xref: /openbmc/linux/fs/splice.c (revision 110e6f26)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36 
37 /*
38  * Attempt to steal a page from a pipe buffer. This should perhaps go into
39  * a vm helper function, it's already simplified quite a bit by the
40  * addition of remove_mapping(). If success is returned, the caller may
41  * attempt to reuse this page for another destination.
42  */
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 				     struct pipe_buffer *buf)
45 {
46 	struct page *page = buf->page;
47 	struct address_space *mapping;
48 
49 	lock_page(page);
50 
51 	mapping = page_mapping(page);
52 	if (mapping) {
53 		WARN_ON(!PageUptodate(page));
54 
55 		/*
56 		 * At least for ext2 with nobh option, we need to wait on
57 		 * writeback completing on this page, since we'll remove it
58 		 * from the pagecache.  Otherwise truncate wont wait on the
59 		 * page, allowing the disk blocks to be reused by someone else
60 		 * before we actually wrote our data to them. fs corruption
61 		 * ensues.
62 		 */
63 		wait_on_page_writeback(page);
64 
65 		if (page_has_private(page) &&
66 		    !try_to_release_page(page, GFP_KERNEL))
67 			goto out_unlock;
68 
69 		/*
70 		 * If we succeeded in removing the mapping, set LRU flag
71 		 * and return good.
72 		 */
73 		if (remove_mapping(mapping, page)) {
74 			buf->flags |= PIPE_BUF_FLAG_LRU;
75 			return 0;
76 		}
77 	}
78 
79 	/*
80 	 * Raced with truncate or failed to remove page from current
81 	 * address space, unlock and return failure.
82 	 */
83 out_unlock:
84 	unlock_page(page);
85 	return 1;
86 }
87 
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 					struct pipe_buffer *buf)
90 {
91 	put_page(buf->page);
92 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94 
95 /*
96  * Check whether the contents of buf is OK to access. Since the content
97  * is a page cache page, IO may be in flight.
98  */
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 				       struct pipe_buffer *buf)
101 {
102 	struct page *page = buf->page;
103 	int err;
104 
105 	if (!PageUptodate(page)) {
106 		lock_page(page);
107 
108 		/*
109 		 * Page got truncated/unhashed. This will cause a 0-byte
110 		 * splice, if this is the first page.
111 		 */
112 		if (!page->mapping) {
113 			err = -ENODATA;
114 			goto error;
115 		}
116 
117 		/*
118 		 * Uh oh, read-error from disk.
119 		 */
120 		if (!PageUptodate(page)) {
121 			err = -EIO;
122 			goto error;
123 		}
124 
125 		/*
126 		 * Page is ok afterall, we are done.
127 		 */
128 		unlock_page(page);
129 	}
130 
131 	return 0;
132 error:
133 	unlock_page(page);
134 	return err;
135 }
136 
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 	.can_merge = 0,
139 	.confirm = page_cache_pipe_buf_confirm,
140 	.release = page_cache_pipe_buf_release,
141 	.steal = page_cache_pipe_buf_steal,
142 	.get = generic_pipe_buf_get,
143 };
144 
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 				    struct pipe_buffer *buf)
147 {
148 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 		return 1;
150 
151 	buf->flags |= PIPE_BUF_FLAG_LRU;
152 	return generic_pipe_buf_steal(pipe, buf);
153 }
154 
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 	.can_merge = 0,
157 	.confirm = generic_pipe_buf_confirm,
158 	.release = page_cache_pipe_buf_release,
159 	.steal = user_page_pipe_buf_steal,
160 	.get = generic_pipe_buf_get,
161 };
162 
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165 	smp_mb();
166 	if (waitqueue_active(&pipe->wait))
167 		wake_up_interruptible(&pipe->wait);
168 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170 
171 /**
172  * splice_to_pipe - fill passed data into a pipe
173  * @pipe:	pipe to fill
174  * @spd:	data to fill
175  *
176  * Description:
177  *    @spd contains a map of pages and len/offset tuples, along with
178  *    the struct pipe_buf_operations associated with these pages. This
179  *    function will link that data to the pipe.
180  *
181  */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 		       struct splice_pipe_desc *spd)
184 {
185 	unsigned int spd_pages = spd->nr_pages;
186 	int ret, do_wakeup, page_nr;
187 
188 	if (!spd_pages)
189 		return 0;
190 
191 	ret = 0;
192 	do_wakeup = 0;
193 	page_nr = 0;
194 
195 	pipe_lock(pipe);
196 
197 	for (;;) {
198 		if (!pipe->readers) {
199 			send_sig(SIGPIPE, current, 0);
200 			if (!ret)
201 				ret = -EPIPE;
202 			break;
203 		}
204 
205 		if (pipe->nrbufs < pipe->buffers) {
206 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207 			struct pipe_buffer *buf = pipe->bufs + newbuf;
208 
209 			buf->page = spd->pages[page_nr];
210 			buf->offset = spd->partial[page_nr].offset;
211 			buf->len = spd->partial[page_nr].len;
212 			buf->private = spd->partial[page_nr].private;
213 			buf->ops = spd->ops;
214 			if (spd->flags & SPLICE_F_GIFT)
215 				buf->flags |= PIPE_BUF_FLAG_GIFT;
216 
217 			pipe->nrbufs++;
218 			page_nr++;
219 			ret += buf->len;
220 
221 			if (pipe->files)
222 				do_wakeup = 1;
223 
224 			if (!--spd->nr_pages)
225 				break;
226 			if (pipe->nrbufs < pipe->buffers)
227 				continue;
228 
229 			break;
230 		}
231 
232 		if (spd->flags & SPLICE_F_NONBLOCK) {
233 			if (!ret)
234 				ret = -EAGAIN;
235 			break;
236 		}
237 
238 		if (signal_pending(current)) {
239 			if (!ret)
240 				ret = -ERESTARTSYS;
241 			break;
242 		}
243 
244 		if (do_wakeup) {
245 			smp_mb();
246 			if (waitqueue_active(&pipe->wait))
247 				wake_up_interruptible_sync(&pipe->wait);
248 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
249 			do_wakeup = 0;
250 		}
251 
252 		pipe->waiting_writers++;
253 		pipe_wait(pipe);
254 		pipe->waiting_writers--;
255 	}
256 
257 	pipe_unlock(pipe);
258 
259 	if (do_wakeup)
260 		wakeup_pipe_readers(pipe);
261 
262 	while (page_nr < spd_pages)
263 		spd->spd_release(spd, page_nr++);
264 
265 	return ret;
266 }
267 EXPORT_SYMBOL_GPL(splice_to_pipe);
268 
269 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
270 {
271 	put_page(spd->pages[i]);
272 }
273 
274 /*
275  * Check if we need to grow the arrays holding pages and partial page
276  * descriptions.
277  */
278 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
279 {
280 	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
281 
282 	spd->nr_pages_max = buffers;
283 	if (buffers <= PIPE_DEF_BUFFERS)
284 		return 0;
285 
286 	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
287 	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
288 
289 	if (spd->pages && spd->partial)
290 		return 0;
291 
292 	kfree(spd->pages);
293 	kfree(spd->partial);
294 	return -ENOMEM;
295 }
296 
297 void splice_shrink_spd(struct splice_pipe_desc *spd)
298 {
299 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
300 		return;
301 
302 	kfree(spd->pages);
303 	kfree(spd->partial);
304 }
305 
306 static int
307 __generic_file_splice_read(struct file *in, loff_t *ppos,
308 			   struct pipe_inode_info *pipe, size_t len,
309 			   unsigned int flags)
310 {
311 	struct address_space *mapping = in->f_mapping;
312 	unsigned int loff, nr_pages, req_pages;
313 	struct page *pages[PIPE_DEF_BUFFERS];
314 	struct partial_page partial[PIPE_DEF_BUFFERS];
315 	struct page *page;
316 	pgoff_t index, end_index;
317 	loff_t isize;
318 	int error, page_nr;
319 	struct splice_pipe_desc spd = {
320 		.pages = pages,
321 		.partial = partial,
322 		.nr_pages_max = PIPE_DEF_BUFFERS,
323 		.flags = flags,
324 		.ops = &page_cache_pipe_buf_ops,
325 		.spd_release = spd_release_page,
326 	};
327 
328 	if (splice_grow_spd(pipe, &spd))
329 		return -ENOMEM;
330 
331 	index = *ppos >> PAGE_SHIFT;
332 	loff = *ppos & ~PAGE_MASK;
333 	req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
334 	nr_pages = min(req_pages, spd.nr_pages_max);
335 
336 	/*
337 	 * Lookup the (hopefully) full range of pages we need.
338 	 */
339 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
340 	index += spd.nr_pages;
341 
342 	/*
343 	 * If find_get_pages_contig() returned fewer pages than we needed,
344 	 * readahead/allocate the rest and fill in the holes.
345 	 */
346 	if (spd.nr_pages < nr_pages)
347 		page_cache_sync_readahead(mapping, &in->f_ra, in,
348 				index, req_pages - spd.nr_pages);
349 
350 	error = 0;
351 	while (spd.nr_pages < nr_pages) {
352 		/*
353 		 * Page could be there, find_get_pages_contig() breaks on
354 		 * the first hole.
355 		 */
356 		page = find_get_page(mapping, index);
357 		if (!page) {
358 			/*
359 			 * page didn't exist, allocate one.
360 			 */
361 			page = page_cache_alloc_cold(mapping);
362 			if (!page)
363 				break;
364 
365 			error = add_to_page_cache_lru(page, mapping, index,
366 				   mapping_gfp_constraint(mapping, GFP_KERNEL));
367 			if (unlikely(error)) {
368 				put_page(page);
369 				if (error == -EEXIST)
370 					continue;
371 				break;
372 			}
373 			/*
374 			 * add_to_page_cache() locks the page, unlock it
375 			 * to avoid convoluting the logic below even more.
376 			 */
377 			unlock_page(page);
378 		}
379 
380 		spd.pages[spd.nr_pages++] = page;
381 		index++;
382 	}
383 
384 	/*
385 	 * Now loop over the map and see if we need to start IO on any
386 	 * pages, fill in the partial map, etc.
387 	 */
388 	index = *ppos >> PAGE_SHIFT;
389 	nr_pages = spd.nr_pages;
390 	spd.nr_pages = 0;
391 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
392 		unsigned int this_len;
393 
394 		if (!len)
395 			break;
396 
397 		/*
398 		 * this_len is the max we'll use from this page
399 		 */
400 		this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
401 		page = spd.pages[page_nr];
402 
403 		if (PageReadahead(page))
404 			page_cache_async_readahead(mapping, &in->f_ra, in,
405 					page, index, req_pages - page_nr);
406 
407 		/*
408 		 * If the page isn't uptodate, we may need to start io on it
409 		 */
410 		if (!PageUptodate(page)) {
411 			lock_page(page);
412 
413 			/*
414 			 * Page was truncated, or invalidated by the
415 			 * filesystem.  Redo the find/create, but this time the
416 			 * page is kept locked, so there's no chance of another
417 			 * race with truncate/invalidate.
418 			 */
419 			if (!page->mapping) {
420 				unlock_page(page);
421 retry_lookup:
422 				page = find_or_create_page(mapping, index,
423 						mapping_gfp_mask(mapping));
424 
425 				if (!page) {
426 					error = -ENOMEM;
427 					break;
428 				}
429 				put_page(spd.pages[page_nr]);
430 				spd.pages[page_nr] = page;
431 			}
432 			/*
433 			 * page was already under io and is now done, great
434 			 */
435 			if (PageUptodate(page)) {
436 				unlock_page(page);
437 				goto fill_it;
438 			}
439 
440 			/*
441 			 * need to read in the page
442 			 */
443 			error = mapping->a_ops->readpage(in, page);
444 			if (unlikely(error)) {
445 				/*
446 				 * Re-lookup the page
447 				 */
448 				if (error == AOP_TRUNCATED_PAGE)
449 					goto retry_lookup;
450 
451 				break;
452 			}
453 		}
454 fill_it:
455 		/*
456 		 * i_size must be checked after PageUptodate.
457 		 */
458 		isize = i_size_read(mapping->host);
459 		end_index = (isize - 1) >> PAGE_SHIFT;
460 		if (unlikely(!isize || index > end_index))
461 			break;
462 
463 		/*
464 		 * if this is the last page, see if we need to shrink
465 		 * the length and stop
466 		 */
467 		if (end_index == index) {
468 			unsigned int plen;
469 
470 			/*
471 			 * max good bytes in this page
472 			 */
473 			plen = ((isize - 1) & ~PAGE_MASK) + 1;
474 			if (plen <= loff)
475 				break;
476 
477 			/*
478 			 * force quit after adding this page
479 			 */
480 			this_len = min(this_len, plen - loff);
481 			len = this_len;
482 		}
483 
484 		spd.partial[page_nr].offset = loff;
485 		spd.partial[page_nr].len = this_len;
486 		len -= this_len;
487 		loff = 0;
488 		spd.nr_pages++;
489 		index++;
490 	}
491 
492 	/*
493 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
494 	 * we got, 'nr_pages' is how many pages are in the map.
495 	 */
496 	while (page_nr < nr_pages)
497 		put_page(spd.pages[page_nr++]);
498 	in->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT;
499 
500 	if (spd.nr_pages)
501 		error = splice_to_pipe(pipe, &spd);
502 
503 	splice_shrink_spd(&spd);
504 	return error;
505 }
506 
507 /**
508  * generic_file_splice_read - splice data from file to a pipe
509  * @in:		file to splice from
510  * @ppos:	position in @in
511  * @pipe:	pipe to splice to
512  * @len:	number of bytes to splice
513  * @flags:	splice modifier flags
514  *
515  * Description:
516  *    Will read pages from given file and fill them into a pipe. Can be
517  *    used as long as the address_space operations for the source implements
518  *    a readpage() hook.
519  *
520  */
521 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
522 				 struct pipe_inode_info *pipe, size_t len,
523 				 unsigned int flags)
524 {
525 	loff_t isize, left;
526 	int ret;
527 
528 	if (IS_DAX(in->f_mapping->host))
529 		return default_file_splice_read(in, ppos, pipe, len, flags);
530 
531 	isize = i_size_read(in->f_mapping->host);
532 	if (unlikely(*ppos >= isize))
533 		return 0;
534 
535 	left = isize - *ppos;
536 	if (unlikely(left < len))
537 		len = left;
538 
539 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
540 	if (ret > 0) {
541 		*ppos += ret;
542 		file_accessed(in);
543 	}
544 
545 	return ret;
546 }
547 EXPORT_SYMBOL(generic_file_splice_read);
548 
549 static const struct pipe_buf_operations default_pipe_buf_ops = {
550 	.can_merge = 0,
551 	.confirm = generic_pipe_buf_confirm,
552 	.release = generic_pipe_buf_release,
553 	.steal = generic_pipe_buf_steal,
554 	.get = generic_pipe_buf_get,
555 };
556 
557 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
558 				    struct pipe_buffer *buf)
559 {
560 	return 1;
561 }
562 
563 /* Pipe buffer operations for a socket and similar. */
564 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
565 	.can_merge = 0,
566 	.confirm = generic_pipe_buf_confirm,
567 	.release = generic_pipe_buf_release,
568 	.steal = generic_pipe_buf_nosteal,
569 	.get = generic_pipe_buf_get,
570 };
571 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
572 
573 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
574 			    unsigned long vlen, loff_t offset)
575 {
576 	mm_segment_t old_fs;
577 	loff_t pos = offset;
578 	ssize_t res;
579 
580 	old_fs = get_fs();
581 	set_fs(get_ds());
582 	/* The cast to a user pointer is valid due to the set_fs() */
583 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
584 	set_fs(old_fs);
585 
586 	return res;
587 }
588 
589 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
590 			    loff_t pos)
591 {
592 	mm_segment_t old_fs;
593 	ssize_t res;
594 
595 	old_fs = get_fs();
596 	set_fs(get_ds());
597 	/* The cast to a user pointer is valid due to the set_fs() */
598 	res = vfs_write(file, (__force const char __user *)buf, count, &pos);
599 	set_fs(old_fs);
600 
601 	return res;
602 }
603 EXPORT_SYMBOL(kernel_write);
604 
605 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
606 				 struct pipe_inode_info *pipe, size_t len,
607 				 unsigned int flags)
608 {
609 	unsigned int nr_pages;
610 	unsigned int nr_freed;
611 	size_t offset;
612 	struct page *pages[PIPE_DEF_BUFFERS];
613 	struct partial_page partial[PIPE_DEF_BUFFERS];
614 	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
615 	ssize_t res;
616 	size_t this_len;
617 	int error;
618 	int i;
619 	struct splice_pipe_desc spd = {
620 		.pages = pages,
621 		.partial = partial,
622 		.nr_pages_max = PIPE_DEF_BUFFERS,
623 		.flags = flags,
624 		.ops = &default_pipe_buf_ops,
625 		.spd_release = spd_release_page,
626 	};
627 
628 	if (splice_grow_spd(pipe, &spd))
629 		return -ENOMEM;
630 
631 	res = -ENOMEM;
632 	vec = __vec;
633 	if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
634 		vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
635 		if (!vec)
636 			goto shrink_ret;
637 	}
638 
639 	offset = *ppos & ~PAGE_MASK;
640 	nr_pages = (len + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
641 
642 	for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
643 		struct page *page;
644 
645 		page = alloc_page(GFP_USER);
646 		error = -ENOMEM;
647 		if (!page)
648 			goto err;
649 
650 		this_len = min_t(size_t, len, PAGE_SIZE - offset);
651 		vec[i].iov_base = (void __user *) page_address(page);
652 		vec[i].iov_len = this_len;
653 		spd.pages[i] = page;
654 		spd.nr_pages++;
655 		len -= this_len;
656 		offset = 0;
657 	}
658 
659 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
660 	if (res < 0) {
661 		error = res;
662 		goto err;
663 	}
664 
665 	error = 0;
666 	if (!res)
667 		goto err;
668 
669 	nr_freed = 0;
670 	for (i = 0; i < spd.nr_pages; i++) {
671 		this_len = min_t(size_t, vec[i].iov_len, res);
672 		spd.partial[i].offset = 0;
673 		spd.partial[i].len = this_len;
674 		if (!this_len) {
675 			__free_page(spd.pages[i]);
676 			spd.pages[i] = NULL;
677 			nr_freed++;
678 		}
679 		res -= this_len;
680 	}
681 	spd.nr_pages -= nr_freed;
682 
683 	res = splice_to_pipe(pipe, &spd);
684 	if (res > 0)
685 		*ppos += res;
686 
687 shrink_ret:
688 	if (vec != __vec)
689 		kfree(vec);
690 	splice_shrink_spd(&spd);
691 	return res;
692 
693 err:
694 	for (i = 0; i < spd.nr_pages; i++)
695 		__free_page(spd.pages[i]);
696 
697 	res = error;
698 	goto shrink_ret;
699 }
700 EXPORT_SYMBOL(default_file_splice_read);
701 
702 /*
703  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
704  * using sendpage(). Return the number of bytes sent.
705  */
706 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
707 			    struct pipe_buffer *buf, struct splice_desc *sd)
708 {
709 	struct file *file = sd->u.file;
710 	loff_t pos = sd->pos;
711 	int more;
712 
713 	if (!likely(file->f_op->sendpage))
714 		return -EINVAL;
715 
716 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
717 
718 	if (sd->len < sd->total_len && pipe->nrbufs > 1)
719 		more |= MSG_SENDPAGE_NOTLAST;
720 
721 	return file->f_op->sendpage(file, buf->page, buf->offset,
722 				    sd->len, &pos, more);
723 }
724 
725 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
726 {
727 	smp_mb();
728 	if (waitqueue_active(&pipe->wait))
729 		wake_up_interruptible(&pipe->wait);
730 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
731 }
732 
733 /**
734  * splice_from_pipe_feed - feed available data from a pipe to a file
735  * @pipe:	pipe to splice from
736  * @sd:		information to @actor
737  * @actor:	handler that splices the data
738  *
739  * Description:
740  *    This function loops over the pipe and calls @actor to do the
741  *    actual moving of a single struct pipe_buffer to the desired
742  *    destination.  It returns when there's no more buffers left in
743  *    the pipe or if the requested number of bytes (@sd->total_len)
744  *    have been copied.  It returns a positive number (one) if the
745  *    pipe needs to be filled with more data, zero if the required
746  *    number of bytes have been copied and -errno on error.
747  *
748  *    This, together with splice_from_pipe_{begin,end,next}, may be
749  *    used to implement the functionality of __splice_from_pipe() when
750  *    locking is required around copying the pipe buffers to the
751  *    destination.
752  */
753 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
754 			  splice_actor *actor)
755 {
756 	int ret;
757 
758 	while (pipe->nrbufs) {
759 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
760 		const struct pipe_buf_operations *ops = buf->ops;
761 
762 		sd->len = buf->len;
763 		if (sd->len > sd->total_len)
764 			sd->len = sd->total_len;
765 
766 		ret = buf->ops->confirm(pipe, buf);
767 		if (unlikely(ret)) {
768 			if (ret == -ENODATA)
769 				ret = 0;
770 			return ret;
771 		}
772 
773 		ret = actor(pipe, buf, sd);
774 		if (ret <= 0)
775 			return ret;
776 
777 		buf->offset += ret;
778 		buf->len -= ret;
779 
780 		sd->num_spliced += ret;
781 		sd->len -= ret;
782 		sd->pos += ret;
783 		sd->total_len -= ret;
784 
785 		if (!buf->len) {
786 			buf->ops = NULL;
787 			ops->release(pipe, buf);
788 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
789 			pipe->nrbufs--;
790 			if (pipe->files)
791 				sd->need_wakeup = true;
792 		}
793 
794 		if (!sd->total_len)
795 			return 0;
796 	}
797 
798 	return 1;
799 }
800 
801 /**
802  * splice_from_pipe_next - wait for some data to splice from
803  * @pipe:	pipe to splice from
804  * @sd:		information about the splice operation
805  *
806  * Description:
807  *    This function will wait for some data and return a positive
808  *    value (one) if pipe buffers are available.  It will return zero
809  *    or -errno if no more data needs to be spliced.
810  */
811 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
812 {
813 	/*
814 	 * Check for signal early to make process killable when there are
815 	 * always buffers available
816 	 */
817 	if (signal_pending(current))
818 		return -ERESTARTSYS;
819 
820 	while (!pipe->nrbufs) {
821 		if (!pipe->writers)
822 			return 0;
823 
824 		if (!pipe->waiting_writers && sd->num_spliced)
825 			return 0;
826 
827 		if (sd->flags & SPLICE_F_NONBLOCK)
828 			return -EAGAIN;
829 
830 		if (signal_pending(current))
831 			return -ERESTARTSYS;
832 
833 		if (sd->need_wakeup) {
834 			wakeup_pipe_writers(pipe);
835 			sd->need_wakeup = false;
836 		}
837 
838 		pipe_wait(pipe);
839 	}
840 
841 	return 1;
842 }
843 
844 /**
845  * splice_from_pipe_begin - start splicing from pipe
846  * @sd:		information about the splice operation
847  *
848  * Description:
849  *    This function should be called before a loop containing
850  *    splice_from_pipe_next() and splice_from_pipe_feed() to
851  *    initialize the necessary fields of @sd.
852  */
853 static void splice_from_pipe_begin(struct splice_desc *sd)
854 {
855 	sd->num_spliced = 0;
856 	sd->need_wakeup = false;
857 }
858 
859 /**
860  * splice_from_pipe_end - finish splicing from pipe
861  * @pipe:	pipe to splice from
862  * @sd:		information about the splice operation
863  *
864  * Description:
865  *    This function will wake up pipe writers if necessary.  It should
866  *    be called after a loop containing splice_from_pipe_next() and
867  *    splice_from_pipe_feed().
868  */
869 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
870 {
871 	if (sd->need_wakeup)
872 		wakeup_pipe_writers(pipe);
873 }
874 
875 /**
876  * __splice_from_pipe - splice data from a pipe to given actor
877  * @pipe:	pipe to splice from
878  * @sd:		information to @actor
879  * @actor:	handler that splices the data
880  *
881  * Description:
882  *    This function does little more than loop over the pipe and call
883  *    @actor to do the actual moving of a single struct pipe_buffer to
884  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
885  *    pipe_to_user.
886  *
887  */
888 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
889 			   splice_actor *actor)
890 {
891 	int ret;
892 
893 	splice_from_pipe_begin(sd);
894 	do {
895 		cond_resched();
896 		ret = splice_from_pipe_next(pipe, sd);
897 		if (ret > 0)
898 			ret = splice_from_pipe_feed(pipe, sd, actor);
899 	} while (ret > 0);
900 	splice_from_pipe_end(pipe, sd);
901 
902 	return sd->num_spliced ? sd->num_spliced : ret;
903 }
904 EXPORT_SYMBOL(__splice_from_pipe);
905 
906 /**
907  * splice_from_pipe - splice data from a pipe to a file
908  * @pipe:	pipe to splice from
909  * @out:	file to splice to
910  * @ppos:	position in @out
911  * @len:	how many bytes to splice
912  * @flags:	splice modifier flags
913  * @actor:	handler that splices the data
914  *
915  * Description:
916  *    See __splice_from_pipe. This function locks the pipe inode,
917  *    otherwise it's identical to __splice_from_pipe().
918  *
919  */
920 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
921 			 loff_t *ppos, size_t len, unsigned int flags,
922 			 splice_actor *actor)
923 {
924 	ssize_t ret;
925 	struct splice_desc sd = {
926 		.total_len = len,
927 		.flags = flags,
928 		.pos = *ppos,
929 		.u.file = out,
930 	};
931 
932 	pipe_lock(pipe);
933 	ret = __splice_from_pipe(pipe, &sd, actor);
934 	pipe_unlock(pipe);
935 
936 	return ret;
937 }
938 
939 /**
940  * iter_file_splice_write - splice data from a pipe to a file
941  * @pipe:	pipe info
942  * @out:	file to write to
943  * @ppos:	position in @out
944  * @len:	number of bytes to splice
945  * @flags:	splice modifier flags
946  *
947  * Description:
948  *    Will either move or copy pages (determined by @flags options) from
949  *    the given pipe inode to the given file.
950  *    This one is ->write_iter-based.
951  *
952  */
953 ssize_t
954 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
955 			  loff_t *ppos, size_t len, unsigned int flags)
956 {
957 	struct splice_desc sd = {
958 		.total_len = len,
959 		.flags = flags,
960 		.pos = *ppos,
961 		.u.file = out,
962 	};
963 	int nbufs = pipe->buffers;
964 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
965 					GFP_KERNEL);
966 	ssize_t ret;
967 
968 	if (unlikely(!array))
969 		return -ENOMEM;
970 
971 	pipe_lock(pipe);
972 
973 	splice_from_pipe_begin(&sd);
974 	while (sd.total_len) {
975 		struct iov_iter from;
976 		size_t left;
977 		int n, idx;
978 
979 		ret = splice_from_pipe_next(pipe, &sd);
980 		if (ret <= 0)
981 			break;
982 
983 		if (unlikely(nbufs < pipe->buffers)) {
984 			kfree(array);
985 			nbufs = pipe->buffers;
986 			array = kcalloc(nbufs, sizeof(struct bio_vec),
987 					GFP_KERNEL);
988 			if (!array) {
989 				ret = -ENOMEM;
990 				break;
991 			}
992 		}
993 
994 		/* build the vector */
995 		left = sd.total_len;
996 		for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
997 			struct pipe_buffer *buf = pipe->bufs + idx;
998 			size_t this_len = buf->len;
999 
1000 			if (this_len > left)
1001 				this_len = left;
1002 
1003 			if (idx == pipe->buffers - 1)
1004 				idx = -1;
1005 
1006 			ret = buf->ops->confirm(pipe, buf);
1007 			if (unlikely(ret)) {
1008 				if (ret == -ENODATA)
1009 					ret = 0;
1010 				goto done;
1011 			}
1012 
1013 			array[n].bv_page = buf->page;
1014 			array[n].bv_len = this_len;
1015 			array[n].bv_offset = buf->offset;
1016 			left -= this_len;
1017 		}
1018 
1019 		iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1020 			      sd.total_len - left);
1021 		ret = vfs_iter_write(out, &from, &sd.pos);
1022 		if (ret <= 0)
1023 			break;
1024 
1025 		sd.num_spliced += ret;
1026 		sd.total_len -= ret;
1027 		*ppos = sd.pos;
1028 
1029 		/* dismiss the fully eaten buffers, adjust the partial one */
1030 		while (ret) {
1031 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1032 			if (ret >= buf->len) {
1033 				const struct pipe_buf_operations *ops = buf->ops;
1034 				ret -= buf->len;
1035 				buf->len = 0;
1036 				buf->ops = NULL;
1037 				ops->release(pipe, buf);
1038 				pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1039 				pipe->nrbufs--;
1040 				if (pipe->files)
1041 					sd.need_wakeup = true;
1042 			} else {
1043 				buf->offset += ret;
1044 				buf->len -= ret;
1045 				ret = 0;
1046 			}
1047 		}
1048 	}
1049 done:
1050 	kfree(array);
1051 	splice_from_pipe_end(pipe, &sd);
1052 
1053 	pipe_unlock(pipe);
1054 
1055 	if (sd.num_spliced)
1056 		ret = sd.num_spliced;
1057 
1058 	return ret;
1059 }
1060 
1061 EXPORT_SYMBOL(iter_file_splice_write);
1062 
1063 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1064 			  struct splice_desc *sd)
1065 {
1066 	int ret;
1067 	void *data;
1068 	loff_t tmp = sd->pos;
1069 
1070 	data = kmap(buf->page);
1071 	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1072 	kunmap(buf->page);
1073 
1074 	return ret;
1075 }
1076 
1077 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1078 					 struct file *out, loff_t *ppos,
1079 					 size_t len, unsigned int flags)
1080 {
1081 	ssize_t ret;
1082 
1083 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1084 	if (ret > 0)
1085 		*ppos += ret;
1086 
1087 	return ret;
1088 }
1089 
1090 /**
1091  * generic_splice_sendpage - splice data from a pipe to a socket
1092  * @pipe:	pipe to splice from
1093  * @out:	socket to write to
1094  * @ppos:	position in @out
1095  * @len:	number of bytes to splice
1096  * @flags:	splice modifier flags
1097  *
1098  * Description:
1099  *    Will send @len bytes from the pipe to a network socket. No data copying
1100  *    is involved.
1101  *
1102  */
1103 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1104 				loff_t *ppos, size_t len, unsigned int flags)
1105 {
1106 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1107 }
1108 
1109 EXPORT_SYMBOL(generic_splice_sendpage);
1110 
1111 /*
1112  * Attempt to initiate a splice from pipe to file.
1113  */
1114 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1115 			   loff_t *ppos, size_t len, unsigned int flags)
1116 {
1117 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1118 				loff_t *, size_t, unsigned int);
1119 
1120 	if (out->f_op->splice_write)
1121 		splice_write = out->f_op->splice_write;
1122 	else
1123 		splice_write = default_file_splice_write;
1124 
1125 	return splice_write(pipe, out, ppos, len, flags);
1126 }
1127 
1128 /*
1129  * Attempt to initiate a splice from a file to a pipe.
1130  */
1131 static long do_splice_to(struct file *in, loff_t *ppos,
1132 			 struct pipe_inode_info *pipe, size_t len,
1133 			 unsigned int flags)
1134 {
1135 	ssize_t (*splice_read)(struct file *, loff_t *,
1136 			       struct pipe_inode_info *, size_t, unsigned int);
1137 	int ret;
1138 
1139 	if (unlikely(!(in->f_mode & FMODE_READ)))
1140 		return -EBADF;
1141 
1142 	ret = rw_verify_area(READ, in, ppos, len);
1143 	if (unlikely(ret < 0))
1144 		return ret;
1145 
1146 	if (in->f_op->splice_read)
1147 		splice_read = in->f_op->splice_read;
1148 	else
1149 		splice_read = default_file_splice_read;
1150 
1151 	return splice_read(in, ppos, pipe, len, flags);
1152 }
1153 
1154 /**
1155  * splice_direct_to_actor - splices data directly between two non-pipes
1156  * @in:		file to splice from
1157  * @sd:		actor information on where to splice to
1158  * @actor:	handles the data splicing
1159  *
1160  * Description:
1161  *    This is a special case helper to splice directly between two
1162  *    points, without requiring an explicit pipe. Internally an allocated
1163  *    pipe is cached in the process, and reused during the lifetime of
1164  *    that process.
1165  *
1166  */
1167 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1168 			       splice_direct_actor *actor)
1169 {
1170 	struct pipe_inode_info *pipe;
1171 	long ret, bytes;
1172 	umode_t i_mode;
1173 	size_t len;
1174 	int i, flags, more;
1175 
1176 	/*
1177 	 * We require the input being a regular file, as we don't want to
1178 	 * randomly drop data for eg socket -> socket splicing. Use the
1179 	 * piped splicing for that!
1180 	 */
1181 	i_mode = file_inode(in)->i_mode;
1182 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1183 		return -EINVAL;
1184 
1185 	/*
1186 	 * neither in nor out is a pipe, setup an internal pipe attached to
1187 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1188 	 */
1189 	pipe = current->splice_pipe;
1190 	if (unlikely(!pipe)) {
1191 		pipe = alloc_pipe_info();
1192 		if (!pipe)
1193 			return -ENOMEM;
1194 
1195 		/*
1196 		 * We don't have an immediate reader, but we'll read the stuff
1197 		 * out of the pipe right after the splice_to_pipe(). So set
1198 		 * PIPE_READERS appropriately.
1199 		 */
1200 		pipe->readers = 1;
1201 
1202 		current->splice_pipe = pipe;
1203 	}
1204 
1205 	/*
1206 	 * Do the splice.
1207 	 */
1208 	ret = 0;
1209 	bytes = 0;
1210 	len = sd->total_len;
1211 	flags = sd->flags;
1212 
1213 	/*
1214 	 * Don't block on output, we have to drain the direct pipe.
1215 	 */
1216 	sd->flags &= ~SPLICE_F_NONBLOCK;
1217 	more = sd->flags & SPLICE_F_MORE;
1218 
1219 	while (len) {
1220 		size_t read_len;
1221 		loff_t pos = sd->pos, prev_pos = pos;
1222 
1223 		ret = do_splice_to(in, &pos, pipe, len, flags);
1224 		if (unlikely(ret <= 0))
1225 			goto out_release;
1226 
1227 		read_len = ret;
1228 		sd->total_len = read_len;
1229 
1230 		/*
1231 		 * If more data is pending, set SPLICE_F_MORE
1232 		 * If this is the last data and SPLICE_F_MORE was not set
1233 		 * initially, clears it.
1234 		 */
1235 		if (read_len < len)
1236 			sd->flags |= SPLICE_F_MORE;
1237 		else if (!more)
1238 			sd->flags &= ~SPLICE_F_MORE;
1239 		/*
1240 		 * NOTE: nonblocking mode only applies to the input. We
1241 		 * must not do the output in nonblocking mode as then we
1242 		 * could get stuck data in the internal pipe:
1243 		 */
1244 		ret = actor(pipe, sd);
1245 		if (unlikely(ret <= 0)) {
1246 			sd->pos = prev_pos;
1247 			goto out_release;
1248 		}
1249 
1250 		bytes += ret;
1251 		len -= ret;
1252 		sd->pos = pos;
1253 
1254 		if (ret < read_len) {
1255 			sd->pos = prev_pos + ret;
1256 			goto out_release;
1257 		}
1258 	}
1259 
1260 done:
1261 	pipe->nrbufs = pipe->curbuf = 0;
1262 	file_accessed(in);
1263 	return bytes;
1264 
1265 out_release:
1266 	/*
1267 	 * If we did an incomplete transfer we must release
1268 	 * the pipe buffers in question:
1269 	 */
1270 	for (i = 0; i < pipe->buffers; i++) {
1271 		struct pipe_buffer *buf = pipe->bufs + i;
1272 
1273 		if (buf->ops) {
1274 			buf->ops->release(pipe, buf);
1275 			buf->ops = NULL;
1276 		}
1277 	}
1278 
1279 	if (!bytes)
1280 		bytes = ret;
1281 
1282 	goto done;
1283 }
1284 EXPORT_SYMBOL(splice_direct_to_actor);
1285 
1286 static int direct_splice_actor(struct pipe_inode_info *pipe,
1287 			       struct splice_desc *sd)
1288 {
1289 	struct file *file = sd->u.file;
1290 
1291 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1292 			      sd->flags);
1293 }
1294 
1295 /**
1296  * do_splice_direct - splices data directly between two files
1297  * @in:		file to splice from
1298  * @ppos:	input file offset
1299  * @out:	file to splice to
1300  * @opos:	output file offset
1301  * @len:	number of bytes to splice
1302  * @flags:	splice modifier flags
1303  *
1304  * Description:
1305  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1306  *    doing it in the application would incur an extra system call
1307  *    (splice in + splice out, as compared to just sendfile()). So this helper
1308  *    can splice directly through a process-private pipe.
1309  *
1310  */
1311 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1312 		      loff_t *opos, size_t len, unsigned int flags)
1313 {
1314 	struct splice_desc sd = {
1315 		.len		= len,
1316 		.total_len	= len,
1317 		.flags		= flags,
1318 		.pos		= *ppos,
1319 		.u.file		= out,
1320 		.opos		= opos,
1321 	};
1322 	long ret;
1323 
1324 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1325 		return -EBADF;
1326 
1327 	if (unlikely(out->f_flags & O_APPEND))
1328 		return -EINVAL;
1329 
1330 	ret = rw_verify_area(WRITE, out, opos, len);
1331 	if (unlikely(ret < 0))
1332 		return ret;
1333 
1334 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1335 	if (ret > 0)
1336 		*ppos = sd.pos;
1337 
1338 	return ret;
1339 }
1340 EXPORT_SYMBOL(do_splice_direct);
1341 
1342 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1343 			       struct pipe_inode_info *opipe,
1344 			       size_t len, unsigned int flags);
1345 
1346 /*
1347  * Determine where to splice to/from.
1348  */
1349 static long do_splice(struct file *in, loff_t __user *off_in,
1350 		      struct file *out, loff_t __user *off_out,
1351 		      size_t len, unsigned int flags)
1352 {
1353 	struct pipe_inode_info *ipipe;
1354 	struct pipe_inode_info *opipe;
1355 	loff_t offset;
1356 	long ret;
1357 
1358 	ipipe = get_pipe_info(in);
1359 	opipe = get_pipe_info(out);
1360 
1361 	if (ipipe && opipe) {
1362 		if (off_in || off_out)
1363 			return -ESPIPE;
1364 
1365 		if (!(in->f_mode & FMODE_READ))
1366 			return -EBADF;
1367 
1368 		if (!(out->f_mode & FMODE_WRITE))
1369 			return -EBADF;
1370 
1371 		/* Splicing to self would be fun, but... */
1372 		if (ipipe == opipe)
1373 			return -EINVAL;
1374 
1375 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1376 	}
1377 
1378 	if (ipipe) {
1379 		if (off_in)
1380 			return -ESPIPE;
1381 		if (off_out) {
1382 			if (!(out->f_mode & FMODE_PWRITE))
1383 				return -EINVAL;
1384 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1385 				return -EFAULT;
1386 		} else {
1387 			offset = out->f_pos;
1388 		}
1389 
1390 		if (unlikely(!(out->f_mode & FMODE_WRITE)))
1391 			return -EBADF;
1392 
1393 		if (unlikely(out->f_flags & O_APPEND))
1394 			return -EINVAL;
1395 
1396 		ret = rw_verify_area(WRITE, out, &offset, len);
1397 		if (unlikely(ret < 0))
1398 			return ret;
1399 
1400 		file_start_write(out);
1401 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1402 		file_end_write(out);
1403 
1404 		if (!off_out)
1405 			out->f_pos = offset;
1406 		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1407 			ret = -EFAULT;
1408 
1409 		return ret;
1410 	}
1411 
1412 	if (opipe) {
1413 		if (off_out)
1414 			return -ESPIPE;
1415 		if (off_in) {
1416 			if (!(in->f_mode & FMODE_PREAD))
1417 				return -EINVAL;
1418 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1419 				return -EFAULT;
1420 		} else {
1421 			offset = in->f_pos;
1422 		}
1423 
1424 		ret = do_splice_to(in, &offset, opipe, len, flags);
1425 
1426 		if (!off_in)
1427 			in->f_pos = offset;
1428 		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1429 			ret = -EFAULT;
1430 
1431 		return ret;
1432 	}
1433 
1434 	return -EINVAL;
1435 }
1436 
1437 /*
1438  * Map an iov into an array of pages and offset/length tupples. With the
1439  * partial_page structure, we can map several non-contiguous ranges into
1440  * our ones pages[] map instead of splitting that operation into pieces.
1441  * Could easily be exported as a generic helper for other users, in which
1442  * case one would probably want to add a 'max_nr_pages' parameter as well.
1443  */
1444 static int get_iovec_page_array(const struct iovec __user *iov,
1445 				unsigned int nr_vecs, struct page **pages,
1446 				struct partial_page *partial, bool aligned,
1447 				unsigned int pipe_buffers)
1448 {
1449 	int buffers = 0, error = 0;
1450 
1451 	while (nr_vecs) {
1452 		unsigned long off, npages;
1453 		struct iovec entry;
1454 		void __user *base;
1455 		size_t len;
1456 		int i;
1457 
1458 		error = -EFAULT;
1459 		if (copy_from_user(&entry, iov, sizeof(entry)))
1460 			break;
1461 
1462 		base = entry.iov_base;
1463 		len = entry.iov_len;
1464 
1465 		/*
1466 		 * Sanity check this iovec. 0 read succeeds.
1467 		 */
1468 		error = 0;
1469 		if (unlikely(!len))
1470 			break;
1471 		error = -EFAULT;
1472 		if (!access_ok(VERIFY_READ, base, len))
1473 			break;
1474 
1475 		/*
1476 		 * Get this base offset and number of pages, then map
1477 		 * in the user pages.
1478 		 */
1479 		off = (unsigned long) base & ~PAGE_MASK;
1480 
1481 		/*
1482 		 * If asked for alignment, the offset must be zero and the
1483 		 * length a multiple of the PAGE_SIZE.
1484 		 */
1485 		error = -EINVAL;
1486 		if (aligned && (off || len & ~PAGE_MASK))
1487 			break;
1488 
1489 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1490 		if (npages > pipe_buffers - buffers)
1491 			npages = pipe_buffers - buffers;
1492 
1493 		error = get_user_pages_fast((unsigned long)base, npages,
1494 					0, &pages[buffers]);
1495 
1496 		if (unlikely(error <= 0))
1497 			break;
1498 
1499 		/*
1500 		 * Fill this contiguous range into the partial page map.
1501 		 */
1502 		for (i = 0; i < error; i++) {
1503 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1504 
1505 			partial[buffers].offset = off;
1506 			partial[buffers].len = plen;
1507 
1508 			off = 0;
1509 			len -= plen;
1510 			buffers++;
1511 		}
1512 
1513 		/*
1514 		 * We didn't complete this iov, stop here since it probably
1515 		 * means we have to move some of this into a pipe to
1516 		 * be able to continue.
1517 		 */
1518 		if (len)
1519 			break;
1520 
1521 		/*
1522 		 * Don't continue if we mapped fewer pages than we asked for,
1523 		 * or if we mapped the max number of pages that we have
1524 		 * room for.
1525 		 */
1526 		if (error < npages || buffers == pipe_buffers)
1527 			break;
1528 
1529 		nr_vecs--;
1530 		iov++;
1531 	}
1532 
1533 	if (buffers)
1534 		return buffers;
1535 
1536 	return error;
1537 }
1538 
1539 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1540 			struct splice_desc *sd)
1541 {
1542 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1543 	return n == sd->len ? n : -EFAULT;
1544 }
1545 
1546 /*
1547  * For lack of a better implementation, implement vmsplice() to userspace
1548  * as a simple copy of the pipes pages to the user iov.
1549  */
1550 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1551 			     unsigned long nr_segs, unsigned int flags)
1552 {
1553 	struct pipe_inode_info *pipe;
1554 	struct splice_desc sd;
1555 	long ret;
1556 	struct iovec iovstack[UIO_FASTIOV];
1557 	struct iovec *iov = iovstack;
1558 	struct iov_iter iter;
1559 
1560 	pipe = get_pipe_info(file);
1561 	if (!pipe)
1562 		return -EBADF;
1563 
1564 	ret = import_iovec(READ, uiov, nr_segs,
1565 			   ARRAY_SIZE(iovstack), &iov, &iter);
1566 	if (ret < 0)
1567 		return ret;
1568 
1569 	sd.total_len = iov_iter_count(&iter);
1570 	sd.len = 0;
1571 	sd.flags = flags;
1572 	sd.u.data = &iter;
1573 	sd.pos = 0;
1574 
1575 	if (sd.total_len) {
1576 		pipe_lock(pipe);
1577 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1578 		pipe_unlock(pipe);
1579 	}
1580 
1581 	kfree(iov);
1582 	return ret;
1583 }
1584 
1585 /*
1586  * vmsplice splices a user address range into a pipe. It can be thought of
1587  * as splice-from-memory, where the regular splice is splice-from-file (or
1588  * to file). In both cases the output is a pipe, naturally.
1589  */
1590 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1591 			     unsigned long nr_segs, unsigned int flags)
1592 {
1593 	struct pipe_inode_info *pipe;
1594 	struct page *pages[PIPE_DEF_BUFFERS];
1595 	struct partial_page partial[PIPE_DEF_BUFFERS];
1596 	struct splice_pipe_desc spd = {
1597 		.pages = pages,
1598 		.partial = partial,
1599 		.nr_pages_max = PIPE_DEF_BUFFERS,
1600 		.flags = flags,
1601 		.ops = &user_page_pipe_buf_ops,
1602 		.spd_release = spd_release_page,
1603 	};
1604 	long ret;
1605 
1606 	pipe = get_pipe_info(file);
1607 	if (!pipe)
1608 		return -EBADF;
1609 
1610 	if (splice_grow_spd(pipe, &spd))
1611 		return -ENOMEM;
1612 
1613 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1614 					    spd.partial, false,
1615 					    spd.nr_pages_max);
1616 	if (spd.nr_pages <= 0)
1617 		ret = spd.nr_pages;
1618 	else
1619 		ret = splice_to_pipe(pipe, &spd);
1620 
1621 	splice_shrink_spd(&spd);
1622 	return ret;
1623 }
1624 
1625 /*
1626  * Note that vmsplice only really supports true splicing _from_ user memory
1627  * to a pipe, not the other way around. Splicing from user memory is a simple
1628  * operation that can be supported without any funky alignment restrictions
1629  * or nasty vm tricks. We simply map in the user memory and fill them into
1630  * a pipe. The reverse isn't quite as easy, though. There are two possible
1631  * solutions for that:
1632  *
1633  *	- memcpy() the data internally, at which point we might as well just
1634  *	  do a regular read() on the buffer anyway.
1635  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1636  *	  has restriction limitations on both ends of the pipe).
1637  *
1638  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1639  *
1640  */
1641 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1642 		unsigned long, nr_segs, unsigned int, flags)
1643 {
1644 	struct fd f;
1645 	long error;
1646 
1647 	if (unlikely(nr_segs > UIO_MAXIOV))
1648 		return -EINVAL;
1649 	else if (unlikely(!nr_segs))
1650 		return 0;
1651 
1652 	error = -EBADF;
1653 	f = fdget(fd);
1654 	if (f.file) {
1655 		if (f.file->f_mode & FMODE_WRITE)
1656 			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1657 		else if (f.file->f_mode & FMODE_READ)
1658 			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1659 
1660 		fdput(f);
1661 	}
1662 
1663 	return error;
1664 }
1665 
1666 #ifdef CONFIG_COMPAT
1667 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1668 		    unsigned int, nr_segs, unsigned int, flags)
1669 {
1670 	unsigned i;
1671 	struct iovec __user *iov;
1672 	if (nr_segs > UIO_MAXIOV)
1673 		return -EINVAL;
1674 	iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1675 	for (i = 0; i < nr_segs; i++) {
1676 		struct compat_iovec v;
1677 		if (get_user(v.iov_base, &iov32[i].iov_base) ||
1678 		    get_user(v.iov_len, &iov32[i].iov_len) ||
1679 		    put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1680 		    put_user(v.iov_len, &iov[i].iov_len))
1681 			return -EFAULT;
1682 	}
1683 	return sys_vmsplice(fd, iov, nr_segs, flags);
1684 }
1685 #endif
1686 
1687 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1688 		int, fd_out, loff_t __user *, off_out,
1689 		size_t, len, unsigned int, flags)
1690 {
1691 	struct fd in, out;
1692 	long error;
1693 
1694 	if (unlikely(!len))
1695 		return 0;
1696 
1697 	error = -EBADF;
1698 	in = fdget(fd_in);
1699 	if (in.file) {
1700 		if (in.file->f_mode & FMODE_READ) {
1701 			out = fdget(fd_out);
1702 			if (out.file) {
1703 				if (out.file->f_mode & FMODE_WRITE)
1704 					error = do_splice(in.file, off_in,
1705 							  out.file, off_out,
1706 							  len, flags);
1707 				fdput(out);
1708 			}
1709 		}
1710 		fdput(in);
1711 	}
1712 	return error;
1713 }
1714 
1715 /*
1716  * Make sure there's data to read. Wait for input if we can, otherwise
1717  * return an appropriate error.
1718  */
1719 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1720 {
1721 	int ret;
1722 
1723 	/*
1724 	 * Check ->nrbufs without the inode lock first. This function
1725 	 * is speculative anyways, so missing one is ok.
1726 	 */
1727 	if (pipe->nrbufs)
1728 		return 0;
1729 
1730 	ret = 0;
1731 	pipe_lock(pipe);
1732 
1733 	while (!pipe->nrbufs) {
1734 		if (signal_pending(current)) {
1735 			ret = -ERESTARTSYS;
1736 			break;
1737 		}
1738 		if (!pipe->writers)
1739 			break;
1740 		if (!pipe->waiting_writers) {
1741 			if (flags & SPLICE_F_NONBLOCK) {
1742 				ret = -EAGAIN;
1743 				break;
1744 			}
1745 		}
1746 		pipe_wait(pipe);
1747 	}
1748 
1749 	pipe_unlock(pipe);
1750 	return ret;
1751 }
1752 
1753 /*
1754  * Make sure there's writeable room. Wait for room if we can, otherwise
1755  * return an appropriate error.
1756  */
1757 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1758 {
1759 	int ret;
1760 
1761 	/*
1762 	 * Check ->nrbufs without the inode lock first. This function
1763 	 * is speculative anyways, so missing one is ok.
1764 	 */
1765 	if (pipe->nrbufs < pipe->buffers)
1766 		return 0;
1767 
1768 	ret = 0;
1769 	pipe_lock(pipe);
1770 
1771 	while (pipe->nrbufs >= pipe->buffers) {
1772 		if (!pipe->readers) {
1773 			send_sig(SIGPIPE, current, 0);
1774 			ret = -EPIPE;
1775 			break;
1776 		}
1777 		if (flags & SPLICE_F_NONBLOCK) {
1778 			ret = -EAGAIN;
1779 			break;
1780 		}
1781 		if (signal_pending(current)) {
1782 			ret = -ERESTARTSYS;
1783 			break;
1784 		}
1785 		pipe->waiting_writers++;
1786 		pipe_wait(pipe);
1787 		pipe->waiting_writers--;
1788 	}
1789 
1790 	pipe_unlock(pipe);
1791 	return ret;
1792 }
1793 
1794 /*
1795  * Splice contents of ipipe to opipe.
1796  */
1797 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1798 			       struct pipe_inode_info *opipe,
1799 			       size_t len, unsigned int flags)
1800 {
1801 	struct pipe_buffer *ibuf, *obuf;
1802 	int ret = 0, nbuf;
1803 	bool input_wakeup = false;
1804 
1805 
1806 retry:
1807 	ret = ipipe_prep(ipipe, flags);
1808 	if (ret)
1809 		return ret;
1810 
1811 	ret = opipe_prep(opipe, flags);
1812 	if (ret)
1813 		return ret;
1814 
1815 	/*
1816 	 * Potential ABBA deadlock, work around it by ordering lock
1817 	 * grabbing by pipe info address. Otherwise two different processes
1818 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1819 	 */
1820 	pipe_double_lock(ipipe, opipe);
1821 
1822 	do {
1823 		if (!opipe->readers) {
1824 			send_sig(SIGPIPE, current, 0);
1825 			if (!ret)
1826 				ret = -EPIPE;
1827 			break;
1828 		}
1829 
1830 		if (!ipipe->nrbufs && !ipipe->writers)
1831 			break;
1832 
1833 		/*
1834 		 * Cannot make any progress, because either the input
1835 		 * pipe is empty or the output pipe is full.
1836 		 */
1837 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1838 			/* Already processed some buffers, break */
1839 			if (ret)
1840 				break;
1841 
1842 			if (flags & SPLICE_F_NONBLOCK) {
1843 				ret = -EAGAIN;
1844 				break;
1845 			}
1846 
1847 			/*
1848 			 * We raced with another reader/writer and haven't
1849 			 * managed to process any buffers.  A zero return
1850 			 * value means EOF, so retry instead.
1851 			 */
1852 			pipe_unlock(ipipe);
1853 			pipe_unlock(opipe);
1854 			goto retry;
1855 		}
1856 
1857 		ibuf = ipipe->bufs + ipipe->curbuf;
1858 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1859 		obuf = opipe->bufs + nbuf;
1860 
1861 		if (len >= ibuf->len) {
1862 			/*
1863 			 * Simply move the whole buffer from ipipe to opipe
1864 			 */
1865 			*obuf = *ibuf;
1866 			ibuf->ops = NULL;
1867 			opipe->nrbufs++;
1868 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1869 			ipipe->nrbufs--;
1870 			input_wakeup = true;
1871 		} else {
1872 			/*
1873 			 * Get a reference to this pipe buffer,
1874 			 * so we can copy the contents over.
1875 			 */
1876 			ibuf->ops->get(ipipe, ibuf);
1877 			*obuf = *ibuf;
1878 
1879 			/*
1880 			 * Don't inherit the gift flag, we need to
1881 			 * prevent multiple steals of this page.
1882 			 */
1883 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1884 
1885 			obuf->len = len;
1886 			opipe->nrbufs++;
1887 			ibuf->offset += obuf->len;
1888 			ibuf->len -= obuf->len;
1889 		}
1890 		ret += obuf->len;
1891 		len -= obuf->len;
1892 	} while (len);
1893 
1894 	pipe_unlock(ipipe);
1895 	pipe_unlock(opipe);
1896 
1897 	/*
1898 	 * If we put data in the output pipe, wakeup any potential readers.
1899 	 */
1900 	if (ret > 0)
1901 		wakeup_pipe_readers(opipe);
1902 
1903 	if (input_wakeup)
1904 		wakeup_pipe_writers(ipipe);
1905 
1906 	return ret;
1907 }
1908 
1909 /*
1910  * Link contents of ipipe to opipe.
1911  */
1912 static int link_pipe(struct pipe_inode_info *ipipe,
1913 		     struct pipe_inode_info *opipe,
1914 		     size_t len, unsigned int flags)
1915 {
1916 	struct pipe_buffer *ibuf, *obuf;
1917 	int ret = 0, i = 0, nbuf;
1918 
1919 	/*
1920 	 * Potential ABBA deadlock, work around it by ordering lock
1921 	 * grabbing by pipe info address. Otherwise two different processes
1922 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1923 	 */
1924 	pipe_double_lock(ipipe, opipe);
1925 
1926 	do {
1927 		if (!opipe->readers) {
1928 			send_sig(SIGPIPE, current, 0);
1929 			if (!ret)
1930 				ret = -EPIPE;
1931 			break;
1932 		}
1933 
1934 		/*
1935 		 * If we have iterated all input buffers or ran out of
1936 		 * output room, break.
1937 		 */
1938 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1939 			break;
1940 
1941 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1942 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1943 
1944 		/*
1945 		 * Get a reference to this pipe buffer,
1946 		 * so we can copy the contents over.
1947 		 */
1948 		ibuf->ops->get(ipipe, ibuf);
1949 
1950 		obuf = opipe->bufs + nbuf;
1951 		*obuf = *ibuf;
1952 
1953 		/*
1954 		 * Don't inherit the gift flag, we need to
1955 		 * prevent multiple steals of this page.
1956 		 */
1957 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1958 
1959 		if (obuf->len > len)
1960 			obuf->len = len;
1961 
1962 		opipe->nrbufs++;
1963 		ret += obuf->len;
1964 		len -= obuf->len;
1965 		i++;
1966 	} while (len);
1967 
1968 	/*
1969 	 * return EAGAIN if we have the potential of some data in the
1970 	 * future, otherwise just return 0
1971 	 */
1972 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1973 		ret = -EAGAIN;
1974 
1975 	pipe_unlock(ipipe);
1976 	pipe_unlock(opipe);
1977 
1978 	/*
1979 	 * If we put data in the output pipe, wakeup any potential readers.
1980 	 */
1981 	if (ret > 0)
1982 		wakeup_pipe_readers(opipe);
1983 
1984 	return ret;
1985 }
1986 
1987 /*
1988  * This is a tee(1) implementation that works on pipes. It doesn't copy
1989  * any data, it simply references the 'in' pages on the 'out' pipe.
1990  * The 'flags' used are the SPLICE_F_* variants, currently the only
1991  * applicable one is SPLICE_F_NONBLOCK.
1992  */
1993 static long do_tee(struct file *in, struct file *out, size_t len,
1994 		   unsigned int flags)
1995 {
1996 	struct pipe_inode_info *ipipe = get_pipe_info(in);
1997 	struct pipe_inode_info *opipe = get_pipe_info(out);
1998 	int ret = -EINVAL;
1999 
2000 	/*
2001 	 * Duplicate the contents of ipipe to opipe without actually
2002 	 * copying the data.
2003 	 */
2004 	if (ipipe && opipe && ipipe != opipe) {
2005 		/*
2006 		 * Keep going, unless we encounter an error. The ipipe/opipe
2007 		 * ordering doesn't really matter.
2008 		 */
2009 		ret = ipipe_prep(ipipe, flags);
2010 		if (!ret) {
2011 			ret = opipe_prep(opipe, flags);
2012 			if (!ret)
2013 				ret = link_pipe(ipipe, opipe, len, flags);
2014 		}
2015 	}
2016 
2017 	return ret;
2018 }
2019 
2020 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2021 {
2022 	struct fd in;
2023 	int error;
2024 
2025 	if (unlikely(!len))
2026 		return 0;
2027 
2028 	error = -EBADF;
2029 	in = fdget(fdin);
2030 	if (in.file) {
2031 		if (in.file->f_mode & FMODE_READ) {
2032 			struct fd out = fdget(fdout);
2033 			if (out.file) {
2034 				if (out.file->f_mode & FMODE_WRITE)
2035 					error = do_tee(in.file, out.file,
2036 							len, flags);
2037 				fdput(out);
2038 			}
2039 		}
2040  		fdput(in);
2041  	}
2042 
2043 	return error;
2044 }
2045