xref: /openbmc/linux/fs/splice.c (revision 0d456bad)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 
35 /*
36  * Attempt to steal a page from a pipe buffer. This should perhaps go into
37  * a vm helper function, it's already simplified quite a bit by the
38  * addition of remove_mapping(). If success is returned, the caller may
39  * attempt to reuse this page for another destination.
40  */
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 				     struct pipe_buffer *buf)
43 {
44 	struct page *page = buf->page;
45 	struct address_space *mapping;
46 
47 	lock_page(page);
48 
49 	mapping = page_mapping(page);
50 	if (mapping) {
51 		WARN_ON(!PageUptodate(page));
52 
53 		/*
54 		 * At least for ext2 with nobh option, we need to wait on
55 		 * writeback completing on this page, since we'll remove it
56 		 * from the pagecache.  Otherwise truncate wont wait on the
57 		 * page, allowing the disk blocks to be reused by someone else
58 		 * before we actually wrote our data to them. fs corruption
59 		 * ensues.
60 		 */
61 		wait_on_page_writeback(page);
62 
63 		if (page_has_private(page) &&
64 		    !try_to_release_page(page, GFP_KERNEL))
65 			goto out_unlock;
66 
67 		/*
68 		 * If we succeeded in removing the mapping, set LRU flag
69 		 * and return good.
70 		 */
71 		if (remove_mapping(mapping, page)) {
72 			buf->flags |= PIPE_BUF_FLAG_LRU;
73 			return 0;
74 		}
75 	}
76 
77 	/*
78 	 * Raced with truncate or failed to remove page from current
79 	 * address space, unlock and return failure.
80 	 */
81 out_unlock:
82 	unlock_page(page);
83 	return 1;
84 }
85 
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 					struct pipe_buffer *buf)
88 {
89 	page_cache_release(buf->page);
90 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 }
92 
93 /*
94  * Check whether the contents of buf is OK to access. Since the content
95  * is a page cache page, IO may be in flight.
96  */
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 				       struct pipe_buffer *buf)
99 {
100 	struct page *page = buf->page;
101 	int err;
102 
103 	if (!PageUptodate(page)) {
104 		lock_page(page);
105 
106 		/*
107 		 * Page got truncated/unhashed. This will cause a 0-byte
108 		 * splice, if this is the first page.
109 		 */
110 		if (!page->mapping) {
111 			err = -ENODATA;
112 			goto error;
113 		}
114 
115 		/*
116 		 * Uh oh, read-error from disk.
117 		 */
118 		if (!PageUptodate(page)) {
119 			err = -EIO;
120 			goto error;
121 		}
122 
123 		/*
124 		 * Page is ok afterall, we are done.
125 		 */
126 		unlock_page(page);
127 	}
128 
129 	return 0;
130 error:
131 	unlock_page(page);
132 	return err;
133 }
134 
135 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 	.can_merge = 0,
137 	.map = generic_pipe_buf_map,
138 	.unmap = generic_pipe_buf_unmap,
139 	.confirm = page_cache_pipe_buf_confirm,
140 	.release = page_cache_pipe_buf_release,
141 	.steal = page_cache_pipe_buf_steal,
142 	.get = generic_pipe_buf_get,
143 };
144 
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 				    struct pipe_buffer *buf)
147 {
148 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 		return 1;
150 
151 	buf->flags |= PIPE_BUF_FLAG_LRU;
152 	return generic_pipe_buf_steal(pipe, buf);
153 }
154 
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 	.can_merge = 0,
157 	.map = generic_pipe_buf_map,
158 	.unmap = generic_pipe_buf_unmap,
159 	.confirm = generic_pipe_buf_confirm,
160 	.release = page_cache_pipe_buf_release,
161 	.steal = user_page_pipe_buf_steal,
162 	.get = generic_pipe_buf_get,
163 };
164 
165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166 {
167 	smp_mb();
168 	if (waitqueue_active(&pipe->wait))
169 		wake_up_interruptible(&pipe->wait);
170 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
171 }
172 
173 /**
174  * splice_to_pipe - fill passed data into a pipe
175  * @pipe:	pipe to fill
176  * @spd:	data to fill
177  *
178  * Description:
179  *    @spd contains a map of pages and len/offset tuples, along with
180  *    the struct pipe_buf_operations associated with these pages. This
181  *    function will link that data to the pipe.
182  *
183  */
184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185 		       struct splice_pipe_desc *spd)
186 {
187 	unsigned int spd_pages = spd->nr_pages;
188 	int ret, do_wakeup, page_nr;
189 
190 	ret = 0;
191 	do_wakeup = 0;
192 	page_nr = 0;
193 
194 	pipe_lock(pipe);
195 
196 	for (;;) {
197 		if (!pipe->readers) {
198 			send_sig(SIGPIPE, current, 0);
199 			if (!ret)
200 				ret = -EPIPE;
201 			break;
202 		}
203 
204 		if (pipe->nrbufs < pipe->buffers) {
205 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
206 			struct pipe_buffer *buf = pipe->bufs + newbuf;
207 
208 			buf->page = spd->pages[page_nr];
209 			buf->offset = spd->partial[page_nr].offset;
210 			buf->len = spd->partial[page_nr].len;
211 			buf->private = spd->partial[page_nr].private;
212 			buf->ops = spd->ops;
213 			if (spd->flags & SPLICE_F_GIFT)
214 				buf->flags |= PIPE_BUF_FLAG_GIFT;
215 
216 			pipe->nrbufs++;
217 			page_nr++;
218 			ret += buf->len;
219 
220 			if (pipe->inode)
221 				do_wakeup = 1;
222 
223 			if (!--spd->nr_pages)
224 				break;
225 			if (pipe->nrbufs < pipe->buffers)
226 				continue;
227 
228 			break;
229 		}
230 
231 		if (spd->flags & SPLICE_F_NONBLOCK) {
232 			if (!ret)
233 				ret = -EAGAIN;
234 			break;
235 		}
236 
237 		if (signal_pending(current)) {
238 			if (!ret)
239 				ret = -ERESTARTSYS;
240 			break;
241 		}
242 
243 		if (do_wakeup) {
244 			smp_mb();
245 			if (waitqueue_active(&pipe->wait))
246 				wake_up_interruptible_sync(&pipe->wait);
247 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
248 			do_wakeup = 0;
249 		}
250 
251 		pipe->waiting_writers++;
252 		pipe_wait(pipe);
253 		pipe->waiting_writers--;
254 	}
255 
256 	pipe_unlock(pipe);
257 
258 	if (do_wakeup)
259 		wakeup_pipe_readers(pipe);
260 
261 	while (page_nr < spd_pages)
262 		spd->spd_release(spd, page_nr++);
263 
264 	return ret;
265 }
266 
267 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268 {
269 	page_cache_release(spd->pages[i]);
270 }
271 
272 /*
273  * Check if we need to grow the arrays holding pages and partial page
274  * descriptions.
275  */
276 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277 {
278 	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
279 
280 	spd->nr_pages_max = buffers;
281 	if (buffers <= PIPE_DEF_BUFFERS)
282 		return 0;
283 
284 	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
285 	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
286 
287 	if (spd->pages && spd->partial)
288 		return 0;
289 
290 	kfree(spd->pages);
291 	kfree(spd->partial);
292 	return -ENOMEM;
293 }
294 
295 void splice_shrink_spd(struct splice_pipe_desc *spd)
296 {
297 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
298 		return;
299 
300 	kfree(spd->pages);
301 	kfree(spd->partial);
302 }
303 
304 static int
305 __generic_file_splice_read(struct file *in, loff_t *ppos,
306 			   struct pipe_inode_info *pipe, size_t len,
307 			   unsigned int flags)
308 {
309 	struct address_space *mapping = in->f_mapping;
310 	unsigned int loff, nr_pages, req_pages;
311 	struct page *pages[PIPE_DEF_BUFFERS];
312 	struct partial_page partial[PIPE_DEF_BUFFERS];
313 	struct page *page;
314 	pgoff_t index, end_index;
315 	loff_t isize;
316 	int error, page_nr;
317 	struct splice_pipe_desc spd = {
318 		.pages = pages,
319 		.partial = partial,
320 		.nr_pages_max = PIPE_DEF_BUFFERS,
321 		.flags = flags,
322 		.ops = &page_cache_pipe_buf_ops,
323 		.spd_release = spd_release_page,
324 	};
325 
326 	if (splice_grow_spd(pipe, &spd))
327 		return -ENOMEM;
328 
329 	index = *ppos >> PAGE_CACHE_SHIFT;
330 	loff = *ppos & ~PAGE_CACHE_MASK;
331 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
332 	nr_pages = min(req_pages, spd.nr_pages_max);
333 
334 	/*
335 	 * Lookup the (hopefully) full range of pages we need.
336 	 */
337 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
338 	index += spd.nr_pages;
339 
340 	/*
341 	 * If find_get_pages_contig() returned fewer pages than we needed,
342 	 * readahead/allocate the rest and fill in the holes.
343 	 */
344 	if (spd.nr_pages < nr_pages)
345 		page_cache_sync_readahead(mapping, &in->f_ra, in,
346 				index, req_pages - spd.nr_pages);
347 
348 	error = 0;
349 	while (spd.nr_pages < nr_pages) {
350 		/*
351 		 * Page could be there, find_get_pages_contig() breaks on
352 		 * the first hole.
353 		 */
354 		page = find_get_page(mapping, index);
355 		if (!page) {
356 			/*
357 			 * page didn't exist, allocate one.
358 			 */
359 			page = page_cache_alloc_cold(mapping);
360 			if (!page)
361 				break;
362 
363 			error = add_to_page_cache_lru(page, mapping, index,
364 						GFP_KERNEL);
365 			if (unlikely(error)) {
366 				page_cache_release(page);
367 				if (error == -EEXIST)
368 					continue;
369 				break;
370 			}
371 			/*
372 			 * add_to_page_cache() locks the page, unlock it
373 			 * to avoid convoluting the logic below even more.
374 			 */
375 			unlock_page(page);
376 		}
377 
378 		spd.pages[spd.nr_pages++] = page;
379 		index++;
380 	}
381 
382 	/*
383 	 * Now loop over the map and see if we need to start IO on any
384 	 * pages, fill in the partial map, etc.
385 	 */
386 	index = *ppos >> PAGE_CACHE_SHIFT;
387 	nr_pages = spd.nr_pages;
388 	spd.nr_pages = 0;
389 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
390 		unsigned int this_len;
391 
392 		if (!len)
393 			break;
394 
395 		/*
396 		 * this_len is the max we'll use from this page
397 		 */
398 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
399 		page = spd.pages[page_nr];
400 
401 		if (PageReadahead(page))
402 			page_cache_async_readahead(mapping, &in->f_ra, in,
403 					page, index, req_pages - page_nr);
404 
405 		/*
406 		 * If the page isn't uptodate, we may need to start io on it
407 		 */
408 		if (!PageUptodate(page)) {
409 			lock_page(page);
410 
411 			/*
412 			 * Page was truncated, or invalidated by the
413 			 * filesystem.  Redo the find/create, but this time the
414 			 * page is kept locked, so there's no chance of another
415 			 * race with truncate/invalidate.
416 			 */
417 			if (!page->mapping) {
418 				unlock_page(page);
419 				page = find_or_create_page(mapping, index,
420 						mapping_gfp_mask(mapping));
421 
422 				if (!page) {
423 					error = -ENOMEM;
424 					break;
425 				}
426 				page_cache_release(spd.pages[page_nr]);
427 				spd.pages[page_nr] = page;
428 			}
429 			/*
430 			 * page was already under io and is now done, great
431 			 */
432 			if (PageUptodate(page)) {
433 				unlock_page(page);
434 				goto fill_it;
435 			}
436 
437 			/*
438 			 * need to read in the page
439 			 */
440 			error = mapping->a_ops->readpage(in, page);
441 			if (unlikely(error)) {
442 				/*
443 				 * We really should re-lookup the page here,
444 				 * but it complicates things a lot. Instead
445 				 * lets just do what we already stored, and
446 				 * we'll get it the next time we are called.
447 				 */
448 				if (error == AOP_TRUNCATED_PAGE)
449 					error = 0;
450 
451 				break;
452 			}
453 		}
454 fill_it:
455 		/*
456 		 * i_size must be checked after PageUptodate.
457 		 */
458 		isize = i_size_read(mapping->host);
459 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
460 		if (unlikely(!isize || index > end_index))
461 			break;
462 
463 		/*
464 		 * if this is the last page, see if we need to shrink
465 		 * the length and stop
466 		 */
467 		if (end_index == index) {
468 			unsigned int plen;
469 
470 			/*
471 			 * max good bytes in this page
472 			 */
473 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
474 			if (plen <= loff)
475 				break;
476 
477 			/*
478 			 * force quit after adding this page
479 			 */
480 			this_len = min(this_len, plen - loff);
481 			len = this_len;
482 		}
483 
484 		spd.partial[page_nr].offset = loff;
485 		spd.partial[page_nr].len = this_len;
486 		len -= this_len;
487 		loff = 0;
488 		spd.nr_pages++;
489 		index++;
490 	}
491 
492 	/*
493 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
494 	 * we got, 'nr_pages' is how many pages are in the map.
495 	 */
496 	while (page_nr < nr_pages)
497 		page_cache_release(spd.pages[page_nr++]);
498 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
499 
500 	if (spd.nr_pages)
501 		error = splice_to_pipe(pipe, &spd);
502 
503 	splice_shrink_spd(&spd);
504 	return error;
505 }
506 
507 /**
508  * generic_file_splice_read - splice data from file to a pipe
509  * @in:		file to splice from
510  * @ppos:	position in @in
511  * @pipe:	pipe to splice to
512  * @len:	number of bytes to splice
513  * @flags:	splice modifier flags
514  *
515  * Description:
516  *    Will read pages from given file and fill them into a pipe. Can be
517  *    used as long as the address_space operations for the source implements
518  *    a readpage() hook.
519  *
520  */
521 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
522 				 struct pipe_inode_info *pipe, size_t len,
523 				 unsigned int flags)
524 {
525 	loff_t isize, left;
526 	int ret;
527 
528 	isize = i_size_read(in->f_mapping->host);
529 	if (unlikely(*ppos >= isize))
530 		return 0;
531 
532 	left = isize - *ppos;
533 	if (unlikely(left < len))
534 		len = left;
535 
536 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
537 	if (ret > 0) {
538 		*ppos += ret;
539 		file_accessed(in);
540 	}
541 
542 	return ret;
543 }
544 EXPORT_SYMBOL(generic_file_splice_read);
545 
546 static const struct pipe_buf_operations default_pipe_buf_ops = {
547 	.can_merge = 0,
548 	.map = generic_pipe_buf_map,
549 	.unmap = generic_pipe_buf_unmap,
550 	.confirm = generic_pipe_buf_confirm,
551 	.release = generic_pipe_buf_release,
552 	.steal = generic_pipe_buf_steal,
553 	.get = generic_pipe_buf_get,
554 };
555 
556 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
557 			    unsigned long vlen, loff_t offset)
558 {
559 	mm_segment_t old_fs;
560 	loff_t pos = offset;
561 	ssize_t res;
562 
563 	old_fs = get_fs();
564 	set_fs(get_ds());
565 	/* The cast to a user pointer is valid due to the set_fs() */
566 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
567 	set_fs(old_fs);
568 
569 	return res;
570 }
571 
572 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
573 			    loff_t pos)
574 {
575 	mm_segment_t old_fs;
576 	ssize_t res;
577 
578 	old_fs = get_fs();
579 	set_fs(get_ds());
580 	/* The cast to a user pointer is valid due to the set_fs() */
581 	res = vfs_write(file, (const char __user *)buf, count, &pos);
582 	set_fs(old_fs);
583 
584 	return res;
585 }
586 
587 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
588 				 struct pipe_inode_info *pipe, size_t len,
589 				 unsigned int flags)
590 {
591 	unsigned int nr_pages;
592 	unsigned int nr_freed;
593 	size_t offset;
594 	struct page *pages[PIPE_DEF_BUFFERS];
595 	struct partial_page partial[PIPE_DEF_BUFFERS];
596 	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
597 	ssize_t res;
598 	size_t this_len;
599 	int error;
600 	int i;
601 	struct splice_pipe_desc spd = {
602 		.pages = pages,
603 		.partial = partial,
604 		.nr_pages_max = PIPE_DEF_BUFFERS,
605 		.flags = flags,
606 		.ops = &default_pipe_buf_ops,
607 		.spd_release = spd_release_page,
608 	};
609 
610 	if (splice_grow_spd(pipe, &spd))
611 		return -ENOMEM;
612 
613 	res = -ENOMEM;
614 	vec = __vec;
615 	if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
616 		vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
617 		if (!vec)
618 			goto shrink_ret;
619 	}
620 
621 	offset = *ppos & ~PAGE_CACHE_MASK;
622 	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
623 
624 	for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
625 		struct page *page;
626 
627 		page = alloc_page(GFP_USER);
628 		error = -ENOMEM;
629 		if (!page)
630 			goto err;
631 
632 		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
633 		vec[i].iov_base = (void __user *) page_address(page);
634 		vec[i].iov_len = this_len;
635 		spd.pages[i] = page;
636 		spd.nr_pages++;
637 		len -= this_len;
638 		offset = 0;
639 	}
640 
641 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
642 	if (res < 0) {
643 		error = res;
644 		goto err;
645 	}
646 
647 	error = 0;
648 	if (!res)
649 		goto err;
650 
651 	nr_freed = 0;
652 	for (i = 0; i < spd.nr_pages; i++) {
653 		this_len = min_t(size_t, vec[i].iov_len, res);
654 		spd.partial[i].offset = 0;
655 		spd.partial[i].len = this_len;
656 		if (!this_len) {
657 			__free_page(spd.pages[i]);
658 			spd.pages[i] = NULL;
659 			nr_freed++;
660 		}
661 		res -= this_len;
662 	}
663 	spd.nr_pages -= nr_freed;
664 
665 	res = splice_to_pipe(pipe, &spd);
666 	if (res > 0)
667 		*ppos += res;
668 
669 shrink_ret:
670 	if (vec != __vec)
671 		kfree(vec);
672 	splice_shrink_spd(&spd);
673 	return res;
674 
675 err:
676 	for (i = 0; i < spd.nr_pages; i++)
677 		__free_page(spd.pages[i]);
678 
679 	res = error;
680 	goto shrink_ret;
681 }
682 EXPORT_SYMBOL(default_file_splice_read);
683 
684 /*
685  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
686  * using sendpage(). Return the number of bytes sent.
687  */
688 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
689 			    struct pipe_buffer *buf, struct splice_desc *sd)
690 {
691 	struct file *file = sd->u.file;
692 	loff_t pos = sd->pos;
693 	int more;
694 
695 	if (!likely(file->f_op && file->f_op->sendpage))
696 		return -EINVAL;
697 
698 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
699 	if (sd->len < sd->total_len)
700 		more |= MSG_SENDPAGE_NOTLAST;
701 	return file->f_op->sendpage(file, buf->page, buf->offset,
702 				    sd->len, &pos, more);
703 }
704 
705 /*
706  * This is a little more tricky than the file -> pipe splicing. There are
707  * basically three cases:
708  *
709  *	- Destination page already exists in the address space and there
710  *	  are users of it. For that case we have no other option that
711  *	  copying the data. Tough luck.
712  *	- Destination page already exists in the address space, but there
713  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
714  *	  through to last case.
715  *	- Destination page does not exist, we can add the pipe page to
716  *	  the page cache and avoid the copy.
717  *
718  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
719  * sd->flags), we attempt to migrate pages from the pipe to the output
720  * file address space page cache. This is possible if no one else has
721  * the pipe page referenced outside of the pipe and page cache. If
722  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
723  * a new page in the output file page cache and fill/dirty that.
724  */
725 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
726 		 struct splice_desc *sd)
727 {
728 	struct file *file = sd->u.file;
729 	struct address_space *mapping = file->f_mapping;
730 	unsigned int offset, this_len;
731 	struct page *page;
732 	void *fsdata;
733 	int ret;
734 
735 	offset = sd->pos & ~PAGE_CACHE_MASK;
736 
737 	this_len = sd->len;
738 	if (this_len + offset > PAGE_CACHE_SIZE)
739 		this_len = PAGE_CACHE_SIZE - offset;
740 
741 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
742 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
743 	if (unlikely(ret))
744 		goto out;
745 
746 	if (buf->page != page) {
747 		char *src = buf->ops->map(pipe, buf, 1);
748 		char *dst = kmap_atomic(page);
749 
750 		memcpy(dst + offset, src + buf->offset, this_len);
751 		flush_dcache_page(page);
752 		kunmap_atomic(dst);
753 		buf->ops->unmap(pipe, buf, src);
754 	}
755 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
756 				page, fsdata);
757 out:
758 	return ret;
759 }
760 EXPORT_SYMBOL(pipe_to_file);
761 
762 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
763 {
764 	smp_mb();
765 	if (waitqueue_active(&pipe->wait))
766 		wake_up_interruptible(&pipe->wait);
767 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
768 }
769 
770 /**
771  * splice_from_pipe_feed - feed available data from a pipe to a file
772  * @pipe:	pipe to splice from
773  * @sd:		information to @actor
774  * @actor:	handler that splices the data
775  *
776  * Description:
777  *    This function loops over the pipe and calls @actor to do the
778  *    actual moving of a single struct pipe_buffer to the desired
779  *    destination.  It returns when there's no more buffers left in
780  *    the pipe or if the requested number of bytes (@sd->total_len)
781  *    have been copied.  It returns a positive number (one) if the
782  *    pipe needs to be filled with more data, zero if the required
783  *    number of bytes have been copied and -errno on error.
784  *
785  *    This, together with splice_from_pipe_{begin,end,next}, may be
786  *    used to implement the functionality of __splice_from_pipe() when
787  *    locking is required around copying the pipe buffers to the
788  *    destination.
789  */
790 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
791 			  splice_actor *actor)
792 {
793 	int ret;
794 
795 	while (pipe->nrbufs) {
796 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
797 		const struct pipe_buf_operations *ops = buf->ops;
798 
799 		sd->len = buf->len;
800 		if (sd->len > sd->total_len)
801 			sd->len = sd->total_len;
802 
803 		ret = buf->ops->confirm(pipe, buf);
804 		if (unlikely(ret)) {
805 			if (ret == -ENODATA)
806 				ret = 0;
807 			return ret;
808 		}
809 
810 		ret = actor(pipe, buf, sd);
811 		if (ret <= 0)
812 			return ret;
813 
814 		buf->offset += ret;
815 		buf->len -= ret;
816 
817 		sd->num_spliced += ret;
818 		sd->len -= ret;
819 		sd->pos += ret;
820 		sd->total_len -= ret;
821 
822 		if (!buf->len) {
823 			buf->ops = NULL;
824 			ops->release(pipe, buf);
825 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
826 			pipe->nrbufs--;
827 			if (pipe->inode)
828 				sd->need_wakeup = true;
829 		}
830 
831 		if (!sd->total_len)
832 			return 0;
833 	}
834 
835 	return 1;
836 }
837 EXPORT_SYMBOL(splice_from_pipe_feed);
838 
839 /**
840  * splice_from_pipe_next - wait for some data to splice from
841  * @pipe:	pipe to splice from
842  * @sd:		information about the splice operation
843  *
844  * Description:
845  *    This function will wait for some data and return a positive
846  *    value (one) if pipe buffers are available.  It will return zero
847  *    or -errno if no more data needs to be spliced.
848  */
849 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
850 {
851 	while (!pipe->nrbufs) {
852 		if (!pipe->writers)
853 			return 0;
854 
855 		if (!pipe->waiting_writers && sd->num_spliced)
856 			return 0;
857 
858 		if (sd->flags & SPLICE_F_NONBLOCK)
859 			return -EAGAIN;
860 
861 		if (signal_pending(current))
862 			return -ERESTARTSYS;
863 
864 		if (sd->need_wakeup) {
865 			wakeup_pipe_writers(pipe);
866 			sd->need_wakeup = false;
867 		}
868 
869 		pipe_wait(pipe);
870 	}
871 
872 	return 1;
873 }
874 EXPORT_SYMBOL(splice_from_pipe_next);
875 
876 /**
877  * splice_from_pipe_begin - start splicing from pipe
878  * @sd:		information about the splice operation
879  *
880  * Description:
881  *    This function should be called before a loop containing
882  *    splice_from_pipe_next() and splice_from_pipe_feed() to
883  *    initialize the necessary fields of @sd.
884  */
885 void splice_from_pipe_begin(struct splice_desc *sd)
886 {
887 	sd->num_spliced = 0;
888 	sd->need_wakeup = false;
889 }
890 EXPORT_SYMBOL(splice_from_pipe_begin);
891 
892 /**
893  * splice_from_pipe_end - finish splicing from pipe
894  * @pipe:	pipe to splice from
895  * @sd:		information about the splice operation
896  *
897  * Description:
898  *    This function will wake up pipe writers if necessary.  It should
899  *    be called after a loop containing splice_from_pipe_next() and
900  *    splice_from_pipe_feed().
901  */
902 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
903 {
904 	if (sd->need_wakeup)
905 		wakeup_pipe_writers(pipe);
906 }
907 EXPORT_SYMBOL(splice_from_pipe_end);
908 
909 /**
910  * __splice_from_pipe - splice data from a pipe to given actor
911  * @pipe:	pipe to splice from
912  * @sd:		information to @actor
913  * @actor:	handler that splices the data
914  *
915  * Description:
916  *    This function does little more than loop over the pipe and call
917  *    @actor to do the actual moving of a single struct pipe_buffer to
918  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
919  *    pipe_to_user.
920  *
921  */
922 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
923 			   splice_actor *actor)
924 {
925 	int ret;
926 
927 	splice_from_pipe_begin(sd);
928 	do {
929 		ret = splice_from_pipe_next(pipe, sd);
930 		if (ret > 0)
931 			ret = splice_from_pipe_feed(pipe, sd, actor);
932 	} while (ret > 0);
933 	splice_from_pipe_end(pipe, sd);
934 
935 	return sd->num_spliced ? sd->num_spliced : ret;
936 }
937 EXPORT_SYMBOL(__splice_from_pipe);
938 
939 /**
940  * splice_from_pipe - splice data from a pipe to a file
941  * @pipe:	pipe to splice from
942  * @out:	file to splice to
943  * @ppos:	position in @out
944  * @len:	how many bytes to splice
945  * @flags:	splice modifier flags
946  * @actor:	handler that splices the data
947  *
948  * Description:
949  *    See __splice_from_pipe. This function locks the pipe inode,
950  *    otherwise it's identical to __splice_from_pipe().
951  *
952  */
953 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
954 			 loff_t *ppos, size_t len, unsigned int flags,
955 			 splice_actor *actor)
956 {
957 	ssize_t ret;
958 	struct splice_desc sd = {
959 		.total_len = len,
960 		.flags = flags,
961 		.pos = *ppos,
962 		.u.file = out,
963 	};
964 
965 	pipe_lock(pipe);
966 	ret = __splice_from_pipe(pipe, &sd, actor);
967 	pipe_unlock(pipe);
968 
969 	return ret;
970 }
971 
972 /**
973  * generic_file_splice_write - splice data from a pipe to a file
974  * @pipe:	pipe info
975  * @out:	file to write to
976  * @ppos:	position in @out
977  * @len:	number of bytes to splice
978  * @flags:	splice modifier flags
979  *
980  * Description:
981  *    Will either move or copy pages (determined by @flags options) from
982  *    the given pipe inode to the given file.
983  *
984  */
985 ssize_t
986 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
987 			  loff_t *ppos, size_t len, unsigned int flags)
988 {
989 	struct address_space *mapping = out->f_mapping;
990 	struct inode *inode = mapping->host;
991 	struct splice_desc sd = {
992 		.total_len = len,
993 		.flags = flags,
994 		.pos = *ppos,
995 		.u.file = out,
996 	};
997 	ssize_t ret;
998 
999 	sb_start_write(inode->i_sb);
1000 
1001 	pipe_lock(pipe);
1002 
1003 	splice_from_pipe_begin(&sd);
1004 	do {
1005 		ret = splice_from_pipe_next(pipe, &sd);
1006 		if (ret <= 0)
1007 			break;
1008 
1009 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1010 		ret = file_remove_suid(out);
1011 		if (!ret) {
1012 			ret = file_update_time(out);
1013 			if (!ret)
1014 				ret = splice_from_pipe_feed(pipe, &sd,
1015 							    pipe_to_file);
1016 		}
1017 		mutex_unlock(&inode->i_mutex);
1018 	} while (ret > 0);
1019 	splice_from_pipe_end(pipe, &sd);
1020 
1021 	pipe_unlock(pipe);
1022 
1023 	if (sd.num_spliced)
1024 		ret = sd.num_spliced;
1025 
1026 	if (ret > 0) {
1027 		int err;
1028 
1029 		err = generic_write_sync(out, *ppos, ret);
1030 		if (err)
1031 			ret = err;
1032 		else
1033 			*ppos += ret;
1034 		balance_dirty_pages_ratelimited(mapping);
1035 	}
1036 	sb_end_write(inode->i_sb);
1037 
1038 	return ret;
1039 }
1040 
1041 EXPORT_SYMBOL(generic_file_splice_write);
1042 
1043 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1044 			  struct splice_desc *sd)
1045 {
1046 	int ret;
1047 	void *data;
1048 
1049 	data = buf->ops->map(pipe, buf, 0);
1050 	ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1051 	buf->ops->unmap(pipe, buf, data);
1052 
1053 	return ret;
1054 }
1055 
1056 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1057 					 struct file *out, loff_t *ppos,
1058 					 size_t len, unsigned int flags)
1059 {
1060 	ssize_t ret;
1061 
1062 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1063 	if (ret > 0)
1064 		*ppos += ret;
1065 
1066 	return ret;
1067 }
1068 
1069 /**
1070  * generic_splice_sendpage - splice data from a pipe to a socket
1071  * @pipe:	pipe to splice from
1072  * @out:	socket to write to
1073  * @ppos:	position in @out
1074  * @len:	number of bytes to splice
1075  * @flags:	splice modifier flags
1076  *
1077  * Description:
1078  *    Will send @len bytes from the pipe to a network socket. No data copying
1079  *    is involved.
1080  *
1081  */
1082 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1083 				loff_t *ppos, size_t len, unsigned int flags)
1084 {
1085 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1086 }
1087 
1088 EXPORT_SYMBOL(generic_splice_sendpage);
1089 
1090 /*
1091  * Attempt to initiate a splice from pipe to file.
1092  */
1093 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1094 			   loff_t *ppos, size_t len, unsigned int flags)
1095 {
1096 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1097 				loff_t *, size_t, unsigned int);
1098 	int ret;
1099 
1100 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1101 		return -EBADF;
1102 
1103 	if (unlikely(out->f_flags & O_APPEND))
1104 		return -EINVAL;
1105 
1106 	ret = rw_verify_area(WRITE, out, ppos, len);
1107 	if (unlikely(ret < 0))
1108 		return ret;
1109 
1110 	if (out->f_op && out->f_op->splice_write)
1111 		splice_write = out->f_op->splice_write;
1112 	else
1113 		splice_write = default_file_splice_write;
1114 
1115 	return splice_write(pipe, out, ppos, len, flags);
1116 }
1117 
1118 /*
1119  * Attempt to initiate a splice from a file to a pipe.
1120  */
1121 static long do_splice_to(struct file *in, loff_t *ppos,
1122 			 struct pipe_inode_info *pipe, size_t len,
1123 			 unsigned int flags)
1124 {
1125 	ssize_t (*splice_read)(struct file *, loff_t *,
1126 			       struct pipe_inode_info *, size_t, unsigned int);
1127 	int ret;
1128 
1129 	if (unlikely(!(in->f_mode & FMODE_READ)))
1130 		return -EBADF;
1131 
1132 	ret = rw_verify_area(READ, in, ppos, len);
1133 	if (unlikely(ret < 0))
1134 		return ret;
1135 
1136 	if (in->f_op && in->f_op->splice_read)
1137 		splice_read = in->f_op->splice_read;
1138 	else
1139 		splice_read = default_file_splice_read;
1140 
1141 	return splice_read(in, ppos, pipe, len, flags);
1142 }
1143 
1144 /**
1145  * splice_direct_to_actor - splices data directly between two non-pipes
1146  * @in:		file to splice from
1147  * @sd:		actor information on where to splice to
1148  * @actor:	handles the data splicing
1149  *
1150  * Description:
1151  *    This is a special case helper to splice directly between two
1152  *    points, without requiring an explicit pipe. Internally an allocated
1153  *    pipe is cached in the process, and reused during the lifetime of
1154  *    that process.
1155  *
1156  */
1157 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1158 			       splice_direct_actor *actor)
1159 {
1160 	struct pipe_inode_info *pipe;
1161 	long ret, bytes;
1162 	umode_t i_mode;
1163 	size_t len;
1164 	int i, flags;
1165 
1166 	/*
1167 	 * We require the input being a regular file, as we don't want to
1168 	 * randomly drop data for eg socket -> socket splicing. Use the
1169 	 * piped splicing for that!
1170 	 */
1171 	i_mode = in->f_path.dentry->d_inode->i_mode;
1172 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1173 		return -EINVAL;
1174 
1175 	/*
1176 	 * neither in nor out is a pipe, setup an internal pipe attached to
1177 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1178 	 */
1179 	pipe = current->splice_pipe;
1180 	if (unlikely(!pipe)) {
1181 		pipe = alloc_pipe_info(NULL);
1182 		if (!pipe)
1183 			return -ENOMEM;
1184 
1185 		/*
1186 		 * We don't have an immediate reader, but we'll read the stuff
1187 		 * out of the pipe right after the splice_to_pipe(). So set
1188 		 * PIPE_READERS appropriately.
1189 		 */
1190 		pipe->readers = 1;
1191 
1192 		current->splice_pipe = pipe;
1193 	}
1194 
1195 	/*
1196 	 * Do the splice.
1197 	 */
1198 	ret = 0;
1199 	bytes = 0;
1200 	len = sd->total_len;
1201 	flags = sd->flags;
1202 
1203 	/*
1204 	 * Don't block on output, we have to drain the direct pipe.
1205 	 */
1206 	sd->flags &= ~SPLICE_F_NONBLOCK;
1207 
1208 	while (len) {
1209 		size_t read_len;
1210 		loff_t pos = sd->pos, prev_pos = pos;
1211 
1212 		ret = do_splice_to(in, &pos, pipe, len, flags);
1213 		if (unlikely(ret <= 0))
1214 			goto out_release;
1215 
1216 		read_len = ret;
1217 		sd->total_len = read_len;
1218 
1219 		/*
1220 		 * NOTE: nonblocking mode only applies to the input. We
1221 		 * must not do the output in nonblocking mode as then we
1222 		 * could get stuck data in the internal pipe:
1223 		 */
1224 		ret = actor(pipe, sd);
1225 		if (unlikely(ret <= 0)) {
1226 			sd->pos = prev_pos;
1227 			goto out_release;
1228 		}
1229 
1230 		bytes += ret;
1231 		len -= ret;
1232 		sd->pos = pos;
1233 
1234 		if (ret < read_len) {
1235 			sd->pos = prev_pos + ret;
1236 			goto out_release;
1237 		}
1238 	}
1239 
1240 done:
1241 	pipe->nrbufs = pipe->curbuf = 0;
1242 	file_accessed(in);
1243 	return bytes;
1244 
1245 out_release:
1246 	/*
1247 	 * If we did an incomplete transfer we must release
1248 	 * the pipe buffers in question:
1249 	 */
1250 	for (i = 0; i < pipe->buffers; i++) {
1251 		struct pipe_buffer *buf = pipe->bufs + i;
1252 
1253 		if (buf->ops) {
1254 			buf->ops->release(pipe, buf);
1255 			buf->ops = NULL;
1256 		}
1257 	}
1258 
1259 	if (!bytes)
1260 		bytes = ret;
1261 
1262 	goto done;
1263 }
1264 EXPORT_SYMBOL(splice_direct_to_actor);
1265 
1266 static int direct_splice_actor(struct pipe_inode_info *pipe,
1267 			       struct splice_desc *sd)
1268 {
1269 	struct file *file = sd->u.file;
1270 
1271 	return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1272 			      sd->flags);
1273 }
1274 
1275 /**
1276  * do_splice_direct - splices data directly between two files
1277  * @in:		file to splice from
1278  * @ppos:	input file offset
1279  * @out:	file to splice to
1280  * @len:	number of bytes to splice
1281  * @flags:	splice modifier flags
1282  *
1283  * Description:
1284  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1285  *    doing it in the application would incur an extra system call
1286  *    (splice in + splice out, as compared to just sendfile()). So this helper
1287  *    can splice directly through a process-private pipe.
1288  *
1289  */
1290 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1291 		      size_t len, unsigned int flags)
1292 {
1293 	struct splice_desc sd = {
1294 		.len		= len,
1295 		.total_len	= len,
1296 		.flags		= flags,
1297 		.pos		= *ppos,
1298 		.u.file		= out,
1299 	};
1300 	long ret;
1301 
1302 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1303 	if (ret > 0)
1304 		*ppos = sd.pos;
1305 
1306 	return ret;
1307 }
1308 
1309 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1310 			       struct pipe_inode_info *opipe,
1311 			       size_t len, unsigned int flags);
1312 
1313 /*
1314  * Determine where to splice to/from.
1315  */
1316 static long do_splice(struct file *in, loff_t __user *off_in,
1317 		      struct file *out, loff_t __user *off_out,
1318 		      size_t len, unsigned int flags)
1319 {
1320 	struct pipe_inode_info *ipipe;
1321 	struct pipe_inode_info *opipe;
1322 	loff_t offset, *off;
1323 	long ret;
1324 
1325 	ipipe = get_pipe_info(in);
1326 	opipe = get_pipe_info(out);
1327 
1328 	if (ipipe && opipe) {
1329 		if (off_in || off_out)
1330 			return -ESPIPE;
1331 
1332 		if (!(in->f_mode & FMODE_READ))
1333 			return -EBADF;
1334 
1335 		if (!(out->f_mode & FMODE_WRITE))
1336 			return -EBADF;
1337 
1338 		/* Splicing to self would be fun, but... */
1339 		if (ipipe == opipe)
1340 			return -EINVAL;
1341 
1342 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1343 	}
1344 
1345 	if (ipipe) {
1346 		if (off_in)
1347 			return -ESPIPE;
1348 		if (off_out) {
1349 			if (!(out->f_mode & FMODE_PWRITE))
1350 				return -EINVAL;
1351 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1352 				return -EFAULT;
1353 			off = &offset;
1354 		} else
1355 			off = &out->f_pos;
1356 
1357 		ret = do_splice_from(ipipe, out, off, len, flags);
1358 
1359 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1360 			ret = -EFAULT;
1361 
1362 		return ret;
1363 	}
1364 
1365 	if (opipe) {
1366 		if (off_out)
1367 			return -ESPIPE;
1368 		if (off_in) {
1369 			if (!(in->f_mode & FMODE_PREAD))
1370 				return -EINVAL;
1371 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1372 				return -EFAULT;
1373 			off = &offset;
1374 		} else
1375 			off = &in->f_pos;
1376 
1377 		ret = do_splice_to(in, off, opipe, len, flags);
1378 
1379 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1380 			ret = -EFAULT;
1381 
1382 		return ret;
1383 	}
1384 
1385 	return -EINVAL;
1386 }
1387 
1388 /*
1389  * Map an iov into an array of pages and offset/length tupples. With the
1390  * partial_page structure, we can map several non-contiguous ranges into
1391  * our ones pages[] map instead of splitting that operation into pieces.
1392  * Could easily be exported as a generic helper for other users, in which
1393  * case one would probably want to add a 'max_nr_pages' parameter as well.
1394  */
1395 static int get_iovec_page_array(const struct iovec __user *iov,
1396 				unsigned int nr_vecs, struct page **pages,
1397 				struct partial_page *partial, bool aligned,
1398 				unsigned int pipe_buffers)
1399 {
1400 	int buffers = 0, error = 0;
1401 
1402 	while (nr_vecs) {
1403 		unsigned long off, npages;
1404 		struct iovec entry;
1405 		void __user *base;
1406 		size_t len;
1407 		int i;
1408 
1409 		error = -EFAULT;
1410 		if (copy_from_user(&entry, iov, sizeof(entry)))
1411 			break;
1412 
1413 		base = entry.iov_base;
1414 		len = entry.iov_len;
1415 
1416 		/*
1417 		 * Sanity check this iovec. 0 read succeeds.
1418 		 */
1419 		error = 0;
1420 		if (unlikely(!len))
1421 			break;
1422 		error = -EFAULT;
1423 		if (!access_ok(VERIFY_READ, base, len))
1424 			break;
1425 
1426 		/*
1427 		 * Get this base offset and number of pages, then map
1428 		 * in the user pages.
1429 		 */
1430 		off = (unsigned long) base & ~PAGE_MASK;
1431 
1432 		/*
1433 		 * If asked for alignment, the offset must be zero and the
1434 		 * length a multiple of the PAGE_SIZE.
1435 		 */
1436 		error = -EINVAL;
1437 		if (aligned && (off || len & ~PAGE_MASK))
1438 			break;
1439 
1440 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1441 		if (npages > pipe_buffers - buffers)
1442 			npages = pipe_buffers - buffers;
1443 
1444 		error = get_user_pages_fast((unsigned long)base, npages,
1445 					0, &pages[buffers]);
1446 
1447 		if (unlikely(error <= 0))
1448 			break;
1449 
1450 		/*
1451 		 * Fill this contiguous range into the partial page map.
1452 		 */
1453 		for (i = 0; i < error; i++) {
1454 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1455 
1456 			partial[buffers].offset = off;
1457 			partial[buffers].len = plen;
1458 
1459 			off = 0;
1460 			len -= plen;
1461 			buffers++;
1462 		}
1463 
1464 		/*
1465 		 * We didn't complete this iov, stop here since it probably
1466 		 * means we have to move some of this into a pipe to
1467 		 * be able to continue.
1468 		 */
1469 		if (len)
1470 			break;
1471 
1472 		/*
1473 		 * Don't continue if we mapped fewer pages than we asked for,
1474 		 * or if we mapped the max number of pages that we have
1475 		 * room for.
1476 		 */
1477 		if (error < npages || buffers == pipe_buffers)
1478 			break;
1479 
1480 		nr_vecs--;
1481 		iov++;
1482 	}
1483 
1484 	if (buffers)
1485 		return buffers;
1486 
1487 	return error;
1488 }
1489 
1490 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1491 			struct splice_desc *sd)
1492 {
1493 	char *src;
1494 	int ret;
1495 
1496 	/*
1497 	 * See if we can use the atomic maps, by prefaulting in the
1498 	 * pages and doing an atomic copy
1499 	 */
1500 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1501 		src = buf->ops->map(pipe, buf, 1);
1502 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1503 							sd->len);
1504 		buf->ops->unmap(pipe, buf, src);
1505 		if (!ret) {
1506 			ret = sd->len;
1507 			goto out;
1508 		}
1509 	}
1510 
1511 	/*
1512 	 * No dice, use slow non-atomic map and copy
1513  	 */
1514 	src = buf->ops->map(pipe, buf, 0);
1515 
1516 	ret = sd->len;
1517 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1518 		ret = -EFAULT;
1519 
1520 	buf->ops->unmap(pipe, buf, src);
1521 out:
1522 	if (ret > 0)
1523 		sd->u.userptr += ret;
1524 	return ret;
1525 }
1526 
1527 /*
1528  * For lack of a better implementation, implement vmsplice() to userspace
1529  * as a simple copy of the pipes pages to the user iov.
1530  */
1531 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1532 			     unsigned long nr_segs, unsigned int flags)
1533 {
1534 	struct pipe_inode_info *pipe;
1535 	struct splice_desc sd;
1536 	ssize_t size;
1537 	int error;
1538 	long ret;
1539 
1540 	pipe = get_pipe_info(file);
1541 	if (!pipe)
1542 		return -EBADF;
1543 
1544 	pipe_lock(pipe);
1545 
1546 	error = ret = 0;
1547 	while (nr_segs) {
1548 		void __user *base;
1549 		size_t len;
1550 
1551 		/*
1552 		 * Get user address base and length for this iovec.
1553 		 */
1554 		error = get_user(base, &iov->iov_base);
1555 		if (unlikely(error))
1556 			break;
1557 		error = get_user(len, &iov->iov_len);
1558 		if (unlikely(error))
1559 			break;
1560 
1561 		/*
1562 		 * Sanity check this iovec. 0 read succeeds.
1563 		 */
1564 		if (unlikely(!len))
1565 			break;
1566 		if (unlikely(!base)) {
1567 			error = -EFAULT;
1568 			break;
1569 		}
1570 
1571 		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1572 			error = -EFAULT;
1573 			break;
1574 		}
1575 
1576 		sd.len = 0;
1577 		sd.total_len = len;
1578 		sd.flags = flags;
1579 		sd.u.userptr = base;
1580 		sd.pos = 0;
1581 
1582 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1583 		if (size < 0) {
1584 			if (!ret)
1585 				ret = size;
1586 
1587 			break;
1588 		}
1589 
1590 		ret += size;
1591 
1592 		if (size < len)
1593 			break;
1594 
1595 		nr_segs--;
1596 		iov++;
1597 	}
1598 
1599 	pipe_unlock(pipe);
1600 
1601 	if (!ret)
1602 		ret = error;
1603 
1604 	return ret;
1605 }
1606 
1607 /*
1608  * vmsplice splices a user address range into a pipe. It can be thought of
1609  * as splice-from-memory, where the regular splice is splice-from-file (or
1610  * to file). In both cases the output is a pipe, naturally.
1611  */
1612 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1613 			     unsigned long nr_segs, unsigned int flags)
1614 {
1615 	struct pipe_inode_info *pipe;
1616 	struct page *pages[PIPE_DEF_BUFFERS];
1617 	struct partial_page partial[PIPE_DEF_BUFFERS];
1618 	struct splice_pipe_desc spd = {
1619 		.pages = pages,
1620 		.partial = partial,
1621 		.nr_pages_max = PIPE_DEF_BUFFERS,
1622 		.flags = flags,
1623 		.ops = &user_page_pipe_buf_ops,
1624 		.spd_release = spd_release_page,
1625 	};
1626 	long ret;
1627 
1628 	pipe = get_pipe_info(file);
1629 	if (!pipe)
1630 		return -EBADF;
1631 
1632 	if (splice_grow_spd(pipe, &spd))
1633 		return -ENOMEM;
1634 
1635 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1636 					    spd.partial, false,
1637 					    spd.nr_pages_max);
1638 	if (spd.nr_pages <= 0)
1639 		ret = spd.nr_pages;
1640 	else
1641 		ret = splice_to_pipe(pipe, &spd);
1642 
1643 	splice_shrink_spd(&spd);
1644 	return ret;
1645 }
1646 
1647 /*
1648  * Note that vmsplice only really supports true splicing _from_ user memory
1649  * to a pipe, not the other way around. Splicing from user memory is a simple
1650  * operation that can be supported without any funky alignment restrictions
1651  * or nasty vm tricks. We simply map in the user memory and fill them into
1652  * a pipe. The reverse isn't quite as easy, though. There are two possible
1653  * solutions for that:
1654  *
1655  *	- memcpy() the data internally, at which point we might as well just
1656  *	  do a regular read() on the buffer anyway.
1657  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1658  *	  has restriction limitations on both ends of the pipe).
1659  *
1660  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1661  *
1662  */
1663 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1664 		unsigned long, nr_segs, unsigned int, flags)
1665 {
1666 	struct fd f;
1667 	long error;
1668 
1669 	if (unlikely(nr_segs > UIO_MAXIOV))
1670 		return -EINVAL;
1671 	else if (unlikely(!nr_segs))
1672 		return 0;
1673 
1674 	error = -EBADF;
1675 	f = fdget(fd);
1676 	if (f.file) {
1677 		if (f.file->f_mode & FMODE_WRITE)
1678 			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1679 		else if (f.file->f_mode & FMODE_READ)
1680 			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1681 
1682 		fdput(f);
1683 	}
1684 
1685 	return error;
1686 }
1687 
1688 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1689 		int, fd_out, loff_t __user *, off_out,
1690 		size_t, len, unsigned int, flags)
1691 {
1692 	struct fd in, out;
1693 	long error;
1694 
1695 	if (unlikely(!len))
1696 		return 0;
1697 
1698 	error = -EBADF;
1699 	in = fdget(fd_in);
1700 	if (in.file) {
1701 		if (in.file->f_mode & FMODE_READ) {
1702 			out = fdget(fd_out);
1703 			if (out.file) {
1704 				if (out.file->f_mode & FMODE_WRITE)
1705 					error = do_splice(in.file, off_in,
1706 							  out.file, off_out,
1707 							  len, flags);
1708 				fdput(out);
1709 			}
1710 		}
1711 		fdput(in);
1712 	}
1713 	return error;
1714 }
1715 
1716 /*
1717  * Make sure there's data to read. Wait for input if we can, otherwise
1718  * return an appropriate error.
1719  */
1720 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1721 {
1722 	int ret;
1723 
1724 	/*
1725 	 * Check ->nrbufs without the inode lock first. This function
1726 	 * is speculative anyways, so missing one is ok.
1727 	 */
1728 	if (pipe->nrbufs)
1729 		return 0;
1730 
1731 	ret = 0;
1732 	pipe_lock(pipe);
1733 
1734 	while (!pipe->nrbufs) {
1735 		if (signal_pending(current)) {
1736 			ret = -ERESTARTSYS;
1737 			break;
1738 		}
1739 		if (!pipe->writers)
1740 			break;
1741 		if (!pipe->waiting_writers) {
1742 			if (flags & SPLICE_F_NONBLOCK) {
1743 				ret = -EAGAIN;
1744 				break;
1745 			}
1746 		}
1747 		pipe_wait(pipe);
1748 	}
1749 
1750 	pipe_unlock(pipe);
1751 	return ret;
1752 }
1753 
1754 /*
1755  * Make sure there's writeable room. Wait for room if we can, otherwise
1756  * return an appropriate error.
1757  */
1758 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1759 {
1760 	int ret;
1761 
1762 	/*
1763 	 * Check ->nrbufs without the inode lock first. This function
1764 	 * is speculative anyways, so missing one is ok.
1765 	 */
1766 	if (pipe->nrbufs < pipe->buffers)
1767 		return 0;
1768 
1769 	ret = 0;
1770 	pipe_lock(pipe);
1771 
1772 	while (pipe->nrbufs >= pipe->buffers) {
1773 		if (!pipe->readers) {
1774 			send_sig(SIGPIPE, current, 0);
1775 			ret = -EPIPE;
1776 			break;
1777 		}
1778 		if (flags & SPLICE_F_NONBLOCK) {
1779 			ret = -EAGAIN;
1780 			break;
1781 		}
1782 		if (signal_pending(current)) {
1783 			ret = -ERESTARTSYS;
1784 			break;
1785 		}
1786 		pipe->waiting_writers++;
1787 		pipe_wait(pipe);
1788 		pipe->waiting_writers--;
1789 	}
1790 
1791 	pipe_unlock(pipe);
1792 	return ret;
1793 }
1794 
1795 /*
1796  * Splice contents of ipipe to opipe.
1797  */
1798 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1799 			       struct pipe_inode_info *opipe,
1800 			       size_t len, unsigned int flags)
1801 {
1802 	struct pipe_buffer *ibuf, *obuf;
1803 	int ret = 0, nbuf;
1804 	bool input_wakeup = false;
1805 
1806 
1807 retry:
1808 	ret = ipipe_prep(ipipe, flags);
1809 	if (ret)
1810 		return ret;
1811 
1812 	ret = opipe_prep(opipe, flags);
1813 	if (ret)
1814 		return ret;
1815 
1816 	/*
1817 	 * Potential ABBA deadlock, work around it by ordering lock
1818 	 * grabbing by pipe info address. Otherwise two different processes
1819 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1820 	 */
1821 	pipe_double_lock(ipipe, opipe);
1822 
1823 	do {
1824 		if (!opipe->readers) {
1825 			send_sig(SIGPIPE, current, 0);
1826 			if (!ret)
1827 				ret = -EPIPE;
1828 			break;
1829 		}
1830 
1831 		if (!ipipe->nrbufs && !ipipe->writers)
1832 			break;
1833 
1834 		/*
1835 		 * Cannot make any progress, because either the input
1836 		 * pipe is empty or the output pipe is full.
1837 		 */
1838 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1839 			/* Already processed some buffers, break */
1840 			if (ret)
1841 				break;
1842 
1843 			if (flags & SPLICE_F_NONBLOCK) {
1844 				ret = -EAGAIN;
1845 				break;
1846 			}
1847 
1848 			/*
1849 			 * We raced with another reader/writer and haven't
1850 			 * managed to process any buffers.  A zero return
1851 			 * value means EOF, so retry instead.
1852 			 */
1853 			pipe_unlock(ipipe);
1854 			pipe_unlock(opipe);
1855 			goto retry;
1856 		}
1857 
1858 		ibuf = ipipe->bufs + ipipe->curbuf;
1859 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1860 		obuf = opipe->bufs + nbuf;
1861 
1862 		if (len >= ibuf->len) {
1863 			/*
1864 			 * Simply move the whole buffer from ipipe to opipe
1865 			 */
1866 			*obuf = *ibuf;
1867 			ibuf->ops = NULL;
1868 			opipe->nrbufs++;
1869 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1870 			ipipe->nrbufs--;
1871 			input_wakeup = true;
1872 		} else {
1873 			/*
1874 			 * Get a reference to this pipe buffer,
1875 			 * so we can copy the contents over.
1876 			 */
1877 			ibuf->ops->get(ipipe, ibuf);
1878 			*obuf = *ibuf;
1879 
1880 			/*
1881 			 * Don't inherit the gift flag, we need to
1882 			 * prevent multiple steals of this page.
1883 			 */
1884 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1885 
1886 			obuf->len = len;
1887 			opipe->nrbufs++;
1888 			ibuf->offset += obuf->len;
1889 			ibuf->len -= obuf->len;
1890 		}
1891 		ret += obuf->len;
1892 		len -= obuf->len;
1893 	} while (len);
1894 
1895 	pipe_unlock(ipipe);
1896 	pipe_unlock(opipe);
1897 
1898 	/*
1899 	 * If we put data in the output pipe, wakeup any potential readers.
1900 	 */
1901 	if (ret > 0)
1902 		wakeup_pipe_readers(opipe);
1903 
1904 	if (input_wakeup)
1905 		wakeup_pipe_writers(ipipe);
1906 
1907 	return ret;
1908 }
1909 
1910 /*
1911  * Link contents of ipipe to opipe.
1912  */
1913 static int link_pipe(struct pipe_inode_info *ipipe,
1914 		     struct pipe_inode_info *opipe,
1915 		     size_t len, unsigned int flags)
1916 {
1917 	struct pipe_buffer *ibuf, *obuf;
1918 	int ret = 0, i = 0, nbuf;
1919 
1920 	/*
1921 	 * Potential ABBA deadlock, work around it by ordering lock
1922 	 * grabbing by pipe info address. Otherwise two different processes
1923 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1924 	 */
1925 	pipe_double_lock(ipipe, opipe);
1926 
1927 	do {
1928 		if (!opipe->readers) {
1929 			send_sig(SIGPIPE, current, 0);
1930 			if (!ret)
1931 				ret = -EPIPE;
1932 			break;
1933 		}
1934 
1935 		/*
1936 		 * If we have iterated all input buffers or ran out of
1937 		 * output room, break.
1938 		 */
1939 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1940 			break;
1941 
1942 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1943 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1944 
1945 		/*
1946 		 * Get a reference to this pipe buffer,
1947 		 * so we can copy the contents over.
1948 		 */
1949 		ibuf->ops->get(ipipe, ibuf);
1950 
1951 		obuf = opipe->bufs + nbuf;
1952 		*obuf = *ibuf;
1953 
1954 		/*
1955 		 * Don't inherit the gift flag, we need to
1956 		 * prevent multiple steals of this page.
1957 		 */
1958 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1959 
1960 		if (obuf->len > len)
1961 			obuf->len = len;
1962 
1963 		opipe->nrbufs++;
1964 		ret += obuf->len;
1965 		len -= obuf->len;
1966 		i++;
1967 	} while (len);
1968 
1969 	/*
1970 	 * return EAGAIN if we have the potential of some data in the
1971 	 * future, otherwise just return 0
1972 	 */
1973 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1974 		ret = -EAGAIN;
1975 
1976 	pipe_unlock(ipipe);
1977 	pipe_unlock(opipe);
1978 
1979 	/*
1980 	 * If we put data in the output pipe, wakeup any potential readers.
1981 	 */
1982 	if (ret > 0)
1983 		wakeup_pipe_readers(opipe);
1984 
1985 	return ret;
1986 }
1987 
1988 /*
1989  * This is a tee(1) implementation that works on pipes. It doesn't copy
1990  * any data, it simply references the 'in' pages on the 'out' pipe.
1991  * The 'flags' used are the SPLICE_F_* variants, currently the only
1992  * applicable one is SPLICE_F_NONBLOCK.
1993  */
1994 static long do_tee(struct file *in, struct file *out, size_t len,
1995 		   unsigned int flags)
1996 {
1997 	struct pipe_inode_info *ipipe = get_pipe_info(in);
1998 	struct pipe_inode_info *opipe = get_pipe_info(out);
1999 	int ret = -EINVAL;
2000 
2001 	/*
2002 	 * Duplicate the contents of ipipe to opipe without actually
2003 	 * copying the data.
2004 	 */
2005 	if (ipipe && opipe && ipipe != opipe) {
2006 		/*
2007 		 * Keep going, unless we encounter an error. The ipipe/opipe
2008 		 * ordering doesn't really matter.
2009 		 */
2010 		ret = ipipe_prep(ipipe, flags);
2011 		if (!ret) {
2012 			ret = opipe_prep(opipe, flags);
2013 			if (!ret)
2014 				ret = link_pipe(ipipe, opipe, len, flags);
2015 		}
2016 	}
2017 
2018 	return ret;
2019 }
2020 
2021 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2022 {
2023 	struct fd in;
2024 	int error;
2025 
2026 	if (unlikely(!len))
2027 		return 0;
2028 
2029 	error = -EBADF;
2030 	in = fdget(fdin);
2031 	if (in.file) {
2032 		if (in.file->f_mode & FMODE_READ) {
2033 			struct fd out = fdget(fdout);
2034 			if (out.file) {
2035 				if (out.file->f_mode & FMODE_WRITE)
2036 					error = do_tee(in.file, out.file,
2037 							len, flags);
2038 				fdput(out);
2039 			}
2040 		}
2041  		fdput(in);
2042  	}
2043 
2044 	return error;
2045 }
2046