1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * "splice": joining two ropes together by interweaving their strands. 4 * 5 * This is the "extended pipe" functionality, where a pipe is used as 6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 7 * buffer that you can use to transfer data from one end to the other. 8 * 9 * The traditional unix read/write is extended with a "splice()" operation 10 * that transfers data buffers to or from a pipe buffer. 11 * 12 * Named by Larry McVoy, original implementation from Linus, extended by 13 * Jens to support splicing to files, network, direct splicing, etc and 14 * fixing lots of bugs. 15 * 16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 19 * 20 */ 21 #include <linux/bvec.h> 22 #include <linux/fs.h> 23 #include <linux/file.h> 24 #include <linux/pagemap.h> 25 #include <linux/splice.h> 26 #include <linux/memcontrol.h> 27 #include <linux/mm_inline.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/export.h> 31 #include <linux/syscalls.h> 32 #include <linux/uio.h> 33 #include <linux/fsnotify.h> 34 #include <linux/security.h> 35 #include <linux/gfp.h> 36 #include <linux/net.h> 37 #include <linux/socket.h> 38 #include <linux/sched/signal.h> 39 40 #include "internal.h" 41 42 /* 43 * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to 44 * indicate they support non-blocking reads or writes, we must clear it 45 * here if set to avoid blocking other users of this pipe if splice is 46 * being done on it. 47 */ 48 static noinline void noinline pipe_clear_nowait(struct file *file) 49 { 50 fmode_t fmode = READ_ONCE(file->f_mode); 51 52 do { 53 if (!(fmode & FMODE_NOWAIT)) 54 break; 55 } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT)); 56 } 57 58 /* 59 * Attempt to steal a page from a pipe buffer. This should perhaps go into 60 * a vm helper function, it's already simplified quite a bit by the 61 * addition of remove_mapping(). If success is returned, the caller may 62 * attempt to reuse this page for another destination. 63 */ 64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe, 65 struct pipe_buffer *buf) 66 { 67 struct folio *folio = page_folio(buf->page); 68 struct address_space *mapping; 69 70 folio_lock(folio); 71 72 mapping = folio_mapping(folio); 73 if (mapping) { 74 WARN_ON(!folio_test_uptodate(folio)); 75 76 /* 77 * At least for ext2 with nobh option, we need to wait on 78 * writeback completing on this folio, since we'll remove it 79 * from the pagecache. Otherwise truncate wont wait on the 80 * folio, allowing the disk blocks to be reused by someone else 81 * before we actually wrote our data to them. fs corruption 82 * ensues. 83 */ 84 folio_wait_writeback(folio); 85 86 if (folio_has_private(folio) && 87 !filemap_release_folio(folio, GFP_KERNEL)) 88 goto out_unlock; 89 90 /* 91 * If we succeeded in removing the mapping, set LRU flag 92 * and return good. 93 */ 94 if (remove_mapping(mapping, folio)) { 95 buf->flags |= PIPE_BUF_FLAG_LRU; 96 return true; 97 } 98 } 99 100 /* 101 * Raced with truncate or failed to remove folio from current 102 * address space, unlock and return failure. 103 */ 104 out_unlock: 105 folio_unlock(folio); 106 return false; 107 } 108 109 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 110 struct pipe_buffer *buf) 111 { 112 put_page(buf->page); 113 buf->flags &= ~PIPE_BUF_FLAG_LRU; 114 } 115 116 /* 117 * Check whether the contents of buf is OK to access. Since the content 118 * is a page cache page, IO may be in flight. 119 */ 120 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 121 struct pipe_buffer *buf) 122 { 123 struct folio *folio = page_folio(buf->page); 124 int err; 125 126 if (!folio_test_uptodate(folio)) { 127 folio_lock(folio); 128 129 /* 130 * Folio got truncated/unhashed. This will cause a 0-byte 131 * splice, if this is the first page. 132 */ 133 if (!folio->mapping) { 134 err = -ENODATA; 135 goto error; 136 } 137 138 /* 139 * Uh oh, read-error from disk. 140 */ 141 if (!folio_test_uptodate(folio)) { 142 err = -EIO; 143 goto error; 144 } 145 146 /* Folio is ok after all, we are done */ 147 folio_unlock(folio); 148 } 149 150 return 0; 151 error: 152 folio_unlock(folio); 153 return err; 154 } 155 156 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 157 .confirm = page_cache_pipe_buf_confirm, 158 .release = page_cache_pipe_buf_release, 159 .try_steal = page_cache_pipe_buf_try_steal, 160 .get = generic_pipe_buf_get, 161 }; 162 163 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe, 164 struct pipe_buffer *buf) 165 { 166 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 167 return false; 168 169 buf->flags |= PIPE_BUF_FLAG_LRU; 170 return generic_pipe_buf_try_steal(pipe, buf); 171 } 172 173 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 174 .release = page_cache_pipe_buf_release, 175 .try_steal = user_page_pipe_buf_try_steal, 176 .get = generic_pipe_buf_get, 177 }; 178 179 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 180 { 181 smp_mb(); 182 if (waitqueue_active(&pipe->rd_wait)) 183 wake_up_interruptible(&pipe->rd_wait); 184 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 185 } 186 187 /** 188 * splice_to_pipe - fill passed data into a pipe 189 * @pipe: pipe to fill 190 * @spd: data to fill 191 * 192 * Description: 193 * @spd contains a map of pages and len/offset tuples, along with 194 * the struct pipe_buf_operations associated with these pages. This 195 * function will link that data to the pipe. 196 * 197 */ 198 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 199 struct splice_pipe_desc *spd) 200 { 201 unsigned int spd_pages = spd->nr_pages; 202 unsigned int tail = pipe->tail; 203 unsigned int head = pipe->head; 204 unsigned int mask = pipe->ring_size - 1; 205 int ret = 0, page_nr = 0; 206 207 if (!spd_pages) 208 return 0; 209 210 if (unlikely(!pipe->readers)) { 211 send_sig(SIGPIPE, current, 0); 212 ret = -EPIPE; 213 goto out; 214 } 215 216 while (!pipe_full(head, tail, pipe->max_usage)) { 217 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 218 219 buf->page = spd->pages[page_nr]; 220 buf->offset = spd->partial[page_nr].offset; 221 buf->len = spd->partial[page_nr].len; 222 buf->private = spd->partial[page_nr].private; 223 buf->ops = spd->ops; 224 buf->flags = 0; 225 226 head++; 227 pipe->head = head; 228 page_nr++; 229 ret += buf->len; 230 231 if (!--spd->nr_pages) 232 break; 233 } 234 235 if (!ret) 236 ret = -EAGAIN; 237 238 out: 239 while (page_nr < spd_pages) 240 spd->spd_release(spd, page_nr++); 241 242 return ret; 243 } 244 EXPORT_SYMBOL_GPL(splice_to_pipe); 245 246 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 247 { 248 unsigned int head = pipe->head; 249 unsigned int tail = pipe->tail; 250 unsigned int mask = pipe->ring_size - 1; 251 int ret; 252 253 if (unlikely(!pipe->readers)) { 254 send_sig(SIGPIPE, current, 0); 255 ret = -EPIPE; 256 } else if (pipe_full(head, tail, pipe->max_usage)) { 257 ret = -EAGAIN; 258 } else { 259 pipe->bufs[head & mask] = *buf; 260 pipe->head = head + 1; 261 return buf->len; 262 } 263 pipe_buf_release(pipe, buf); 264 return ret; 265 } 266 EXPORT_SYMBOL(add_to_pipe); 267 268 /* 269 * Check if we need to grow the arrays holding pages and partial page 270 * descriptions. 271 */ 272 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 273 { 274 unsigned int max_usage = READ_ONCE(pipe->max_usage); 275 276 spd->nr_pages_max = max_usage; 277 if (max_usage <= PIPE_DEF_BUFFERS) 278 return 0; 279 280 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL); 281 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page), 282 GFP_KERNEL); 283 284 if (spd->pages && spd->partial) 285 return 0; 286 287 kfree(spd->pages); 288 kfree(spd->partial); 289 return -ENOMEM; 290 } 291 292 void splice_shrink_spd(struct splice_pipe_desc *spd) 293 { 294 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 295 return; 296 297 kfree(spd->pages); 298 kfree(spd->partial); 299 } 300 301 /** 302 * copy_splice_read - Copy data from a file and splice the copy into a pipe 303 * @in: The file to read from 304 * @ppos: Pointer to the file position to read from 305 * @pipe: The pipe to splice into 306 * @len: The amount to splice 307 * @flags: The SPLICE_F_* flags 308 * 309 * This function allocates a bunch of pages sufficient to hold the requested 310 * amount of data (but limited by the remaining pipe capacity), passes it to 311 * the file's ->read_iter() to read into and then splices the used pages into 312 * the pipe. 313 * 314 * Return: On success, the number of bytes read will be returned and *@ppos 315 * will be updated if appropriate; 0 will be returned if there is no more data 316 * to be read; -EAGAIN will be returned if the pipe had no space, and some 317 * other negative error code will be returned on error. A short read may occur 318 * if the pipe has insufficient space, we reach the end of the data or we hit a 319 * hole. 320 */ 321 ssize_t copy_splice_read(struct file *in, loff_t *ppos, 322 struct pipe_inode_info *pipe, 323 size_t len, unsigned int flags) 324 { 325 struct iov_iter to; 326 struct bio_vec *bv; 327 struct kiocb kiocb; 328 struct page **pages; 329 ssize_t ret; 330 size_t used, npages, chunk, remain, keep = 0; 331 int i; 332 333 /* Work out how much data we can actually add into the pipe */ 334 used = pipe_occupancy(pipe->head, pipe->tail); 335 npages = max_t(ssize_t, pipe->max_usage - used, 0); 336 len = min_t(size_t, len, npages * PAGE_SIZE); 337 npages = DIV_ROUND_UP(len, PAGE_SIZE); 338 339 bv = kzalloc(array_size(npages, sizeof(bv[0])) + 340 array_size(npages, sizeof(struct page *)), GFP_KERNEL); 341 if (!bv) 342 return -ENOMEM; 343 344 pages = (struct page **)(bv + npages); 345 npages = alloc_pages_bulk_array(GFP_USER, npages, pages); 346 if (!npages) { 347 kfree(bv); 348 return -ENOMEM; 349 } 350 351 remain = len = min_t(size_t, len, npages * PAGE_SIZE); 352 353 for (i = 0; i < npages; i++) { 354 chunk = min_t(size_t, PAGE_SIZE, remain); 355 bv[i].bv_page = pages[i]; 356 bv[i].bv_offset = 0; 357 bv[i].bv_len = chunk; 358 remain -= chunk; 359 } 360 361 /* Do the I/O */ 362 iov_iter_bvec(&to, ITER_DEST, bv, npages, len); 363 init_sync_kiocb(&kiocb, in); 364 kiocb.ki_pos = *ppos; 365 ret = call_read_iter(in, &kiocb, &to); 366 367 if (ret > 0) { 368 keep = DIV_ROUND_UP(ret, PAGE_SIZE); 369 *ppos = kiocb.ki_pos; 370 } 371 372 /* 373 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in 374 * there", rather than -EFAULT. 375 */ 376 if (ret == -EFAULT) 377 ret = -EAGAIN; 378 379 /* Free any pages that didn't get touched at all. */ 380 if (keep < npages) 381 release_pages(pages + keep, npages - keep); 382 383 /* Push the remaining pages into the pipe. */ 384 remain = ret; 385 for (i = 0; i < keep; i++) { 386 struct pipe_buffer *buf = pipe_head_buf(pipe); 387 388 chunk = min_t(size_t, remain, PAGE_SIZE); 389 *buf = (struct pipe_buffer) { 390 .ops = &default_pipe_buf_ops, 391 .page = bv[i].bv_page, 392 .offset = 0, 393 .len = chunk, 394 }; 395 pipe->head++; 396 remain -= chunk; 397 } 398 399 kfree(bv); 400 return ret; 401 } 402 EXPORT_SYMBOL(copy_splice_read); 403 404 const struct pipe_buf_operations default_pipe_buf_ops = { 405 .release = generic_pipe_buf_release, 406 .try_steal = generic_pipe_buf_try_steal, 407 .get = generic_pipe_buf_get, 408 }; 409 410 /* Pipe buffer operations for a socket and similar. */ 411 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 412 .release = generic_pipe_buf_release, 413 .get = generic_pipe_buf_get, 414 }; 415 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 416 417 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 418 { 419 smp_mb(); 420 if (waitqueue_active(&pipe->wr_wait)) 421 wake_up_interruptible(&pipe->wr_wait); 422 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 423 } 424 425 /** 426 * splice_from_pipe_feed - feed available data from a pipe to a file 427 * @pipe: pipe to splice from 428 * @sd: information to @actor 429 * @actor: handler that splices the data 430 * 431 * Description: 432 * This function loops over the pipe and calls @actor to do the 433 * actual moving of a single struct pipe_buffer to the desired 434 * destination. It returns when there's no more buffers left in 435 * the pipe or if the requested number of bytes (@sd->total_len) 436 * have been copied. It returns a positive number (one) if the 437 * pipe needs to be filled with more data, zero if the required 438 * number of bytes have been copied and -errno on error. 439 * 440 * This, together with splice_from_pipe_{begin,end,next}, may be 441 * used to implement the functionality of __splice_from_pipe() when 442 * locking is required around copying the pipe buffers to the 443 * destination. 444 */ 445 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 446 splice_actor *actor) 447 { 448 unsigned int head = pipe->head; 449 unsigned int tail = pipe->tail; 450 unsigned int mask = pipe->ring_size - 1; 451 int ret; 452 453 while (!pipe_empty(head, tail)) { 454 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 455 456 sd->len = buf->len; 457 if (sd->len > sd->total_len) 458 sd->len = sd->total_len; 459 460 ret = pipe_buf_confirm(pipe, buf); 461 if (unlikely(ret)) { 462 if (ret == -ENODATA) 463 ret = 0; 464 return ret; 465 } 466 467 ret = actor(pipe, buf, sd); 468 if (ret <= 0) 469 return ret; 470 471 buf->offset += ret; 472 buf->len -= ret; 473 474 sd->num_spliced += ret; 475 sd->len -= ret; 476 sd->pos += ret; 477 sd->total_len -= ret; 478 479 if (!buf->len) { 480 pipe_buf_release(pipe, buf); 481 tail++; 482 pipe->tail = tail; 483 if (pipe->files) 484 sd->need_wakeup = true; 485 } 486 487 if (!sd->total_len) 488 return 0; 489 } 490 491 return 1; 492 } 493 494 /* We know we have a pipe buffer, but maybe it's empty? */ 495 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe) 496 { 497 unsigned int tail = pipe->tail; 498 unsigned int mask = pipe->ring_size - 1; 499 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 500 501 if (unlikely(!buf->len)) { 502 pipe_buf_release(pipe, buf); 503 pipe->tail = tail+1; 504 return true; 505 } 506 507 return false; 508 } 509 510 /** 511 * splice_from_pipe_next - wait for some data to splice from 512 * @pipe: pipe to splice from 513 * @sd: information about the splice operation 514 * 515 * Description: 516 * This function will wait for some data and return a positive 517 * value (one) if pipe buffers are available. It will return zero 518 * or -errno if no more data needs to be spliced. 519 */ 520 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 521 { 522 /* 523 * Check for signal early to make process killable when there are 524 * always buffers available 525 */ 526 if (signal_pending(current)) 527 return -ERESTARTSYS; 528 529 repeat: 530 while (pipe_empty(pipe->head, pipe->tail)) { 531 if (!pipe->writers) 532 return 0; 533 534 if (sd->num_spliced) 535 return 0; 536 537 if (sd->flags & SPLICE_F_NONBLOCK) 538 return -EAGAIN; 539 540 if (signal_pending(current)) 541 return -ERESTARTSYS; 542 543 if (sd->need_wakeup) { 544 wakeup_pipe_writers(pipe); 545 sd->need_wakeup = false; 546 } 547 548 pipe_wait_readable(pipe); 549 } 550 551 if (eat_empty_buffer(pipe)) 552 goto repeat; 553 554 return 1; 555 } 556 557 /** 558 * splice_from_pipe_begin - start splicing from pipe 559 * @sd: information about the splice operation 560 * 561 * Description: 562 * This function should be called before a loop containing 563 * splice_from_pipe_next() and splice_from_pipe_feed() to 564 * initialize the necessary fields of @sd. 565 */ 566 static void splice_from_pipe_begin(struct splice_desc *sd) 567 { 568 sd->num_spliced = 0; 569 sd->need_wakeup = false; 570 } 571 572 /** 573 * splice_from_pipe_end - finish splicing from pipe 574 * @pipe: pipe to splice from 575 * @sd: information about the splice operation 576 * 577 * Description: 578 * This function will wake up pipe writers if necessary. It should 579 * be called after a loop containing splice_from_pipe_next() and 580 * splice_from_pipe_feed(). 581 */ 582 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 583 { 584 if (sd->need_wakeup) 585 wakeup_pipe_writers(pipe); 586 } 587 588 /** 589 * __splice_from_pipe - splice data from a pipe to given actor 590 * @pipe: pipe to splice from 591 * @sd: information to @actor 592 * @actor: handler that splices the data 593 * 594 * Description: 595 * This function does little more than loop over the pipe and call 596 * @actor to do the actual moving of a single struct pipe_buffer to 597 * the desired destination. See pipe_to_file, pipe_to_sendmsg, or 598 * pipe_to_user. 599 * 600 */ 601 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 602 splice_actor *actor) 603 { 604 int ret; 605 606 splice_from_pipe_begin(sd); 607 do { 608 cond_resched(); 609 ret = splice_from_pipe_next(pipe, sd); 610 if (ret > 0) 611 ret = splice_from_pipe_feed(pipe, sd, actor); 612 } while (ret > 0); 613 splice_from_pipe_end(pipe, sd); 614 615 return sd->num_spliced ? sd->num_spliced : ret; 616 } 617 EXPORT_SYMBOL(__splice_from_pipe); 618 619 /** 620 * splice_from_pipe - splice data from a pipe to a file 621 * @pipe: pipe to splice from 622 * @out: file to splice to 623 * @ppos: position in @out 624 * @len: how many bytes to splice 625 * @flags: splice modifier flags 626 * @actor: handler that splices the data 627 * 628 * Description: 629 * See __splice_from_pipe. This function locks the pipe inode, 630 * otherwise it's identical to __splice_from_pipe(). 631 * 632 */ 633 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 634 loff_t *ppos, size_t len, unsigned int flags, 635 splice_actor *actor) 636 { 637 ssize_t ret; 638 struct splice_desc sd = { 639 .total_len = len, 640 .flags = flags, 641 .pos = *ppos, 642 .u.file = out, 643 }; 644 645 pipe_lock(pipe); 646 ret = __splice_from_pipe(pipe, &sd, actor); 647 pipe_unlock(pipe); 648 649 return ret; 650 } 651 652 /** 653 * iter_file_splice_write - splice data from a pipe to a file 654 * @pipe: pipe info 655 * @out: file to write to 656 * @ppos: position in @out 657 * @len: number of bytes to splice 658 * @flags: splice modifier flags 659 * 660 * Description: 661 * Will either move or copy pages (determined by @flags options) from 662 * the given pipe inode to the given file. 663 * This one is ->write_iter-based. 664 * 665 */ 666 ssize_t 667 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 668 loff_t *ppos, size_t len, unsigned int flags) 669 { 670 struct splice_desc sd = { 671 .total_len = len, 672 .flags = flags, 673 .pos = *ppos, 674 .u.file = out, 675 }; 676 int nbufs = pipe->max_usage; 677 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 678 GFP_KERNEL); 679 ssize_t ret; 680 681 if (unlikely(!array)) 682 return -ENOMEM; 683 684 pipe_lock(pipe); 685 686 splice_from_pipe_begin(&sd); 687 while (sd.total_len) { 688 struct iov_iter from; 689 unsigned int head, tail, mask; 690 size_t left; 691 int n; 692 693 ret = splice_from_pipe_next(pipe, &sd); 694 if (ret <= 0) 695 break; 696 697 if (unlikely(nbufs < pipe->max_usage)) { 698 kfree(array); 699 nbufs = pipe->max_usage; 700 array = kcalloc(nbufs, sizeof(struct bio_vec), 701 GFP_KERNEL); 702 if (!array) { 703 ret = -ENOMEM; 704 break; 705 } 706 } 707 708 head = pipe->head; 709 tail = pipe->tail; 710 mask = pipe->ring_size - 1; 711 712 /* build the vector */ 713 left = sd.total_len; 714 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) { 715 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 716 size_t this_len = buf->len; 717 718 /* zero-length bvecs are not supported, skip them */ 719 if (!this_len) 720 continue; 721 this_len = min(this_len, left); 722 723 ret = pipe_buf_confirm(pipe, buf); 724 if (unlikely(ret)) { 725 if (ret == -ENODATA) 726 ret = 0; 727 goto done; 728 } 729 730 bvec_set_page(&array[n], buf->page, this_len, 731 buf->offset); 732 left -= this_len; 733 n++; 734 } 735 736 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left); 737 ret = vfs_iter_write(out, &from, &sd.pos, 0); 738 if (ret <= 0) 739 break; 740 741 sd.num_spliced += ret; 742 sd.total_len -= ret; 743 *ppos = sd.pos; 744 745 /* dismiss the fully eaten buffers, adjust the partial one */ 746 tail = pipe->tail; 747 while (ret) { 748 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 749 if (ret >= buf->len) { 750 ret -= buf->len; 751 buf->len = 0; 752 pipe_buf_release(pipe, buf); 753 tail++; 754 pipe->tail = tail; 755 if (pipe->files) 756 sd.need_wakeup = true; 757 } else { 758 buf->offset += ret; 759 buf->len -= ret; 760 ret = 0; 761 } 762 } 763 } 764 done: 765 kfree(array); 766 splice_from_pipe_end(pipe, &sd); 767 768 pipe_unlock(pipe); 769 770 if (sd.num_spliced) 771 ret = sd.num_spliced; 772 773 return ret; 774 } 775 776 EXPORT_SYMBOL(iter_file_splice_write); 777 778 #ifdef CONFIG_NET 779 /** 780 * splice_to_socket - splice data from a pipe to a socket 781 * @pipe: pipe to splice from 782 * @out: socket to write to 783 * @ppos: position in @out 784 * @len: number of bytes to splice 785 * @flags: splice modifier flags 786 * 787 * Description: 788 * Will send @len bytes from the pipe to a network socket. No data copying 789 * is involved. 790 * 791 */ 792 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out, 793 loff_t *ppos, size_t len, unsigned int flags) 794 { 795 struct socket *sock = sock_from_file(out); 796 struct bio_vec bvec[16]; 797 struct msghdr msg = {}; 798 ssize_t ret = 0; 799 size_t spliced = 0; 800 bool need_wakeup = false; 801 802 pipe_lock(pipe); 803 804 while (len > 0) { 805 unsigned int head, tail, mask, bc = 0; 806 size_t remain = len; 807 808 /* 809 * Check for signal early to make process killable when there 810 * are always buffers available 811 */ 812 ret = -ERESTARTSYS; 813 if (signal_pending(current)) 814 break; 815 816 while (pipe_empty(pipe->head, pipe->tail)) { 817 ret = 0; 818 if (!pipe->writers) 819 goto out; 820 821 if (spliced) 822 goto out; 823 824 ret = -EAGAIN; 825 if (flags & SPLICE_F_NONBLOCK) 826 goto out; 827 828 ret = -ERESTARTSYS; 829 if (signal_pending(current)) 830 goto out; 831 832 if (need_wakeup) { 833 wakeup_pipe_writers(pipe); 834 need_wakeup = false; 835 } 836 837 pipe_wait_readable(pipe); 838 } 839 840 head = pipe->head; 841 tail = pipe->tail; 842 mask = pipe->ring_size - 1; 843 844 while (!pipe_empty(head, tail)) { 845 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 846 size_t seg; 847 848 if (!buf->len) { 849 tail++; 850 continue; 851 } 852 853 seg = min_t(size_t, remain, buf->len); 854 855 ret = pipe_buf_confirm(pipe, buf); 856 if (unlikely(ret)) { 857 if (ret == -ENODATA) 858 ret = 0; 859 break; 860 } 861 862 bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset); 863 remain -= seg; 864 if (remain == 0 || bc >= ARRAY_SIZE(bvec)) 865 break; 866 tail++; 867 } 868 869 if (!bc) 870 break; 871 872 msg.msg_flags = MSG_SPLICE_PAGES; 873 if (flags & SPLICE_F_MORE) 874 msg.msg_flags |= MSG_MORE; 875 if (remain && pipe_occupancy(pipe->head, tail) > 0) 876 msg.msg_flags |= MSG_MORE; 877 if (out->f_flags & O_NONBLOCK) 878 msg.msg_flags |= MSG_DONTWAIT; 879 880 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc, 881 len - remain); 882 ret = sock_sendmsg(sock, &msg); 883 if (ret <= 0) 884 break; 885 886 spliced += ret; 887 len -= ret; 888 tail = pipe->tail; 889 while (ret > 0) { 890 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 891 size_t seg = min_t(size_t, ret, buf->len); 892 893 buf->offset += seg; 894 buf->len -= seg; 895 ret -= seg; 896 897 if (!buf->len) { 898 pipe_buf_release(pipe, buf); 899 tail++; 900 } 901 } 902 903 if (tail != pipe->tail) { 904 pipe->tail = tail; 905 if (pipe->files) 906 need_wakeup = true; 907 } 908 } 909 910 out: 911 pipe_unlock(pipe); 912 if (need_wakeup) 913 wakeup_pipe_writers(pipe); 914 return spliced ?: ret; 915 } 916 #endif 917 918 static int warn_unsupported(struct file *file, const char *op) 919 { 920 pr_debug_ratelimited( 921 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n", 922 op, file, current->pid, current->comm); 923 return -EINVAL; 924 } 925 926 /* 927 * Attempt to initiate a splice from pipe to file. 928 */ 929 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 930 loff_t *ppos, size_t len, unsigned int flags) 931 { 932 if (unlikely(!out->f_op->splice_write)) 933 return warn_unsupported(out, "write"); 934 return out->f_op->splice_write(pipe, out, ppos, len, flags); 935 } 936 937 /* 938 * Indicate to the caller that there was a premature EOF when reading from the 939 * source and the caller didn't indicate they would be sending more data after 940 * this. 941 */ 942 static void do_splice_eof(struct splice_desc *sd) 943 { 944 if (sd->splice_eof) 945 sd->splice_eof(sd); 946 } 947 948 /** 949 * vfs_splice_read - Read data from a file and splice it into a pipe 950 * @in: File to splice from 951 * @ppos: Input file offset 952 * @pipe: Pipe to splice to 953 * @len: Number of bytes to splice 954 * @flags: Splice modifier flags (SPLICE_F_*) 955 * 956 * Splice the requested amount of data from the input file to the pipe. This 957 * is synchronous as the caller must hold the pipe lock across the entire 958 * operation. 959 * 960 * If successful, it returns the amount of data spliced, 0 if it hit the EOF or 961 * a hole and a negative error code otherwise. 962 */ 963 long vfs_splice_read(struct file *in, loff_t *ppos, 964 struct pipe_inode_info *pipe, size_t len, 965 unsigned int flags) 966 { 967 unsigned int p_space; 968 int ret; 969 970 if (unlikely(!(in->f_mode & FMODE_READ))) 971 return -EBADF; 972 if (!len) 973 return 0; 974 975 /* Don't try to read more the pipe has space for. */ 976 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail); 977 len = min_t(size_t, len, p_space << PAGE_SHIFT); 978 979 ret = rw_verify_area(READ, in, ppos, len); 980 if (unlikely(ret < 0)) 981 return ret; 982 983 if (unlikely(len > MAX_RW_COUNT)) 984 len = MAX_RW_COUNT; 985 986 if (unlikely(!in->f_op->splice_read)) 987 return warn_unsupported(in, "read"); 988 /* 989 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a 990 * buffer, copy into it and splice that into the pipe. 991 */ 992 if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host)) 993 return copy_splice_read(in, ppos, pipe, len, flags); 994 return in->f_op->splice_read(in, ppos, pipe, len, flags); 995 } 996 EXPORT_SYMBOL_GPL(vfs_splice_read); 997 998 /** 999 * splice_direct_to_actor - splices data directly between two non-pipes 1000 * @in: file to splice from 1001 * @sd: actor information on where to splice to 1002 * @actor: handles the data splicing 1003 * 1004 * Description: 1005 * This is a special case helper to splice directly between two 1006 * points, without requiring an explicit pipe. Internally an allocated 1007 * pipe is cached in the process, and reused during the lifetime of 1008 * that process. 1009 * 1010 */ 1011 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1012 splice_direct_actor *actor) 1013 { 1014 struct pipe_inode_info *pipe; 1015 long ret, bytes; 1016 size_t len; 1017 int i, flags, more; 1018 1019 /* 1020 * We require the input to be seekable, as we don't want to randomly 1021 * drop data for eg socket -> socket splicing. Use the piped splicing 1022 * for that! 1023 */ 1024 if (unlikely(!(in->f_mode & FMODE_LSEEK))) 1025 return -EINVAL; 1026 1027 /* 1028 * neither in nor out is a pipe, setup an internal pipe attached to 1029 * 'out' and transfer the wanted data from 'in' to 'out' through that 1030 */ 1031 pipe = current->splice_pipe; 1032 if (unlikely(!pipe)) { 1033 pipe = alloc_pipe_info(); 1034 if (!pipe) 1035 return -ENOMEM; 1036 1037 /* 1038 * We don't have an immediate reader, but we'll read the stuff 1039 * out of the pipe right after the splice_to_pipe(). So set 1040 * PIPE_READERS appropriately. 1041 */ 1042 pipe->readers = 1; 1043 1044 current->splice_pipe = pipe; 1045 } 1046 1047 /* 1048 * Do the splice. 1049 */ 1050 bytes = 0; 1051 len = sd->total_len; 1052 1053 /* Don't block on output, we have to drain the direct pipe. */ 1054 flags = sd->flags; 1055 sd->flags &= ~SPLICE_F_NONBLOCK; 1056 1057 /* 1058 * We signal MORE until we've read sufficient data to fulfill the 1059 * request and we keep signalling it if the caller set it. 1060 */ 1061 more = sd->flags & SPLICE_F_MORE; 1062 sd->flags |= SPLICE_F_MORE; 1063 1064 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail)); 1065 1066 while (len) { 1067 size_t read_len; 1068 loff_t pos = sd->pos, prev_pos = pos; 1069 1070 ret = vfs_splice_read(in, &pos, pipe, len, flags); 1071 if (unlikely(ret <= 0)) 1072 goto read_failure; 1073 1074 read_len = ret; 1075 sd->total_len = read_len; 1076 1077 /* 1078 * If we now have sufficient data to fulfill the request then 1079 * we clear SPLICE_F_MORE if it was not set initially. 1080 */ 1081 if (read_len >= len && !more) 1082 sd->flags &= ~SPLICE_F_MORE; 1083 1084 /* 1085 * NOTE: nonblocking mode only applies to the input. We 1086 * must not do the output in nonblocking mode as then we 1087 * could get stuck data in the internal pipe: 1088 */ 1089 ret = actor(pipe, sd); 1090 if (unlikely(ret <= 0)) { 1091 sd->pos = prev_pos; 1092 goto out_release; 1093 } 1094 1095 bytes += ret; 1096 len -= ret; 1097 sd->pos = pos; 1098 1099 if (ret < read_len) { 1100 sd->pos = prev_pos + ret; 1101 goto out_release; 1102 } 1103 } 1104 1105 done: 1106 pipe->tail = pipe->head = 0; 1107 file_accessed(in); 1108 return bytes; 1109 1110 read_failure: 1111 /* 1112 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that 1113 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a 1114 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at 1115 * least 1 byte *then* we will also do the ->splice_eof() call. 1116 */ 1117 if (ret == 0 && !more && len > 0 && bytes) 1118 do_splice_eof(sd); 1119 out_release: 1120 /* 1121 * If we did an incomplete transfer we must release 1122 * the pipe buffers in question: 1123 */ 1124 for (i = 0; i < pipe->ring_size; i++) { 1125 struct pipe_buffer *buf = &pipe->bufs[i]; 1126 1127 if (buf->ops) 1128 pipe_buf_release(pipe, buf); 1129 } 1130 1131 if (!bytes) 1132 bytes = ret; 1133 1134 goto done; 1135 } 1136 EXPORT_SYMBOL(splice_direct_to_actor); 1137 1138 static int direct_splice_actor(struct pipe_inode_info *pipe, 1139 struct splice_desc *sd) 1140 { 1141 struct file *file = sd->u.file; 1142 1143 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1144 sd->flags); 1145 } 1146 1147 static void direct_file_splice_eof(struct splice_desc *sd) 1148 { 1149 struct file *file = sd->u.file; 1150 1151 if (file->f_op->splice_eof) 1152 file->f_op->splice_eof(file); 1153 } 1154 1155 /** 1156 * do_splice_direct - splices data directly between two files 1157 * @in: file to splice from 1158 * @ppos: input file offset 1159 * @out: file to splice to 1160 * @opos: output file offset 1161 * @len: number of bytes to splice 1162 * @flags: splice modifier flags 1163 * 1164 * Description: 1165 * For use by do_sendfile(). splice can easily emulate sendfile, but 1166 * doing it in the application would incur an extra system call 1167 * (splice in + splice out, as compared to just sendfile()). So this helper 1168 * can splice directly through a process-private pipe. 1169 * 1170 */ 1171 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1172 loff_t *opos, size_t len, unsigned int flags) 1173 { 1174 struct splice_desc sd = { 1175 .len = len, 1176 .total_len = len, 1177 .flags = flags, 1178 .pos = *ppos, 1179 .u.file = out, 1180 .splice_eof = direct_file_splice_eof, 1181 .opos = opos, 1182 }; 1183 long ret; 1184 1185 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1186 return -EBADF; 1187 1188 if (unlikely(out->f_flags & O_APPEND)) 1189 return -EINVAL; 1190 1191 ret = rw_verify_area(WRITE, out, opos, len); 1192 if (unlikely(ret < 0)) 1193 return ret; 1194 1195 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1196 if (ret > 0) 1197 *ppos = sd.pos; 1198 1199 return ret; 1200 } 1201 EXPORT_SYMBOL(do_splice_direct); 1202 1203 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 1204 { 1205 for (;;) { 1206 if (unlikely(!pipe->readers)) { 1207 send_sig(SIGPIPE, current, 0); 1208 return -EPIPE; 1209 } 1210 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1211 return 0; 1212 if (flags & SPLICE_F_NONBLOCK) 1213 return -EAGAIN; 1214 if (signal_pending(current)) 1215 return -ERESTARTSYS; 1216 pipe_wait_writable(pipe); 1217 } 1218 } 1219 1220 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1221 struct pipe_inode_info *opipe, 1222 size_t len, unsigned int flags); 1223 1224 long splice_file_to_pipe(struct file *in, 1225 struct pipe_inode_info *opipe, 1226 loff_t *offset, 1227 size_t len, unsigned int flags) 1228 { 1229 long ret; 1230 1231 pipe_lock(opipe); 1232 ret = wait_for_space(opipe, flags); 1233 if (!ret) 1234 ret = vfs_splice_read(in, offset, opipe, len, flags); 1235 pipe_unlock(opipe); 1236 if (ret > 0) 1237 wakeup_pipe_readers(opipe); 1238 return ret; 1239 } 1240 1241 /* 1242 * Determine where to splice to/from. 1243 */ 1244 long do_splice(struct file *in, loff_t *off_in, struct file *out, 1245 loff_t *off_out, size_t len, unsigned int flags) 1246 { 1247 struct pipe_inode_info *ipipe; 1248 struct pipe_inode_info *opipe; 1249 loff_t offset; 1250 long ret; 1251 1252 if (unlikely(!(in->f_mode & FMODE_READ) || 1253 !(out->f_mode & FMODE_WRITE))) 1254 return -EBADF; 1255 1256 ipipe = get_pipe_info(in, true); 1257 opipe = get_pipe_info(out, true); 1258 1259 if (ipipe && opipe) { 1260 if (off_in || off_out) 1261 return -ESPIPE; 1262 1263 /* Splicing to self would be fun, but... */ 1264 if (ipipe == opipe) 1265 return -EINVAL; 1266 1267 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1268 flags |= SPLICE_F_NONBLOCK; 1269 1270 ret = splice_pipe_to_pipe(ipipe, opipe, len, flags); 1271 } else if (ipipe) { 1272 if (off_in) 1273 return -ESPIPE; 1274 if (off_out) { 1275 if (!(out->f_mode & FMODE_PWRITE)) 1276 return -EINVAL; 1277 offset = *off_out; 1278 } else { 1279 offset = out->f_pos; 1280 } 1281 1282 if (unlikely(out->f_flags & O_APPEND)) 1283 return -EINVAL; 1284 1285 ret = rw_verify_area(WRITE, out, &offset, len); 1286 if (unlikely(ret < 0)) 1287 return ret; 1288 1289 if (in->f_flags & O_NONBLOCK) 1290 flags |= SPLICE_F_NONBLOCK; 1291 1292 file_start_write(out); 1293 ret = do_splice_from(ipipe, out, &offset, len, flags); 1294 file_end_write(out); 1295 1296 if (!off_out) 1297 out->f_pos = offset; 1298 else 1299 *off_out = offset; 1300 } else if (opipe) { 1301 if (off_out) 1302 return -ESPIPE; 1303 if (off_in) { 1304 if (!(in->f_mode & FMODE_PREAD)) 1305 return -EINVAL; 1306 offset = *off_in; 1307 } else { 1308 offset = in->f_pos; 1309 } 1310 1311 if (out->f_flags & O_NONBLOCK) 1312 flags |= SPLICE_F_NONBLOCK; 1313 1314 ret = splice_file_to_pipe(in, opipe, &offset, len, flags); 1315 1316 if (!off_in) 1317 in->f_pos = offset; 1318 else 1319 *off_in = offset; 1320 } else { 1321 ret = -EINVAL; 1322 } 1323 1324 if (ret > 0) { 1325 /* 1326 * Generate modify out before access in: 1327 * do_splice_from() may've already sent modify out, 1328 * and this ensures the events get merged. 1329 */ 1330 fsnotify_modify(out); 1331 fsnotify_access(in); 1332 } 1333 1334 return ret; 1335 } 1336 1337 static long __do_splice(struct file *in, loff_t __user *off_in, 1338 struct file *out, loff_t __user *off_out, 1339 size_t len, unsigned int flags) 1340 { 1341 struct pipe_inode_info *ipipe; 1342 struct pipe_inode_info *opipe; 1343 loff_t offset, *__off_in = NULL, *__off_out = NULL; 1344 long ret; 1345 1346 ipipe = get_pipe_info(in, true); 1347 opipe = get_pipe_info(out, true); 1348 1349 if (ipipe) { 1350 if (off_in) 1351 return -ESPIPE; 1352 pipe_clear_nowait(in); 1353 } 1354 if (opipe) { 1355 if (off_out) 1356 return -ESPIPE; 1357 pipe_clear_nowait(out); 1358 } 1359 1360 if (off_out) { 1361 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1362 return -EFAULT; 1363 __off_out = &offset; 1364 } 1365 if (off_in) { 1366 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1367 return -EFAULT; 1368 __off_in = &offset; 1369 } 1370 1371 ret = do_splice(in, __off_in, out, __off_out, len, flags); 1372 if (ret < 0) 1373 return ret; 1374 1375 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t))) 1376 return -EFAULT; 1377 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t))) 1378 return -EFAULT; 1379 1380 return ret; 1381 } 1382 1383 static int iter_to_pipe(struct iov_iter *from, 1384 struct pipe_inode_info *pipe, 1385 unsigned flags) 1386 { 1387 struct pipe_buffer buf = { 1388 .ops = &user_page_pipe_buf_ops, 1389 .flags = flags 1390 }; 1391 size_t total = 0; 1392 int ret = 0; 1393 1394 while (iov_iter_count(from)) { 1395 struct page *pages[16]; 1396 ssize_t left; 1397 size_t start; 1398 int i, n; 1399 1400 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start); 1401 if (left <= 0) { 1402 ret = left; 1403 break; 1404 } 1405 1406 n = DIV_ROUND_UP(left + start, PAGE_SIZE); 1407 for (i = 0; i < n; i++) { 1408 int size = min_t(int, left, PAGE_SIZE - start); 1409 1410 buf.page = pages[i]; 1411 buf.offset = start; 1412 buf.len = size; 1413 ret = add_to_pipe(pipe, &buf); 1414 if (unlikely(ret < 0)) { 1415 iov_iter_revert(from, left); 1416 // this one got dropped by add_to_pipe() 1417 while (++i < n) 1418 put_page(pages[i]); 1419 goto out; 1420 } 1421 total += ret; 1422 left -= size; 1423 start = 0; 1424 } 1425 } 1426 out: 1427 return total ? total : ret; 1428 } 1429 1430 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1431 struct splice_desc *sd) 1432 { 1433 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1434 return n == sd->len ? n : -EFAULT; 1435 } 1436 1437 /* 1438 * For lack of a better implementation, implement vmsplice() to userspace 1439 * as a simple copy of the pipes pages to the user iov. 1440 */ 1441 static long vmsplice_to_user(struct file *file, struct iov_iter *iter, 1442 unsigned int flags) 1443 { 1444 struct pipe_inode_info *pipe = get_pipe_info(file, true); 1445 struct splice_desc sd = { 1446 .total_len = iov_iter_count(iter), 1447 .flags = flags, 1448 .u.data = iter 1449 }; 1450 long ret = 0; 1451 1452 if (!pipe) 1453 return -EBADF; 1454 1455 pipe_clear_nowait(file); 1456 1457 if (sd.total_len) { 1458 pipe_lock(pipe); 1459 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1460 pipe_unlock(pipe); 1461 } 1462 1463 if (ret > 0) 1464 fsnotify_access(file); 1465 1466 return ret; 1467 } 1468 1469 /* 1470 * vmsplice splices a user address range into a pipe. It can be thought of 1471 * as splice-from-memory, where the regular splice is splice-from-file (or 1472 * to file). In both cases the output is a pipe, naturally. 1473 */ 1474 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter, 1475 unsigned int flags) 1476 { 1477 struct pipe_inode_info *pipe; 1478 long ret = 0; 1479 unsigned buf_flag = 0; 1480 1481 if (flags & SPLICE_F_GIFT) 1482 buf_flag = PIPE_BUF_FLAG_GIFT; 1483 1484 pipe = get_pipe_info(file, true); 1485 if (!pipe) 1486 return -EBADF; 1487 1488 pipe_clear_nowait(file); 1489 1490 pipe_lock(pipe); 1491 ret = wait_for_space(pipe, flags); 1492 if (!ret) 1493 ret = iter_to_pipe(iter, pipe, buf_flag); 1494 pipe_unlock(pipe); 1495 if (ret > 0) { 1496 wakeup_pipe_readers(pipe); 1497 fsnotify_modify(file); 1498 } 1499 return ret; 1500 } 1501 1502 static int vmsplice_type(struct fd f, int *type) 1503 { 1504 if (!f.file) 1505 return -EBADF; 1506 if (f.file->f_mode & FMODE_WRITE) { 1507 *type = ITER_SOURCE; 1508 } else if (f.file->f_mode & FMODE_READ) { 1509 *type = ITER_DEST; 1510 } else { 1511 fdput(f); 1512 return -EBADF; 1513 } 1514 return 0; 1515 } 1516 1517 /* 1518 * Note that vmsplice only really supports true splicing _from_ user memory 1519 * to a pipe, not the other way around. Splicing from user memory is a simple 1520 * operation that can be supported without any funky alignment restrictions 1521 * or nasty vm tricks. We simply map in the user memory and fill them into 1522 * a pipe. The reverse isn't quite as easy, though. There are two possible 1523 * solutions for that: 1524 * 1525 * - memcpy() the data internally, at which point we might as well just 1526 * do a regular read() on the buffer anyway. 1527 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1528 * has restriction limitations on both ends of the pipe). 1529 * 1530 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1531 * 1532 */ 1533 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov, 1534 unsigned long, nr_segs, unsigned int, flags) 1535 { 1536 struct iovec iovstack[UIO_FASTIOV]; 1537 struct iovec *iov = iovstack; 1538 struct iov_iter iter; 1539 ssize_t error; 1540 struct fd f; 1541 int type; 1542 1543 if (unlikely(flags & ~SPLICE_F_ALL)) 1544 return -EINVAL; 1545 1546 f = fdget(fd); 1547 error = vmsplice_type(f, &type); 1548 if (error) 1549 return error; 1550 1551 error = import_iovec(type, uiov, nr_segs, 1552 ARRAY_SIZE(iovstack), &iov, &iter); 1553 if (error < 0) 1554 goto out_fdput; 1555 1556 if (!iov_iter_count(&iter)) 1557 error = 0; 1558 else if (type == ITER_SOURCE) 1559 error = vmsplice_to_pipe(f.file, &iter, flags); 1560 else 1561 error = vmsplice_to_user(f.file, &iter, flags); 1562 1563 kfree(iov); 1564 out_fdput: 1565 fdput(f); 1566 return error; 1567 } 1568 1569 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1570 int, fd_out, loff_t __user *, off_out, 1571 size_t, len, unsigned int, flags) 1572 { 1573 struct fd in, out; 1574 long error; 1575 1576 if (unlikely(!len)) 1577 return 0; 1578 1579 if (unlikely(flags & ~SPLICE_F_ALL)) 1580 return -EINVAL; 1581 1582 error = -EBADF; 1583 in = fdget(fd_in); 1584 if (in.file) { 1585 out = fdget(fd_out); 1586 if (out.file) { 1587 error = __do_splice(in.file, off_in, out.file, off_out, 1588 len, flags); 1589 fdput(out); 1590 } 1591 fdput(in); 1592 } 1593 return error; 1594 } 1595 1596 /* 1597 * Make sure there's data to read. Wait for input if we can, otherwise 1598 * return an appropriate error. 1599 */ 1600 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1601 { 1602 int ret; 1603 1604 /* 1605 * Check the pipe occupancy without the inode lock first. This function 1606 * is speculative anyways, so missing one is ok. 1607 */ 1608 if (!pipe_empty(pipe->head, pipe->tail)) 1609 return 0; 1610 1611 ret = 0; 1612 pipe_lock(pipe); 1613 1614 while (pipe_empty(pipe->head, pipe->tail)) { 1615 if (signal_pending(current)) { 1616 ret = -ERESTARTSYS; 1617 break; 1618 } 1619 if (!pipe->writers) 1620 break; 1621 if (flags & SPLICE_F_NONBLOCK) { 1622 ret = -EAGAIN; 1623 break; 1624 } 1625 pipe_wait_readable(pipe); 1626 } 1627 1628 pipe_unlock(pipe); 1629 return ret; 1630 } 1631 1632 /* 1633 * Make sure there's writeable room. Wait for room if we can, otherwise 1634 * return an appropriate error. 1635 */ 1636 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1637 { 1638 int ret; 1639 1640 /* 1641 * Check pipe occupancy without the inode lock first. This function 1642 * is speculative anyways, so missing one is ok. 1643 */ 1644 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1645 return 0; 1646 1647 ret = 0; 1648 pipe_lock(pipe); 1649 1650 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 1651 if (!pipe->readers) { 1652 send_sig(SIGPIPE, current, 0); 1653 ret = -EPIPE; 1654 break; 1655 } 1656 if (flags & SPLICE_F_NONBLOCK) { 1657 ret = -EAGAIN; 1658 break; 1659 } 1660 if (signal_pending(current)) { 1661 ret = -ERESTARTSYS; 1662 break; 1663 } 1664 pipe_wait_writable(pipe); 1665 } 1666 1667 pipe_unlock(pipe); 1668 return ret; 1669 } 1670 1671 /* 1672 * Splice contents of ipipe to opipe. 1673 */ 1674 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1675 struct pipe_inode_info *opipe, 1676 size_t len, unsigned int flags) 1677 { 1678 struct pipe_buffer *ibuf, *obuf; 1679 unsigned int i_head, o_head; 1680 unsigned int i_tail, o_tail; 1681 unsigned int i_mask, o_mask; 1682 int ret = 0; 1683 bool input_wakeup = false; 1684 1685 1686 retry: 1687 ret = ipipe_prep(ipipe, flags); 1688 if (ret) 1689 return ret; 1690 1691 ret = opipe_prep(opipe, flags); 1692 if (ret) 1693 return ret; 1694 1695 /* 1696 * Potential ABBA deadlock, work around it by ordering lock 1697 * grabbing by pipe info address. Otherwise two different processes 1698 * could deadlock (one doing tee from A -> B, the other from B -> A). 1699 */ 1700 pipe_double_lock(ipipe, opipe); 1701 1702 i_tail = ipipe->tail; 1703 i_mask = ipipe->ring_size - 1; 1704 o_head = opipe->head; 1705 o_mask = opipe->ring_size - 1; 1706 1707 do { 1708 size_t o_len; 1709 1710 if (!opipe->readers) { 1711 send_sig(SIGPIPE, current, 0); 1712 if (!ret) 1713 ret = -EPIPE; 1714 break; 1715 } 1716 1717 i_head = ipipe->head; 1718 o_tail = opipe->tail; 1719 1720 if (pipe_empty(i_head, i_tail) && !ipipe->writers) 1721 break; 1722 1723 /* 1724 * Cannot make any progress, because either the input 1725 * pipe is empty or the output pipe is full. 1726 */ 1727 if (pipe_empty(i_head, i_tail) || 1728 pipe_full(o_head, o_tail, opipe->max_usage)) { 1729 /* Already processed some buffers, break */ 1730 if (ret) 1731 break; 1732 1733 if (flags & SPLICE_F_NONBLOCK) { 1734 ret = -EAGAIN; 1735 break; 1736 } 1737 1738 /* 1739 * We raced with another reader/writer and haven't 1740 * managed to process any buffers. A zero return 1741 * value means EOF, so retry instead. 1742 */ 1743 pipe_unlock(ipipe); 1744 pipe_unlock(opipe); 1745 goto retry; 1746 } 1747 1748 ibuf = &ipipe->bufs[i_tail & i_mask]; 1749 obuf = &opipe->bufs[o_head & o_mask]; 1750 1751 if (len >= ibuf->len) { 1752 /* 1753 * Simply move the whole buffer from ipipe to opipe 1754 */ 1755 *obuf = *ibuf; 1756 ibuf->ops = NULL; 1757 i_tail++; 1758 ipipe->tail = i_tail; 1759 input_wakeup = true; 1760 o_len = obuf->len; 1761 o_head++; 1762 opipe->head = o_head; 1763 } else { 1764 /* 1765 * Get a reference to this pipe buffer, 1766 * so we can copy the contents over. 1767 */ 1768 if (!pipe_buf_get(ipipe, ibuf)) { 1769 if (ret == 0) 1770 ret = -EFAULT; 1771 break; 1772 } 1773 *obuf = *ibuf; 1774 1775 /* 1776 * Don't inherit the gift and merge flags, we need to 1777 * prevent multiple steals of this page. 1778 */ 1779 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1780 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1781 1782 obuf->len = len; 1783 ibuf->offset += len; 1784 ibuf->len -= len; 1785 o_len = len; 1786 o_head++; 1787 opipe->head = o_head; 1788 } 1789 ret += o_len; 1790 len -= o_len; 1791 } while (len); 1792 1793 pipe_unlock(ipipe); 1794 pipe_unlock(opipe); 1795 1796 /* 1797 * If we put data in the output pipe, wakeup any potential readers. 1798 */ 1799 if (ret > 0) 1800 wakeup_pipe_readers(opipe); 1801 1802 if (input_wakeup) 1803 wakeup_pipe_writers(ipipe); 1804 1805 return ret; 1806 } 1807 1808 /* 1809 * Link contents of ipipe to opipe. 1810 */ 1811 static int link_pipe(struct pipe_inode_info *ipipe, 1812 struct pipe_inode_info *opipe, 1813 size_t len, unsigned int flags) 1814 { 1815 struct pipe_buffer *ibuf, *obuf; 1816 unsigned int i_head, o_head; 1817 unsigned int i_tail, o_tail; 1818 unsigned int i_mask, o_mask; 1819 int ret = 0; 1820 1821 /* 1822 * Potential ABBA deadlock, work around it by ordering lock 1823 * grabbing by pipe info address. Otherwise two different processes 1824 * could deadlock (one doing tee from A -> B, the other from B -> A). 1825 */ 1826 pipe_double_lock(ipipe, opipe); 1827 1828 i_tail = ipipe->tail; 1829 i_mask = ipipe->ring_size - 1; 1830 o_head = opipe->head; 1831 o_mask = opipe->ring_size - 1; 1832 1833 do { 1834 if (!opipe->readers) { 1835 send_sig(SIGPIPE, current, 0); 1836 if (!ret) 1837 ret = -EPIPE; 1838 break; 1839 } 1840 1841 i_head = ipipe->head; 1842 o_tail = opipe->tail; 1843 1844 /* 1845 * If we have iterated all input buffers or run out of 1846 * output room, break. 1847 */ 1848 if (pipe_empty(i_head, i_tail) || 1849 pipe_full(o_head, o_tail, opipe->max_usage)) 1850 break; 1851 1852 ibuf = &ipipe->bufs[i_tail & i_mask]; 1853 obuf = &opipe->bufs[o_head & o_mask]; 1854 1855 /* 1856 * Get a reference to this pipe buffer, 1857 * so we can copy the contents over. 1858 */ 1859 if (!pipe_buf_get(ipipe, ibuf)) { 1860 if (ret == 0) 1861 ret = -EFAULT; 1862 break; 1863 } 1864 1865 *obuf = *ibuf; 1866 1867 /* 1868 * Don't inherit the gift and merge flag, we need to prevent 1869 * multiple steals of this page. 1870 */ 1871 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1872 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1873 1874 if (obuf->len > len) 1875 obuf->len = len; 1876 ret += obuf->len; 1877 len -= obuf->len; 1878 1879 o_head++; 1880 opipe->head = o_head; 1881 i_tail++; 1882 } while (len); 1883 1884 pipe_unlock(ipipe); 1885 pipe_unlock(opipe); 1886 1887 /* 1888 * If we put data in the output pipe, wakeup any potential readers. 1889 */ 1890 if (ret > 0) 1891 wakeup_pipe_readers(opipe); 1892 1893 return ret; 1894 } 1895 1896 /* 1897 * This is a tee(1) implementation that works on pipes. It doesn't copy 1898 * any data, it simply references the 'in' pages on the 'out' pipe. 1899 * The 'flags' used are the SPLICE_F_* variants, currently the only 1900 * applicable one is SPLICE_F_NONBLOCK. 1901 */ 1902 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags) 1903 { 1904 struct pipe_inode_info *ipipe = get_pipe_info(in, true); 1905 struct pipe_inode_info *opipe = get_pipe_info(out, true); 1906 int ret = -EINVAL; 1907 1908 if (unlikely(!(in->f_mode & FMODE_READ) || 1909 !(out->f_mode & FMODE_WRITE))) 1910 return -EBADF; 1911 1912 /* 1913 * Duplicate the contents of ipipe to opipe without actually 1914 * copying the data. 1915 */ 1916 if (ipipe && opipe && ipipe != opipe) { 1917 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1918 flags |= SPLICE_F_NONBLOCK; 1919 1920 /* 1921 * Keep going, unless we encounter an error. The ipipe/opipe 1922 * ordering doesn't really matter. 1923 */ 1924 ret = ipipe_prep(ipipe, flags); 1925 if (!ret) { 1926 ret = opipe_prep(opipe, flags); 1927 if (!ret) 1928 ret = link_pipe(ipipe, opipe, len, flags); 1929 } 1930 } 1931 1932 if (ret > 0) { 1933 fsnotify_access(in); 1934 fsnotify_modify(out); 1935 } 1936 1937 return ret; 1938 } 1939 1940 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1941 { 1942 struct fd in, out; 1943 int error; 1944 1945 if (unlikely(flags & ~SPLICE_F_ALL)) 1946 return -EINVAL; 1947 1948 if (unlikely(!len)) 1949 return 0; 1950 1951 error = -EBADF; 1952 in = fdget(fdin); 1953 if (in.file) { 1954 out = fdget(fdout); 1955 if (out.file) { 1956 error = do_tee(in.file, out.file, len, flags); 1957 fdput(out); 1958 } 1959 fdput(in); 1960 } 1961 1962 return error; 1963 } 1964