd)
277 {
278 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
279 		return;
280 
281 	kfree(spd->pages);
282 	kfree(spd->partial);
283 }
284 
285 /*
286  * Splice data from an O_DIRECT file into pages and then add them to the output
287  * pipe.
288  */
289 ssize_t direct_splice_read(struct file *in, loff_t *ppos,
290 			   struct pipe_inode_info *pipe,
291 			   size_t len, unsigned int flags)
292 {
293 	struct iov_iter to;
294 	struct bio_vec *bv;
295 	struct kiocb kiocb;
296 	struct page **pages;
297 	ssize_t ret;
298 	size_t used, npages, chunk, remain, reclaim;
299 	int i;
300 
301 	/* Work out how much data we can actually add into the pipe */
302 	used = pipe_occupancy(pipe->head, pipe->tail);
303 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
304 	len = min_t(size_t, len, npages * PAGE_SIZE);
305 	npages = DIV_ROUND_UP(len, PAGE_SIZE);
306 
307 	bv = kzalloc(array_size(npages, sizeof(bv[0])) +
308 		     array_size(npages, sizeof(struct page *)), GFP_KERNEL);
309 	if (!bv)
310 		return -ENOMEM;
311 
312 	pages = (void *)(bv + npages);
313 	npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
314 	if (!npages) {
315 		kfree(bv);
316 		return -ENOMEM;
317 	}
318 
319 	remain = len = min_t(size_t, len, npages * PAGE_SIZE);
320 
321 	for (i = 0; i < npages; i++) {
322 		chunk = min_t(size_t, PAGE_SIZE, remain);
323 		bv[i].bv_page = pages[i];
324 		bv[i].bv_offset = 0;
325 		bv[i].bv_len = chunk;
326 		remain -= chunk;
327 	}
328 
329 	/* Do the I/O */
330 	iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
331 	init_sync_kiocb(&kiocb, in);
332 	kiocb.ki_pos = *ppos;
333 	ret = call_read_iter(in, &kiocb, &to);
334 
335 	reclaim = npages * PAGE_SIZE;
336 	remain = 0;
337 	if (ret > 0) {
338 		reclaim -= ret;
339 		remain = ret;
340 		*ppos = kiocb.ki_pos;
341 		file_accessed(in);
342 	} else if (ret < 0) {
343 		/*
344 		 * callers of ->splice_read() expect -EAGAIN on
345 		 * "can't put anything in there", rather than -EFAULT.
346 		 */
347 		if (ret == -EFAULT)
348 			ret = -EAGAIN;
349 	}
350 
351 	/* Free any pages that didn't get touched at all. */
352 	reclaim /= PAGE_SIZE;
353 	if (reclaim) {
354 		npages -= reclaim;
355 		release_pages(pages + npages, reclaim);
356 	}
357 
358 	/* Push the remaining pages into the pipe. */
359 	for (i = 0; i < npages; i++) {
360 		struct pipe_buffer *buf = pipe_head_buf(pipe);
361 
362 		chunk = min_t(size_t, remain, PAGE_SIZE);
363 		*buf = (struct pipe_buffer) {
364 			.ops	= &default_pipe_buf_ops,
365 			.page	= bv[i].bv_page,
366 			.offset	= 0,
367 			.len	= chunk,
368 		};
369 		pipe->head++;
370 		remain -= chunk;
371 	}
372 
373 	kfree(bv);
374 	return ret;
375 }
376 EXPORT_SYMBOL(direct_splice_read);
377 
378 /**
379  * generic_file_splice_read - splice data from file to a pipe
380  * @in:		file to splice from
381  * @ppos:	position in @in
382  * @pipe:	pipe to splice to
383  * @len:	number of bytes to splice
384  * @flags:	splice modifier flags
385  *
386  * Description:
387  *    Will read pages from given file and fill them into a pipe. Can be
388  *    used as long as it has more or less sane ->read_iter().
389  *
390  */
391 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
392 				 struct pipe_inode_info *pipe, size_t len,
393 				 unsigned int flags)
394 {
395 	struct iov_iter to;
396 	struct kiocb kiocb;
397 	int ret;
398 
399 	iov_iter_pipe(&to, ITER_DEST, pipe, len);
400 	init_sync_kiocb(&kiocb, in);
401 	kiocb.ki_pos = *ppos;
402 	ret = call_read_iter(in, &kiocb, &to);
403 	if (ret > 0) {
404 		*ppos = kiocb.ki_pos;
405 		file_accessed(in);
406 	} else if (ret < 0) {
407 		/* free what was emitted */
408 		pipe_discard_from(pipe, to.start_head);
409 		/*
410 		 * callers of ->splice_read() expect -EAGAIN on
411 		 * "can't put anything in there", rather than -EFAULT.
412 		 */
413 		if (ret == -EFAULT)
414 			ret = -EAGAIN;
415 	}
416 
417 	return ret;
418 }
419 EXPORT_SYMBOL(generic_file_splice_read);
420 
421 const struct pipe_buf_operations default_pipe_buf_ops = {
422 	.release	= generic_pipe_buf_release,
423 	.try_steal	= generic_pipe_buf_try_steal,
424 	.get		= generic_pipe_buf_get,
425 };
426 
427 /* Pipe buffer operations for a socket and similar. */
428 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
429 	.release	= generic_pipe_buf_release,
430 	.get		= generic_pipe_buf_get,
431 };
432 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
433 
434 /*
435  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
436  * using sendpage(). Return the number of bytes sent.
437  */
438 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
439 			    struct pipe_buffer *buf, struct splice_desc *sd)
440 {
441 	struct file *file = sd->u.file;
442 	loff_t pos = sd->pos;
443 	int more;
444 
445 	if (!likely(file->f_op->sendpage))
446 		return -EINVAL;
447 
448 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
449 
450 	if (sd->len < sd->total_len &&
451 	    pipe_occupancy(pipe->head, pipe->tail) > 1)
452 		more |= MSG_SENDPAGE_NOTLAST;
453 
454 	return file->f_op->sendpage(file, buf->page, buf->offset,
455 				    sd->len, &pos, more);
456 }
457 
458 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
459 {
460 	smp_mb();
461 	if (waitqueue_active(&pipe->wr_wait))
462 		wake_up_interruptible(&pipe->wr_wait);
463 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
464 }
465 
466 /**
467  * splice_from_pipe_feed - feed available data from a pipe to a file
468  * @pipe:	pipe to splice from
469  * @sd:		information to @actor
470  * @actor:	handler that splices the data
471  *
472  * Description:
473  *    This function loops over the pipe and calls @actor to do the
474  *    actual moving of a single struct pipe_buffer to the desired
475  *    destination.  It returns when there's no more buffers left in
476  *    the pipe or if the requested number of bytes (@sd->total_len)
477  *    have been copied.  It returns a positive number (one) if the
478  *    pipe needs to be filled with more data, zero if the required
479  *    number of bytes have been copied and -errno on error.
480  *
481  *    This, together with splice_from_pipe_{begin,end,next}, may be
482  *    used to implement the functionality of __splice_from_pipe() when
483  *    locking is required around copying the pipe buffers to the
484  *    destination.
485  */
486 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
487 			  splice_actor *actor)
488 {
489 	unsigned int head = pipe->head;
490 	unsigned int tail = pipe->tail;
491 	unsigned int mask = pipe->ring_size - 1;
492 	int ret;
493 
494 	while (!pipe_empty(head, tail)) {
495 		struct pipe_buffer *buf = &pipe->bufs[tail & mask];
496 
497 		sd->len = buf->len;
498 		if (sd->len > sd->total_len)
499 			sd->len = sd->total_len;
500 
501 		ret = pipe_buf_confirm(pipe, buf);
502 		if (unlikely(ret)) {
503 			if (ret == -ENODATA)
504 				ret = 0;
505 			return ret;
506 		}
507 
508 		ret = actor(pipe, buf, sd);
509 		if (ret <= 0)
510 			return ret;
511 
512 		buf->offset += ret;
513 		buf->len -= ret;
514 
515 		sd->num_spliced += ret;
516 		sd->len -= ret;
517 		sd->pos += ret;
518 		sd->total_len -= ret;
519 
520 		if (!buf->len) {
521 			pipe_buf_release(pipe, buf);
522 			tail++;
523 			pipe->tail = tail;
524 			if (pipe->files)
525 				sd->need_wakeup = true;
526 		}
527 
528 		if (!sd->total_len)
529 			return 0;
530 	}
531 
532 	return 1;
533 }
534 
535 /* We know we have a pipe buffer, but maybe it's empty? */
536 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
537 {
538 	unsigned int tail = pipe->tail;
539 	unsigned int mask = pipe->ring_size - 1;
540 	struct pipe_buffer *buf = &pipe->bufs[tail & mask];
541 
542 	if (unlikely(!buf->len)) {
543 		pipe_buf_release(pipe, buf);
544 		pipe->tail = tail+1;
545 		return true;
546 	}
547 
548 	return false;
549 }
550 
551 /**
552  * splice_from_pipe_next - wait for some data to splice from
553  * @pipe:	pipe to splice from
554  * @sd:		information about the splice operation
555  *
556  * Description:
557  *    This function will wait for some data and return a positive
558  *    value (one) if pipe buffers are available.  It will return zero
559  *    or -errno if no more data needs to be spliced.
560  */
561 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
562 {
563 	/*
564 	 * Check for signal early to make process killable when there are
565 	 * always buffers available
566 	 */
567 	if (signal_pending(current))
568 		return -ERESTARTSYS;
569 
570 repeat:
571 	while (pipe_empty(pipe->head, pipe->tail)) {
572 		if (!pipe->writers)
573 			return 0;
574 
575 		if (sd->num_spliced)
576 			return 0;
577 
578 		if (sd->flags & SPLICE_F_NONBLOCK)
579 			return -EAGAIN;
580 
581 		if (signal_pending(current))
582 			return -ERESTARTSYS;
583 
584 		if (sd->need_wakeup) {
585 			wakeup_pipe_writers(pipe);
586 			sd->need_wakeup = false;
587 		}
588 
589 		pipe_wait_readable(pipe);
590 	}
591 
592 	if (eat_empty_buffer(pipe))
593 		goto repeat;
594 
595 	return 1;
596 }
597 
598 /**
599  * splice_from_pipe_begin - start splicing from pipe
600  * @sd:		information about the splice operation
601  *
602  * Description:
603  *    This function should be called before a loop containing
604  *    splice_from_pipe_next() and splice_from_pipe_feed() to
605  *    initialize the necessary fields of @sd.
606  */
607 static void splice_from_pipe_begin(struct splice_desc *sd)
608 {
609 	sd->num_spliced = 0;
610 	sd->need_wakeup = false;
611 }
612 
613 /**
614  * splice_from_pipe_end - finish splicing from pipe
615  * @pipe:	pipe to splice from
616  * @sd:		information about the splice operation
617  *
618  * Description:
619  *    This function will wake up pipe writers if necessary.  It should
620  *    be called after a loop containing splice_from_pipe_next() and
621  *    splice_from_pipe_feed().
622  */
623 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
624 {
625 	if (sd->need_wakeup)
626 		wakeup_pipe_writers(pipe);
627 }
628 
629 /**
630  * __splice_from_pipe - splice data from a pipe to given actor
631  * @pipe:	pipe to splice from
632  * @sd:		information to @actor
633  * @actor:	handler that splices the data
634  *
635  * Description:
636  *    This function does little more than loop over the pipe and call
637  *    @actor to do the actual moving of a single struct pipe_buffer to
638  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
639  *    pipe_to_user.
640  *
641  */
642 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
643 			   splice_actor *actor)
644 {
645 	int ret;
646 
647 	splice_from_pipe_begin(sd);
648 	do {
649 		cond_resched();
650 		ret = splice_from_pipe_next(pipe, sd);
651 		if (ret > 0)
652 			ret = splice_from_pipe_feed(pipe, sd, actor);
653 	} while (ret > 0);
654 	splice_from_pipe_end(pipe, sd);
655 
656 	return sd->num_spliced ? sd->num_spliced : ret;
657 }
658 EXPORT_SYMBOL(__splice_from_pipe);
659 
660 /**
661  * splice_from_pipe - splice data from a pipe to a file
662  * @pipe:	pipe to splice from
663  * @out:	file to splice to
664  * @ppos:	position in @out
665  * @len:	how many bytes to splice
666  * @flags:	splice modifier flags
667  * @actor:	handler that splices the data
668  *
669  * Description:
670  *    See __splice_from_pipe. This function locks the pipe inode,
671  *    otherwise it's identical to __splice_from_pipe().
672  *
673  */
674 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
675 			 loff_t *ppos, size_t len, unsigned int flags,
676 			 splice_actor *actor)
677 {
678 	ssize_t ret;
679 	struct splice_desc sd = {
680 		.total_len = len,
681 		.flags = flags,
682 		.pos = *ppos,
683 		.u.file = out,
684 	};
685 
686 	pipe_lock(pipe);
687 	ret = __splice_from_pipe(pipe, &sd, actor);
688 	pipe_unlock(pipe);
689 
690 	return ret;
691 }
692 
693 /**
694  * iter_file_splice_write - splice data from a pipe to a file
695  * @pipe:	pipe info
696  * @out:	file to write to
697  * @ppos:	position in @out
698  * @len:	number of bytes to splice
699  * @flags:	splice modifier flags
700  *
701  * Description:
702  *    Will either move or copy pages (determined by @flags options) from
703  *    the given pipe inode to the given file.
704  *    This one is ->write_iter-based.
705  *
706  */
707 ssize_t
708 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
709 			  loff_t *ppos, size_t len, unsigned int flags)
710 {
711 	struct splice_desc sd = {
712 		.total_len = len,
713 		.flags = flags,
714 		.pos = *ppos,
715 		.u.file = out,
716 	};
717 	int nbufs = pipe->max_usage;
718 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
719 					GFP_KERNEL);
720 	ssize_t ret;
721 
722 	if (unlikely(!array))
723 		return -ENOMEM;
724 
725 	pipe_lock(pipe);
726 
727 	splice_from_pipe_begin(&sd);
728 	while (sd.total_len) {
729 		struct iov_iter from;
730 		unsigned int head, tail, mask;
731 		size_t left;
732 		int n;
733 
734 		ret = splice_from_pipe_next(pipe, &sd);
735 		if (ret <= 0)
736 			break;
737 
738 		if (unlikely(nbufs < pipe->max_usage)) {
739 			kfree(array);
740 			nbufs = pipe->max_usage;
741 			array = kcalloc(nbufs, sizeof(struct bio_vec),
742 					GFP_KERNEL);
743 			if (!array) {
744 				ret = -ENOMEM;
745 				break;
746 			}
747 		}
748 
749 		head = pipe->head;
750 		tail = pipe->tail;
751 		mask = pipe->ring_size - 1;
752 
753 		/* build the vector */
754 		left = sd.total_len;
755 		for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
756 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
757 			size_t this_len = buf->len;
758 
759 			/* zero-length bvecs are not supported, skip them */
760 			if (!this_len)
761 				continue;
762 			this_len = min(this_len, left);
763 
764 			ret = pipe_buf_confirm(pipe, buf);
765 			if (unlikely(ret)) {
766 				if (ret == -ENODATA)
767 					ret = 0;
768 				goto done;
769 			}
770 
771 			bvec_set_page(&array[n], buf->page, this_len,
772 				      buf->offset);
773 			left -= this_len;
774 			n++;
775 		}
776 
777 		iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
778 		ret = vfs_iter_write(out, &from, &sd.pos, 0);
779 		if (ret <= 0)
780 			break;
781 
782 		sd.num_spliced += ret;
783 		sd.total_len -= ret;
784 		*ppos = sd.pos;
785 
786 		/* dismiss the fully eaten buffers, adjust the partial one */
787 		tail = pipe->tail;
788 		while (ret) {
789 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
790 			if (ret >= buf->len) {
791 				ret -= buf->len;
792 				buf->len = 0;
793 				pipe_buf_release(pipe, buf);
794 				tail++;
795 				pipe->tail = tail;
796 				if (pipe->files)
797 					sd.need_wakeup = true;
798 			} else {
799 				buf->offset += ret;
800 				buf->len -= ret;
801 				ret = 0;
802 			}
803 		}
804 	}
805 done:
806 	kfree(array);
807 	splice_from_pipe_end(pipe, &sd);
808 
809 	pipe_unlock(pipe);
810 
811 	if (sd.num_spliced)
812 		ret = sd.num_spliced;
813 
814 	return ret;
815 }
816 
817 EXPORT_SYMBOL(iter_file_splice_write);
818 
819 /**
820  * generic_splice_sendpage - splice data from a pipe to a socket
821  * @pipe:	pipe to splice from
822  * @out:	socket to write to
823  * @ppos:	position in @out
824  * @len:	number of bytes to splice
825  * @flags:	splice modifier flags
826  *
827  * Description:
828  *    Will send @len bytes from the pipe to a network socket. No data copying
829  *    is involved.
830  *
831  */
832 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
833 				loff_t *ppos, size_t len, unsigned int flags)
834 {
835 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
836 }
837 
838 EXPORT_SYMBOL(generic_splice_sendpage);
839 
840 static int warn_unsupported(struct file *file, const char *op)
841 {
842 	pr_debug_ratelimited(
843 		"splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
844 		op, file, current->pid, current->comm);
845 	return -EINVAL;
846 }
847 
848 /*
849  * Attempt to initiate a splice from pipe to file.
850  */
851 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
852 			   loff_t *ppos, size_t len, unsigned int flags)
853 {
854 	if (unlikely(!out->f_op->splice_write))
855 		return warn_unsupported(out, "write");
856 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
857 }
858 
859 /*
860  * Attempt to initiate a splice from a file to a pipe.
861  */
862 static long do_splice_to(struct file *in, loff_t *ppos,
863 			 struct pipe_inode_info *pipe, size_t len,
864 			 unsigned int flags)
865 {
866 	unsigned int p_space;
867 	int ret;
868 
869 	if (unlikely(!(in->f_mode & FMODE_READ)))
870 		return -EBADF;
871 
872 	/* Don't try to read more the pipe has space for. */
873 	p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
874 	len = min_t(size_t, len, p_space << PAGE_SHIFT);
875 
876 	ret = rw_verify_area(READ, in, ppos, len);
877 	if (unlikely(ret < 0))
878 		return ret;
879 
880 	if (unlikely(len > MAX_RW_COUNT))
881 		len = MAX_RW_COUNT;
882 
883 	if (unlikely(!in->f_op->splice_read))
884 		return warn_unsupported(in, "read");
885 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
886 }
887 
888 /**
889  * splice_direct_to_actor - splices data directly between two non-pipes
890  * @in:		file to splice from
891  * @sd:		actor information on where to splice to
892  * @actor:	handles the data splicing
893  *
894  * Description:
895  *    This is a special case helper to splice directly between two
896  *    points, without requiring an explicit pipe. Internally an allocated
897  *    pipe is cached in the process, and reused during the lifetime of
898  *    that process.
899  *
900  */
901 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
902 			       splice_direct_actor *actor)
903 {
904 	struct pipe_inode_info *pipe;
905 	long ret, bytes;
906 	size_t len;
907 	int i, flags, more;
908 
909 	/*
910 	 * We require the input to be seekable, as we don't want to randomly
911 	 * drop data for eg socket -> socket splicing. Use the piped splicing
912 	 * for that!
913 	 */
914 	if (unlikely(!(in->f_mode & FMODE_LSEEK)))
915 		return -EINVAL;
916 
917 	/*
918 	 * neither in nor out is a pipe, setup an internal pipe attached to
919 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
920 	 */
921 	pipe = current->splice_pipe;
922 	if (unlikely(!pipe)) {
923 		pipe = alloc_pipe_info();
924 		if (!pipe)
925 			return -ENOMEM;
926 
927 		/*
928 		 * We don't have an immediate reader, but we'll read the stuff
929 		 * out of the pipe right after the splice_to_pipe(). So set
930 		 * PIPE_READERS appropriately.
931 		 */
932 		pipe->readers = 1;
933 
934 		current->splice_pipe = pipe;
935 	}
936 
937 	/*
938 	 * Do the splice.
939 	 */
940 	bytes = 0;
941 	len = sd->total_len;
942 	flags = sd->flags;
943 
944 	/*
945 	 * Don't block on output, we have to drain the direct pipe.
946 	 */
947 	sd->flags &= ~SPLICE_F_NONBLOCK;
948 	more = sd->flags & SPLICE_F_MORE;
949 
950 	WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
951 
952 	while (len) {
953 		size_t read_len;
954 		loff_t pos = sd->pos, prev_pos = pos;
955 
956 		ret = do_splice_to(in, &pos, pipe, len, flags);
957 		if (unlikely(ret <= 0))
958 			goto out_release;
959 
960 		read_len = ret;
961 		sd->total_len = read_len;
962 
963 		/*
964 		 * If more data is pending, set SPLICE_F_MORE
965 		 * If this is the last data and SPLICE_F_MORE was not set
966 		 * initially, clears it.
967 		 */
968 		if (read_len < len)
969 			sd->flags |= SPLICE_F_MORE;
970 		else if (!more)
971 			sd->flags &= ~SPLICE_F_MORE;
972 		/*
973 		 * NOTE: nonblocking mode only applies to the input. We
974 		 * must not do the output in nonblocking mode as then we
975 		 * could get stuck data in the internal pipe:
976 		 */
977 		ret = actor(pipe, sd);
978 		if (unlikely(ret <= 0)) {
979 			sd->pos = prev_pos;
980 			goto out_release;
981 		}
982 
983 		bytes += ret;
984 		len -= ret;
985 		sd->pos = pos;
986 
987 		if (ret < read_len) {
988 			sd->pos = prev_pos + ret;
989 			goto out_release;
990 		}
991 	}
992 
993 done:
994 	pipe->tail = pipe->head = 0;
995 	file_accessed(in);
996 	return bytes;
997 
998 out_release:
999 	/*
1000 	 * If we did an incomplete transfer we must release
1001 	 * the pipe buffers in question:
1002 	 */
1003 	for (i = 0; i < pipe->ring_size; i++) {
1004 		struct pipe_buffer *buf = &pipe->bufs[i];
1005 
1006 		if (buf->ops)
1007 			pipe_buf_release(pipe, buf);
1008 	}
1009 
1010 	if (!bytes)
1011 		bytes = ret;
1012 
1013 	goto done;
1014 }
1015 EXPORT_SYMBOL(splice_direct_to_actor);
1016 
1017 static int direct_splice_actor(struct pipe_inode_info *pipe,
1018 			       struct splice_desc *sd)
1019 {
1020 	struct file *file = sd->u.file;
1021 
1022 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1023 			      sd->flags);
1024 }
1025 
1026 /**
1027  * do_splice_direct - splices data directly between two files
1028  * @in:		file to splice from
1029  * @ppos:	input file offset
1030  * @out:	file to splice to
1031  * @opos:	output file offset
1032  * @len:	number of bytes to splice
1033  * @flags:	splice modifier flags
1034  *
1035  * Description:
1036  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1037  *    doing it in the application would incur an extra system call
1038  *    (splice in + splice out, as compared to just sendfile()). So this helper
1039  *    can splice directly through a process-private pipe.
1040  *
1041  */
1042 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1043 		      loff_t *opos, size_t len, unsigned int flags)
1044 {
1045 	struct splice_desc sd = {
1046 		.len		= len,
1047 		.total_len	= len,
1048 		.flags		= flags,
1049 		.pos		= *ppos,
1050 		.u.file		= out,
1051 		.opos		= opos,
1052 	};
1053 	long ret;
1054 
1055 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1056 		return -EBADF;
1057 
1058 	if (unlikely(out->f_flags & O_APPEND))
1059 		return -EINVAL;
1060 
1061 	ret = rw_verify_area(WRITE, out, opos, len);
1062 	if (unlikely(ret < 0))
1063 		return ret;
1064 
1065 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1066 	if (ret > 0)
1067 		*ppos = sd.pos;
1068 
1069 	return ret;
1070 }
1071 EXPORT_SYMBOL(do_splice_direct);
1072 
1073 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1074 {
1075 	for (;;) {
1076 		if (unlikely(!pipe->readers)) {
1077 			send_sig(SIGPIPE, current, 0);
1078 			return -EPIPE;
1079 		}
1080 		if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1081 			return 0;
1082 		if (flags & SPLICE_F_NONBLOCK)
1083 			return -EAGAIN;
1084 		if (signal_pending(current))
1085 			return -ERESTARTSYS;
1086 		pipe_wait_writable(pipe);
1087 	}
1088 }
1089 
1090 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1091 			       struct pipe_inode_info *opipe,
1092 			       size_t len, unsigned int flags);
1093 
1094 long splice_file_to_pipe(struct file *in,
1095 			 struct pipe_inode_info *opipe,
1096 			 loff_t *offset,
1097 			 size_t len, unsigned int flags)
1098 {
1099 	long ret;
1100 
1101 	pipe_lock(opipe);
1102 	ret = wait_for_space(opipe, flags);
1103 	if (!ret)
1104 		ret = do_splice_to(in, offset, opipe, len, flags);
1105 	pipe_unlock(opipe);
1106 	if (ret > 0)
1107 		wakeup_pipe_readers(opipe);
1108 	return ret;
1109 }
1110 
1111 /*
1112  * Determine where to splice to/from.
1113  */
1114 long do_splice(struct file *in, loff_t *off_in, struct file *out,
1115 	       loff_t *off_out, size_t len, unsigned int flags)
1116 {
1117 	struct pipe_inode_info *ipipe;
1118 	struct pipe_inode_info *opipe;
1119 	loff_t offset;
1120 	long ret;
1121 
1122 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1123 		     !(out->f_mode & FMODE_WRITE)))
1124 		return -EBADF;
1125 
1126 	ipipe = get_pipe_info(in, true);
1127 	opipe = get_pipe_info(out, true);
1128 
1129 	if (ipipe && opipe) {
1130 		if (off_in || off_out)
1131 			return -ESPIPE;
1132 
1133 		/* Splicing to self would be fun, but... */
1134 		if (ipipe == opipe)
1135 			return -EINVAL;
1136 
1137 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1138 			flags |= SPLICE_F_NONBLOCK;
1139 
1140 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1141 	}
1142 
1143 	if (ipipe) {
1144 		if (off_in)
1145 			return -ESPIPE;
1146 		if (off_out) {
1147 			if (!(out->f_mode & FMODE_PWRITE))
1148 				return -EINVAL;
1149 			offset = *off_out;
1150 		} else {
1151 			offset = out->f_pos;
1152 		}
1153 
1154 		if (unlikely(out->f_flags & O_APPEND))
1155 			return -EINVAL;
1156 
1157 		ret = rw_verify_area(WRITE, out, &offset, len);
1158 		if (unlikely(ret < 0))
1159 			return ret;
1160 
1161 		if (in->f_flags & O_NONBLOCK)
1162 			flags |= SPLICE_F_NONBLOCK;
1163 
1164 		file_start_write(out);
1165 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1166 		file_end_write(out);
1167 
1168 		if (!off_out)
1169 			out->f_pos = offset;
1170 		else
1171 			*off_out = offset;
1172 
1173 		return ret;
1174 	}
1175 
1176 	if (opipe) {
1177 		if (off_out)
1178 			return -ESPIPE;
1179 		if (off_in) {
1180 			if (!(in->f_mode & FMODE_PREAD))
1181 				return -EINVAL;
1182 			offset = *off_in;
1183 		} else {
1184 			offset = in->f_pos;
1185 		}
1186 
1187 		if (out->f_flags & O_NONBLOCK)
1188 			flags |= SPLICE_F_NONBLOCK;
1189 
1190 		ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1191 		if (!off_in)
1192 			in->f_pos = offset;
1193 		else
1194 			*off_in = offset;
1195 
1196 		return ret;
1197 	}
1198 
1199 	return -EINVAL;
1200 }
1201 
1202 static long __do_splice(struct file *in, loff_t __user *off_in,
1203 			struct file *out, loff_t __user *off_out,
1204 			size_t len, unsigned int flags)
1205 {
1206 	struct pipe_inode_info *ipipe;
1207 	struct pipe_inode_info *opipe;
1208 	loff_t offset, *__off_in = NULL, *__off_out = NULL;
1209 	long ret;
1210 
1211 	ipipe = get_pipe_info(in, true);
1212 	opipe = get_pipe_info(out, true);
1213 
1214 	if (ipipe && off_in)
1215 		return -ESPIPE;
1216 	if (opipe && off_out)
1217 		return -ESPIPE;
1218 
1219 	if (off_out) {
1220 		if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1221 			return -EFAULT;
1222 		__off_out = &offset;
1223 	}
1224 	if (off_in) {
1225 		if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1226 			return -EFAULT;
1227 		__off_in = &offset;
1228 	}
1229 
1230 	ret = do_splice(in, __off_in, out, __off_out, len, flags);
1231 	if (ret < 0)
1232 		return ret;
1233 
1234 	if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1235 		return -EFAULT;
1236 	if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1237 		return -EFAULT;
1238 
1239 	return ret;
1240 }
1241 
1242 static int iter_to_pipe(struct iov_iter *from,
1243 			struct pipe_inode_info *pipe,
1244 			unsigned flags)
1245 {
1246 	struct pipe_buffer buf = {
1247 		.ops = &user_page_pipe_buf_ops,
1248 		.flags = flags
1249 	};
1250 	size_t total = 0;
1251 	int ret = 0;
1252 
1253 	while (iov_iter_count(from)) {
1254 		struct page *pages[16];
1255 		ssize_t left;
1256 		size_t start;
1257 		int i, n;
1258 
1259 		left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1260 		if (left <= 0) {
1261 			ret = left;
1262 			break;
1263 		}
1264 
1265 		n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1266 		for (i = 0; i < n; i++) {
1267 			int size = min_t(int, left, PAGE_SIZE - start);
1268 
1269 			buf.page = pages[i];
1270 			buf.offset = start;
1271 			buf.len = size;
1272 			ret = add_to_pipe(pipe, &buf);
1273 			if (unlikely(ret < 0)) {
1274 				iov_iter_revert(from, left);
1275 				// this one got dropped by add_to_pipe()
1276 				while (++i < n)
1277 					put_page(pages[i]);
1278 				goto out;
1279 			}
1280 			total += ret;
1281 			left -= size;
1282 			start = 0;
1283 		}
1284 	}
1285 out:
1286 	return total ? total : ret;
1287 }
1288 
1289 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1290 			struct splice_desc *sd)
1291 {
1292 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1293 	return n == sd->len ? n : -EFAULT;
1294 }
1295 
1296 /*
1297  * For lack of a better implementation, implement vmsplice() to userspace
1298  * as a simple copy of the pipes pages to the user iov.
1299  */
1300 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1301 			     unsigned int flags)
1302 {
1303 	struct pipe_inode_info *pipe = get_pipe_info(file, true);
1304 	struct splice_desc sd = {
1305 		.total_len = iov_iter_count(iter),
1306 		.flags = flags,
1307 		.u.data = iter
1308 	};
1309 	long ret = 0;
1310 
1311 	if (!pipe)
1312 		return -EBADF;
1313 
1314 	if (sd.total_len) {
1315 		pipe_lock(pipe);
1316 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1317 		pipe_unlock(pipe);
1318 	}
1319 
1320 	return ret;
1321 }
1322 
1323 /*
1324  * vmsplice splices a user address range into a pipe. It can be thought of
1325  * as splice-from-memory, where the regular splice is splice-from-file (or
1326  * to file). In both cases the output is a pipe, naturally.
1327  */
1328 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1329 			     unsigned int flags)
1330 {
1331 	struct pipe_inode_info *pipe;
1332 	long ret = 0;
1333 	unsigned buf_flag = 0;
1334 
1335 	if (flags & SPLICE_F_GIFT)
1336 		buf_flag = PIPE_BUF_FLAG_GIFT;
1337 
1338 	pipe = get_pipe_info(file, true);
1339 	if (!pipe)
1340 		return -EBADF;
1341 
1342 	pipe_lock(pipe);
1343 	ret = wait_for_space(pipe, flags);
1344 	if (!ret)
1345 		ret = iter_to_pipe(iter, pipe, buf_flag);
1346 	pipe_unlock(pipe);
1347 	if (ret > 0)
1348 		wakeup_pipe_readers(pipe);
1349 	return ret;
1350 }
1351 
1352 static int vmsplice_type(struct fd f, int *type)
1353 {
1354 	if (!f.file)
1355 		return -EBADF;
1356 	if (f.file->f_mode & FMODE_WRITE) {
1357 		*type = ITER_SOURCE;
1358 	} else if (f.file->f_mode & FMODE_READ) {
1359 		*type = ITER_DEST;
1360 	} else {
1361 		fdput(f);
1362 		return -EBADF;
1363 	}
1364 	return 0;
1365 }
1366 
1367 /*
1368  * Note that vmsplice only really supports true splicing _from_ user memory
1369  * to a pipe, not the other way around. Splicing from user memory is a simple
1370  * operation that can be supported without any funky alignment restrictions
1371  * or nasty vm tricks. We simply map in the user memory and fill them into
1372  * a pipe. The reverse isn't quite as easy, though. There are two possible
1373  * solutions for that:
1374  *
1375  *	- memcpy() the data internally, at which point we might as well just
1376  *	  do a regular read() on the buffer anyway.
1377  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1378  *	  has restriction limitations on both ends of the pipe).
1379  *
1380  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1381  *
1382  */
1383 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1384 		unsigned long, nr_segs, unsigned int, flags)
1385 {
1386 	struct iovec iovstack[UIO_FASTIOV];
1387 	struct iovec *iov = iovstack;
1388 	struct iov_iter iter;
1389 	ssize_t error;
1390 	struct fd f;
1391 	int type;
1392 
1393 	if (unlikely(flags & ~SPLICE_F_ALL))
1394 		return -EINVAL;
1395 
1396 	f = fdget(fd);
1397 	error = vmsplice_type(f, &type);
1398 	if (error)
1399 		return error;
1400 
1401 	error = import_iovec(type, uiov, nr_segs,
1402 			     ARRAY_SIZE(iovstack), &iov, &iter);
1403 	if (error < 0)
1404 		goto out_fdput;
1405 
1406 	if (!iov_iter_count(&iter))
1407 		error = 0;
1408 	else if (type == ITER_SOURCE)
1409 		error = vmsplice_to_pipe(f.file, &iter, flags);
1410 	else
1411 		error = vmsplice_to_user(f.file, &iter, flags);
1412 
1413 	kfree(iov);
1414 out_fdput:
1415 	fdput(f);
1416 	return error;
1417 }
1418 
1419 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1420 		int, fd_out, loff_t __user *, off_out,
1421 		size_t, len, unsigned int, flags)
1422 {
1423 	struct fd in, out;
1424 	long error;
1425 
1426 	if (unlikely(!len))
1427 		return 0;
1428 
1429 	if (unlikely(flags & ~SPLICE_F_ALL))
1430 		return -EINVAL;
1431 
1432 	error = -EBADF;
1433 	in = fdget(fd_in);
1434 	if (in.file) {
1435 		out = fdget(fd_out);
1436 		if (out.file) {
1437 			error = __do_splice(in.file, off_in, out.file, off_out,
1438 						len, flags);
1439 			fdput(out);
1440 		}
1441 		fdput(in);
1442 	}
1443 	return error;
1444 }
1445 
1446 /*
1447  * Make sure there's data to read. Wait for input if we can, otherwise
1448  * return an appropriate error.
1449  */
1450 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1451 {
1452 	int ret;
1453 
1454 	/*
1455 	 * Check the pipe occupancy without the inode lock first. This function
1456 	 * is speculative anyways, so missing one is ok.
1457 	 */
1458 	if (!pipe_empty(pipe->head, pipe->tail))
1459 		return 0;
1460 
1461 	ret = 0;
1462 	pipe_lock(pipe);
1463 
1464 	while (pipe_empty(pipe->head, pipe->tail)) {
1465 		if (signal_pending(current)) {
1466 			ret = -ERESTARTSYS;
1467 			break;
1468 		}
1469 		if (!pipe->writers)
1470 			break;
1471 		if (flags & SPLICE_F_NONBLOCK) {
1472 			ret = -EAGAIN;
1473 			break;
1474 		}
1475 		pipe_wait_readable(pipe);
1476 	}
1477 
1478 	pipe_unlock(pipe);
1479 	return ret;
1480 }
1481 
1482 /*
1483  * Make sure there's writeable room. Wait for room if we can, otherwise
1484  * return an appropriate error.
1485  */
1486 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1487 {
1488 	int ret;
1489 
1490 	/*
1491 	 * Check pipe occupancy without the inode lock first. This function
1492 	 * is speculative anyways, so missing one is ok.
1493 	 */
1494 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1495 		return 0;
1496 
1497 	ret = 0;
1498 	pipe_lock(pipe);
1499 
1500 	while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1501 		if (!pipe->readers) {
1502 			send_sig(SIGPIPE, current, 0);
1503 			ret = -EPIPE;
1504 			break;
1505 		}
1506 		if (flags & SPLICE_F_NONBLOCK) {
1507 			ret = -EAGAIN;
1508 			break;
1509 		}
1510 		if (signal_pending(current)) {
1511 			ret = -ERESTARTSYS;
1512 			break;
1513 		}
1514 		pipe_wait_writable(pipe);
1515 	}
1516 
1517 	pipe_unlock(pipe);
1518 	return ret;
1519 }
1520 
1521 /*
1522  * Splice contents of ipipe to opipe.
1523  */
1524 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1525 			       struct pipe_inode_info *opipe,
1526 			       size_t len, unsigned int flags)
1527 {
1528 	struct pipe_buffer *ibuf, *obuf;
1529 	unsigned int i_head, o_head;
1530 	unsigned int i_tail, o_tail;
1531 	unsigned int i_mask, o_mask;
1532 	int ret = 0;
1533 	bool input_wakeup = false;
1534 
1535 
1536 retry:
1537 	ret = ipipe_prep(ipipe, flags);
1538 	if (ret)
1539 		return ret;
1540 
1541 	ret = opipe_prep(opipe, flags);
1542 	if (ret)
1543 		return ret;
1544 
1545 	/*
1546 	 * Potential ABBA deadlock, work around it by ordering lock
1547 	 * grabbing by pipe info address. Otherwise two different processes
1548 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1549 	 */
1550 	pipe_double_lock(ipipe, opipe);
1551 
1552 	i_tail = ipipe->tail;
1553 	i_mask = ipipe->ring_size - 1;
1554 	o_head = opipe->head;
1555 	o_mask = opipe->ring_size - 1;
1556 
1557 	do {
1558 		size_t o_len;
1559 
1560 		if (!opipe->readers) {
1561 			send_sig(SIGPIPE, current, 0);
1562 			if (!ret)
1563 				ret = -EPIPE;
1564 			break;
1565 		}
1566 
1567 		i_head = ipipe->head;
1568 		o_tail = opipe->tail;
1569 
1570 		if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1571 			break;
1572 
1573 		/*
1574 		 * Cannot make any progress, because either the input
1575 		 * pipe is empty or the output pipe is full.
1576 		 */
1577 		if (pipe_empty(i_head, i_tail) ||
1578 		    pipe_full(o_head, o_tail, opipe->max_usage)) {
1579 			/* Already processed some buffers, break */
1580 			if (ret)
1581 				break;
1582 
1583 			if (flags & SPLICE_F_NONBLOCK) {
1584 				ret = -EAGAIN;
1585 				break;
1586 			}
1587 
1588 			/*
1589 			 * We raced with another reader/writer and haven't
1590 			 * managed to process any buffers.  A zero return
1591 			 * value means EOF, so retry instead.
1592 			 */
1593 			pipe_unlock(ipipe);
1594 			pipe_unlock(opipe);
1595 			goto retry;
1596 		}
1597 
1598 		ibuf = &ipipe->bufs[i_tail & i_mask];
1599 		obuf = &opipe->bufs[o_head & o_mask];
1600 
1601 		if (len >= ibuf->len) {
1602 			/*
1603 			 * Simply move the whole buffer from ipipe to opipe
1604 			 */
1605 			*obuf = *ibuf;
1606 			ibuf->ops = NULL;
1607 			i_tail++;
1608 			ipipe->tail = i_tail;
1609 			input_wakeup = true;
1610 			o_len = obuf->len;
1611 			o_head++;
1612 			opipe->head = o_head;
1613 		} else {
1614 			/*
1615 			 * Get a reference to this pipe buffer,
1616 			 * so we can copy the contents over.
1617 			 */
1618 			if (!pipe_buf_get(ipipe, ibuf)) {
1619 				if (ret == 0)
1620 					ret = -EFAULT;
1621 				break;
1622 			}
1623 			*obuf = *ibuf;
1624 
1625 			/*
1626 			 * Don't inherit the gift and merge flags, we need to
1627 			 * prevent multiple steals of this page.
1628 			 */
1629 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1630 			obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1631 
1632 			obuf->len = len;
1633 			ibuf->offset += len;
1634 			ibuf->len -= len;
1635 			o_len = len;
1636 			o_head++;
1637 			opipe->head = o_head;
1638 		}
1639 		ret += o_len;
1640 		len -= o_len;
1641 	} while (len);
1642 
1643 	pipe_unlock(ipipe);
1644 	pipe_unlock(opipe);
1645 
1646 	/*
1647 	 * If we put data in the output pipe, wakeup any potential readers.
1648 	 */
1649 	if (ret > 0)
1650 		wakeup_pipe_readers(opipe);
1651 
1652 	if (input_wakeup)
1653 		wakeup_pipe_writers(ipipe);
1654 
1655 	return ret;
1656 }
1657 
1658 /*
1659  * Link contents of ipipe to opipe.
1660  */
1661 static int link_pipe(struct pipe_inode_info *ipipe,
1662 		     struct pipe_inode_info *opipe,
1663 		     size_t len, unsigned int flags)
1664 {
1665 	struct pipe_buffer *ibuf, *obuf;
1666 	unsigned int i_head, o_head;
1667 	unsigned int i_tail, o_tail;
1668 	unsigned int i_mask, o_mask;
1669 	int ret = 0;
1670 
1671 	/*
1672 	 * Potential ABBA deadlock, work around it by ordering lock
1673 	 * grabbing by pipe info address. Otherwise two different processes
1674 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1675 	 */
1676 	pipe_double_lock(ipipe, opipe);
1677 
1678 	i_tail = ipipe->tail;
1679 	i_mask = ipipe->ring_size - 1;
1680 	o_head = opipe->head;
1681 	o_mask = opipe->ring_size - 1;
1682 
1683 	do {
1684 		if (!opipe->readers) {
1685 			send_sig(SIGPIPE, current, 0);
1686 			if (!ret)
1687 				ret = -EPIPE;
1688 			break;
1689 		}
1690 
1691 		i_head = ipipe->head;
1692 		o_tail = opipe->tail;
1693 
1694 		/*
1695 		 * If we have iterated all input buffers or run out of
1696 		 * output room, break.
1697 		 */
1698 		if (pipe_empty(i_head, i_tail) ||
1699 		    pipe_full(o_head, o_tail, opipe->max_usage))
1700 			break;
1701 
1702 		ibuf = &ipipe->bufs[i_tail & i_mask];
1703 		obuf = &opipe->bufs[o_head & o_mask];
1704 
1705 		/*
1706 		 * Get a reference to this pipe buffer,
1707 		 * so we can copy the contents over.
1708 		 */
1709 		if (!pipe_buf_get(ipipe, ibuf)) {
1710 			if (ret == 0)
1711 				ret = -EFAULT;
1712 			break;
1713 		}
1714 
1715 		*obuf = *ibuf;
1716 
1717 		/*
1718 		 * Don't inherit the gift and merge flag, we need to prevent
1719 		 * multiple steals of this page.
1720 		 */
1721 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1722 		obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1723 
1724 		if (obuf->len > len)
1725 			obuf->len = len;
1726 		ret += obuf->len;
1727 		len -= obuf->len;
1728 
1729 		o_head++;
1730 		opipe->head = o_head;
1731 		i_tail++;
1732 	} while (len);
1733 
1734 	pipe_unlock(ipipe);
1735 	pipe_unlock(opipe);
1736 
1737 	/*
1738 	 * If we put data in the output pipe, wakeup any potential readers.
1739 	 */
1740 	if (ret > 0)
1741 		wakeup_pipe_readers(opipe);
1742 
1743 	return ret;
1744 }
1745 
1746 /*
1747  * This is a tee(1) implementation that works on pipes. It doesn't copy
1748  * any data, it simply references the 'in' pages on the 'out' pipe.
1749  * The 'flags' used are the SPLICE_F_* variants, currently the only
1750  * applicable one is SPLICE_F_NONBLOCK.
1751  */
1752 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1753 {
1754 	struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1755 	struct pipe_inode_info *opipe = get_pipe_info(out, true);
1756 	int ret = -EINVAL;
1757 
1758 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1759 		     !(out->f_mode & FMODE_WRITE)))
1760 		return -EBADF;
1761 
1762 	/*
1763 	 * Duplicate the contents of ipipe to opipe without actually
1764 	 * copying the data.
1765 	 */
1766 	if (ipipe && opipe && ipipe != opipe) {
1767 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1768 			flags |= SPLICE_F_NONBLOCK;
1769 
1770 		/*
1771 		 * Keep going, unless we encounter an error. The ipipe/opipe
1772 		 * ordering doesn't really matter.
1773 		 */
1774 		ret = ipipe_prep(ipipe, flags);
1775 		if (!ret) {
1776 			ret = opipe_prep(opipe, flags);
1777 			if (!ret)
1778 				ret = link_pipe(ipipe, opipe, len, flags);
1779 		}
1780 	}
1781 
1782 	return ret;
1783 }
1784 
1785 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1786 {
1787 	struct fd in, out;
1788 	int error;
1789 
1790 	if (unlikely(flags & ~SPLICE_F_ALL))
1791 		return -EINVAL;
1792 
1793 	if (unlikely(!len))
1794 		return 0;
1795 
1796 	error = -EBADF;
1797 	in = fdget(fdin);
1798 	if (in.file) {
1799 		out = fdget(fdout);
1800 		if (out.file) {
1801 			error = do_tee(in.file, out.file, len, flags);
1802 			fdput(out);
1803 		}
1804  		fdput(in);
1805  	}
1806 
1807 	return error;
1808 }
1809