xref: /openbmc/linux/fs/splice.c (revision 1c2f87c2)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36 
37 /*
38  * Attempt to steal a page from a pipe buffer. This should perhaps go into
39  * a vm helper function, it's already simplified quite a bit by the
40  * addition of remove_mapping(). If success is returned, the caller may
41  * attempt to reuse this page for another destination.
42  */
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 				     struct pipe_buffer *buf)
45 {
46 	struct page *page = buf->page;
47 	struct address_space *mapping;
48 
49 	lock_page(page);
50 
51 	mapping = page_mapping(page);
52 	if (mapping) {
53 		WARN_ON(!PageUptodate(page));
54 
55 		/*
56 		 * At least for ext2 with nobh option, we need to wait on
57 		 * writeback completing on this page, since we'll remove it
58 		 * from the pagecache.  Otherwise truncate wont wait on the
59 		 * page, allowing the disk blocks to be reused by someone else
60 		 * before we actually wrote our data to them. fs corruption
61 		 * ensues.
62 		 */
63 		wait_on_page_writeback(page);
64 
65 		if (page_has_private(page) &&
66 		    !try_to_release_page(page, GFP_KERNEL))
67 			goto out_unlock;
68 
69 		/*
70 		 * If we succeeded in removing the mapping, set LRU flag
71 		 * and return good.
72 		 */
73 		if (remove_mapping(mapping, page)) {
74 			buf->flags |= PIPE_BUF_FLAG_LRU;
75 			return 0;
76 		}
77 	}
78 
79 	/*
80 	 * Raced with truncate or failed to remove page from current
81 	 * address space, unlock and return failure.
82 	 */
83 out_unlock:
84 	unlock_page(page);
85 	return 1;
86 }
87 
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 					struct pipe_buffer *buf)
90 {
91 	page_cache_release(buf->page);
92 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94 
95 /*
96  * Check whether the contents of buf is OK to access. Since the content
97  * is a page cache page, IO may be in flight.
98  */
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 				       struct pipe_buffer *buf)
101 {
102 	struct page *page = buf->page;
103 	int err;
104 
105 	if (!PageUptodate(page)) {
106 		lock_page(page);
107 
108 		/*
109 		 * Page got truncated/unhashed. This will cause a 0-byte
110 		 * splice, if this is the first page.
111 		 */
112 		if (!page->mapping) {
113 			err = -ENODATA;
114 			goto error;
115 		}
116 
117 		/*
118 		 * Uh oh, read-error from disk.
119 		 */
120 		if (!PageUptodate(page)) {
121 			err = -EIO;
122 			goto error;
123 		}
124 
125 		/*
126 		 * Page is ok afterall, we are done.
127 		 */
128 		unlock_page(page);
129 	}
130 
131 	return 0;
132 error:
133 	unlock_page(page);
134 	return err;
135 }
136 
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 	.can_merge = 0,
139 	.confirm = page_cache_pipe_buf_confirm,
140 	.release = page_cache_pipe_buf_release,
141 	.steal = page_cache_pipe_buf_steal,
142 	.get = generic_pipe_buf_get,
143 };
144 
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 				    struct pipe_buffer *buf)
147 {
148 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 		return 1;
150 
151 	buf->flags |= PIPE_BUF_FLAG_LRU;
152 	return generic_pipe_buf_steal(pipe, buf);
153 }
154 
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 	.can_merge = 0,
157 	.confirm = generic_pipe_buf_confirm,
158 	.release = page_cache_pipe_buf_release,
159 	.steal = user_page_pipe_buf_steal,
160 	.get = generic_pipe_buf_get,
161 };
162 
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165 	smp_mb();
166 	if (waitqueue_active(&pipe->wait))
167 		wake_up_interruptible(&pipe->wait);
168 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170 
171 /**
172  * splice_to_pipe - fill passed data into a pipe
173  * @pipe:	pipe to fill
174  * @spd:	data to fill
175  *
176  * Description:
177  *    @spd contains a map of pages and len/offset tuples, along with
178  *    the struct pipe_buf_operations associated with these pages. This
179  *    function will link that data to the pipe.
180  *
181  */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 		       struct splice_pipe_desc *spd)
184 {
185 	unsigned int spd_pages = spd->nr_pages;
186 	int ret, do_wakeup, page_nr;
187 
188 	ret = 0;
189 	do_wakeup = 0;
190 	page_nr = 0;
191 
192 	pipe_lock(pipe);
193 
194 	for (;;) {
195 		if (!pipe->readers) {
196 			send_sig(SIGPIPE, current, 0);
197 			if (!ret)
198 				ret = -EPIPE;
199 			break;
200 		}
201 
202 		if (pipe->nrbufs < pipe->buffers) {
203 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
204 			struct pipe_buffer *buf = pipe->bufs + newbuf;
205 
206 			buf->page = spd->pages[page_nr];
207 			buf->offset = spd->partial[page_nr].offset;
208 			buf->len = spd->partial[page_nr].len;
209 			buf->private = spd->partial[page_nr].private;
210 			buf->ops = spd->ops;
211 			if (spd->flags & SPLICE_F_GIFT)
212 				buf->flags |= PIPE_BUF_FLAG_GIFT;
213 
214 			pipe->nrbufs++;
215 			page_nr++;
216 			ret += buf->len;
217 
218 			if (pipe->files)
219 				do_wakeup = 1;
220 
221 			if (!--spd->nr_pages)
222 				break;
223 			if (pipe->nrbufs < pipe->buffers)
224 				continue;
225 
226 			break;
227 		}
228 
229 		if (spd->flags & SPLICE_F_NONBLOCK) {
230 			if (!ret)
231 				ret = -EAGAIN;
232 			break;
233 		}
234 
235 		if (signal_pending(current)) {
236 			if (!ret)
237 				ret = -ERESTARTSYS;
238 			break;
239 		}
240 
241 		if (do_wakeup) {
242 			smp_mb();
243 			if (waitqueue_active(&pipe->wait))
244 				wake_up_interruptible_sync(&pipe->wait);
245 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
246 			do_wakeup = 0;
247 		}
248 
249 		pipe->waiting_writers++;
250 		pipe_wait(pipe);
251 		pipe->waiting_writers--;
252 	}
253 
254 	pipe_unlock(pipe);
255 
256 	if (do_wakeup)
257 		wakeup_pipe_readers(pipe);
258 
259 	while (page_nr < spd_pages)
260 		spd->spd_release(spd, page_nr++);
261 
262 	return ret;
263 }
264 
265 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
266 {
267 	page_cache_release(spd->pages[i]);
268 }
269 
270 /*
271  * Check if we need to grow the arrays holding pages and partial page
272  * descriptions.
273  */
274 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
275 {
276 	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
277 
278 	spd->nr_pages_max = buffers;
279 	if (buffers <= PIPE_DEF_BUFFERS)
280 		return 0;
281 
282 	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
283 	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
284 
285 	if (spd->pages && spd->partial)
286 		return 0;
287 
288 	kfree(spd->pages);
289 	kfree(spd->partial);
290 	return -ENOMEM;
291 }
292 
293 void splice_shrink_spd(struct splice_pipe_desc *spd)
294 {
295 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
296 		return;
297 
298 	kfree(spd->pages);
299 	kfree(spd->partial);
300 }
301 
302 static int
303 __generic_file_splice_read(struct file *in, loff_t *ppos,
304 			   struct pipe_inode_info *pipe, size_t len,
305 			   unsigned int flags)
306 {
307 	struct address_space *mapping = in->f_mapping;
308 	unsigned int loff, nr_pages, req_pages;
309 	struct page *pages[PIPE_DEF_BUFFERS];
310 	struct partial_page partial[PIPE_DEF_BUFFERS];
311 	struct page *page;
312 	pgoff_t index, end_index;
313 	loff_t isize;
314 	int error, page_nr;
315 	struct splice_pipe_desc spd = {
316 		.pages = pages,
317 		.partial = partial,
318 		.nr_pages_max = PIPE_DEF_BUFFERS,
319 		.flags = flags,
320 		.ops = &page_cache_pipe_buf_ops,
321 		.spd_release = spd_release_page,
322 	};
323 
324 	if (splice_grow_spd(pipe, &spd))
325 		return -ENOMEM;
326 
327 	index = *ppos >> PAGE_CACHE_SHIFT;
328 	loff = *ppos & ~PAGE_CACHE_MASK;
329 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
330 	nr_pages = min(req_pages, spd.nr_pages_max);
331 
332 	/*
333 	 * Lookup the (hopefully) full range of pages we need.
334 	 */
335 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
336 	index += spd.nr_pages;
337 
338 	/*
339 	 * If find_get_pages_contig() returned fewer pages than we needed,
340 	 * readahead/allocate the rest and fill in the holes.
341 	 */
342 	if (spd.nr_pages < nr_pages)
343 		page_cache_sync_readahead(mapping, &in->f_ra, in,
344 				index, req_pages - spd.nr_pages);
345 
346 	error = 0;
347 	while (spd.nr_pages < nr_pages) {
348 		/*
349 		 * Page could be there, find_get_pages_contig() breaks on
350 		 * the first hole.
351 		 */
352 		page = find_get_page(mapping, index);
353 		if (!page) {
354 			/*
355 			 * page didn't exist, allocate one.
356 			 */
357 			page = page_cache_alloc_cold(mapping);
358 			if (!page)
359 				break;
360 
361 			error = add_to_page_cache_lru(page, mapping, index,
362 						GFP_KERNEL);
363 			if (unlikely(error)) {
364 				page_cache_release(page);
365 				if (error == -EEXIST)
366 					continue;
367 				break;
368 			}
369 			/*
370 			 * add_to_page_cache() locks the page, unlock it
371 			 * to avoid convoluting the logic below even more.
372 			 */
373 			unlock_page(page);
374 		}
375 
376 		spd.pages[spd.nr_pages++] = page;
377 		index++;
378 	}
379 
380 	/*
381 	 * Now loop over the map and see if we need to start IO on any
382 	 * pages, fill in the partial map, etc.
383 	 */
384 	index = *ppos >> PAGE_CACHE_SHIFT;
385 	nr_pages = spd.nr_pages;
386 	spd.nr_pages = 0;
387 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
388 		unsigned int this_len;
389 
390 		if (!len)
391 			break;
392 
393 		/*
394 		 * this_len is the max we'll use from this page
395 		 */
396 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
397 		page = spd.pages[page_nr];
398 
399 		if (PageReadahead(page))
400 			page_cache_async_readahead(mapping, &in->f_ra, in,
401 					page, index, req_pages - page_nr);
402 
403 		/*
404 		 * If the page isn't uptodate, we may need to start io on it
405 		 */
406 		if (!PageUptodate(page)) {
407 			lock_page(page);
408 
409 			/*
410 			 * Page was truncated, or invalidated by the
411 			 * filesystem.  Redo the find/create, but this time the
412 			 * page is kept locked, so there's no chance of another
413 			 * race with truncate/invalidate.
414 			 */
415 			if (!page->mapping) {
416 				unlock_page(page);
417 				page = find_or_create_page(mapping, index,
418 						mapping_gfp_mask(mapping));
419 
420 				if (!page) {
421 					error = -ENOMEM;
422 					break;
423 				}
424 				page_cache_release(spd.pages[page_nr]);
425 				spd.pages[page_nr] = page;
426 			}
427 			/*
428 			 * page was already under io and is now done, great
429 			 */
430 			if (PageUptodate(page)) {
431 				unlock_page(page);
432 				goto fill_it;
433 			}
434 
435 			/*
436 			 * need to read in the page
437 			 */
438 			error = mapping->a_ops->readpage(in, page);
439 			if (unlikely(error)) {
440 				/*
441 				 * We really should re-lookup the page here,
442 				 * but it complicates things a lot. Instead
443 				 * lets just do what we already stored, and
444 				 * we'll get it the next time we are called.
445 				 */
446 				if (error == AOP_TRUNCATED_PAGE)
447 					error = 0;
448 
449 				break;
450 			}
451 		}
452 fill_it:
453 		/*
454 		 * i_size must be checked after PageUptodate.
455 		 */
456 		isize = i_size_read(mapping->host);
457 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
458 		if (unlikely(!isize || index > end_index))
459 			break;
460 
461 		/*
462 		 * if this is the last page, see if we need to shrink
463 		 * the length and stop
464 		 */
465 		if (end_index == index) {
466 			unsigned int plen;
467 
468 			/*
469 			 * max good bytes in this page
470 			 */
471 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
472 			if (plen <= loff)
473 				break;
474 
475 			/*
476 			 * force quit after adding this page
477 			 */
478 			this_len = min(this_len, plen - loff);
479 			len = this_len;
480 		}
481 
482 		spd.partial[page_nr].offset = loff;
483 		spd.partial[page_nr].len = this_len;
484 		len -= this_len;
485 		loff = 0;
486 		spd.nr_pages++;
487 		index++;
488 	}
489 
490 	/*
491 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
492 	 * we got, 'nr_pages' is how many pages are in the map.
493 	 */
494 	while (page_nr < nr_pages)
495 		page_cache_release(spd.pages[page_nr++]);
496 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
497 
498 	if (spd.nr_pages)
499 		error = splice_to_pipe(pipe, &spd);
500 
501 	splice_shrink_spd(&spd);
502 	return error;
503 }
504 
505 /**
506  * generic_file_splice_read - splice data from file to a pipe
507  * @in:		file to splice from
508  * @ppos:	position in @in
509  * @pipe:	pipe to splice to
510  * @len:	number of bytes to splice
511  * @flags:	splice modifier flags
512  *
513  * Description:
514  *    Will read pages from given file and fill them into a pipe. Can be
515  *    used as long as the address_space operations for the source implements
516  *    a readpage() hook.
517  *
518  */
519 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
520 				 struct pipe_inode_info *pipe, size_t len,
521 				 unsigned int flags)
522 {
523 	loff_t isize, left;
524 	int ret;
525 
526 	isize = i_size_read(in->f_mapping->host);
527 	if (unlikely(*ppos >= isize))
528 		return 0;
529 
530 	left = isize - *ppos;
531 	if (unlikely(left < len))
532 		len = left;
533 
534 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
535 	if (ret > 0) {
536 		*ppos += ret;
537 		file_accessed(in);
538 	}
539 
540 	return ret;
541 }
542 EXPORT_SYMBOL(generic_file_splice_read);
543 
544 static const struct pipe_buf_operations default_pipe_buf_ops = {
545 	.can_merge = 0,
546 	.confirm = generic_pipe_buf_confirm,
547 	.release = generic_pipe_buf_release,
548 	.steal = generic_pipe_buf_steal,
549 	.get = generic_pipe_buf_get,
550 };
551 
552 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
553 				    struct pipe_buffer *buf)
554 {
555 	return 1;
556 }
557 
558 /* Pipe buffer operations for a socket and similar. */
559 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
560 	.can_merge = 0,
561 	.confirm = generic_pipe_buf_confirm,
562 	.release = generic_pipe_buf_release,
563 	.steal = generic_pipe_buf_nosteal,
564 	.get = generic_pipe_buf_get,
565 };
566 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
567 
568 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
569 			    unsigned long vlen, loff_t offset)
570 {
571 	mm_segment_t old_fs;
572 	loff_t pos = offset;
573 	ssize_t res;
574 
575 	old_fs = get_fs();
576 	set_fs(get_ds());
577 	/* The cast to a user pointer is valid due to the set_fs() */
578 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
579 	set_fs(old_fs);
580 
581 	return res;
582 }
583 
584 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
585 			    loff_t pos)
586 {
587 	mm_segment_t old_fs;
588 	ssize_t res;
589 
590 	old_fs = get_fs();
591 	set_fs(get_ds());
592 	/* The cast to a user pointer is valid due to the set_fs() */
593 	res = vfs_write(file, (__force const char __user *)buf, count, &pos);
594 	set_fs(old_fs);
595 
596 	return res;
597 }
598 EXPORT_SYMBOL(kernel_write);
599 
600 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
601 				 struct pipe_inode_info *pipe, size_t len,
602 				 unsigned int flags)
603 {
604 	unsigned int nr_pages;
605 	unsigned int nr_freed;
606 	size_t offset;
607 	struct page *pages[PIPE_DEF_BUFFERS];
608 	struct partial_page partial[PIPE_DEF_BUFFERS];
609 	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
610 	ssize_t res;
611 	size_t this_len;
612 	int error;
613 	int i;
614 	struct splice_pipe_desc spd = {
615 		.pages = pages,
616 		.partial = partial,
617 		.nr_pages_max = PIPE_DEF_BUFFERS,
618 		.flags = flags,
619 		.ops = &default_pipe_buf_ops,
620 		.spd_release = spd_release_page,
621 	};
622 
623 	if (splice_grow_spd(pipe, &spd))
624 		return -ENOMEM;
625 
626 	res = -ENOMEM;
627 	vec = __vec;
628 	if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
629 		vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
630 		if (!vec)
631 			goto shrink_ret;
632 	}
633 
634 	offset = *ppos & ~PAGE_CACHE_MASK;
635 	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
636 
637 	for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
638 		struct page *page;
639 
640 		page = alloc_page(GFP_USER);
641 		error = -ENOMEM;
642 		if (!page)
643 			goto err;
644 
645 		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
646 		vec[i].iov_base = (void __user *) page_address(page);
647 		vec[i].iov_len = this_len;
648 		spd.pages[i] = page;
649 		spd.nr_pages++;
650 		len -= this_len;
651 		offset = 0;
652 	}
653 
654 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
655 	if (res < 0) {
656 		error = res;
657 		goto err;
658 	}
659 
660 	error = 0;
661 	if (!res)
662 		goto err;
663 
664 	nr_freed = 0;
665 	for (i = 0; i < spd.nr_pages; i++) {
666 		this_len = min_t(size_t, vec[i].iov_len, res);
667 		spd.partial[i].offset = 0;
668 		spd.partial[i].len = this_len;
669 		if (!this_len) {
670 			__free_page(spd.pages[i]);
671 			spd.pages[i] = NULL;
672 			nr_freed++;
673 		}
674 		res -= this_len;
675 	}
676 	spd.nr_pages -= nr_freed;
677 
678 	res = splice_to_pipe(pipe, &spd);
679 	if (res > 0)
680 		*ppos += res;
681 
682 shrink_ret:
683 	if (vec != __vec)
684 		kfree(vec);
685 	splice_shrink_spd(&spd);
686 	return res;
687 
688 err:
689 	for (i = 0; i < spd.nr_pages; i++)
690 		__free_page(spd.pages[i]);
691 
692 	res = error;
693 	goto shrink_ret;
694 }
695 EXPORT_SYMBOL(default_file_splice_read);
696 
697 /*
698  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
699  * using sendpage(). Return the number of bytes sent.
700  */
701 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
702 			    struct pipe_buffer *buf, struct splice_desc *sd)
703 {
704 	struct file *file = sd->u.file;
705 	loff_t pos = sd->pos;
706 	int more;
707 
708 	if (!likely(file->f_op->sendpage))
709 		return -EINVAL;
710 
711 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
712 
713 	if (sd->len < sd->total_len && pipe->nrbufs > 1)
714 		more |= MSG_SENDPAGE_NOTLAST;
715 
716 	return file->f_op->sendpage(file, buf->page, buf->offset,
717 				    sd->len, &pos, more);
718 }
719 
720 /*
721  * This is a little more tricky than the file -> pipe splicing. There are
722  * basically three cases:
723  *
724  *	- Destination page already exists in the address space and there
725  *	  are users of it. For that case we have no other option that
726  *	  copying the data. Tough luck.
727  *	- Destination page already exists in the address space, but there
728  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
729  *	  through to last case.
730  *	- Destination page does not exist, we can add the pipe page to
731  *	  the page cache and avoid the copy.
732  *
733  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
734  * sd->flags), we attempt to migrate pages from the pipe to the output
735  * file address space page cache. This is possible if no one else has
736  * the pipe page referenced outside of the pipe and page cache. If
737  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
738  * a new page in the output file page cache and fill/dirty that.
739  */
740 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
741 		 struct splice_desc *sd)
742 {
743 	struct file *file = sd->u.file;
744 	struct address_space *mapping = file->f_mapping;
745 	unsigned int offset, this_len;
746 	struct page *page;
747 	void *fsdata;
748 	int ret;
749 
750 	offset = sd->pos & ~PAGE_CACHE_MASK;
751 
752 	this_len = sd->len;
753 	if (this_len + offset > PAGE_CACHE_SIZE)
754 		this_len = PAGE_CACHE_SIZE - offset;
755 
756 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
757 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
758 	if (unlikely(ret))
759 		goto out;
760 
761 	if (buf->page != page) {
762 		char *src = kmap_atomic(buf->page);
763 		char *dst = kmap_atomic(page);
764 
765 		memcpy(dst + offset, src + buf->offset, this_len);
766 		flush_dcache_page(page);
767 		kunmap_atomic(dst);
768 		kunmap_atomic(src);
769 	}
770 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
771 				page, fsdata);
772 out:
773 	return ret;
774 }
775 EXPORT_SYMBOL(pipe_to_file);
776 
777 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
778 {
779 	smp_mb();
780 	if (waitqueue_active(&pipe->wait))
781 		wake_up_interruptible(&pipe->wait);
782 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
783 }
784 
785 /**
786  * splice_from_pipe_feed - feed available data from a pipe to a file
787  * @pipe:	pipe to splice from
788  * @sd:		information to @actor
789  * @actor:	handler that splices the data
790  *
791  * Description:
792  *    This function loops over the pipe and calls @actor to do the
793  *    actual moving of a single struct pipe_buffer to the desired
794  *    destination.  It returns when there's no more buffers left in
795  *    the pipe or if the requested number of bytes (@sd->total_len)
796  *    have been copied.  It returns a positive number (one) if the
797  *    pipe needs to be filled with more data, zero if the required
798  *    number of bytes have been copied and -errno on error.
799  *
800  *    This, together with splice_from_pipe_{begin,end,next}, may be
801  *    used to implement the functionality of __splice_from_pipe() when
802  *    locking is required around copying the pipe buffers to the
803  *    destination.
804  */
805 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
806 			  splice_actor *actor)
807 {
808 	int ret;
809 
810 	while (pipe->nrbufs) {
811 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
812 		const struct pipe_buf_operations *ops = buf->ops;
813 
814 		sd->len = buf->len;
815 		if (sd->len > sd->total_len)
816 			sd->len = sd->total_len;
817 
818 		ret = buf->ops->confirm(pipe, buf);
819 		if (unlikely(ret)) {
820 			if (ret == -ENODATA)
821 				ret = 0;
822 			return ret;
823 		}
824 
825 		ret = actor(pipe, buf, sd);
826 		if (ret <= 0)
827 			return ret;
828 
829 		buf->offset += ret;
830 		buf->len -= ret;
831 
832 		sd->num_spliced += ret;
833 		sd->len -= ret;
834 		sd->pos += ret;
835 		sd->total_len -= ret;
836 
837 		if (!buf->len) {
838 			buf->ops = NULL;
839 			ops->release(pipe, buf);
840 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
841 			pipe->nrbufs--;
842 			if (pipe->files)
843 				sd->need_wakeup = true;
844 		}
845 
846 		if (!sd->total_len)
847 			return 0;
848 	}
849 
850 	return 1;
851 }
852 EXPORT_SYMBOL(splice_from_pipe_feed);
853 
854 /**
855  * splice_from_pipe_next - wait for some data to splice from
856  * @pipe:	pipe to splice from
857  * @sd:		information about the splice operation
858  *
859  * Description:
860  *    This function will wait for some data and return a positive
861  *    value (one) if pipe buffers are available.  It will return zero
862  *    or -errno if no more data needs to be spliced.
863  */
864 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
865 {
866 	while (!pipe->nrbufs) {
867 		if (!pipe->writers)
868 			return 0;
869 
870 		if (!pipe->waiting_writers && sd->num_spliced)
871 			return 0;
872 
873 		if (sd->flags & SPLICE_F_NONBLOCK)
874 			return -EAGAIN;
875 
876 		if (signal_pending(current))
877 			return -ERESTARTSYS;
878 
879 		if (sd->need_wakeup) {
880 			wakeup_pipe_writers(pipe);
881 			sd->need_wakeup = false;
882 		}
883 
884 		pipe_wait(pipe);
885 	}
886 
887 	return 1;
888 }
889 EXPORT_SYMBOL(splice_from_pipe_next);
890 
891 /**
892  * splice_from_pipe_begin - start splicing from pipe
893  * @sd:		information about the splice operation
894  *
895  * Description:
896  *    This function should be called before a loop containing
897  *    splice_from_pipe_next() and splice_from_pipe_feed() to
898  *    initialize the necessary fields of @sd.
899  */
900 void splice_from_pipe_begin(struct splice_desc *sd)
901 {
902 	sd->num_spliced = 0;
903 	sd->need_wakeup = false;
904 }
905 EXPORT_SYMBOL(splice_from_pipe_begin);
906 
907 /**
908  * splice_from_pipe_end - finish splicing from pipe
909  * @pipe:	pipe to splice from
910  * @sd:		information about the splice operation
911  *
912  * Description:
913  *    This function will wake up pipe writers if necessary.  It should
914  *    be called after a loop containing splice_from_pipe_next() and
915  *    splice_from_pipe_feed().
916  */
917 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
918 {
919 	if (sd->need_wakeup)
920 		wakeup_pipe_writers(pipe);
921 }
922 EXPORT_SYMBOL(splice_from_pipe_end);
923 
924 /**
925  * __splice_from_pipe - splice data from a pipe to given actor
926  * @pipe:	pipe to splice from
927  * @sd:		information to @actor
928  * @actor:	handler that splices the data
929  *
930  * Description:
931  *    This function does little more than loop over the pipe and call
932  *    @actor to do the actual moving of a single struct pipe_buffer to
933  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
934  *    pipe_to_user.
935  *
936  */
937 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
938 			   splice_actor *actor)
939 {
940 	int ret;
941 
942 	splice_from_pipe_begin(sd);
943 	do {
944 		ret = splice_from_pipe_next(pipe, sd);
945 		if (ret > 0)
946 			ret = splice_from_pipe_feed(pipe, sd, actor);
947 	} while (ret > 0);
948 	splice_from_pipe_end(pipe, sd);
949 
950 	return sd->num_spliced ? sd->num_spliced : ret;
951 }
952 EXPORT_SYMBOL(__splice_from_pipe);
953 
954 /**
955  * splice_from_pipe - splice data from a pipe to a file
956  * @pipe:	pipe to splice from
957  * @out:	file to splice to
958  * @ppos:	position in @out
959  * @len:	how many bytes to splice
960  * @flags:	splice modifier flags
961  * @actor:	handler that splices the data
962  *
963  * Description:
964  *    See __splice_from_pipe. This function locks the pipe inode,
965  *    otherwise it's identical to __splice_from_pipe().
966  *
967  */
968 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
969 			 loff_t *ppos, size_t len, unsigned int flags,
970 			 splice_actor *actor)
971 {
972 	ssize_t ret;
973 	struct splice_desc sd = {
974 		.total_len = len,
975 		.flags = flags,
976 		.pos = *ppos,
977 		.u.file = out,
978 	};
979 
980 	pipe_lock(pipe);
981 	ret = __splice_from_pipe(pipe, &sd, actor);
982 	pipe_unlock(pipe);
983 
984 	return ret;
985 }
986 
987 /**
988  * generic_file_splice_write - splice data from a pipe to a file
989  * @pipe:	pipe info
990  * @out:	file to write to
991  * @ppos:	position in @out
992  * @len:	number of bytes to splice
993  * @flags:	splice modifier flags
994  *
995  * Description:
996  *    Will either move or copy pages (determined by @flags options) from
997  *    the given pipe inode to the given file.
998  *
999  */
1000 ssize_t
1001 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
1002 			  loff_t *ppos, size_t len, unsigned int flags)
1003 {
1004 	struct address_space *mapping = out->f_mapping;
1005 	struct inode *inode = mapping->host;
1006 	struct splice_desc sd = {
1007 		.total_len = len,
1008 		.flags = flags,
1009 		.pos = *ppos,
1010 		.u.file = out,
1011 	};
1012 	ssize_t ret;
1013 
1014 	pipe_lock(pipe);
1015 
1016 	splice_from_pipe_begin(&sd);
1017 	do {
1018 		ret = splice_from_pipe_next(pipe, &sd);
1019 		if (ret <= 0)
1020 			break;
1021 
1022 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1023 		ret = file_remove_suid(out);
1024 		if (!ret) {
1025 			ret = file_update_time(out);
1026 			if (!ret)
1027 				ret = splice_from_pipe_feed(pipe, &sd,
1028 							    pipe_to_file);
1029 		}
1030 		mutex_unlock(&inode->i_mutex);
1031 	} while (ret > 0);
1032 	splice_from_pipe_end(pipe, &sd);
1033 
1034 	pipe_unlock(pipe);
1035 
1036 	if (sd.num_spliced)
1037 		ret = sd.num_spliced;
1038 
1039 	if (ret > 0) {
1040 		int err;
1041 
1042 		err = generic_write_sync(out, *ppos, ret);
1043 		if (err)
1044 			ret = err;
1045 		else
1046 			*ppos += ret;
1047 		balance_dirty_pages_ratelimited(mapping);
1048 	}
1049 
1050 	return ret;
1051 }
1052 
1053 EXPORT_SYMBOL(generic_file_splice_write);
1054 
1055 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1056 			  struct splice_desc *sd)
1057 {
1058 	int ret;
1059 	void *data;
1060 	loff_t tmp = sd->pos;
1061 
1062 	data = kmap(buf->page);
1063 	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1064 	kunmap(buf->page);
1065 
1066 	return ret;
1067 }
1068 
1069 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1070 					 struct file *out, loff_t *ppos,
1071 					 size_t len, unsigned int flags)
1072 {
1073 	ssize_t ret;
1074 
1075 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1076 	if (ret > 0)
1077 		*ppos += ret;
1078 
1079 	return ret;
1080 }
1081 
1082 /**
1083  * generic_splice_sendpage - splice data from a pipe to a socket
1084  * @pipe:	pipe to splice from
1085  * @out:	socket to write to
1086  * @ppos:	position in @out
1087  * @len:	number of bytes to splice
1088  * @flags:	splice modifier flags
1089  *
1090  * Description:
1091  *    Will send @len bytes from the pipe to a network socket. No data copying
1092  *    is involved.
1093  *
1094  */
1095 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1096 				loff_t *ppos, size_t len, unsigned int flags)
1097 {
1098 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1099 }
1100 
1101 EXPORT_SYMBOL(generic_splice_sendpage);
1102 
1103 /*
1104  * Attempt to initiate a splice from pipe to file.
1105  */
1106 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1107 			   loff_t *ppos, size_t len, unsigned int flags)
1108 {
1109 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1110 				loff_t *, size_t, unsigned int);
1111 
1112 	if (out->f_op->splice_write)
1113 		splice_write = out->f_op->splice_write;
1114 	else
1115 		splice_write = default_file_splice_write;
1116 
1117 	return splice_write(pipe, out, ppos, len, flags);
1118 }
1119 
1120 /*
1121  * Attempt to initiate a splice from a file to a pipe.
1122  */
1123 static long do_splice_to(struct file *in, loff_t *ppos,
1124 			 struct pipe_inode_info *pipe, size_t len,
1125 			 unsigned int flags)
1126 {
1127 	ssize_t (*splice_read)(struct file *, loff_t *,
1128 			       struct pipe_inode_info *, size_t, unsigned int);
1129 	int ret;
1130 
1131 	if (unlikely(!(in->f_mode & FMODE_READ)))
1132 		return -EBADF;
1133 
1134 	ret = rw_verify_area(READ, in, ppos, len);
1135 	if (unlikely(ret < 0))
1136 		return ret;
1137 
1138 	if (in->f_op->splice_read)
1139 		splice_read = in->f_op->splice_read;
1140 	else
1141 		splice_read = default_file_splice_read;
1142 
1143 	return splice_read(in, ppos, pipe, len, flags);
1144 }
1145 
1146 /**
1147  * splice_direct_to_actor - splices data directly between two non-pipes
1148  * @in:		file to splice from
1149  * @sd:		actor information on where to splice to
1150  * @actor:	handles the data splicing
1151  *
1152  * Description:
1153  *    This is a special case helper to splice directly between two
1154  *    points, without requiring an explicit pipe. Internally an allocated
1155  *    pipe is cached in the process, and reused during the lifetime of
1156  *    that process.
1157  *
1158  */
1159 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1160 			       splice_direct_actor *actor)
1161 {
1162 	struct pipe_inode_info *pipe;
1163 	long ret, bytes;
1164 	umode_t i_mode;
1165 	size_t len;
1166 	int i, flags;
1167 
1168 	/*
1169 	 * We require the input being a regular file, as we don't want to
1170 	 * randomly drop data for eg socket -> socket splicing. Use the
1171 	 * piped splicing for that!
1172 	 */
1173 	i_mode = file_inode(in)->i_mode;
1174 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1175 		return -EINVAL;
1176 
1177 	/*
1178 	 * neither in nor out is a pipe, setup an internal pipe attached to
1179 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1180 	 */
1181 	pipe = current->splice_pipe;
1182 	if (unlikely(!pipe)) {
1183 		pipe = alloc_pipe_info();
1184 		if (!pipe)
1185 			return -ENOMEM;
1186 
1187 		/*
1188 		 * We don't have an immediate reader, but we'll read the stuff
1189 		 * out of the pipe right after the splice_to_pipe(). So set
1190 		 * PIPE_READERS appropriately.
1191 		 */
1192 		pipe->readers = 1;
1193 
1194 		current->splice_pipe = pipe;
1195 	}
1196 
1197 	/*
1198 	 * Do the splice.
1199 	 */
1200 	ret = 0;
1201 	bytes = 0;
1202 	len = sd->total_len;
1203 	flags = sd->flags;
1204 
1205 	/*
1206 	 * Don't block on output, we have to drain the direct pipe.
1207 	 */
1208 	sd->flags &= ~SPLICE_F_NONBLOCK;
1209 
1210 	while (len) {
1211 		size_t read_len;
1212 		loff_t pos = sd->pos, prev_pos = pos;
1213 
1214 		ret = do_splice_to(in, &pos, pipe, len, flags);
1215 		if (unlikely(ret <= 0))
1216 			goto out_release;
1217 
1218 		read_len = ret;
1219 		sd->total_len = read_len;
1220 
1221 		/*
1222 		 * NOTE: nonblocking mode only applies to the input. We
1223 		 * must not do the output in nonblocking mode as then we
1224 		 * could get stuck data in the internal pipe:
1225 		 */
1226 		ret = actor(pipe, sd);
1227 		if (unlikely(ret <= 0)) {
1228 			sd->pos = prev_pos;
1229 			goto out_release;
1230 		}
1231 
1232 		bytes += ret;
1233 		len -= ret;
1234 		sd->pos = pos;
1235 
1236 		if (ret < read_len) {
1237 			sd->pos = prev_pos + ret;
1238 			goto out_release;
1239 		}
1240 	}
1241 
1242 done:
1243 	pipe->nrbufs = pipe->curbuf = 0;
1244 	file_accessed(in);
1245 	return bytes;
1246 
1247 out_release:
1248 	/*
1249 	 * If we did an incomplete transfer we must release
1250 	 * the pipe buffers in question:
1251 	 */
1252 	for (i = 0; i < pipe->buffers; i++) {
1253 		struct pipe_buffer *buf = pipe->bufs + i;
1254 
1255 		if (buf->ops) {
1256 			buf->ops->release(pipe, buf);
1257 			buf->ops = NULL;
1258 		}
1259 	}
1260 
1261 	if (!bytes)
1262 		bytes = ret;
1263 
1264 	goto done;
1265 }
1266 EXPORT_SYMBOL(splice_direct_to_actor);
1267 
1268 static int direct_splice_actor(struct pipe_inode_info *pipe,
1269 			       struct splice_desc *sd)
1270 {
1271 	struct file *file = sd->u.file;
1272 
1273 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1274 			      sd->flags);
1275 }
1276 
1277 /**
1278  * do_splice_direct - splices data directly between two files
1279  * @in:		file to splice from
1280  * @ppos:	input file offset
1281  * @out:	file to splice to
1282  * @opos:	output file offset
1283  * @len:	number of bytes to splice
1284  * @flags:	splice modifier flags
1285  *
1286  * Description:
1287  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1288  *    doing it in the application would incur an extra system call
1289  *    (splice in + splice out, as compared to just sendfile()). So this helper
1290  *    can splice directly through a process-private pipe.
1291  *
1292  */
1293 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1294 		      loff_t *opos, size_t len, unsigned int flags)
1295 {
1296 	struct splice_desc sd = {
1297 		.len		= len,
1298 		.total_len	= len,
1299 		.flags		= flags,
1300 		.pos		= *ppos,
1301 		.u.file		= out,
1302 		.opos		= opos,
1303 	};
1304 	long ret;
1305 
1306 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1307 		return -EBADF;
1308 
1309 	if (unlikely(out->f_flags & O_APPEND))
1310 		return -EINVAL;
1311 
1312 	ret = rw_verify_area(WRITE, out, opos, len);
1313 	if (unlikely(ret < 0))
1314 		return ret;
1315 
1316 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1317 	if (ret > 0)
1318 		*ppos = sd.pos;
1319 
1320 	return ret;
1321 }
1322 
1323 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1324 			       struct pipe_inode_info *opipe,
1325 			       size_t len, unsigned int flags);
1326 
1327 /*
1328  * Determine where to splice to/from.
1329  */
1330 static long do_splice(struct file *in, loff_t __user *off_in,
1331 		      struct file *out, loff_t __user *off_out,
1332 		      size_t len, unsigned int flags)
1333 {
1334 	struct pipe_inode_info *ipipe;
1335 	struct pipe_inode_info *opipe;
1336 	loff_t offset;
1337 	long ret;
1338 
1339 	ipipe = get_pipe_info(in);
1340 	opipe = get_pipe_info(out);
1341 
1342 	if (ipipe && opipe) {
1343 		if (off_in || off_out)
1344 			return -ESPIPE;
1345 
1346 		if (!(in->f_mode & FMODE_READ))
1347 			return -EBADF;
1348 
1349 		if (!(out->f_mode & FMODE_WRITE))
1350 			return -EBADF;
1351 
1352 		/* Splicing to self would be fun, but... */
1353 		if (ipipe == opipe)
1354 			return -EINVAL;
1355 
1356 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1357 	}
1358 
1359 	if (ipipe) {
1360 		if (off_in)
1361 			return -ESPIPE;
1362 		if (off_out) {
1363 			if (!(out->f_mode & FMODE_PWRITE))
1364 				return -EINVAL;
1365 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1366 				return -EFAULT;
1367 		} else {
1368 			offset = out->f_pos;
1369 		}
1370 
1371 		if (unlikely(!(out->f_mode & FMODE_WRITE)))
1372 			return -EBADF;
1373 
1374 		if (unlikely(out->f_flags & O_APPEND))
1375 			return -EINVAL;
1376 
1377 		ret = rw_verify_area(WRITE, out, &offset, len);
1378 		if (unlikely(ret < 0))
1379 			return ret;
1380 
1381 		file_start_write(out);
1382 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1383 		file_end_write(out);
1384 
1385 		if (!off_out)
1386 			out->f_pos = offset;
1387 		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1388 			ret = -EFAULT;
1389 
1390 		return ret;
1391 	}
1392 
1393 	if (opipe) {
1394 		if (off_out)
1395 			return -ESPIPE;
1396 		if (off_in) {
1397 			if (!(in->f_mode & FMODE_PREAD))
1398 				return -EINVAL;
1399 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1400 				return -EFAULT;
1401 		} else {
1402 			offset = in->f_pos;
1403 		}
1404 
1405 		ret = do_splice_to(in, &offset, opipe, len, flags);
1406 
1407 		if (!off_in)
1408 			in->f_pos = offset;
1409 		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1410 			ret = -EFAULT;
1411 
1412 		return ret;
1413 	}
1414 
1415 	return -EINVAL;
1416 }
1417 
1418 /*
1419  * Map an iov into an array of pages and offset/length tupples. With the
1420  * partial_page structure, we can map several non-contiguous ranges into
1421  * our ones pages[] map instead of splitting that operation into pieces.
1422  * Could easily be exported as a generic helper for other users, in which
1423  * case one would probably want to add a 'max_nr_pages' parameter as well.
1424  */
1425 static int get_iovec_page_array(const struct iovec __user *iov,
1426 				unsigned int nr_vecs, struct page **pages,
1427 				struct partial_page *partial, bool aligned,
1428 				unsigned int pipe_buffers)
1429 {
1430 	int buffers = 0, error = 0;
1431 
1432 	while (nr_vecs) {
1433 		unsigned long off, npages;
1434 		struct iovec entry;
1435 		void __user *base;
1436 		size_t len;
1437 		int i;
1438 
1439 		error = -EFAULT;
1440 		if (copy_from_user(&entry, iov, sizeof(entry)))
1441 			break;
1442 
1443 		base = entry.iov_base;
1444 		len = entry.iov_len;
1445 
1446 		/*
1447 		 * Sanity check this iovec. 0 read succeeds.
1448 		 */
1449 		error = 0;
1450 		if (unlikely(!len))
1451 			break;
1452 		error = -EFAULT;
1453 		if (!access_ok(VERIFY_READ, base, len))
1454 			break;
1455 
1456 		/*
1457 		 * Get this base offset and number of pages, then map
1458 		 * in the user pages.
1459 		 */
1460 		off = (unsigned long) base & ~PAGE_MASK;
1461 
1462 		/*
1463 		 * If asked for alignment, the offset must be zero and the
1464 		 * length a multiple of the PAGE_SIZE.
1465 		 */
1466 		error = -EINVAL;
1467 		if (aligned && (off || len & ~PAGE_MASK))
1468 			break;
1469 
1470 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1471 		if (npages > pipe_buffers - buffers)
1472 			npages = pipe_buffers - buffers;
1473 
1474 		error = get_user_pages_fast((unsigned long)base, npages,
1475 					0, &pages[buffers]);
1476 
1477 		if (unlikely(error <= 0))
1478 			break;
1479 
1480 		/*
1481 		 * Fill this contiguous range into the partial page map.
1482 		 */
1483 		for (i = 0; i < error; i++) {
1484 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1485 
1486 			partial[buffers].offset = off;
1487 			partial[buffers].len = plen;
1488 
1489 			off = 0;
1490 			len -= plen;
1491 			buffers++;
1492 		}
1493 
1494 		/*
1495 		 * We didn't complete this iov, stop here since it probably
1496 		 * means we have to move some of this into a pipe to
1497 		 * be able to continue.
1498 		 */
1499 		if (len)
1500 			break;
1501 
1502 		/*
1503 		 * Don't continue if we mapped fewer pages than we asked for,
1504 		 * or if we mapped the max number of pages that we have
1505 		 * room for.
1506 		 */
1507 		if (error < npages || buffers == pipe_buffers)
1508 			break;
1509 
1510 		nr_vecs--;
1511 		iov++;
1512 	}
1513 
1514 	if (buffers)
1515 		return buffers;
1516 
1517 	return error;
1518 }
1519 
1520 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1521 			struct splice_desc *sd)
1522 {
1523 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1524 	return n == sd->len ? n : -EFAULT;
1525 }
1526 
1527 /*
1528  * For lack of a better implementation, implement vmsplice() to userspace
1529  * as a simple copy of the pipes pages to the user iov.
1530  */
1531 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1532 			     unsigned long nr_segs, unsigned int flags)
1533 {
1534 	struct pipe_inode_info *pipe;
1535 	struct splice_desc sd;
1536 	long ret;
1537 	struct iovec iovstack[UIO_FASTIOV];
1538 	struct iovec *iov = iovstack;
1539 	struct iov_iter iter;
1540 	ssize_t count = 0;
1541 
1542 	pipe = get_pipe_info(file);
1543 	if (!pipe)
1544 		return -EBADF;
1545 
1546 	ret = rw_copy_check_uvector(READ, uiov, nr_segs,
1547 				    ARRAY_SIZE(iovstack), iovstack, &iov);
1548 	if (ret <= 0)
1549 		return ret;
1550 
1551 	iov_iter_init(&iter, iov, nr_segs, count, 0);
1552 
1553 	sd.len = 0;
1554 	sd.total_len = count;
1555 	sd.flags = flags;
1556 	sd.u.data = &iter;
1557 	sd.pos = 0;
1558 
1559 	pipe_lock(pipe);
1560 	ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1561 	pipe_unlock(pipe);
1562 
1563 	if (iov != iovstack)
1564 		kfree(iov);
1565 
1566 	return ret;
1567 }
1568 
1569 /*
1570  * vmsplice splices a user address range into a pipe. It can be thought of
1571  * as splice-from-memory, where the regular splice is splice-from-file (or
1572  * to file). In both cases the output is a pipe, naturally.
1573  */
1574 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1575 			     unsigned long nr_segs, unsigned int flags)
1576 {
1577 	struct pipe_inode_info *pipe;
1578 	struct page *pages[PIPE_DEF_BUFFERS];
1579 	struct partial_page partial[PIPE_DEF_BUFFERS];
1580 	struct splice_pipe_desc spd = {
1581 		.pages = pages,
1582 		.partial = partial,
1583 		.nr_pages_max = PIPE_DEF_BUFFERS,
1584 		.flags = flags,
1585 		.ops = &user_page_pipe_buf_ops,
1586 		.spd_release = spd_release_page,
1587 	};
1588 	long ret;
1589 
1590 	pipe = get_pipe_info(file);
1591 	if (!pipe)
1592 		return -EBADF;
1593 
1594 	if (splice_grow_spd(pipe, &spd))
1595 		return -ENOMEM;
1596 
1597 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1598 					    spd.partial, false,
1599 					    spd.nr_pages_max);
1600 	if (spd.nr_pages <= 0)
1601 		ret = spd.nr_pages;
1602 	else
1603 		ret = splice_to_pipe(pipe, &spd);
1604 
1605 	splice_shrink_spd(&spd);
1606 	return ret;
1607 }
1608 
1609 /*
1610  * Note that vmsplice only really supports true splicing _from_ user memory
1611  * to a pipe, not the other way around. Splicing from user memory is a simple
1612  * operation that can be supported without any funky alignment restrictions
1613  * or nasty vm tricks. We simply map in the user memory and fill them into
1614  * a pipe. The reverse isn't quite as easy, though. There are two possible
1615  * solutions for that:
1616  *
1617  *	- memcpy() the data internally, at which point we might as well just
1618  *	  do a regular read() on the buffer anyway.
1619  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1620  *	  has restriction limitations on both ends of the pipe).
1621  *
1622  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1623  *
1624  */
1625 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1626 		unsigned long, nr_segs, unsigned int, flags)
1627 {
1628 	struct fd f;
1629 	long error;
1630 
1631 	if (unlikely(nr_segs > UIO_MAXIOV))
1632 		return -EINVAL;
1633 	else if (unlikely(!nr_segs))
1634 		return 0;
1635 
1636 	error = -EBADF;
1637 	f = fdget(fd);
1638 	if (f.file) {
1639 		if (f.file->f_mode & FMODE_WRITE)
1640 			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1641 		else if (f.file->f_mode & FMODE_READ)
1642 			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1643 
1644 		fdput(f);
1645 	}
1646 
1647 	return error;
1648 }
1649 
1650 #ifdef CONFIG_COMPAT
1651 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1652 		    unsigned int, nr_segs, unsigned int, flags)
1653 {
1654 	unsigned i;
1655 	struct iovec __user *iov;
1656 	if (nr_segs > UIO_MAXIOV)
1657 		return -EINVAL;
1658 	iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1659 	for (i = 0; i < nr_segs; i++) {
1660 		struct compat_iovec v;
1661 		if (get_user(v.iov_base, &iov32[i].iov_base) ||
1662 		    get_user(v.iov_len, &iov32[i].iov_len) ||
1663 		    put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1664 		    put_user(v.iov_len, &iov[i].iov_len))
1665 			return -EFAULT;
1666 	}
1667 	return sys_vmsplice(fd, iov, nr_segs, flags);
1668 }
1669 #endif
1670 
1671 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1672 		int, fd_out, loff_t __user *, off_out,
1673 		size_t, len, unsigned int, flags)
1674 {
1675 	struct fd in, out;
1676 	long error;
1677 
1678 	if (unlikely(!len))
1679 		return 0;
1680 
1681 	error = -EBADF;
1682 	in = fdget(fd_in);
1683 	if (in.file) {
1684 		if (in.file->f_mode & FMODE_READ) {
1685 			out = fdget(fd_out);
1686 			if (out.file) {
1687 				if (out.file->f_mode & FMODE_WRITE)
1688 					error = do_splice(in.file, off_in,
1689 							  out.file, off_out,
1690 							  len, flags);
1691 				fdput(out);
1692 			}
1693 		}
1694 		fdput(in);
1695 	}
1696 	return error;
1697 }
1698 
1699 /*
1700  * Make sure there's data to read. Wait for input if we can, otherwise
1701  * return an appropriate error.
1702  */
1703 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1704 {
1705 	int ret;
1706 
1707 	/*
1708 	 * Check ->nrbufs without the inode lock first. This function
1709 	 * is speculative anyways, so missing one is ok.
1710 	 */
1711 	if (pipe->nrbufs)
1712 		return 0;
1713 
1714 	ret = 0;
1715 	pipe_lock(pipe);
1716 
1717 	while (!pipe->nrbufs) {
1718 		if (signal_pending(current)) {
1719 			ret = -ERESTARTSYS;
1720 			break;
1721 		}
1722 		if (!pipe->writers)
1723 			break;
1724 		if (!pipe->waiting_writers) {
1725 			if (flags & SPLICE_F_NONBLOCK) {
1726 				ret = -EAGAIN;
1727 				break;
1728 			}
1729 		}
1730 		pipe_wait(pipe);
1731 	}
1732 
1733 	pipe_unlock(pipe);
1734 	return ret;
1735 }
1736 
1737 /*
1738  * Make sure there's writeable room. Wait for room if we can, otherwise
1739  * return an appropriate error.
1740  */
1741 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1742 {
1743 	int ret;
1744 
1745 	/*
1746 	 * Check ->nrbufs without the inode lock first. This function
1747 	 * is speculative anyways, so missing one is ok.
1748 	 */
1749 	if (pipe->nrbufs < pipe->buffers)
1750 		return 0;
1751 
1752 	ret = 0;
1753 	pipe_lock(pipe);
1754 
1755 	while (pipe->nrbufs >= pipe->buffers) {
1756 		if (!pipe->readers) {
1757 			send_sig(SIGPIPE, current, 0);
1758 			ret = -EPIPE;
1759 			break;
1760 		}
1761 		if (flags & SPLICE_F_NONBLOCK) {
1762 			ret = -EAGAIN;
1763 			break;
1764 		}
1765 		if (signal_pending(current)) {
1766 			ret = -ERESTARTSYS;
1767 			break;
1768 		}
1769 		pipe->waiting_writers++;
1770 		pipe_wait(pipe);
1771 		pipe->waiting_writers--;
1772 	}
1773 
1774 	pipe_unlock(pipe);
1775 	return ret;
1776 }
1777 
1778 /*
1779  * Splice contents of ipipe to opipe.
1780  */
1781 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1782 			       struct pipe_inode_info *opipe,
1783 			       size_t len, unsigned int flags)
1784 {
1785 	struct pipe_buffer *ibuf, *obuf;
1786 	int ret = 0, nbuf;
1787 	bool input_wakeup = false;
1788 
1789 
1790 retry:
1791 	ret = ipipe_prep(ipipe, flags);
1792 	if (ret)
1793 		return ret;
1794 
1795 	ret = opipe_prep(opipe, flags);
1796 	if (ret)
1797 		return ret;
1798 
1799 	/*
1800 	 * Potential ABBA deadlock, work around it by ordering lock
1801 	 * grabbing by pipe info address. Otherwise two different processes
1802 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1803 	 */
1804 	pipe_double_lock(ipipe, opipe);
1805 
1806 	do {
1807 		if (!opipe->readers) {
1808 			send_sig(SIGPIPE, current, 0);
1809 			if (!ret)
1810 				ret = -EPIPE;
1811 			break;
1812 		}
1813 
1814 		if (!ipipe->nrbufs && !ipipe->writers)
1815 			break;
1816 
1817 		/*
1818 		 * Cannot make any progress, because either the input
1819 		 * pipe is empty or the output pipe is full.
1820 		 */
1821 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1822 			/* Already processed some buffers, break */
1823 			if (ret)
1824 				break;
1825 
1826 			if (flags & SPLICE_F_NONBLOCK) {
1827 				ret = -EAGAIN;
1828 				break;
1829 			}
1830 
1831 			/*
1832 			 * We raced with another reader/writer and haven't
1833 			 * managed to process any buffers.  A zero return
1834 			 * value means EOF, so retry instead.
1835 			 */
1836 			pipe_unlock(ipipe);
1837 			pipe_unlock(opipe);
1838 			goto retry;
1839 		}
1840 
1841 		ibuf = ipipe->bufs + ipipe->curbuf;
1842 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1843 		obuf = opipe->bufs + nbuf;
1844 
1845 		if (len >= ibuf->len) {
1846 			/*
1847 			 * Simply move the whole buffer from ipipe to opipe
1848 			 */
1849 			*obuf = *ibuf;
1850 			ibuf->ops = NULL;
1851 			opipe->nrbufs++;
1852 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1853 			ipipe->nrbufs--;
1854 			input_wakeup = true;
1855 		} else {
1856 			/*
1857 			 * Get a reference to this pipe buffer,
1858 			 * so we can copy the contents over.
1859 			 */
1860 			ibuf->ops->get(ipipe, ibuf);
1861 			*obuf = *ibuf;
1862 
1863 			/*
1864 			 * Don't inherit the gift flag, we need to
1865 			 * prevent multiple steals of this page.
1866 			 */
1867 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1868 
1869 			obuf->len = len;
1870 			opipe->nrbufs++;
1871 			ibuf->offset += obuf->len;
1872 			ibuf->len -= obuf->len;
1873 		}
1874 		ret += obuf->len;
1875 		len -= obuf->len;
1876 	} while (len);
1877 
1878 	pipe_unlock(ipipe);
1879 	pipe_unlock(opipe);
1880 
1881 	/*
1882 	 * If we put data in the output pipe, wakeup any potential readers.
1883 	 */
1884 	if (ret > 0)
1885 		wakeup_pipe_readers(opipe);
1886 
1887 	if (input_wakeup)
1888 		wakeup_pipe_writers(ipipe);
1889 
1890 	return ret;
1891 }
1892 
1893 /*
1894  * Link contents of ipipe to opipe.
1895  */
1896 static int link_pipe(struct pipe_inode_info *ipipe,
1897 		     struct pipe_inode_info *opipe,
1898 		     size_t len, unsigned int flags)
1899 {
1900 	struct pipe_buffer *ibuf, *obuf;
1901 	int ret = 0, i = 0, nbuf;
1902 
1903 	/*
1904 	 * Potential ABBA deadlock, work around it by ordering lock
1905 	 * grabbing by pipe info address. Otherwise two different processes
1906 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1907 	 */
1908 	pipe_double_lock(ipipe, opipe);
1909 
1910 	do {
1911 		if (!opipe->readers) {
1912 			send_sig(SIGPIPE, current, 0);
1913 			if (!ret)
1914 				ret = -EPIPE;
1915 			break;
1916 		}
1917 
1918 		/*
1919 		 * If we have iterated all input buffers or ran out of
1920 		 * output room, break.
1921 		 */
1922 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1923 			break;
1924 
1925 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1926 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1927 
1928 		/*
1929 		 * Get a reference to this pipe buffer,
1930 		 * so we can copy the contents over.
1931 		 */
1932 		ibuf->ops->get(ipipe, ibuf);
1933 
1934 		obuf = opipe->bufs + nbuf;
1935 		*obuf = *ibuf;
1936 
1937 		/*
1938 		 * Don't inherit the gift flag, we need to
1939 		 * prevent multiple steals of this page.
1940 		 */
1941 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1942 
1943 		if (obuf->len > len)
1944 			obuf->len = len;
1945 
1946 		opipe->nrbufs++;
1947 		ret += obuf->len;
1948 		len -= obuf->len;
1949 		i++;
1950 	} while (len);
1951 
1952 	/*
1953 	 * return EAGAIN if we have the potential of some data in the
1954 	 * future, otherwise just return 0
1955 	 */
1956 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1957 		ret = -EAGAIN;
1958 
1959 	pipe_unlock(ipipe);
1960 	pipe_unlock(opipe);
1961 
1962 	/*
1963 	 * If we put data in the output pipe, wakeup any potential readers.
1964 	 */
1965 	if (ret > 0)
1966 		wakeup_pipe_readers(opipe);
1967 
1968 	return ret;
1969 }
1970 
1971 /*
1972  * This is a tee(1) implementation that works on pipes. It doesn't copy
1973  * any data, it simply references the 'in' pages on the 'out' pipe.
1974  * The 'flags' used are the SPLICE_F_* variants, currently the only
1975  * applicable one is SPLICE_F_NONBLOCK.
1976  */
1977 static long do_tee(struct file *in, struct file *out, size_t len,
1978 		   unsigned int flags)
1979 {
1980 	struct pipe_inode_info *ipipe = get_pipe_info(in);
1981 	struct pipe_inode_info *opipe = get_pipe_info(out);
1982 	int ret = -EINVAL;
1983 
1984 	/*
1985 	 * Duplicate the contents of ipipe to opipe without actually
1986 	 * copying the data.
1987 	 */
1988 	if (ipipe && opipe && ipipe != opipe) {
1989 		/*
1990 		 * Keep going, unless we encounter an error. The ipipe/opipe
1991 		 * ordering doesn't really matter.
1992 		 */
1993 		ret = ipipe_prep(ipipe, flags);
1994 		if (!ret) {
1995 			ret = opipe_prep(opipe, flags);
1996 			if (!ret)
1997 				ret = link_pipe(ipipe, opipe, len, flags);
1998 		}
1999 	}
2000 
2001 	return ret;
2002 }
2003 
2004 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2005 {
2006 	struct fd in;
2007 	int error;
2008 
2009 	if (unlikely(!len))
2010 		return 0;
2011 
2012 	error = -EBADF;
2013 	in = fdget(fdin);
2014 	if (in.file) {
2015 		if (in.file->f_mode & FMODE_READ) {
2016 			struct fd out = fdget(fdout);
2017 			if (out.file) {
2018 				if (out.file->f_mode & FMODE_WRITE)
2019 					error = do_tee(in.file, out.file,
2020 							len, flags);
2021 				fdput(out);
2022 			}
2023 		}
2024  		fdput(in);
2025  	}
2026 
2027 	return error;
2028 }
2029