xref: /openbmc/linux/fs/splice.c (revision 1b36955c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * "splice": joining two ropes together by interweaving their strands.
4  *
5  * This is the "extended pipe" functionality, where a pipe is used as
6  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7  * buffer that you can use to transfer data from one end to the other.
8  *
9  * The traditional unix read/write is extended with a "splice()" operation
10  * that transfers data buffers to or from a pipe buffer.
11  *
12  * Named by Larry McVoy, original implementation from Linus, extended by
13  * Jens to support splicing to files, network, direct splicing, etc and
14  * fixing lots of bugs.
15  *
16  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19  *
20  */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/fsnotify.h>
34 #include <linux/security.h>
35 #include <linux/gfp.h>
36 #include <linux/net.h>
37 #include <linux/socket.h>
38 #include <linux/sched/signal.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
44  * indicate they support non-blocking reads or writes, we must clear it
45  * here if set to avoid blocking other users of this pipe if splice is
46  * being done on it.
47  */
48 static noinline void noinline pipe_clear_nowait(struct file *file)
49 {
50 	fmode_t fmode = READ_ONCE(file->f_mode);
51 
52 	do {
53 		if (!(fmode & FMODE_NOWAIT))
54 			break;
55 	} while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
56 }
57 
58 /*
59  * Attempt to steal a page from a pipe buffer. This should perhaps go into
60  * a vm helper function, it's already simplified quite a bit by the
61  * addition of remove_mapping(). If success is returned, the caller may
62  * attempt to reuse this page for another destination.
63  */
64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
65 		struct pipe_buffer *buf)
66 {
67 	struct folio *folio = page_folio(buf->page);
68 	struct address_space *mapping;
69 
70 	folio_lock(folio);
71 
72 	mapping = folio_mapping(folio);
73 	if (mapping) {
74 		WARN_ON(!folio_test_uptodate(folio));
75 
76 		/*
77 		 * At least for ext2 with nobh option, we need to wait on
78 		 * writeback completing on this folio, since we'll remove it
79 		 * from the pagecache.  Otherwise truncate wont wait on the
80 		 * folio, allowing the disk blocks to be reused by someone else
81 		 * before we actually wrote our data to them. fs corruption
82 		 * ensues.
83 		 */
84 		folio_wait_writeback(folio);
85 
86 		if (folio_has_private(folio) &&
87 		    !filemap_release_folio(folio, GFP_KERNEL))
88 			goto out_unlock;
89 
90 		/*
91 		 * If we succeeded in removing the mapping, set LRU flag
92 		 * and return good.
93 		 */
94 		if (remove_mapping(mapping, folio)) {
95 			buf->flags |= PIPE_BUF_FLAG_LRU;
96 			return true;
97 		}
98 	}
99 
100 	/*
101 	 * Raced with truncate or failed to remove folio from current
102 	 * address space, unlock and return failure.
103 	 */
104 out_unlock:
105 	folio_unlock(folio);
106 	return false;
107 }
108 
109 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
110 					struct pipe_buffer *buf)
111 {
112 	put_page(buf->page);
113 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
114 }
115 
116 /*
117  * Check whether the contents of buf is OK to access. Since the content
118  * is a page cache page, IO may be in flight.
119  */
120 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
121 				       struct pipe_buffer *buf)
122 {
123 	struct folio *folio = page_folio(buf->page);
124 	int err;
125 
126 	if (!folio_test_uptodate(folio)) {
127 		folio_lock(folio);
128 
129 		/*
130 		 * Folio got truncated/unhashed. This will cause a 0-byte
131 		 * splice, if this is the first page.
132 		 */
133 		if (!folio->mapping) {
134 			err = -ENODATA;
135 			goto error;
136 		}
137 
138 		/*
139 		 * Uh oh, read-error from disk.
140 		 */
141 		if (!folio_test_uptodate(folio)) {
142 			err = -EIO;
143 			goto error;
144 		}
145 
146 		/* Folio is ok after all, we are done */
147 		folio_unlock(folio);
148 	}
149 
150 	return 0;
151 error:
152 	folio_unlock(folio);
153 	return err;
154 }
155 
156 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
157 	.confirm	= page_cache_pipe_buf_confirm,
158 	.release	= page_cache_pipe_buf_release,
159 	.try_steal	= page_cache_pipe_buf_try_steal,
160 	.get		= generic_pipe_buf_get,
161 };
162 
163 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
164 		struct pipe_buffer *buf)
165 {
166 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
167 		return false;
168 
169 	buf->flags |= PIPE_BUF_FLAG_LRU;
170 	return generic_pipe_buf_try_steal(pipe, buf);
171 }
172 
173 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
174 	.release	= page_cache_pipe_buf_release,
175 	.try_steal	= user_page_pipe_buf_try_steal,
176 	.get		= generic_pipe_buf_get,
177 };
178 
179 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
180 {
181 	smp_mb();
182 	if (waitqueue_active(&pipe->rd_wait))
183 		wake_up_interruptible(&pipe->rd_wait);
184 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
185 }
186 
187 /**
188  * splice_to_pipe - fill passed data into a pipe
189  * @pipe:	pipe to fill
190  * @spd:	data to fill
191  *
192  * Description:
193  *    @spd contains a map of pages and len/offset tuples, along with
194  *    the struct pipe_buf_operations associated with these pages. This
195  *    function will link that data to the pipe.
196  *
197  */
198 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
199 		       struct splice_pipe_desc *spd)
200 {
201 	unsigned int spd_pages = spd->nr_pages;
202 	unsigned int tail = pipe->tail;
203 	unsigned int head = pipe->head;
204 	unsigned int mask = pipe->ring_size - 1;
205 	int ret = 0, page_nr = 0;
206 
207 	if (!spd_pages)
208 		return 0;
209 
210 	if (unlikely(!pipe->readers)) {
211 		send_sig(SIGPIPE, current, 0);
212 		ret = -EPIPE;
213 		goto out;
214 	}
215 
216 	while (!pipe_full(head, tail, pipe->max_usage)) {
217 		struct pipe_buffer *buf = &pipe->bufs[head & mask];
218 
219 		buf->page = spd->pages[page_nr];
220 		buf->offset = spd->partial[page_nr].offset;
221 		buf->len = spd->partial[page_nr].len;
222 		buf->private = spd->partial[page_nr].private;
223 		buf->ops = spd->ops;
224 		buf->flags = 0;
225 
226 		head++;
227 		pipe->head = head;
228 		page_nr++;
229 		ret += buf->len;
230 
231 		if (!--spd->nr_pages)
232 			break;
233 	}
234 
235 	if (!ret)
236 		ret = -EAGAIN;
237 
238 out:
239 	while (page_nr < spd_pages)
240 		spd->spd_release(spd, page_nr++);
241 
242 	return ret;
243 }
244 EXPORT_SYMBOL_GPL(splice_to_pipe);
245 
246 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
247 {
248 	unsigned int head = pipe->head;
249 	unsigned int tail = pipe->tail;
250 	unsigned int mask = pipe->ring_size - 1;
251 	int ret;
252 
253 	if (unlikely(!pipe->readers)) {
254 		send_sig(SIGPIPE, current, 0);
255 		ret = -EPIPE;
256 	} else if (pipe_full(head, tail, pipe->max_usage)) {
257 		ret = -EAGAIN;
258 	} else {
259 		pipe->bufs[head & mask] = *buf;
260 		pipe->head = head + 1;
261 		return buf->len;
262 	}
263 	pipe_buf_release(pipe, buf);
264 	return ret;
265 }
266 EXPORT_SYMBOL(add_to_pipe);
267 
268 /*
269  * Check if we need to grow the arrays holding pages and partial page
270  * descriptions.
271  */
272 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
273 {
274 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
275 
276 	spd->nr_pages_max = max_usage;
277 	if (max_usage <= PIPE_DEF_BUFFERS)
278 		return 0;
279 
280 	spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
281 	spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
282 				     GFP_KERNEL);
283 
284 	if (spd->pages && spd->partial)
285 		return 0;
286 
287 	kfree(spd->pages);
288 	kfree(spd->partial);
289 	return -ENOMEM;
290 }
291 
292 void splice_shrink_spd(struct splice_pipe_desc *spd)
293 {
294 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
295 		return;
296 
297 	kfree(spd->pages);
298 	kfree(spd->partial);
299 }
300 
301 /**
302  * copy_splice_read -  Copy data from a file and splice the copy into a pipe
303  * @in: The file to read from
304  * @ppos: Pointer to the file position to read from
305  * @pipe: The pipe to splice into
306  * @len: The amount to splice
307  * @flags: The SPLICE_F_* flags
308  *
309  * This function allocates a bunch of pages sufficient to hold the requested
310  * amount of data (but limited by the remaining pipe capacity), passes it to
311  * the file's ->read_iter() to read into and then splices the used pages into
312  * the pipe.
313  *
314  * Return: On success, the number of bytes read will be returned and *@ppos
315  * will be updated if appropriate; 0 will be returned if there is no more data
316  * to be read; -EAGAIN will be returned if the pipe had no space, and some
317  * other negative error code will be returned on error.  A short read may occur
318  * if the pipe has insufficient space, we reach the end of the data or we hit a
319  * hole.
320  */
321 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
322 			 struct pipe_inode_info *pipe,
323 			 size_t len, unsigned int flags)
324 {
325 	struct iov_iter to;
326 	struct bio_vec *bv;
327 	struct kiocb kiocb;
328 	struct page **pages;
329 	ssize_t ret;
330 	size_t used, npages, chunk, remain, keep = 0;
331 	int i;
332 
333 	/* Work out how much data we can actually add into the pipe */
334 	used = pipe_occupancy(pipe->head, pipe->tail);
335 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
336 	len = min_t(size_t, len, npages * PAGE_SIZE);
337 	npages = DIV_ROUND_UP(len, PAGE_SIZE);
338 
339 	bv = kzalloc(array_size(npages, sizeof(bv[0])) +
340 		     array_size(npages, sizeof(struct page *)), GFP_KERNEL);
341 	if (!bv)
342 		return -ENOMEM;
343 
344 	pages = (struct page **)(bv + npages);
345 	npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
346 	if (!npages) {
347 		kfree(bv);
348 		return -ENOMEM;
349 	}
350 
351 	remain = len = min_t(size_t, len, npages * PAGE_SIZE);
352 
353 	for (i = 0; i < npages; i++) {
354 		chunk = min_t(size_t, PAGE_SIZE, remain);
355 		bv[i].bv_page = pages[i];
356 		bv[i].bv_offset = 0;
357 		bv[i].bv_len = chunk;
358 		remain -= chunk;
359 	}
360 
361 	/* Do the I/O */
362 	iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
363 	init_sync_kiocb(&kiocb, in);
364 	kiocb.ki_pos = *ppos;
365 	ret = call_read_iter(in, &kiocb, &to);
366 
367 	if (ret > 0) {
368 		keep = DIV_ROUND_UP(ret, PAGE_SIZE);
369 		*ppos = kiocb.ki_pos;
370 	}
371 
372 	/*
373 	 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in
374 	 * there", rather than -EFAULT.
375 	 */
376 	if (ret == -EFAULT)
377 		ret = -EAGAIN;
378 
379 	/* Free any pages that didn't get touched at all. */
380 	if (keep < npages)
381 		release_pages(pages + keep, npages - keep);
382 
383 	/* Push the remaining pages into the pipe. */
384 	remain = ret;
385 	for (i = 0; i < keep; i++) {
386 		struct pipe_buffer *buf = pipe_head_buf(pipe);
387 
388 		chunk = min_t(size_t, remain, PAGE_SIZE);
389 		*buf = (struct pipe_buffer) {
390 			.ops	= &default_pipe_buf_ops,
391 			.page	= bv[i].bv_page,
392 			.offset	= 0,
393 			.len	= chunk,
394 		};
395 		pipe->head++;
396 		remain -= chunk;
397 	}
398 
399 	kfree(bv);
400 	return ret;
401 }
402 EXPORT_SYMBOL(copy_splice_read);
403 
404 const struct pipe_buf_operations default_pipe_buf_ops = {
405 	.release	= generic_pipe_buf_release,
406 	.try_steal	= generic_pipe_buf_try_steal,
407 	.get		= generic_pipe_buf_get,
408 };
409 
410 /* Pipe buffer operations for a socket and similar. */
411 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
412 	.release	= generic_pipe_buf_release,
413 	.get		= generic_pipe_buf_get,
414 };
415 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
416 
417 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
418 {
419 	smp_mb();
420 	if (waitqueue_active(&pipe->wr_wait))
421 		wake_up_interruptible(&pipe->wr_wait);
422 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
423 }
424 
425 /**
426  * splice_from_pipe_feed - feed available data from a pipe to a file
427  * @pipe:	pipe to splice from
428  * @sd:		information to @actor
429  * @actor:	handler that splices the data
430  *
431  * Description:
432  *    This function loops over the pipe and calls @actor to do the
433  *    actual moving of a single struct pipe_buffer to the desired
434  *    destination.  It returns when there's no more buffers left in
435  *    the pipe or if the requested number of bytes (@sd->total_len)
436  *    have been copied.  It returns a positive number (one) if the
437  *    pipe needs to be filled with more data, zero if the required
438  *    number of bytes have been copied and -errno on error.
439  *
440  *    This, together with splice_from_pipe_{begin,end,next}, may be
441  *    used to implement the functionality of __splice_from_pipe() when
442  *    locking is required around copying the pipe buffers to the
443  *    destination.
444  */
445 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
446 			  splice_actor *actor)
447 {
448 	unsigned int head = pipe->head;
449 	unsigned int tail = pipe->tail;
450 	unsigned int mask = pipe->ring_size - 1;
451 	int ret;
452 
453 	while (!pipe_empty(head, tail)) {
454 		struct pipe_buffer *buf = &pipe->bufs[tail & mask];
455 
456 		sd->len = buf->len;
457 		if (sd->len > sd->total_len)
458 			sd->len = sd->total_len;
459 
460 		ret = pipe_buf_confirm(pipe, buf);
461 		if (unlikely(ret)) {
462 			if (ret == -ENODATA)
463 				ret = 0;
464 			return ret;
465 		}
466 
467 		ret = actor(pipe, buf, sd);
468 		if (ret <= 0)
469 			return ret;
470 
471 		buf->offset += ret;
472 		buf->len -= ret;
473 
474 		sd->num_spliced += ret;
475 		sd->len -= ret;
476 		sd->pos += ret;
477 		sd->total_len -= ret;
478 
479 		if (!buf->len) {
480 			pipe_buf_release(pipe, buf);
481 			tail++;
482 			pipe->tail = tail;
483 			if (pipe->files)
484 				sd->need_wakeup = true;
485 		}
486 
487 		if (!sd->total_len)
488 			return 0;
489 	}
490 
491 	return 1;
492 }
493 
494 /* We know we have a pipe buffer, but maybe it's empty? */
495 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
496 {
497 	unsigned int tail = pipe->tail;
498 	unsigned int mask = pipe->ring_size - 1;
499 	struct pipe_buffer *buf = &pipe->bufs[tail & mask];
500 
501 	if (unlikely(!buf->len)) {
502 		pipe_buf_release(pipe, buf);
503 		pipe->tail = tail+1;
504 		return true;
505 	}
506 
507 	return false;
508 }
509 
510 /**
511  * splice_from_pipe_next - wait for some data to splice from
512  * @pipe:	pipe to splice from
513  * @sd:		information about the splice operation
514  *
515  * Description:
516  *    This function will wait for some data and return a positive
517  *    value (one) if pipe buffers are available.  It will return zero
518  *    or -errno if no more data needs to be spliced.
519  */
520 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
521 {
522 	/*
523 	 * Check for signal early to make process killable when there are
524 	 * always buffers available
525 	 */
526 	if (signal_pending(current))
527 		return -ERESTARTSYS;
528 
529 repeat:
530 	while (pipe_empty(pipe->head, pipe->tail)) {
531 		if (!pipe->writers)
532 			return 0;
533 
534 		if (sd->num_spliced)
535 			return 0;
536 
537 		if (sd->flags & SPLICE_F_NONBLOCK)
538 			return -EAGAIN;
539 
540 		if (signal_pending(current))
541 			return -ERESTARTSYS;
542 
543 		if (sd->need_wakeup) {
544 			wakeup_pipe_writers(pipe);
545 			sd->need_wakeup = false;
546 		}
547 
548 		pipe_wait_readable(pipe);
549 	}
550 
551 	if (eat_empty_buffer(pipe))
552 		goto repeat;
553 
554 	return 1;
555 }
556 
557 /**
558  * splice_from_pipe_begin - start splicing from pipe
559  * @sd:		information about the splice operation
560  *
561  * Description:
562  *    This function should be called before a loop containing
563  *    splice_from_pipe_next() and splice_from_pipe_feed() to
564  *    initialize the necessary fields of @sd.
565  */
566 static void splice_from_pipe_begin(struct splice_desc *sd)
567 {
568 	sd->num_spliced = 0;
569 	sd->need_wakeup = false;
570 }
571 
572 /**
573  * splice_from_pipe_end - finish splicing from pipe
574  * @pipe:	pipe to splice from
575  * @sd:		information about the splice operation
576  *
577  * Description:
578  *    This function will wake up pipe writers if necessary.  It should
579  *    be called after a loop containing splice_from_pipe_next() and
580  *    splice_from_pipe_feed().
581  */
582 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
583 {
584 	if (sd->need_wakeup)
585 		wakeup_pipe_writers(pipe);
586 }
587 
588 /**
589  * __splice_from_pipe - splice data from a pipe to given actor
590  * @pipe:	pipe to splice from
591  * @sd:		information to @actor
592  * @actor:	handler that splices the data
593  *
594  * Description:
595  *    This function does little more than loop over the pipe and call
596  *    @actor to do the actual moving of a single struct pipe_buffer to
597  *    the desired destination. See pipe_to_file, pipe_to_sendmsg, or
598  *    pipe_to_user.
599  *
600  */
601 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
602 			   splice_actor *actor)
603 {
604 	int ret;
605 
606 	splice_from_pipe_begin(sd);
607 	do {
608 		cond_resched();
609 		ret = splice_from_pipe_next(pipe, sd);
610 		if (ret > 0)
611 			ret = splice_from_pipe_feed(pipe, sd, actor);
612 	} while (ret > 0);
613 	splice_from_pipe_end(pipe, sd);
614 
615 	return sd->num_spliced ? sd->num_spliced : ret;
616 }
617 EXPORT_SYMBOL(__splice_from_pipe);
618 
619 /**
620  * splice_from_pipe - splice data from a pipe to a file
621  * @pipe:	pipe to splice from
622  * @out:	file to splice to
623  * @ppos:	position in @out
624  * @len:	how many bytes to splice
625  * @flags:	splice modifier flags
626  * @actor:	handler that splices the data
627  *
628  * Description:
629  *    See __splice_from_pipe. This function locks the pipe inode,
630  *    otherwise it's identical to __splice_from_pipe().
631  *
632  */
633 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
634 			 loff_t *ppos, size_t len, unsigned int flags,
635 			 splice_actor *actor)
636 {
637 	ssize_t ret;
638 	struct splice_desc sd = {
639 		.total_len = len,
640 		.flags = flags,
641 		.pos = *ppos,
642 		.u.file = out,
643 	};
644 
645 	pipe_lock(pipe);
646 	ret = __splice_from_pipe(pipe, &sd, actor);
647 	pipe_unlock(pipe);
648 
649 	return ret;
650 }
651 
652 /**
653  * iter_file_splice_write - splice data from a pipe to a file
654  * @pipe:	pipe info
655  * @out:	file to write to
656  * @ppos:	position in @out
657  * @len:	number of bytes to splice
658  * @flags:	splice modifier flags
659  *
660  * Description:
661  *    Will either move or copy pages (determined by @flags options) from
662  *    the given pipe inode to the given file.
663  *    This one is ->write_iter-based.
664  *
665  */
666 ssize_t
667 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
668 			  loff_t *ppos, size_t len, unsigned int flags)
669 {
670 	struct splice_desc sd = {
671 		.total_len = len,
672 		.flags = flags,
673 		.pos = *ppos,
674 		.u.file = out,
675 	};
676 	int nbufs = pipe->max_usage;
677 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
678 					GFP_KERNEL);
679 	ssize_t ret;
680 
681 	if (unlikely(!array))
682 		return -ENOMEM;
683 
684 	pipe_lock(pipe);
685 
686 	splice_from_pipe_begin(&sd);
687 	while (sd.total_len) {
688 		struct iov_iter from;
689 		unsigned int head, tail, mask;
690 		size_t left;
691 		int n;
692 
693 		ret = splice_from_pipe_next(pipe, &sd);
694 		if (ret <= 0)
695 			break;
696 
697 		if (unlikely(nbufs < pipe->max_usage)) {
698 			kfree(array);
699 			nbufs = pipe->max_usage;
700 			array = kcalloc(nbufs, sizeof(struct bio_vec),
701 					GFP_KERNEL);
702 			if (!array) {
703 				ret = -ENOMEM;
704 				break;
705 			}
706 		}
707 
708 		head = pipe->head;
709 		tail = pipe->tail;
710 		mask = pipe->ring_size - 1;
711 
712 		/* build the vector */
713 		left = sd.total_len;
714 		for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
715 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
716 			size_t this_len = buf->len;
717 
718 			/* zero-length bvecs are not supported, skip them */
719 			if (!this_len)
720 				continue;
721 			this_len = min(this_len, left);
722 
723 			ret = pipe_buf_confirm(pipe, buf);
724 			if (unlikely(ret)) {
725 				if (ret == -ENODATA)
726 					ret = 0;
727 				goto done;
728 			}
729 
730 			bvec_set_page(&array[n], buf->page, this_len,
731 				      buf->offset);
732 			left -= this_len;
733 			n++;
734 		}
735 
736 		iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
737 		ret = vfs_iter_write(out, &from, &sd.pos, 0);
738 		if (ret <= 0)
739 			break;
740 
741 		sd.num_spliced += ret;
742 		sd.total_len -= ret;
743 		*ppos = sd.pos;
744 
745 		/* dismiss the fully eaten buffers, adjust the partial one */
746 		tail = pipe->tail;
747 		while (ret) {
748 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
749 			if (ret >= buf->len) {
750 				ret -= buf->len;
751 				buf->len = 0;
752 				pipe_buf_release(pipe, buf);
753 				tail++;
754 				pipe->tail = tail;
755 				if (pipe->files)
756 					sd.need_wakeup = true;
757 			} else {
758 				buf->offset += ret;
759 				buf->len -= ret;
760 				ret = 0;
761 			}
762 		}
763 	}
764 done:
765 	kfree(array);
766 	splice_from_pipe_end(pipe, &sd);
767 
768 	pipe_unlock(pipe);
769 
770 	if (sd.num_spliced)
771 		ret = sd.num_spliced;
772 
773 	return ret;
774 }
775 
776 EXPORT_SYMBOL(iter_file_splice_write);
777 
778 #ifdef CONFIG_NET
779 /**
780  * splice_to_socket - splice data from a pipe to a socket
781  * @pipe:	pipe to splice from
782  * @out:	socket to write to
783  * @ppos:	position in @out
784  * @len:	number of bytes to splice
785  * @flags:	splice modifier flags
786  *
787  * Description:
788  *    Will send @len bytes from the pipe to a network socket. No data copying
789  *    is involved.
790  *
791  */
792 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
793 			 loff_t *ppos, size_t len, unsigned int flags)
794 {
795 	struct socket *sock = sock_from_file(out);
796 	struct bio_vec bvec[16];
797 	struct msghdr msg = {};
798 	ssize_t ret = 0;
799 	size_t spliced = 0;
800 	bool need_wakeup = false;
801 
802 	pipe_lock(pipe);
803 
804 	while (len > 0) {
805 		unsigned int head, tail, mask, bc = 0;
806 		size_t remain = len;
807 
808 		/*
809 		 * Check for signal early to make process killable when there
810 		 * are always buffers available
811 		 */
812 		ret = -ERESTARTSYS;
813 		if (signal_pending(current))
814 			break;
815 
816 		while (pipe_empty(pipe->head, pipe->tail)) {
817 			ret = 0;
818 			if (!pipe->writers)
819 				goto out;
820 
821 			if (spliced)
822 				goto out;
823 
824 			ret = -EAGAIN;
825 			if (flags & SPLICE_F_NONBLOCK)
826 				goto out;
827 
828 			ret = -ERESTARTSYS;
829 			if (signal_pending(current))
830 				goto out;
831 
832 			if (need_wakeup) {
833 				wakeup_pipe_writers(pipe);
834 				need_wakeup = false;
835 			}
836 
837 			pipe_wait_readable(pipe);
838 		}
839 
840 		head = pipe->head;
841 		tail = pipe->tail;
842 		mask = pipe->ring_size - 1;
843 
844 		while (!pipe_empty(head, tail)) {
845 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
846 			size_t seg;
847 
848 			if (!buf->len) {
849 				tail++;
850 				continue;
851 			}
852 
853 			seg = min_t(size_t, remain, buf->len);
854 
855 			ret = pipe_buf_confirm(pipe, buf);
856 			if (unlikely(ret)) {
857 				if (ret == -ENODATA)
858 					ret = 0;
859 				break;
860 			}
861 
862 			bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
863 			remain -= seg;
864 			if (remain == 0 || bc >= ARRAY_SIZE(bvec))
865 				break;
866 			tail++;
867 		}
868 
869 		if (!bc)
870 			break;
871 
872 		msg.msg_flags = MSG_SPLICE_PAGES;
873 		if (flags & SPLICE_F_MORE)
874 			msg.msg_flags |= MSG_MORE;
875 		if (remain && pipe_occupancy(pipe->head, tail) > 0)
876 			msg.msg_flags |= MSG_MORE;
877 		if (out->f_flags & O_NONBLOCK)
878 			msg.msg_flags |= MSG_DONTWAIT;
879 
880 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
881 			      len - remain);
882 		ret = sock_sendmsg(sock, &msg);
883 		if (ret <= 0)
884 			break;
885 
886 		spliced += ret;
887 		len -= ret;
888 		tail = pipe->tail;
889 		while (ret > 0) {
890 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
891 			size_t seg = min_t(size_t, ret, buf->len);
892 
893 			buf->offset += seg;
894 			buf->len -= seg;
895 			ret -= seg;
896 
897 			if (!buf->len) {
898 				pipe_buf_release(pipe, buf);
899 				tail++;
900 			}
901 		}
902 
903 		if (tail != pipe->tail) {
904 			pipe->tail = tail;
905 			if (pipe->files)
906 				need_wakeup = true;
907 		}
908 	}
909 
910 out:
911 	pipe_unlock(pipe);
912 	if (need_wakeup)
913 		wakeup_pipe_writers(pipe);
914 	return spliced ?: ret;
915 }
916 #endif
917 
918 static int warn_unsupported(struct file *file, const char *op)
919 {
920 	pr_debug_ratelimited(
921 		"splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
922 		op, file, current->pid, current->comm);
923 	return -EINVAL;
924 }
925 
926 /*
927  * Attempt to initiate a splice from pipe to file.
928  */
929 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
930 			   loff_t *ppos, size_t len, unsigned int flags)
931 {
932 	if (unlikely(!out->f_op->splice_write))
933 		return warn_unsupported(out, "write");
934 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
935 }
936 
937 /*
938  * Indicate to the caller that there was a premature EOF when reading from the
939  * source and the caller didn't indicate they would be sending more data after
940  * this.
941  */
942 static void do_splice_eof(struct splice_desc *sd)
943 {
944 	if (sd->splice_eof)
945 		sd->splice_eof(sd);
946 }
947 
948 /**
949  * vfs_splice_read - Read data from a file and splice it into a pipe
950  * @in:		File to splice from
951  * @ppos:	Input file offset
952  * @pipe:	Pipe to splice to
953  * @len:	Number of bytes to splice
954  * @flags:	Splice modifier flags (SPLICE_F_*)
955  *
956  * Splice the requested amount of data from the input file to the pipe.  This
957  * is synchronous as the caller must hold the pipe lock across the entire
958  * operation.
959  *
960  * If successful, it returns the amount of data spliced, 0 if it hit the EOF or
961  * a hole and a negative error code otherwise.
962  */
963 long vfs_splice_read(struct file *in, loff_t *ppos,
964 		     struct pipe_inode_info *pipe, size_t len,
965 		     unsigned int flags)
966 {
967 	unsigned int p_space;
968 	int ret;
969 
970 	if (unlikely(!(in->f_mode & FMODE_READ)))
971 		return -EBADF;
972 	if (!len)
973 		return 0;
974 
975 	/* Don't try to read more the pipe has space for. */
976 	p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
977 	len = min_t(size_t, len, p_space << PAGE_SHIFT);
978 
979 	ret = rw_verify_area(READ, in, ppos, len);
980 	if (unlikely(ret < 0))
981 		return ret;
982 
983 	if (unlikely(len > MAX_RW_COUNT))
984 		len = MAX_RW_COUNT;
985 
986 	if (unlikely(!in->f_op->splice_read))
987 		return warn_unsupported(in, "read");
988 	/*
989 	 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a
990 	 * buffer, copy into it and splice that into the pipe.
991 	 */
992 	if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
993 		return copy_splice_read(in, ppos, pipe, len, flags);
994 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
995 }
996 EXPORT_SYMBOL_GPL(vfs_splice_read);
997 
998 /**
999  * splice_direct_to_actor - splices data directly between two non-pipes
1000  * @in:		file to splice from
1001  * @sd:		actor information on where to splice to
1002  * @actor:	handles the data splicing
1003  *
1004  * Description:
1005  *    This is a special case helper to splice directly between two
1006  *    points, without requiring an explicit pipe. Internally an allocated
1007  *    pipe is cached in the process, and reused during the lifetime of
1008  *    that process.
1009  *
1010  */
1011 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1012 			       splice_direct_actor *actor)
1013 {
1014 	struct pipe_inode_info *pipe;
1015 	long ret, bytes;
1016 	size_t len;
1017 	int i, flags, more;
1018 
1019 	/*
1020 	 * We require the input to be seekable, as we don't want to randomly
1021 	 * drop data for eg socket -> socket splicing. Use the piped splicing
1022 	 * for that!
1023 	 */
1024 	if (unlikely(!(in->f_mode & FMODE_LSEEK)))
1025 		return -EINVAL;
1026 
1027 	/*
1028 	 * neither in nor out is a pipe, setup an internal pipe attached to
1029 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1030 	 */
1031 	pipe = current->splice_pipe;
1032 	if (unlikely(!pipe)) {
1033 		pipe = alloc_pipe_info();
1034 		if (!pipe)
1035 			return -ENOMEM;
1036 
1037 		/*
1038 		 * We don't have an immediate reader, but we'll read the stuff
1039 		 * out of the pipe right after the splice_to_pipe(). So set
1040 		 * PIPE_READERS appropriately.
1041 		 */
1042 		pipe->readers = 1;
1043 
1044 		current->splice_pipe = pipe;
1045 	}
1046 
1047 	/*
1048 	 * Do the splice.
1049 	 */
1050 	bytes = 0;
1051 	len = sd->total_len;
1052 
1053 	/* Don't block on output, we have to drain the direct pipe. */
1054 	flags = sd->flags;
1055 	sd->flags &= ~SPLICE_F_NONBLOCK;
1056 
1057 	/*
1058 	 * We signal MORE until we've read sufficient data to fulfill the
1059 	 * request and we keep signalling it if the caller set it.
1060 	 */
1061 	more = sd->flags & SPLICE_F_MORE;
1062 	sd->flags |= SPLICE_F_MORE;
1063 
1064 	WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
1065 
1066 	while (len) {
1067 		size_t read_len;
1068 		loff_t pos = sd->pos, prev_pos = pos;
1069 
1070 		ret = vfs_splice_read(in, &pos, pipe, len, flags);
1071 		if (unlikely(ret <= 0))
1072 			goto read_failure;
1073 
1074 		read_len = ret;
1075 		sd->total_len = read_len;
1076 
1077 		/*
1078 		 * If we now have sufficient data to fulfill the request then
1079 		 * we clear SPLICE_F_MORE if it was not set initially.
1080 		 */
1081 		if (read_len >= len && !more)
1082 			sd->flags &= ~SPLICE_F_MORE;
1083 
1084 		/*
1085 		 * NOTE: nonblocking mode only applies to the input. We
1086 		 * must not do the output in nonblocking mode as then we
1087 		 * could get stuck data in the internal pipe:
1088 		 */
1089 		ret = actor(pipe, sd);
1090 		if (unlikely(ret <= 0)) {
1091 			sd->pos = prev_pos;
1092 			goto out_release;
1093 		}
1094 
1095 		bytes += ret;
1096 		len -= ret;
1097 		sd->pos = pos;
1098 
1099 		if (ret < read_len) {
1100 			sd->pos = prev_pos + ret;
1101 			goto out_release;
1102 		}
1103 	}
1104 
1105 done:
1106 	pipe->tail = pipe->head = 0;
1107 	file_accessed(in);
1108 	return bytes;
1109 
1110 read_failure:
1111 	/*
1112 	 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
1113 	 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
1114 	 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at
1115 	 * least 1 byte *then* we will also do the ->splice_eof() call.
1116 	 */
1117 	if (ret == 0 && !more && len > 0 && bytes)
1118 		do_splice_eof(sd);
1119 out_release:
1120 	/*
1121 	 * If we did an incomplete transfer we must release
1122 	 * the pipe buffers in question:
1123 	 */
1124 	for (i = 0; i < pipe->ring_size; i++) {
1125 		struct pipe_buffer *buf = &pipe->bufs[i];
1126 
1127 		if (buf->ops)
1128 			pipe_buf_release(pipe, buf);
1129 	}
1130 
1131 	if (!bytes)
1132 		bytes = ret;
1133 
1134 	goto done;
1135 }
1136 EXPORT_SYMBOL(splice_direct_to_actor);
1137 
1138 static int direct_splice_actor(struct pipe_inode_info *pipe,
1139 			       struct splice_desc *sd)
1140 {
1141 	struct file *file = sd->u.file;
1142 
1143 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1144 			      sd->flags);
1145 }
1146 
1147 static void direct_file_splice_eof(struct splice_desc *sd)
1148 {
1149 	struct file *file = sd->u.file;
1150 
1151 	if (file->f_op->splice_eof)
1152 		file->f_op->splice_eof(file);
1153 }
1154 
1155 /**
1156  * do_splice_direct - splices data directly between two files
1157  * @in:		file to splice from
1158  * @ppos:	input file offset
1159  * @out:	file to splice to
1160  * @opos:	output file offset
1161  * @len:	number of bytes to splice
1162  * @flags:	splice modifier flags
1163  *
1164  * Description:
1165  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1166  *    doing it in the application would incur an extra system call
1167  *    (splice in + splice out, as compared to just sendfile()). So this helper
1168  *    can splice directly through a process-private pipe.
1169  *
1170  */
1171 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1172 		      loff_t *opos, size_t len, unsigned int flags)
1173 {
1174 	struct splice_desc sd = {
1175 		.len		= len,
1176 		.total_len	= len,
1177 		.flags		= flags,
1178 		.pos		= *ppos,
1179 		.u.file		= out,
1180 		.splice_eof	= direct_file_splice_eof,
1181 		.opos		= opos,
1182 	};
1183 	long ret;
1184 
1185 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1186 		return -EBADF;
1187 
1188 	if (unlikely(out->f_flags & O_APPEND))
1189 		return -EINVAL;
1190 
1191 	ret = rw_verify_area(WRITE, out, opos, len);
1192 	if (unlikely(ret < 0))
1193 		return ret;
1194 
1195 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1196 	if (ret > 0)
1197 		*ppos = sd.pos;
1198 
1199 	return ret;
1200 }
1201 EXPORT_SYMBOL(do_splice_direct);
1202 
1203 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1204 {
1205 	for (;;) {
1206 		if (unlikely(!pipe->readers)) {
1207 			send_sig(SIGPIPE, current, 0);
1208 			return -EPIPE;
1209 		}
1210 		if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1211 			return 0;
1212 		if (flags & SPLICE_F_NONBLOCK)
1213 			return -EAGAIN;
1214 		if (signal_pending(current))
1215 			return -ERESTARTSYS;
1216 		pipe_wait_writable(pipe);
1217 	}
1218 }
1219 
1220 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1221 			       struct pipe_inode_info *opipe,
1222 			       size_t len, unsigned int flags);
1223 
1224 long splice_file_to_pipe(struct file *in,
1225 			 struct pipe_inode_info *opipe,
1226 			 loff_t *offset,
1227 			 size_t len, unsigned int flags)
1228 {
1229 	long ret;
1230 
1231 	pipe_lock(opipe);
1232 	ret = wait_for_space(opipe, flags);
1233 	if (!ret)
1234 		ret = vfs_splice_read(in, offset, opipe, len, flags);
1235 	pipe_unlock(opipe);
1236 	if (ret > 0)
1237 		wakeup_pipe_readers(opipe);
1238 	return ret;
1239 }
1240 
1241 /*
1242  * Determine where to splice to/from.
1243  */
1244 long do_splice(struct file *in, loff_t *off_in, struct file *out,
1245 	       loff_t *off_out, size_t len, unsigned int flags)
1246 {
1247 	struct pipe_inode_info *ipipe;
1248 	struct pipe_inode_info *opipe;
1249 	loff_t offset;
1250 	long ret;
1251 
1252 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1253 		     !(out->f_mode & FMODE_WRITE)))
1254 		return -EBADF;
1255 
1256 	ipipe = get_pipe_info(in, true);
1257 	opipe = get_pipe_info(out, true);
1258 
1259 	if (ipipe && opipe) {
1260 		if (off_in || off_out)
1261 			return -ESPIPE;
1262 
1263 		/* Splicing to self would be fun, but... */
1264 		if (ipipe == opipe)
1265 			return -EINVAL;
1266 
1267 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1268 			flags |= SPLICE_F_NONBLOCK;
1269 
1270 		ret = splice_pipe_to_pipe(ipipe, opipe, len, flags);
1271 	} else if (ipipe) {
1272 		if (off_in)
1273 			return -ESPIPE;
1274 		if (off_out) {
1275 			if (!(out->f_mode & FMODE_PWRITE))
1276 				return -EINVAL;
1277 			offset = *off_out;
1278 		} else {
1279 			offset = out->f_pos;
1280 		}
1281 
1282 		if (unlikely(out->f_flags & O_APPEND))
1283 			return -EINVAL;
1284 
1285 		ret = rw_verify_area(WRITE, out, &offset, len);
1286 		if (unlikely(ret < 0))
1287 			return ret;
1288 
1289 		if (in->f_flags & O_NONBLOCK)
1290 			flags |= SPLICE_F_NONBLOCK;
1291 
1292 		file_start_write(out);
1293 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1294 		file_end_write(out);
1295 
1296 		if (!off_out)
1297 			out->f_pos = offset;
1298 		else
1299 			*off_out = offset;
1300 	} else if (opipe) {
1301 		if (off_out)
1302 			return -ESPIPE;
1303 		if (off_in) {
1304 			if (!(in->f_mode & FMODE_PREAD))
1305 				return -EINVAL;
1306 			offset = *off_in;
1307 		} else {
1308 			offset = in->f_pos;
1309 		}
1310 
1311 		if (out->f_flags & O_NONBLOCK)
1312 			flags |= SPLICE_F_NONBLOCK;
1313 
1314 		ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1315 
1316 		if (!off_in)
1317 			in->f_pos = offset;
1318 		else
1319 			*off_in = offset;
1320 	} else {
1321 		ret = -EINVAL;
1322 	}
1323 
1324 	if (ret > 0) {
1325 		/*
1326 		 * Generate modify out before access in:
1327 		 * do_splice_from() may've already sent modify out,
1328 		 * and this ensures the events get merged.
1329 		 */
1330 		fsnotify_modify(out);
1331 		fsnotify_access(in);
1332 	}
1333 
1334 	return ret;
1335 }
1336 
1337 static long __do_splice(struct file *in, loff_t __user *off_in,
1338 			struct file *out, loff_t __user *off_out,
1339 			size_t len, unsigned int flags)
1340 {
1341 	struct pipe_inode_info *ipipe;
1342 	struct pipe_inode_info *opipe;
1343 	loff_t offset, *__off_in = NULL, *__off_out = NULL;
1344 	long ret;
1345 
1346 	ipipe = get_pipe_info(in, true);
1347 	opipe = get_pipe_info(out, true);
1348 
1349 	if (ipipe) {
1350 		if (off_in)
1351 			return -ESPIPE;
1352 		pipe_clear_nowait(in);
1353 	}
1354 	if (opipe) {
1355 		if (off_out)
1356 			return -ESPIPE;
1357 		pipe_clear_nowait(out);
1358 	}
1359 
1360 	if (off_out) {
1361 		if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1362 			return -EFAULT;
1363 		__off_out = &offset;
1364 	}
1365 	if (off_in) {
1366 		if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1367 			return -EFAULT;
1368 		__off_in = &offset;
1369 	}
1370 
1371 	ret = do_splice(in, __off_in, out, __off_out, len, flags);
1372 	if (ret < 0)
1373 		return ret;
1374 
1375 	if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1376 		return -EFAULT;
1377 	if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1378 		return -EFAULT;
1379 
1380 	return ret;
1381 }
1382 
1383 static int iter_to_pipe(struct iov_iter *from,
1384 			struct pipe_inode_info *pipe,
1385 			unsigned flags)
1386 {
1387 	struct pipe_buffer buf = {
1388 		.ops = &user_page_pipe_buf_ops,
1389 		.flags = flags
1390 	};
1391 	size_t total = 0;
1392 	int ret = 0;
1393 
1394 	while (iov_iter_count(from)) {
1395 		struct page *pages[16];
1396 		ssize_t left;
1397 		size_t start;
1398 		int i, n;
1399 
1400 		left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1401 		if (left <= 0) {
1402 			ret = left;
1403 			break;
1404 		}
1405 
1406 		n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1407 		for (i = 0; i < n; i++) {
1408 			int size = min_t(int, left, PAGE_SIZE - start);
1409 
1410 			buf.page = pages[i];
1411 			buf.offset = start;
1412 			buf.len = size;
1413 			ret = add_to_pipe(pipe, &buf);
1414 			if (unlikely(ret < 0)) {
1415 				iov_iter_revert(from, left);
1416 				// this one got dropped by add_to_pipe()
1417 				while (++i < n)
1418 					put_page(pages[i]);
1419 				goto out;
1420 			}
1421 			total += ret;
1422 			left -= size;
1423 			start = 0;
1424 		}
1425 	}
1426 out:
1427 	return total ? total : ret;
1428 }
1429 
1430 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1431 			struct splice_desc *sd)
1432 {
1433 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1434 	return n == sd->len ? n : -EFAULT;
1435 }
1436 
1437 /*
1438  * For lack of a better implementation, implement vmsplice() to userspace
1439  * as a simple copy of the pipes pages to the user iov.
1440  */
1441 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1442 			     unsigned int flags)
1443 {
1444 	struct pipe_inode_info *pipe = get_pipe_info(file, true);
1445 	struct splice_desc sd = {
1446 		.total_len = iov_iter_count(iter),
1447 		.flags = flags,
1448 		.u.data = iter
1449 	};
1450 	long ret = 0;
1451 
1452 	if (!pipe)
1453 		return -EBADF;
1454 
1455 	pipe_clear_nowait(file);
1456 
1457 	if (sd.total_len) {
1458 		pipe_lock(pipe);
1459 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1460 		pipe_unlock(pipe);
1461 	}
1462 
1463 	if (ret > 0)
1464 		fsnotify_access(file);
1465 
1466 	return ret;
1467 }
1468 
1469 /*
1470  * vmsplice splices a user address range into a pipe. It can be thought of
1471  * as splice-from-memory, where the regular splice is splice-from-file (or
1472  * to file). In both cases the output is a pipe, naturally.
1473  */
1474 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1475 			     unsigned int flags)
1476 {
1477 	struct pipe_inode_info *pipe;
1478 	long ret = 0;
1479 	unsigned buf_flag = 0;
1480 
1481 	if (flags & SPLICE_F_GIFT)
1482 		buf_flag = PIPE_BUF_FLAG_GIFT;
1483 
1484 	pipe = get_pipe_info(file, true);
1485 	if (!pipe)
1486 		return -EBADF;
1487 
1488 	pipe_clear_nowait(file);
1489 
1490 	pipe_lock(pipe);
1491 	ret = wait_for_space(pipe, flags);
1492 	if (!ret)
1493 		ret = iter_to_pipe(iter, pipe, buf_flag);
1494 	pipe_unlock(pipe);
1495 	if (ret > 0) {
1496 		wakeup_pipe_readers(pipe);
1497 		fsnotify_modify(file);
1498 	}
1499 	return ret;
1500 }
1501 
1502 static int vmsplice_type(struct fd f, int *type)
1503 {
1504 	if (!f.file)
1505 		return -EBADF;
1506 	if (f.file->f_mode & FMODE_WRITE) {
1507 		*type = ITER_SOURCE;
1508 	} else if (f.file->f_mode & FMODE_READ) {
1509 		*type = ITER_DEST;
1510 	} else {
1511 		fdput(f);
1512 		return -EBADF;
1513 	}
1514 	return 0;
1515 }
1516 
1517 /*
1518  * Note that vmsplice only really supports true splicing _from_ user memory
1519  * to a pipe, not the other way around. Splicing from user memory is a simple
1520  * operation that can be supported without any funky alignment restrictions
1521  * or nasty vm tricks. We simply map in the user memory and fill them into
1522  * a pipe. The reverse isn't quite as easy, though. There are two possible
1523  * solutions for that:
1524  *
1525  *	- memcpy() the data internally, at which point we might as well just
1526  *	  do a regular read() on the buffer anyway.
1527  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1528  *	  has restriction limitations on both ends of the pipe).
1529  *
1530  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1531  *
1532  */
1533 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1534 		unsigned long, nr_segs, unsigned int, flags)
1535 {
1536 	struct iovec iovstack[UIO_FASTIOV];
1537 	struct iovec *iov = iovstack;
1538 	struct iov_iter iter;
1539 	ssize_t error;
1540 	struct fd f;
1541 	int type;
1542 
1543 	if (unlikely(flags & ~SPLICE_F_ALL))
1544 		return -EINVAL;
1545 
1546 	f = fdget(fd);
1547 	error = vmsplice_type(f, &type);
1548 	if (error)
1549 		return error;
1550 
1551 	error = import_iovec(type, uiov, nr_segs,
1552 			     ARRAY_SIZE(iovstack), &iov, &iter);
1553 	if (error < 0)
1554 		goto out_fdput;
1555 
1556 	if (!iov_iter_count(&iter))
1557 		error = 0;
1558 	else if (type == ITER_SOURCE)
1559 		error = vmsplice_to_pipe(f.file, &iter, flags);
1560 	else
1561 		error = vmsplice_to_user(f.file, &iter, flags);
1562 
1563 	kfree(iov);
1564 out_fdput:
1565 	fdput(f);
1566 	return error;
1567 }
1568 
1569 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1570 		int, fd_out, loff_t __user *, off_out,
1571 		size_t, len, unsigned int, flags)
1572 {
1573 	struct fd in, out;
1574 	long error;
1575 
1576 	if (unlikely(!len))
1577 		return 0;
1578 
1579 	if (unlikely(flags & ~SPLICE_F_ALL))
1580 		return -EINVAL;
1581 
1582 	error = -EBADF;
1583 	in = fdget(fd_in);
1584 	if (in.file) {
1585 		out = fdget(fd_out);
1586 		if (out.file) {
1587 			error = __do_splice(in.file, off_in, out.file, off_out,
1588 						len, flags);
1589 			fdput(out);
1590 		}
1591 		fdput(in);
1592 	}
1593 	return error;
1594 }
1595 
1596 /*
1597  * Make sure there's data to read. Wait for input if we can, otherwise
1598  * return an appropriate error.
1599  */
1600 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1601 {
1602 	int ret;
1603 
1604 	/*
1605 	 * Check the pipe occupancy without the inode lock first. This function
1606 	 * is speculative anyways, so missing one is ok.
1607 	 */
1608 	if (!pipe_empty(pipe->head, pipe->tail))
1609 		return 0;
1610 
1611 	ret = 0;
1612 	pipe_lock(pipe);
1613 
1614 	while (pipe_empty(pipe->head, pipe->tail)) {
1615 		if (signal_pending(current)) {
1616 			ret = -ERESTARTSYS;
1617 			break;
1618 		}
1619 		if (!pipe->writers)
1620 			break;
1621 		if (flags & SPLICE_F_NONBLOCK) {
1622 			ret = -EAGAIN;
1623 			break;
1624 		}
1625 		pipe_wait_readable(pipe);
1626 	}
1627 
1628 	pipe_unlock(pipe);
1629 	return ret;
1630 }
1631 
1632 /*
1633  * Make sure there's writeable room. Wait for room if we can, otherwise
1634  * return an appropriate error.
1635  */
1636 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1637 {
1638 	int ret;
1639 
1640 	/*
1641 	 * Check pipe occupancy without the inode lock first. This function
1642 	 * is speculative anyways, so missing one is ok.
1643 	 */
1644 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1645 		return 0;
1646 
1647 	ret = 0;
1648 	pipe_lock(pipe);
1649 
1650 	while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1651 		if (!pipe->readers) {
1652 			send_sig(SIGPIPE, current, 0);
1653 			ret = -EPIPE;
1654 			break;
1655 		}
1656 		if (flags & SPLICE_F_NONBLOCK) {
1657 			ret = -EAGAIN;
1658 			break;
1659 		}
1660 		if (signal_pending(current)) {
1661 			ret = -ERESTARTSYS;
1662 			break;
1663 		}
1664 		pipe_wait_writable(pipe);
1665 	}
1666 
1667 	pipe_unlock(pipe);
1668 	return ret;
1669 }
1670 
1671 /*
1672  * Splice contents of ipipe to opipe.
1673  */
1674 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1675 			       struct pipe_inode_info *opipe,
1676 			       size_t len, unsigned int flags)
1677 {
1678 	struct pipe_buffer *ibuf, *obuf;
1679 	unsigned int i_head, o_head;
1680 	unsigned int i_tail, o_tail;
1681 	unsigned int i_mask, o_mask;
1682 	int ret = 0;
1683 	bool input_wakeup = false;
1684 
1685 
1686 retry:
1687 	ret = ipipe_prep(ipipe, flags);
1688 	if (ret)
1689 		return ret;
1690 
1691 	ret = opipe_prep(opipe, flags);
1692 	if (ret)
1693 		return ret;
1694 
1695 	/*
1696 	 * Potential ABBA deadlock, work around it by ordering lock
1697 	 * grabbing by pipe info address. Otherwise two different processes
1698 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1699 	 */
1700 	pipe_double_lock(ipipe, opipe);
1701 
1702 	i_tail = ipipe->tail;
1703 	i_mask = ipipe->ring_size - 1;
1704 	o_head = opipe->head;
1705 	o_mask = opipe->ring_size - 1;
1706 
1707 	do {
1708 		size_t o_len;
1709 
1710 		if (!opipe->readers) {
1711 			send_sig(SIGPIPE, current, 0);
1712 			if (!ret)
1713 				ret = -EPIPE;
1714 			break;
1715 		}
1716 
1717 		i_head = ipipe->head;
1718 		o_tail = opipe->tail;
1719 
1720 		if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1721 			break;
1722 
1723 		/*
1724 		 * Cannot make any progress, because either the input
1725 		 * pipe is empty or the output pipe is full.
1726 		 */
1727 		if (pipe_empty(i_head, i_tail) ||
1728 		    pipe_full(o_head, o_tail, opipe->max_usage)) {
1729 			/* Already processed some buffers, break */
1730 			if (ret)
1731 				break;
1732 
1733 			if (flags & SPLICE_F_NONBLOCK) {
1734 				ret = -EAGAIN;
1735 				break;
1736 			}
1737 
1738 			/*
1739 			 * We raced with another reader/writer and haven't
1740 			 * managed to process any buffers.  A zero return
1741 			 * value means EOF, so retry instead.
1742 			 */
1743 			pipe_unlock(ipipe);
1744 			pipe_unlock(opipe);
1745 			goto retry;
1746 		}
1747 
1748 		ibuf = &ipipe->bufs[i_tail & i_mask];
1749 		obuf = &opipe->bufs[o_head & o_mask];
1750 
1751 		if (len >= ibuf->len) {
1752 			/*
1753 			 * Simply move the whole buffer from ipipe to opipe
1754 			 */
1755 			*obuf = *ibuf;
1756 			ibuf->ops = NULL;
1757 			i_tail++;
1758 			ipipe->tail = i_tail;
1759 			input_wakeup = true;
1760 			o_len = obuf->len;
1761 			o_head++;
1762 			opipe->head = o_head;
1763 		} else {
1764 			/*
1765 			 * Get a reference to this pipe buffer,
1766 			 * so we can copy the contents over.
1767 			 */
1768 			if (!pipe_buf_get(ipipe, ibuf)) {
1769 				if (ret == 0)
1770 					ret = -EFAULT;
1771 				break;
1772 			}
1773 			*obuf = *ibuf;
1774 
1775 			/*
1776 			 * Don't inherit the gift and merge flags, we need to
1777 			 * prevent multiple steals of this page.
1778 			 */
1779 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1780 			obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1781 
1782 			obuf->len = len;
1783 			ibuf->offset += len;
1784 			ibuf->len -= len;
1785 			o_len = len;
1786 			o_head++;
1787 			opipe->head = o_head;
1788 		}
1789 		ret += o_len;
1790 		len -= o_len;
1791 	} while (len);
1792 
1793 	pipe_unlock(ipipe);
1794 	pipe_unlock(opipe);
1795 
1796 	/*
1797 	 * If we put data in the output pipe, wakeup any potential readers.
1798 	 */
1799 	if (ret > 0)
1800 		wakeup_pipe_readers(opipe);
1801 
1802 	if (input_wakeup)
1803 		wakeup_pipe_writers(ipipe);
1804 
1805 	return ret;
1806 }
1807 
1808 /*
1809  * Link contents of ipipe to opipe.
1810  */
1811 static int link_pipe(struct pipe_inode_info *ipipe,
1812 		     struct pipe_inode_info *opipe,
1813 		     size_t len, unsigned int flags)
1814 {
1815 	struct pipe_buffer *ibuf, *obuf;
1816 	unsigned int i_head, o_head;
1817 	unsigned int i_tail, o_tail;
1818 	unsigned int i_mask, o_mask;
1819 	int ret = 0;
1820 
1821 	/*
1822 	 * Potential ABBA deadlock, work around it by ordering lock
1823 	 * grabbing by pipe info address. Otherwise two different processes
1824 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1825 	 */
1826 	pipe_double_lock(ipipe, opipe);
1827 
1828 	i_tail = ipipe->tail;
1829 	i_mask = ipipe->ring_size - 1;
1830 	o_head = opipe->head;
1831 	o_mask = opipe->ring_size - 1;
1832 
1833 	do {
1834 		if (!opipe->readers) {
1835 			send_sig(SIGPIPE, current, 0);
1836 			if (!ret)
1837 				ret = -EPIPE;
1838 			break;
1839 		}
1840 
1841 		i_head = ipipe->head;
1842 		o_tail = opipe->tail;
1843 
1844 		/*
1845 		 * If we have iterated all input buffers or run out of
1846 		 * output room, break.
1847 		 */
1848 		if (pipe_empty(i_head, i_tail) ||
1849 		    pipe_full(o_head, o_tail, opipe->max_usage))
1850 			break;
1851 
1852 		ibuf = &ipipe->bufs[i_tail & i_mask];
1853 		obuf = &opipe->bufs[o_head & o_mask];
1854 
1855 		/*
1856 		 * Get a reference to this pipe buffer,
1857 		 * so we can copy the contents over.
1858 		 */
1859 		if (!pipe_buf_get(ipipe, ibuf)) {
1860 			if (ret == 0)
1861 				ret = -EFAULT;
1862 			break;
1863 		}
1864 
1865 		*obuf = *ibuf;
1866 
1867 		/*
1868 		 * Don't inherit the gift and merge flag, we need to prevent
1869 		 * multiple steals of this page.
1870 		 */
1871 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1872 		obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1873 
1874 		if (obuf->len > len)
1875 			obuf->len = len;
1876 		ret += obuf->len;
1877 		len -= obuf->len;
1878 
1879 		o_head++;
1880 		opipe->head = o_head;
1881 		i_tail++;
1882 	} while (len);
1883 
1884 	pipe_unlock(ipipe);
1885 	pipe_unlock(opipe);
1886 
1887 	/*
1888 	 * If we put data in the output pipe, wakeup any potential readers.
1889 	 */
1890 	if (ret > 0)
1891 		wakeup_pipe_readers(opipe);
1892 
1893 	return ret;
1894 }
1895 
1896 /*
1897  * This is a tee(1) implementation that works on pipes. It doesn't copy
1898  * any data, it simply references the 'in' pages on the 'out' pipe.
1899  * The 'flags' used are the SPLICE_F_* variants, currently the only
1900  * applicable one is SPLICE_F_NONBLOCK.
1901  */
1902 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1903 {
1904 	struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1905 	struct pipe_inode_info *opipe = get_pipe_info(out, true);
1906 	int ret = -EINVAL;
1907 
1908 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1909 		     !(out->f_mode & FMODE_WRITE)))
1910 		return -EBADF;
1911 
1912 	/*
1913 	 * Duplicate the contents of ipipe to opipe without actually
1914 	 * copying the data.
1915 	 */
1916 	if (ipipe && opipe && ipipe != opipe) {
1917 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1918 			flags |= SPLICE_F_NONBLOCK;
1919 
1920 		/*
1921 		 * Keep going, unless we encounter an error. The ipipe/opipe
1922 		 * ordering doesn't really matter.
1923 		 */
1924 		ret = ipipe_prep(ipipe, flags);
1925 		if (!ret) {
1926 			ret = opipe_prep(opipe, flags);
1927 			if (!ret)
1928 				ret = link_pipe(ipipe, opipe, len, flags);
1929 		}
1930 	}
1931 
1932 	if (ret > 0) {
1933 		fsnotify_access(in);
1934 		fsnotify_modify(out);
1935 	}
1936 
1937 	return ret;
1938 }
1939 
1940 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1941 {
1942 	struct fd in, out;
1943 	int error;
1944 
1945 	if (unlikely(flags & ~SPLICE_F_ALL))
1946 		return -EINVAL;
1947 
1948 	if (unlikely(!len))
1949 		return 0;
1950 
1951 	error = -EBADF;
1952 	in = fdget(fdin);
1953 	if (in.file) {
1954 		out = fdget(fdout);
1955 		if (out.file) {
1956 			error = do_tee(in.file, out.file, len, flags);
1957 			fdput(out);
1958 		}
1959  		fdput(in);
1960  	}
1961 
1962 	return error;
1963 }
1964