xref: /openbmc/linux/fs/smb/client/smbdirect.c (revision da097dcc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) 2017, Microsoft Corporation.
4  *
5  *   Author(s): Long Li <longli@microsoft.com>
6  */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include "smbdirect.h"
10 #include "cifs_debug.h"
11 #include "cifsproto.h"
12 #include "smb2proto.h"
13 
14 static struct smbd_response *get_empty_queue_buffer(
15 		struct smbd_connection *info);
16 static struct smbd_response *get_receive_buffer(
17 		struct smbd_connection *info);
18 static void put_receive_buffer(
19 		struct smbd_connection *info,
20 		struct smbd_response *response);
21 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
22 static void destroy_receive_buffers(struct smbd_connection *info);
23 
24 static void put_empty_packet(
25 		struct smbd_connection *info, struct smbd_response *response);
26 static void enqueue_reassembly(
27 		struct smbd_connection *info,
28 		struct smbd_response *response, int data_length);
29 static struct smbd_response *_get_first_reassembly(
30 		struct smbd_connection *info);
31 
32 static int smbd_post_recv(
33 		struct smbd_connection *info,
34 		struct smbd_response *response);
35 
36 static int smbd_post_send_empty(struct smbd_connection *info);
37 
38 static void destroy_mr_list(struct smbd_connection *info);
39 static int allocate_mr_list(struct smbd_connection *info);
40 
41 struct smb_extract_to_rdma {
42 	struct ib_sge		*sge;
43 	unsigned int		nr_sge;
44 	unsigned int		max_sge;
45 	struct ib_device	*device;
46 	u32			local_dma_lkey;
47 	enum dma_data_direction	direction;
48 };
49 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
50 					struct smb_extract_to_rdma *rdma);
51 
52 /* SMBD version number */
53 #define SMBD_V1	0x0100
54 
55 /* Port numbers for SMBD transport */
56 #define SMB_PORT	445
57 #define SMBD_PORT	5445
58 
59 /* Address lookup and resolve timeout in ms */
60 #define RDMA_RESOLVE_TIMEOUT	5000
61 
62 /* SMBD negotiation timeout in seconds */
63 #define SMBD_NEGOTIATE_TIMEOUT	120
64 
65 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
66 #define SMBD_MIN_RECEIVE_SIZE		128
67 #define SMBD_MIN_FRAGMENTED_SIZE	131072
68 
69 /*
70  * Default maximum number of RDMA read/write outstanding on this connection
71  * This value is possibly decreased during QP creation on hardware limit
72  */
73 #define SMBD_CM_RESPONDER_RESOURCES	32
74 
75 /* Maximum number of retries on data transfer operations */
76 #define SMBD_CM_RETRY			6
77 /* No need to retry on Receiver Not Ready since SMBD manages credits */
78 #define SMBD_CM_RNR_RETRY		0
79 
80 /*
81  * User configurable initial values per SMBD transport connection
82  * as defined in [MS-SMBD] 3.1.1.1
83  * Those may change after a SMBD negotiation
84  */
85 /* The local peer's maximum number of credits to grant to the peer */
86 int smbd_receive_credit_max = 255;
87 
88 /* The remote peer's credit request of local peer */
89 int smbd_send_credit_target = 255;
90 
91 /* The maximum single message size can be sent to remote peer */
92 int smbd_max_send_size = 1364;
93 
94 /*  The maximum fragmented upper-layer payload receive size supported */
95 int smbd_max_fragmented_recv_size = 1024 * 1024;
96 
97 /*  The maximum single-message size which can be received */
98 int smbd_max_receive_size = 1364;
99 
100 /* The timeout to initiate send of a keepalive message on idle */
101 int smbd_keep_alive_interval = 120;
102 
103 /*
104  * User configurable initial values for RDMA transport
105  * The actual values used may be lower and are limited to hardware capabilities
106  */
107 /* Default maximum number of pages in a single RDMA write/read */
108 int smbd_max_frmr_depth = 2048;
109 
110 /* If payload is less than this byte, use RDMA send/recv not read/write */
111 int rdma_readwrite_threshold = 4096;
112 
113 /* Transport logging functions
114  * Logging are defined as classes. They can be OR'ed to define the actual
115  * logging level via module parameter smbd_logging_class
116  * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
117  * log_rdma_event()
118  */
119 #define LOG_OUTGOING			0x1
120 #define LOG_INCOMING			0x2
121 #define LOG_READ			0x4
122 #define LOG_WRITE			0x8
123 #define LOG_RDMA_SEND			0x10
124 #define LOG_RDMA_RECV			0x20
125 #define LOG_KEEP_ALIVE			0x40
126 #define LOG_RDMA_EVENT			0x80
127 #define LOG_RDMA_MR			0x100
128 static unsigned int smbd_logging_class;
129 module_param(smbd_logging_class, uint, 0644);
130 MODULE_PARM_DESC(smbd_logging_class,
131 	"Logging class for SMBD transport 0x0 to 0x100");
132 
133 #define ERR		0x0
134 #define INFO		0x1
135 static unsigned int smbd_logging_level = ERR;
136 module_param(smbd_logging_level, uint, 0644);
137 MODULE_PARM_DESC(smbd_logging_level,
138 	"Logging level for SMBD transport, 0 (default): error, 1: info");
139 
140 #define log_rdma(level, class, fmt, args...)				\
141 do {									\
142 	if (level <= smbd_logging_level || class & smbd_logging_class)	\
143 		cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
144 } while (0)
145 
146 #define log_outgoing(level, fmt, args...) \
147 		log_rdma(level, LOG_OUTGOING, fmt, ##args)
148 #define log_incoming(level, fmt, args...) \
149 		log_rdma(level, LOG_INCOMING, fmt, ##args)
150 #define log_read(level, fmt, args...)	log_rdma(level, LOG_READ, fmt, ##args)
151 #define log_write(level, fmt, args...)	log_rdma(level, LOG_WRITE, fmt, ##args)
152 #define log_rdma_send(level, fmt, args...) \
153 		log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
154 #define log_rdma_recv(level, fmt, args...) \
155 		log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
156 #define log_keep_alive(level, fmt, args...) \
157 		log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
158 #define log_rdma_event(level, fmt, args...) \
159 		log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
160 #define log_rdma_mr(level, fmt, args...) \
161 		log_rdma(level, LOG_RDMA_MR, fmt, ##args)
162 
163 static void smbd_disconnect_rdma_work(struct work_struct *work)
164 {
165 	struct smbd_connection *info =
166 		container_of(work, struct smbd_connection, disconnect_work);
167 
168 	if (info->transport_status == SMBD_CONNECTED) {
169 		info->transport_status = SMBD_DISCONNECTING;
170 		rdma_disconnect(info->id);
171 	}
172 }
173 
174 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
175 {
176 	queue_work(info->workqueue, &info->disconnect_work);
177 }
178 
179 /* Upcall from RDMA CM */
180 static int smbd_conn_upcall(
181 		struct rdma_cm_id *id, struct rdma_cm_event *event)
182 {
183 	struct smbd_connection *info = id->context;
184 
185 	log_rdma_event(INFO, "event=%d status=%d\n",
186 		event->event, event->status);
187 
188 	switch (event->event) {
189 	case RDMA_CM_EVENT_ADDR_RESOLVED:
190 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
191 		info->ri_rc = 0;
192 		complete(&info->ri_done);
193 		break;
194 
195 	case RDMA_CM_EVENT_ADDR_ERROR:
196 		info->ri_rc = -EHOSTUNREACH;
197 		complete(&info->ri_done);
198 		break;
199 
200 	case RDMA_CM_EVENT_ROUTE_ERROR:
201 		info->ri_rc = -ENETUNREACH;
202 		complete(&info->ri_done);
203 		break;
204 
205 	case RDMA_CM_EVENT_ESTABLISHED:
206 		log_rdma_event(INFO, "connected event=%d\n", event->event);
207 		info->transport_status = SMBD_CONNECTED;
208 		wake_up_interruptible(&info->conn_wait);
209 		break;
210 
211 	case RDMA_CM_EVENT_CONNECT_ERROR:
212 	case RDMA_CM_EVENT_UNREACHABLE:
213 	case RDMA_CM_EVENT_REJECTED:
214 		log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
215 		info->transport_status = SMBD_DISCONNECTED;
216 		wake_up_interruptible(&info->conn_wait);
217 		break;
218 
219 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
220 	case RDMA_CM_EVENT_DISCONNECTED:
221 		/* This happenes when we fail the negotiation */
222 		if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
223 			info->transport_status = SMBD_DISCONNECTED;
224 			wake_up(&info->conn_wait);
225 			break;
226 		}
227 
228 		info->transport_status = SMBD_DISCONNECTED;
229 		wake_up_interruptible(&info->disconn_wait);
230 		wake_up_interruptible(&info->wait_reassembly_queue);
231 		wake_up_interruptible_all(&info->wait_send_queue);
232 		break;
233 
234 	default:
235 		break;
236 	}
237 
238 	return 0;
239 }
240 
241 /* Upcall from RDMA QP */
242 static void
243 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
244 {
245 	struct smbd_connection *info = context;
246 
247 	log_rdma_event(ERR, "%s on device %s info %p\n",
248 		ib_event_msg(event->event), event->device->name, info);
249 
250 	switch (event->event) {
251 	case IB_EVENT_CQ_ERR:
252 	case IB_EVENT_QP_FATAL:
253 		smbd_disconnect_rdma_connection(info);
254 		break;
255 
256 	default:
257 		break;
258 	}
259 }
260 
261 static inline void *smbd_request_payload(struct smbd_request *request)
262 {
263 	return (void *)request->packet;
264 }
265 
266 static inline void *smbd_response_payload(struct smbd_response *response)
267 {
268 	return (void *)response->packet;
269 }
270 
271 /* Called when a RDMA send is done */
272 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
273 {
274 	int i;
275 	struct smbd_request *request =
276 		container_of(wc->wr_cqe, struct smbd_request, cqe);
277 
278 	log_rdma_send(INFO, "smbd_request 0x%p completed wc->status=%d\n",
279 		request, wc->status);
280 
281 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
282 		log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
283 			wc->status, wc->opcode);
284 		smbd_disconnect_rdma_connection(request->info);
285 	}
286 
287 	for (i = 0; i < request->num_sge; i++)
288 		ib_dma_unmap_single(request->info->id->device,
289 			request->sge[i].addr,
290 			request->sge[i].length,
291 			DMA_TO_DEVICE);
292 
293 	if (atomic_dec_and_test(&request->info->send_pending))
294 		wake_up(&request->info->wait_send_pending);
295 
296 	wake_up(&request->info->wait_post_send);
297 
298 	mempool_free(request, request->info->request_mempool);
299 }
300 
301 static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
302 {
303 	log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
304 		       resp->min_version, resp->max_version,
305 		       resp->negotiated_version, resp->credits_requested,
306 		       resp->credits_granted, resp->status,
307 		       resp->max_readwrite_size, resp->preferred_send_size,
308 		       resp->max_receive_size, resp->max_fragmented_size);
309 }
310 
311 /*
312  * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
313  * response, packet_length: the negotiation response message
314  * return value: true if negotiation is a success, false if failed
315  */
316 static bool process_negotiation_response(
317 		struct smbd_response *response, int packet_length)
318 {
319 	struct smbd_connection *info = response->info;
320 	struct smbd_negotiate_resp *packet = smbd_response_payload(response);
321 
322 	if (packet_length < sizeof(struct smbd_negotiate_resp)) {
323 		log_rdma_event(ERR,
324 			"error: packet_length=%d\n", packet_length);
325 		return false;
326 	}
327 
328 	if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
329 		log_rdma_event(ERR, "error: negotiated_version=%x\n",
330 			le16_to_cpu(packet->negotiated_version));
331 		return false;
332 	}
333 	info->protocol = le16_to_cpu(packet->negotiated_version);
334 
335 	if (packet->credits_requested == 0) {
336 		log_rdma_event(ERR, "error: credits_requested==0\n");
337 		return false;
338 	}
339 	info->receive_credit_target = le16_to_cpu(packet->credits_requested);
340 
341 	if (packet->credits_granted == 0) {
342 		log_rdma_event(ERR, "error: credits_granted==0\n");
343 		return false;
344 	}
345 	atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
346 
347 	atomic_set(&info->receive_credits, 0);
348 
349 	if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
350 		log_rdma_event(ERR, "error: preferred_send_size=%d\n",
351 			le32_to_cpu(packet->preferred_send_size));
352 		return false;
353 	}
354 	info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
355 
356 	if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
357 		log_rdma_event(ERR, "error: max_receive_size=%d\n",
358 			le32_to_cpu(packet->max_receive_size));
359 		return false;
360 	}
361 	info->max_send_size = min_t(int, info->max_send_size,
362 					le32_to_cpu(packet->max_receive_size));
363 
364 	if (le32_to_cpu(packet->max_fragmented_size) <
365 			SMBD_MIN_FRAGMENTED_SIZE) {
366 		log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
367 			le32_to_cpu(packet->max_fragmented_size));
368 		return false;
369 	}
370 	info->max_fragmented_send_size =
371 		le32_to_cpu(packet->max_fragmented_size);
372 	info->rdma_readwrite_threshold =
373 		rdma_readwrite_threshold > info->max_fragmented_send_size ?
374 		info->max_fragmented_send_size :
375 		rdma_readwrite_threshold;
376 
377 
378 	info->max_readwrite_size = min_t(u32,
379 			le32_to_cpu(packet->max_readwrite_size),
380 			info->max_frmr_depth * PAGE_SIZE);
381 	info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
382 
383 	return true;
384 }
385 
386 static void smbd_post_send_credits(struct work_struct *work)
387 {
388 	int ret = 0;
389 	int use_receive_queue = 1;
390 	int rc;
391 	struct smbd_response *response;
392 	struct smbd_connection *info =
393 		container_of(work, struct smbd_connection,
394 			post_send_credits_work);
395 
396 	if (info->transport_status != SMBD_CONNECTED) {
397 		wake_up(&info->wait_receive_queues);
398 		return;
399 	}
400 
401 	if (info->receive_credit_target >
402 		atomic_read(&info->receive_credits)) {
403 		while (true) {
404 			if (use_receive_queue)
405 				response = get_receive_buffer(info);
406 			else
407 				response = get_empty_queue_buffer(info);
408 			if (!response) {
409 				/* now switch to emtpy packet queue */
410 				if (use_receive_queue) {
411 					use_receive_queue = 0;
412 					continue;
413 				} else
414 					break;
415 			}
416 
417 			response->type = SMBD_TRANSFER_DATA;
418 			response->first_segment = false;
419 			rc = smbd_post_recv(info, response);
420 			if (rc) {
421 				log_rdma_recv(ERR,
422 					"post_recv failed rc=%d\n", rc);
423 				put_receive_buffer(info, response);
424 				break;
425 			}
426 
427 			ret++;
428 		}
429 	}
430 
431 	spin_lock(&info->lock_new_credits_offered);
432 	info->new_credits_offered += ret;
433 	spin_unlock(&info->lock_new_credits_offered);
434 
435 	/* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
436 	info->send_immediate = true;
437 	if (atomic_read(&info->receive_credits) <
438 		info->receive_credit_target - 1) {
439 		if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
440 		    info->send_immediate) {
441 			log_keep_alive(INFO, "send an empty message\n");
442 			smbd_post_send_empty(info);
443 		}
444 	}
445 }
446 
447 /* Called from softirq, when recv is done */
448 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
449 {
450 	struct smbd_data_transfer *data_transfer;
451 	struct smbd_response *response =
452 		container_of(wc->wr_cqe, struct smbd_response, cqe);
453 	struct smbd_connection *info = response->info;
454 	int data_length = 0;
455 
456 	log_rdma_recv(INFO, "response=0x%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%u\n",
457 		      response, response->type, wc->status, wc->opcode,
458 		      wc->byte_len, wc->pkey_index);
459 
460 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
461 		log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
462 			wc->status, wc->opcode);
463 		smbd_disconnect_rdma_connection(info);
464 		goto error;
465 	}
466 
467 	ib_dma_sync_single_for_cpu(
468 		wc->qp->device,
469 		response->sge.addr,
470 		response->sge.length,
471 		DMA_FROM_DEVICE);
472 
473 	switch (response->type) {
474 	/* SMBD negotiation response */
475 	case SMBD_NEGOTIATE_RESP:
476 		dump_smbd_negotiate_resp(smbd_response_payload(response));
477 		info->full_packet_received = true;
478 		info->negotiate_done =
479 			process_negotiation_response(response, wc->byte_len);
480 		complete(&info->negotiate_completion);
481 		break;
482 
483 	/* SMBD data transfer packet */
484 	case SMBD_TRANSFER_DATA:
485 		data_transfer = smbd_response_payload(response);
486 		data_length = le32_to_cpu(data_transfer->data_length);
487 
488 		/*
489 		 * If this is a packet with data playload place the data in
490 		 * reassembly queue and wake up the reading thread
491 		 */
492 		if (data_length) {
493 			if (info->full_packet_received)
494 				response->first_segment = true;
495 
496 			if (le32_to_cpu(data_transfer->remaining_data_length))
497 				info->full_packet_received = false;
498 			else
499 				info->full_packet_received = true;
500 
501 			enqueue_reassembly(
502 				info,
503 				response,
504 				data_length);
505 		} else
506 			put_empty_packet(info, response);
507 
508 		if (data_length)
509 			wake_up_interruptible(&info->wait_reassembly_queue);
510 
511 		atomic_dec(&info->receive_credits);
512 		info->receive_credit_target =
513 			le16_to_cpu(data_transfer->credits_requested);
514 		if (le16_to_cpu(data_transfer->credits_granted)) {
515 			atomic_add(le16_to_cpu(data_transfer->credits_granted),
516 				&info->send_credits);
517 			/*
518 			 * We have new send credits granted from remote peer
519 			 * If any sender is waiting for credits, unblock it
520 			 */
521 			wake_up_interruptible(&info->wait_send_queue);
522 		}
523 
524 		log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
525 			     le16_to_cpu(data_transfer->flags),
526 			     le32_to_cpu(data_transfer->data_offset),
527 			     le32_to_cpu(data_transfer->data_length),
528 			     le32_to_cpu(data_transfer->remaining_data_length));
529 
530 		/* Send a KEEP_ALIVE response right away if requested */
531 		info->keep_alive_requested = KEEP_ALIVE_NONE;
532 		if (le16_to_cpu(data_transfer->flags) &
533 				SMB_DIRECT_RESPONSE_REQUESTED) {
534 			info->keep_alive_requested = KEEP_ALIVE_PENDING;
535 		}
536 
537 		return;
538 
539 	default:
540 		log_rdma_recv(ERR,
541 			"unexpected response type=%d\n", response->type);
542 	}
543 
544 error:
545 	put_receive_buffer(info, response);
546 }
547 
548 static struct rdma_cm_id *smbd_create_id(
549 		struct smbd_connection *info,
550 		struct sockaddr *dstaddr, int port)
551 {
552 	struct rdma_cm_id *id;
553 	int rc;
554 	__be16 *sport;
555 
556 	id = rdma_create_id(&init_net, smbd_conn_upcall, info,
557 		RDMA_PS_TCP, IB_QPT_RC);
558 	if (IS_ERR(id)) {
559 		rc = PTR_ERR(id);
560 		log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
561 		return id;
562 	}
563 
564 	if (dstaddr->sa_family == AF_INET6)
565 		sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
566 	else
567 		sport = &((struct sockaddr_in *)dstaddr)->sin_port;
568 
569 	*sport = htons(port);
570 
571 	init_completion(&info->ri_done);
572 	info->ri_rc = -ETIMEDOUT;
573 
574 	rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
575 		RDMA_RESOLVE_TIMEOUT);
576 	if (rc) {
577 		log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
578 		goto out;
579 	}
580 	rc = wait_for_completion_interruptible_timeout(
581 		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
582 	/* e.g. if interrupted returns -ERESTARTSYS */
583 	if (rc < 0) {
584 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
585 		goto out;
586 	}
587 	rc = info->ri_rc;
588 	if (rc) {
589 		log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
590 		goto out;
591 	}
592 
593 	info->ri_rc = -ETIMEDOUT;
594 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
595 	if (rc) {
596 		log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
597 		goto out;
598 	}
599 	rc = wait_for_completion_interruptible_timeout(
600 		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
601 	/* e.g. if interrupted returns -ERESTARTSYS */
602 	if (rc < 0)  {
603 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
604 		goto out;
605 	}
606 	rc = info->ri_rc;
607 	if (rc) {
608 		log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
609 		goto out;
610 	}
611 
612 	return id;
613 
614 out:
615 	rdma_destroy_id(id);
616 	return ERR_PTR(rc);
617 }
618 
619 /*
620  * Test if FRWR (Fast Registration Work Requests) is supported on the device
621  * This implementation requries FRWR on RDMA read/write
622  * return value: true if it is supported
623  */
624 static bool frwr_is_supported(struct ib_device_attr *attrs)
625 {
626 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
627 		return false;
628 	if (attrs->max_fast_reg_page_list_len == 0)
629 		return false;
630 	return true;
631 }
632 
633 static int smbd_ia_open(
634 		struct smbd_connection *info,
635 		struct sockaddr *dstaddr, int port)
636 {
637 	int rc;
638 
639 	info->id = smbd_create_id(info, dstaddr, port);
640 	if (IS_ERR(info->id)) {
641 		rc = PTR_ERR(info->id);
642 		goto out1;
643 	}
644 
645 	if (!frwr_is_supported(&info->id->device->attrs)) {
646 		log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
647 		log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
648 			       info->id->device->attrs.device_cap_flags,
649 			       info->id->device->attrs.max_fast_reg_page_list_len);
650 		rc = -EPROTONOSUPPORT;
651 		goto out2;
652 	}
653 	info->max_frmr_depth = min_t(int,
654 		smbd_max_frmr_depth,
655 		info->id->device->attrs.max_fast_reg_page_list_len);
656 	info->mr_type = IB_MR_TYPE_MEM_REG;
657 	if (info->id->device->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
658 		info->mr_type = IB_MR_TYPE_SG_GAPS;
659 
660 	info->pd = ib_alloc_pd(info->id->device, 0);
661 	if (IS_ERR(info->pd)) {
662 		rc = PTR_ERR(info->pd);
663 		log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
664 		goto out2;
665 	}
666 
667 	return 0;
668 
669 out2:
670 	rdma_destroy_id(info->id);
671 	info->id = NULL;
672 
673 out1:
674 	return rc;
675 }
676 
677 /*
678  * Send a negotiation request message to the peer
679  * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
680  * After negotiation, the transport is connected and ready for
681  * carrying upper layer SMB payload
682  */
683 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
684 {
685 	struct ib_send_wr send_wr;
686 	int rc = -ENOMEM;
687 	struct smbd_request *request;
688 	struct smbd_negotiate_req *packet;
689 
690 	request = mempool_alloc(info->request_mempool, GFP_KERNEL);
691 	if (!request)
692 		return rc;
693 
694 	request->info = info;
695 
696 	packet = smbd_request_payload(request);
697 	packet->min_version = cpu_to_le16(SMBD_V1);
698 	packet->max_version = cpu_to_le16(SMBD_V1);
699 	packet->reserved = 0;
700 	packet->credits_requested = cpu_to_le16(info->send_credit_target);
701 	packet->preferred_send_size = cpu_to_le32(info->max_send_size);
702 	packet->max_receive_size = cpu_to_le32(info->max_receive_size);
703 	packet->max_fragmented_size =
704 		cpu_to_le32(info->max_fragmented_recv_size);
705 
706 	request->num_sge = 1;
707 	request->sge[0].addr = ib_dma_map_single(
708 				info->id->device, (void *)packet,
709 				sizeof(*packet), DMA_TO_DEVICE);
710 	if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
711 		rc = -EIO;
712 		goto dma_mapping_failed;
713 	}
714 
715 	request->sge[0].length = sizeof(*packet);
716 	request->sge[0].lkey = info->pd->local_dma_lkey;
717 
718 	ib_dma_sync_single_for_device(
719 		info->id->device, request->sge[0].addr,
720 		request->sge[0].length, DMA_TO_DEVICE);
721 
722 	request->cqe.done = send_done;
723 
724 	send_wr.next = NULL;
725 	send_wr.wr_cqe = &request->cqe;
726 	send_wr.sg_list = request->sge;
727 	send_wr.num_sge = request->num_sge;
728 	send_wr.opcode = IB_WR_SEND;
729 	send_wr.send_flags = IB_SEND_SIGNALED;
730 
731 	log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n",
732 		request->sge[0].addr,
733 		request->sge[0].length, request->sge[0].lkey);
734 
735 	atomic_inc(&info->send_pending);
736 	rc = ib_post_send(info->id->qp, &send_wr, NULL);
737 	if (!rc)
738 		return 0;
739 
740 	/* if we reach here, post send failed */
741 	log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
742 	atomic_dec(&info->send_pending);
743 	ib_dma_unmap_single(info->id->device, request->sge[0].addr,
744 		request->sge[0].length, DMA_TO_DEVICE);
745 
746 	smbd_disconnect_rdma_connection(info);
747 
748 dma_mapping_failed:
749 	mempool_free(request, info->request_mempool);
750 	return rc;
751 }
752 
753 /*
754  * Extend the credits to remote peer
755  * This implements [MS-SMBD] 3.1.5.9
756  * The idea is that we should extend credits to remote peer as quickly as
757  * it's allowed, to maintain data flow. We allocate as much receive
758  * buffer as possible, and extend the receive credits to remote peer
759  * return value: the new credtis being granted.
760  */
761 static int manage_credits_prior_sending(struct smbd_connection *info)
762 {
763 	int new_credits;
764 
765 	spin_lock(&info->lock_new_credits_offered);
766 	new_credits = info->new_credits_offered;
767 	info->new_credits_offered = 0;
768 	spin_unlock(&info->lock_new_credits_offered);
769 
770 	return new_credits;
771 }
772 
773 /*
774  * Check if we need to send a KEEP_ALIVE message
775  * The idle connection timer triggers a KEEP_ALIVE message when expires
776  * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
777  * back a response.
778  * return value:
779  * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
780  * 0: otherwise
781  */
782 static int manage_keep_alive_before_sending(struct smbd_connection *info)
783 {
784 	if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
785 		info->keep_alive_requested = KEEP_ALIVE_SENT;
786 		return 1;
787 	}
788 	return 0;
789 }
790 
791 /* Post the send request */
792 static int smbd_post_send(struct smbd_connection *info,
793 		struct smbd_request *request)
794 {
795 	struct ib_send_wr send_wr;
796 	int rc, i;
797 
798 	for (i = 0; i < request->num_sge; i++) {
799 		log_rdma_send(INFO,
800 			"rdma_request sge[%d] addr=0x%llx length=%u\n",
801 			i, request->sge[i].addr, request->sge[i].length);
802 		ib_dma_sync_single_for_device(
803 			info->id->device,
804 			request->sge[i].addr,
805 			request->sge[i].length,
806 			DMA_TO_DEVICE);
807 	}
808 
809 	request->cqe.done = send_done;
810 
811 	send_wr.next = NULL;
812 	send_wr.wr_cqe = &request->cqe;
813 	send_wr.sg_list = request->sge;
814 	send_wr.num_sge = request->num_sge;
815 	send_wr.opcode = IB_WR_SEND;
816 	send_wr.send_flags = IB_SEND_SIGNALED;
817 
818 	rc = ib_post_send(info->id->qp, &send_wr, NULL);
819 	if (rc) {
820 		log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
821 		smbd_disconnect_rdma_connection(info);
822 		rc = -EAGAIN;
823 	} else
824 		/* Reset timer for idle connection after packet is sent */
825 		mod_delayed_work(info->workqueue, &info->idle_timer_work,
826 			info->keep_alive_interval*HZ);
827 
828 	return rc;
829 }
830 
831 static int smbd_post_send_iter(struct smbd_connection *info,
832 			       struct iov_iter *iter,
833 			       int *_remaining_data_length)
834 {
835 	int i, rc;
836 	int header_length;
837 	int data_length;
838 	struct smbd_request *request;
839 	struct smbd_data_transfer *packet;
840 	int new_credits = 0;
841 
842 wait_credit:
843 	/* Wait for send credits. A SMBD packet needs one credit */
844 	rc = wait_event_interruptible(info->wait_send_queue,
845 		atomic_read(&info->send_credits) > 0 ||
846 		info->transport_status != SMBD_CONNECTED);
847 	if (rc)
848 		goto err_wait_credit;
849 
850 	if (info->transport_status != SMBD_CONNECTED) {
851 		log_outgoing(ERR, "disconnected not sending on wait_credit\n");
852 		rc = -EAGAIN;
853 		goto err_wait_credit;
854 	}
855 	if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
856 		atomic_inc(&info->send_credits);
857 		goto wait_credit;
858 	}
859 
860 wait_send_queue:
861 	wait_event(info->wait_post_send,
862 		atomic_read(&info->send_pending) < info->send_credit_target ||
863 		info->transport_status != SMBD_CONNECTED);
864 
865 	if (info->transport_status != SMBD_CONNECTED) {
866 		log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
867 		rc = -EAGAIN;
868 		goto err_wait_send_queue;
869 	}
870 
871 	if (unlikely(atomic_inc_return(&info->send_pending) >
872 				info->send_credit_target)) {
873 		atomic_dec(&info->send_pending);
874 		goto wait_send_queue;
875 	}
876 
877 	request = mempool_alloc(info->request_mempool, GFP_KERNEL);
878 	if (!request) {
879 		rc = -ENOMEM;
880 		goto err_alloc;
881 	}
882 
883 	request->info = info;
884 	memset(request->sge, 0, sizeof(request->sge));
885 
886 	/* Fill in the data payload to find out how much data we can add */
887 	if (iter) {
888 		struct smb_extract_to_rdma extract = {
889 			.nr_sge		= 1,
890 			.max_sge	= SMBDIRECT_MAX_SEND_SGE,
891 			.sge		= request->sge,
892 			.device		= info->id->device,
893 			.local_dma_lkey	= info->pd->local_dma_lkey,
894 			.direction	= DMA_TO_DEVICE,
895 		};
896 
897 		rc = smb_extract_iter_to_rdma(iter, *_remaining_data_length,
898 					      &extract);
899 		if (rc < 0)
900 			goto err_dma;
901 		data_length = rc;
902 		request->num_sge = extract.nr_sge;
903 		*_remaining_data_length -= data_length;
904 	} else {
905 		data_length = 0;
906 		request->num_sge = 1;
907 	}
908 
909 	/* Fill in the packet header */
910 	packet = smbd_request_payload(request);
911 	packet->credits_requested = cpu_to_le16(info->send_credit_target);
912 
913 	new_credits = manage_credits_prior_sending(info);
914 	atomic_add(new_credits, &info->receive_credits);
915 	packet->credits_granted = cpu_to_le16(new_credits);
916 
917 	info->send_immediate = false;
918 
919 	packet->flags = 0;
920 	if (manage_keep_alive_before_sending(info))
921 		packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
922 
923 	packet->reserved = 0;
924 	if (!data_length)
925 		packet->data_offset = 0;
926 	else
927 		packet->data_offset = cpu_to_le32(24);
928 	packet->data_length = cpu_to_le32(data_length);
929 	packet->remaining_data_length = cpu_to_le32(*_remaining_data_length);
930 	packet->padding = 0;
931 
932 	log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
933 		     le16_to_cpu(packet->credits_requested),
934 		     le16_to_cpu(packet->credits_granted),
935 		     le32_to_cpu(packet->data_offset),
936 		     le32_to_cpu(packet->data_length),
937 		     le32_to_cpu(packet->remaining_data_length));
938 
939 	/* Map the packet to DMA */
940 	header_length = sizeof(struct smbd_data_transfer);
941 	/* If this is a packet without payload, don't send padding */
942 	if (!data_length)
943 		header_length = offsetof(struct smbd_data_transfer, padding);
944 
945 	request->sge[0].addr = ib_dma_map_single(info->id->device,
946 						 (void *)packet,
947 						 header_length,
948 						 DMA_TO_DEVICE);
949 	if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
950 		rc = -EIO;
951 		request->sge[0].addr = 0;
952 		goto err_dma;
953 	}
954 
955 	request->sge[0].length = header_length;
956 	request->sge[0].lkey = info->pd->local_dma_lkey;
957 
958 	rc = smbd_post_send(info, request);
959 	if (!rc)
960 		return 0;
961 
962 err_dma:
963 	for (i = 0; i < request->num_sge; i++)
964 		if (request->sge[i].addr)
965 			ib_dma_unmap_single(info->id->device,
966 					    request->sge[i].addr,
967 					    request->sge[i].length,
968 					    DMA_TO_DEVICE);
969 	mempool_free(request, info->request_mempool);
970 
971 	/* roll back receive credits and credits to be offered */
972 	spin_lock(&info->lock_new_credits_offered);
973 	info->new_credits_offered += new_credits;
974 	spin_unlock(&info->lock_new_credits_offered);
975 	atomic_sub(new_credits, &info->receive_credits);
976 
977 err_alloc:
978 	if (atomic_dec_and_test(&info->send_pending))
979 		wake_up(&info->wait_send_pending);
980 
981 err_wait_send_queue:
982 	/* roll back send credits and pending */
983 	atomic_inc(&info->send_credits);
984 
985 err_wait_credit:
986 	return rc;
987 }
988 
989 /*
990  * Send an empty message
991  * Empty message is used to extend credits to peer to for keep live
992  * while there is no upper layer payload to send at the time
993  */
994 static int smbd_post_send_empty(struct smbd_connection *info)
995 {
996 	int remaining_data_length = 0;
997 
998 	info->count_send_empty++;
999 	return smbd_post_send_iter(info, NULL, &remaining_data_length);
1000 }
1001 
1002 /*
1003  * Post a receive request to the transport
1004  * The remote peer can only send data when a receive request is posted
1005  * The interaction is controlled by send/receive credit system
1006  */
1007 static int smbd_post_recv(
1008 		struct smbd_connection *info, struct smbd_response *response)
1009 {
1010 	struct ib_recv_wr recv_wr;
1011 	int rc = -EIO;
1012 
1013 	response->sge.addr = ib_dma_map_single(
1014 				info->id->device, response->packet,
1015 				info->max_receive_size, DMA_FROM_DEVICE);
1016 	if (ib_dma_mapping_error(info->id->device, response->sge.addr))
1017 		return rc;
1018 
1019 	response->sge.length = info->max_receive_size;
1020 	response->sge.lkey = info->pd->local_dma_lkey;
1021 
1022 	response->cqe.done = recv_done;
1023 
1024 	recv_wr.wr_cqe = &response->cqe;
1025 	recv_wr.next = NULL;
1026 	recv_wr.sg_list = &response->sge;
1027 	recv_wr.num_sge = 1;
1028 
1029 	rc = ib_post_recv(info->id->qp, &recv_wr, NULL);
1030 	if (rc) {
1031 		ib_dma_unmap_single(info->id->device, response->sge.addr,
1032 				    response->sge.length, DMA_FROM_DEVICE);
1033 		smbd_disconnect_rdma_connection(info);
1034 		log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1035 	}
1036 
1037 	return rc;
1038 }
1039 
1040 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
1041 static int smbd_negotiate(struct smbd_connection *info)
1042 {
1043 	int rc;
1044 	struct smbd_response *response = get_receive_buffer(info);
1045 
1046 	response->type = SMBD_NEGOTIATE_RESP;
1047 	rc = smbd_post_recv(info, response);
1048 	log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n",
1049 		       rc, response->sge.addr,
1050 		       response->sge.length, response->sge.lkey);
1051 	if (rc)
1052 		return rc;
1053 
1054 	init_completion(&info->negotiate_completion);
1055 	info->negotiate_done = false;
1056 	rc = smbd_post_send_negotiate_req(info);
1057 	if (rc)
1058 		return rc;
1059 
1060 	rc = wait_for_completion_interruptible_timeout(
1061 		&info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1062 	log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1063 
1064 	if (info->negotiate_done)
1065 		return 0;
1066 
1067 	if (rc == 0)
1068 		rc = -ETIMEDOUT;
1069 	else if (rc == -ERESTARTSYS)
1070 		rc = -EINTR;
1071 	else
1072 		rc = -ENOTCONN;
1073 
1074 	return rc;
1075 }
1076 
1077 static void put_empty_packet(
1078 		struct smbd_connection *info, struct smbd_response *response)
1079 {
1080 	spin_lock(&info->empty_packet_queue_lock);
1081 	list_add_tail(&response->list, &info->empty_packet_queue);
1082 	info->count_empty_packet_queue++;
1083 	spin_unlock(&info->empty_packet_queue_lock);
1084 
1085 	queue_work(info->workqueue, &info->post_send_credits_work);
1086 }
1087 
1088 /*
1089  * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1090  * This is a queue for reassembling upper layer payload and present to upper
1091  * layer. All the inncoming payload go to the reassembly queue, regardless of
1092  * if reassembly is required. The uuper layer code reads from the queue for all
1093  * incoming payloads.
1094  * Put a received packet to the reassembly queue
1095  * response: the packet received
1096  * data_length: the size of payload in this packet
1097  */
1098 static void enqueue_reassembly(
1099 	struct smbd_connection *info,
1100 	struct smbd_response *response,
1101 	int data_length)
1102 {
1103 	spin_lock(&info->reassembly_queue_lock);
1104 	list_add_tail(&response->list, &info->reassembly_queue);
1105 	info->reassembly_queue_length++;
1106 	/*
1107 	 * Make sure reassembly_data_length is updated after list and
1108 	 * reassembly_queue_length are updated. On the dequeue side
1109 	 * reassembly_data_length is checked without a lock to determine
1110 	 * if reassembly_queue_length and list is up to date
1111 	 */
1112 	virt_wmb();
1113 	info->reassembly_data_length += data_length;
1114 	spin_unlock(&info->reassembly_queue_lock);
1115 	info->count_reassembly_queue++;
1116 	info->count_enqueue_reassembly_queue++;
1117 }
1118 
1119 /*
1120  * Get the first entry at the front of reassembly queue
1121  * Caller is responsible for locking
1122  * return value: the first entry if any, NULL if queue is empty
1123  */
1124 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1125 {
1126 	struct smbd_response *ret = NULL;
1127 
1128 	if (!list_empty(&info->reassembly_queue)) {
1129 		ret = list_first_entry(
1130 			&info->reassembly_queue,
1131 			struct smbd_response, list);
1132 	}
1133 	return ret;
1134 }
1135 
1136 static struct smbd_response *get_empty_queue_buffer(
1137 		struct smbd_connection *info)
1138 {
1139 	struct smbd_response *ret = NULL;
1140 	unsigned long flags;
1141 
1142 	spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1143 	if (!list_empty(&info->empty_packet_queue)) {
1144 		ret = list_first_entry(
1145 			&info->empty_packet_queue,
1146 			struct smbd_response, list);
1147 		list_del(&ret->list);
1148 		info->count_empty_packet_queue--;
1149 	}
1150 	spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1151 
1152 	return ret;
1153 }
1154 
1155 /*
1156  * Get a receive buffer
1157  * For each remote send, we need to post a receive. The receive buffers are
1158  * pre-allocated in advance.
1159  * return value: the receive buffer, NULL if none is available
1160  */
1161 static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1162 {
1163 	struct smbd_response *ret = NULL;
1164 	unsigned long flags;
1165 
1166 	spin_lock_irqsave(&info->receive_queue_lock, flags);
1167 	if (!list_empty(&info->receive_queue)) {
1168 		ret = list_first_entry(
1169 			&info->receive_queue,
1170 			struct smbd_response, list);
1171 		list_del(&ret->list);
1172 		info->count_receive_queue--;
1173 		info->count_get_receive_buffer++;
1174 	}
1175 	spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1176 
1177 	return ret;
1178 }
1179 
1180 /*
1181  * Return a receive buffer
1182  * Upon returning of a receive buffer, we can post new receive and extend
1183  * more receive credits to remote peer. This is done immediately after a
1184  * receive buffer is returned.
1185  */
1186 static void put_receive_buffer(
1187 	struct smbd_connection *info, struct smbd_response *response)
1188 {
1189 	unsigned long flags;
1190 
1191 	ib_dma_unmap_single(info->id->device, response->sge.addr,
1192 		response->sge.length, DMA_FROM_DEVICE);
1193 
1194 	spin_lock_irqsave(&info->receive_queue_lock, flags);
1195 	list_add_tail(&response->list, &info->receive_queue);
1196 	info->count_receive_queue++;
1197 	info->count_put_receive_buffer++;
1198 	spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1199 
1200 	queue_work(info->workqueue, &info->post_send_credits_work);
1201 }
1202 
1203 /* Preallocate all receive buffer on transport establishment */
1204 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1205 {
1206 	int i;
1207 	struct smbd_response *response;
1208 
1209 	INIT_LIST_HEAD(&info->reassembly_queue);
1210 	spin_lock_init(&info->reassembly_queue_lock);
1211 	info->reassembly_data_length = 0;
1212 	info->reassembly_queue_length = 0;
1213 
1214 	INIT_LIST_HEAD(&info->receive_queue);
1215 	spin_lock_init(&info->receive_queue_lock);
1216 	info->count_receive_queue = 0;
1217 
1218 	INIT_LIST_HEAD(&info->empty_packet_queue);
1219 	spin_lock_init(&info->empty_packet_queue_lock);
1220 	info->count_empty_packet_queue = 0;
1221 
1222 	init_waitqueue_head(&info->wait_receive_queues);
1223 
1224 	for (i = 0; i < num_buf; i++) {
1225 		response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1226 		if (!response)
1227 			goto allocate_failed;
1228 
1229 		response->info = info;
1230 		list_add_tail(&response->list, &info->receive_queue);
1231 		info->count_receive_queue++;
1232 	}
1233 
1234 	return 0;
1235 
1236 allocate_failed:
1237 	while (!list_empty(&info->receive_queue)) {
1238 		response = list_first_entry(
1239 				&info->receive_queue,
1240 				struct smbd_response, list);
1241 		list_del(&response->list);
1242 		info->count_receive_queue--;
1243 
1244 		mempool_free(response, info->response_mempool);
1245 	}
1246 	return -ENOMEM;
1247 }
1248 
1249 static void destroy_receive_buffers(struct smbd_connection *info)
1250 {
1251 	struct smbd_response *response;
1252 
1253 	while ((response = get_receive_buffer(info)))
1254 		mempool_free(response, info->response_mempool);
1255 
1256 	while ((response = get_empty_queue_buffer(info)))
1257 		mempool_free(response, info->response_mempool);
1258 }
1259 
1260 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
1261 static void idle_connection_timer(struct work_struct *work)
1262 {
1263 	struct smbd_connection *info = container_of(
1264 					work, struct smbd_connection,
1265 					idle_timer_work.work);
1266 
1267 	if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1268 		log_keep_alive(ERR,
1269 			"error status info->keep_alive_requested=%d\n",
1270 			info->keep_alive_requested);
1271 		smbd_disconnect_rdma_connection(info);
1272 		return;
1273 	}
1274 
1275 	log_keep_alive(INFO, "about to send an empty idle message\n");
1276 	smbd_post_send_empty(info);
1277 
1278 	/* Setup the next idle timeout work */
1279 	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1280 			info->keep_alive_interval*HZ);
1281 }
1282 
1283 /*
1284  * Destroy the transport and related RDMA and memory resources
1285  * Need to go through all the pending counters and make sure on one is using
1286  * the transport while it is destroyed
1287  */
1288 void smbd_destroy(struct TCP_Server_Info *server)
1289 {
1290 	struct smbd_connection *info = server->smbd_conn;
1291 	struct smbd_response *response;
1292 	unsigned long flags;
1293 
1294 	if (!info) {
1295 		log_rdma_event(INFO, "rdma session already destroyed\n");
1296 		return;
1297 	}
1298 
1299 	log_rdma_event(INFO, "destroying rdma session\n");
1300 	if (info->transport_status != SMBD_DISCONNECTED) {
1301 		rdma_disconnect(server->smbd_conn->id);
1302 		log_rdma_event(INFO, "wait for transport being disconnected\n");
1303 		wait_event_interruptible(
1304 			info->disconn_wait,
1305 			info->transport_status == SMBD_DISCONNECTED);
1306 	}
1307 
1308 	log_rdma_event(INFO, "destroying qp\n");
1309 	ib_drain_qp(info->id->qp);
1310 	rdma_destroy_qp(info->id);
1311 
1312 	log_rdma_event(INFO, "cancelling idle timer\n");
1313 	cancel_delayed_work_sync(&info->idle_timer_work);
1314 
1315 	log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
1316 	wait_event(info->wait_send_pending,
1317 		atomic_read(&info->send_pending) == 0);
1318 
1319 	/* It's not possible for upper layer to get to reassembly */
1320 	log_rdma_event(INFO, "drain the reassembly queue\n");
1321 	do {
1322 		spin_lock_irqsave(&info->reassembly_queue_lock, flags);
1323 		response = _get_first_reassembly(info);
1324 		if (response) {
1325 			list_del(&response->list);
1326 			spin_unlock_irqrestore(
1327 				&info->reassembly_queue_lock, flags);
1328 			put_receive_buffer(info, response);
1329 		} else
1330 			spin_unlock_irqrestore(
1331 				&info->reassembly_queue_lock, flags);
1332 	} while (response);
1333 	info->reassembly_data_length = 0;
1334 
1335 	log_rdma_event(INFO, "free receive buffers\n");
1336 	wait_event(info->wait_receive_queues,
1337 		info->count_receive_queue + info->count_empty_packet_queue
1338 			== info->receive_credit_max);
1339 	destroy_receive_buffers(info);
1340 
1341 	/*
1342 	 * For performance reasons, memory registration and deregistration
1343 	 * are not locked by srv_mutex. It is possible some processes are
1344 	 * blocked on transport srv_mutex while holding memory registration.
1345 	 * Release the transport srv_mutex to allow them to hit the failure
1346 	 * path when sending data, and then release memory registartions.
1347 	 */
1348 	log_rdma_event(INFO, "freeing mr list\n");
1349 	wake_up_interruptible_all(&info->wait_mr);
1350 	while (atomic_read(&info->mr_used_count)) {
1351 		cifs_server_unlock(server);
1352 		msleep(1000);
1353 		cifs_server_lock(server);
1354 	}
1355 	destroy_mr_list(info);
1356 
1357 	ib_free_cq(info->send_cq);
1358 	ib_free_cq(info->recv_cq);
1359 	ib_dealloc_pd(info->pd);
1360 	rdma_destroy_id(info->id);
1361 
1362 	/* free mempools */
1363 	mempool_destroy(info->request_mempool);
1364 	kmem_cache_destroy(info->request_cache);
1365 
1366 	mempool_destroy(info->response_mempool);
1367 	kmem_cache_destroy(info->response_cache);
1368 
1369 	info->transport_status = SMBD_DESTROYED;
1370 
1371 	destroy_workqueue(info->workqueue);
1372 	log_rdma_event(INFO,  "rdma session destroyed\n");
1373 	kfree(info);
1374 	server->smbd_conn = NULL;
1375 }
1376 
1377 /*
1378  * Reconnect this SMBD connection, called from upper layer
1379  * return value: 0 on success, or actual error code
1380  */
1381 int smbd_reconnect(struct TCP_Server_Info *server)
1382 {
1383 	log_rdma_event(INFO, "reconnecting rdma session\n");
1384 
1385 	if (!server->smbd_conn) {
1386 		log_rdma_event(INFO, "rdma session already destroyed\n");
1387 		goto create_conn;
1388 	}
1389 
1390 	/*
1391 	 * This is possible if transport is disconnected and we haven't received
1392 	 * notification from RDMA, but upper layer has detected timeout
1393 	 */
1394 	if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
1395 		log_rdma_event(INFO, "disconnecting transport\n");
1396 		smbd_destroy(server);
1397 	}
1398 
1399 create_conn:
1400 	log_rdma_event(INFO, "creating rdma session\n");
1401 	server->smbd_conn = smbd_get_connection(
1402 		server, (struct sockaddr *) &server->dstaddr);
1403 
1404 	if (server->smbd_conn) {
1405 		cifs_dbg(VFS, "RDMA transport re-established\n");
1406 		trace_smb3_smbd_connect_done(server->hostname, server->conn_id, &server->dstaddr);
1407 		return 0;
1408 	}
1409 	trace_smb3_smbd_connect_err(server->hostname, server->conn_id, &server->dstaddr);
1410 	return -ENOENT;
1411 }
1412 
1413 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1414 {
1415 	destroy_receive_buffers(info);
1416 	destroy_workqueue(info->workqueue);
1417 	mempool_destroy(info->response_mempool);
1418 	kmem_cache_destroy(info->response_cache);
1419 	mempool_destroy(info->request_mempool);
1420 	kmem_cache_destroy(info->request_cache);
1421 }
1422 
1423 #define MAX_NAME_LEN	80
1424 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1425 {
1426 	char name[MAX_NAME_LEN];
1427 	int rc;
1428 
1429 	scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1430 	info->request_cache =
1431 		kmem_cache_create(
1432 			name,
1433 			sizeof(struct smbd_request) +
1434 				sizeof(struct smbd_data_transfer),
1435 			0, SLAB_HWCACHE_ALIGN, NULL);
1436 	if (!info->request_cache)
1437 		return -ENOMEM;
1438 
1439 	info->request_mempool =
1440 		mempool_create(info->send_credit_target, mempool_alloc_slab,
1441 			mempool_free_slab, info->request_cache);
1442 	if (!info->request_mempool)
1443 		goto out1;
1444 
1445 	scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1446 	info->response_cache =
1447 		kmem_cache_create(
1448 			name,
1449 			sizeof(struct smbd_response) +
1450 				info->max_receive_size,
1451 			0, SLAB_HWCACHE_ALIGN, NULL);
1452 	if (!info->response_cache)
1453 		goto out2;
1454 
1455 	info->response_mempool =
1456 		mempool_create(info->receive_credit_max, mempool_alloc_slab,
1457 		       mempool_free_slab, info->response_cache);
1458 	if (!info->response_mempool)
1459 		goto out3;
1460 
1461 	scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1462 	info->workqueue = create_workqueue(name);
1463 	if (!info->workqueue)
1464 		goto out4;
1465 
1466 	rc = allocate_receive_buffers(info, info->receive_credit_max);
1467 	if (rc) {
1468 		log_rdma_event(ERR, "failed to allocate receive buffers\n");
1469 		goto out5;
1470 	}
1471 
1472 	return 0;
1473 
1474 out5:
1475 	destroy_workqueue(info->workqueue);
1476 out4:
1477 	mempool_destroy(info->response_mempool);
1478 out3:
1479 	kmem_cache_destroy(info->response_cache);
1480 out2:
1481 	mempool_destroy(info->request_mempool);
1482 out1:
1483 	kmem_cache_destroy(info->request_cache);
1484 	return -ENOMEM;
1485 }
1486 
1487 /* Create a SMBD connection, called by upper layer */
1488 static struct smbd_connection *_smbd_get_connection(
1489 	struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1490 {
1491 	int rc;
1492 	struct smbd_connection *info;
1493 	struct rdma_conn_param conn_param;
1494 	struct ib_qp_init_attr qp_attr;
1495 	struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1496 	struct ib_port_immutable port_immutable;
1497 	u32 ird_ord_hdr[2];
1498 
1499 	info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1500 	if (!info)
1501 		return NULL;
1502 
1503 	info->transport_status = SMBD_CONNECTING;
1504 	rc = smbd_ia_open(info, dstaddr, port);
1505 	if (rc) {
1506 		log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1507 		goto create_id_failed;
1508 	}
1509 
1510 	if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
1511 	    smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
1512 		log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1513 			       smbd_send_credit_target,
1514 			       info->id->device->attrs.max_cqe,
1515 			       info->id->device->attrs.max_qp_wr);
1516 		goto config_failed;
1517 	}
1518 
1519 	if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
1520 	    smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
1521 		log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1522 			       smbd_receive_credit_max,
1523 			       info->id->device->attrs.max_cqe,
1524 			       info->id->device->attrs.max_qp_wr);
1525 		goto config_failed;
1526 	}
1527 
1528 	info->receive_credit_max = smbd_receive_credit_max;
1529 	info->send_credit_target = smbd_send_credit_target;
1530 	info->max_send_size = smbd_max_send_size;
1531 	info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1532 	info->max_receive_size = smbd_max_receive_size;
1533 	info->keep_alive_interval = smbd_keep_alive_interval;
1534 
1535 	if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SEND_SGE ||
1536 	    info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_RECV_SGE) {
1537 		log_rdma_event(ERR,
1538 			"device %.*s max_send_sge/max_recv_sge = %d/%d too small\n",
1539 			IB_DEVICE_NAME_MAX,
1540 			info->id->device->name,
1541 			info->id->device->attrs.max_send_sge,
1542 			info->id->device->attrs.max_recv_sge);
1543 		goto config_failed;
1544 	}
1545 
1546 	info->send_cq = NULL;
1547 	info->recv_cq = NULL;
1548 	info->send_cq =
1549 		ib_alloc_cq_any(info->id->device, info,
1550 				info->send_credit_target, IB_POLL_SOFTIRQ);
1551 	if (IS_ERR(info->send_cq)) {
1552 		info->send_cq = NULL;
1553 		goto alloc_cq_failed;
1554 	}
1555 
1556 	info->recv_cq =
1557 		ib_alloc_cq_any(info->id->device, info,
1558 				info->receive_credit_max, IB_POLL_SOFTIRQ);
1559 	if (IS_ERR(info->recv_cq)) {
1560 		info->recv_cq = NULL;
1561 		goto alloc_cq_failed;
1562 	}
1563 
1564 	memset(&qp_attr, 0, sizeof(qp_attr));
1565 	qp_attr.event_handler = smbd_qp_async_error_upcall;
1566 	qp_attr.qp_context = info;
1567 	qp_attr.cap.max_send_wr = info->send_credit_target;
1568 	qp_attr.cap.max_recv_wr = info->receive_credit_max;
1569 	qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SEND_SGE;
1570 	qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_RECV_SGE;
1571 	qp_attr.cap.max_inline_data = 0;
1572 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1573 	qp_attr.qp_type = IB_QPT_RC;
1574 	qp_attr.send_cq = info->send_cq;
1575 	qp_attr.recv_cq = info->recv_cq;
1576 	qp_attr.port_num = ~0;
1577 
1578 	rc = rdma_create_qp(info->id, info->pd, &qp_attr);
1579 	if (rc) {
1580 		log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1581 		goto create_qp_failed;
1582 	}
1583 
1584 	memset(&conn_param, 0, sizeof(conn_param));
1585 	conn_param.initiator_depth = 0;
1586 
1587 	conn_param.responder_resources =
1588 		info->id->device->attrs.max_qp_rd_atom
1589 			< SMBD_CM_RESPONDER_RESOURCES ?
1590 		info->id->device->attrs.max_qp_rd_atom :
1591 		SMBD_CM_RESPONDER_RESOURCES;
1592 	info->responder_resources = conn_param.responder_resources;
1593 	log_rdma_mr(INFO, "responder_resources=%d\n",
1594 		info->responder_resources);
1595 
1596 	/* Need to send IRD/ORD in private data for iWARP */
1597 	info->id->device->ops.get_port_immutable(
1598 		info->id->device, info->id->port_num, &port_immutable);
1599 	if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1600 		ird_ord_hdr[0] = info->responder_resources;
1601 		ird_ord_hdr[1] = 1;
1602 		conn_param.private_data = ird_ord_hdr;
1603 		conn_param.private_data_len = sizeof(ird_ord_hdr);
1604 	} else {
1605 		conn_param.private_data = NULL;
1606 		conn_param.private_data_len = 0;
1607 	}
1608 
1609 	conn_param.retry_count = SMBD_CM_RETRY;
1610 	conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1611 	conn_param.flow_control = 0;
1612 
1613 	log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1614 		&addr_in->sin_addr, port);
1615 
1616 	init_waitqueue_head(&info->conn_wait);
1617 	init_waitqueue_head(&info->disconn_wait);
1618 	init_waitqueue_head(&info->wait_reassembly_queue);
1619 	rc = rdma_connect(info->id, &conn_param);
1620 	if (rc) {
1621 		log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1622 		goto rdma_connect_failed;
1623 	}
1624 
1625 	wait_event_interruptible(
1626 		info->conn_wait, info->transport_status != SMBD_CONNECTING);
1627 
1628 	if (info->transport_status != SMBD_CONNECTED) {
1629 		log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1630 		goto rdma_connect_failed;
1631 	}
1632 
1633 	log_rdma_event(INFO, "rdma_connect connected\n");
1634 
1635 	rc = allocate_caches_and_workqueue(info);
1636 	if (rc) {
1637 		log_rdma_event(ERR, "cache allocation failed\n");
1638 		goto allocate_cache_failed;
1639 	}
1640 
1641 	init_waitqueue_head(&info->wait_send_queue);
1642 	INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1643 	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1644 		info->keep_alive_interval*HZ);
1645 
1646 	init_waitqueue_head(&info->wait_send_pending);
1647 	atomic_set(&info->send_pending, 0);
1648 
1649 	init_waitqueue_head(&info->wait_post_send);
1650 
1651 	INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1652 	INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1653 	info->new_credits_offered = 0;
1654 	spin_lock_init(&info->lock_new_credits_offered);
1655 
1656 	rc = smbd_negotiate(info);
1657 	if (rc) {
1658 		log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1659 		goto negotiation_failed;
1660 	}
1661 
1662 	rc = allocate_mr_list(info);
1663 	if (rc) {
1664 		log_rdma_mr(ERR, "memory registration allocation failed\n");
1665 		goto allocate_mr_failed;
1666 	}
1667 
1668 	return info;
1669 
1670 allocate_mr_failed:
1671 	/* At this point, need to a full transport shutdown */
1672 	server->smbd_conn = info;
1673 	smbd_destroy(server);
1674 	return NULL;
1675 
1676 negotiation_failed:
1677 	cancel_delayed_work_sync(&info->idle_timer_work);
1678 	destroy_caches_and_workqueue(info);
1679 	info->transport_status = SMBD_NEGOTIATE_FAILED;
1680 	init_waitqueue_head(&info->conn_wait);
1681 	rdma_disconnect(info->id);
1682 	wait_event(info->conn_wait,
1683 		info->transport_status == SMBD_DISCONNECTED);
1684 
1685 allocate_cache_failed:
1686 rdma_connect_failed:
1687 	rdma_destroy_qp(info->id);
1688 
1689 create_qp_failed:
1690 alloc_cq_failed:
1691 	if (info->send_cq)
1692 		ib_free_cq(info->send_cq);
1693 	if (info->recv_cq)
1694 		ib_free_cq(info->recv_cq);
1695 
1696 config_failed:
1697 	ib_dealloc_pd(info->pd);
1698 	rdma_destroy_id(info->id);
1699 
1700 create_id_failed:
1701 	kfree(info);
1702 	return NULL;
1703 }
1704 
1705 struct smbd_connection *smbd_get_connection(
1706 	struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1707 {
1708 	struct smbd_connection *ret;
1709 	int port = SMBD_PORT;
1710 
1711 try_again:
1712 	ret = _smbd_get_connection(server, dstaddr, port);
1713 
1714 	/* Try SMB_PORT if SMBD_PORT doesn't work */
1715 	if (!ret && port == SMBD_PORT) {
1716 		port = SMB_PORT;
1717 		goto try_again;
1718 	}
1719 	return ret;
1720 }
1721 
1722 /*
1723  * Receive data from receive reassembly queue
1724  * All the incoming data packets are placed in reassembly queue
1725  * buf: the buffer to read data into
1726  * size: the length of data to read
1727  * return value: actual data read
1728  * Note: this implementation copies the data from reassebmly queue to receive
1729  * buffers used by upper layer. This is not the optimal code path. A better way
1730  * to do it is to not have upper layer allocate its receive buffers but rather
1731  * borrow the buffer from reassembly queue, and return it after data is
1732  * consumed. But this will require more changes to upper layer code, and also
1733  * need to consider packet boundaries while they still being reassembled.
1734  */
1735 static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1736 		unsigned int size)
1737 {
1738 	struct smbd_response *response;
1739 	struct smbd_data_transfer *data_transfer;
1740 	int to_copy, to_read, data_read, offset;
1741 	u32 data_length, remaining_data_length, data_offset;
1742 	int rc;
1743 
1744 again:
1745 	/*
1746 	 * No need to hold the reassembly queue lock all the time as we are
1747 	 * the only one reading from the front of the queue. The transport
1748 	 * may add more entries to the back of the queue at the same time
1749 	 */
1750 	log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1751 		info->reassembly_data_length);
1752 	if (info->reassembly_data_length >= size) {
1753 		int queue_length;
1754 		int queue_removed = 0;
1755 
1756 		/*
1757 		 * Need to make sure reassembly_data_length is read before
1758 		 * reading reassembly_queue_length and calling
1759 		 * _get_first_reassembly. This call is lock free
1760 		 * as we never read at the end of the queue which are being
1761 		 * updated in SOFTIRQ as more data is received
1762 		 */
1763 		virt_rmb();
1764 		queue_length = info->reassembly_queue_length;
1765 		data_read = 0;
1766 		to_read = size;
1767 		offset = info->first_entry_offset;
1768 		while (data_read < size) {
1769 			response = _get_first_reassembly(info);
1770 			data_transfer = smbd_response_payload(response);
1771 			data_length = le32_to_cpu(data_transfer->data_length);
1772 			remaining_data_length =
1773 				le32_to_cpu(
1774 					data_transfer->remaining_data_length);
1775 			data_offset = le32_to_cpu(data_transfer->data_offset);
1776 
1777 			/*
1778 			 * The upper layer expects RFC1002 length at the
1779 			 * beginning of the payload. Return it to indicate
1780 			 * the total length of the packet. This minimize the
1781 			 * change to upper layer packet processing logic. This
1782 			 * will be eventually remove when an intermediate
1783 			 * transport layer is added
1784 			 */
1785 			if (response->first_segment && size == 4) {
1786 				unsigned int rfc1002_len =
1787 					data_length + remaining_data_length;
1788 				*((__be32 *)buf) = cpu_to_be32(rfc1002_len);
1789 				data_read = 4;
1790 				response->first_segment = false;
1791 				log_read(INFO, "returning rfc1002 length %d\n",
1792 					rfc1002_len);
1793 				goto read_rfc1002_done;
1794 			}
1795 
1796 			to_copy = min_t(int, data_length - offset, to_read);
1797 			memcpy(
1798 				buf + data_read,
1799 				(char *)data_transfer + data_offset + offset,
1800 				to_copy);
1801 
1802 			/* move on to the next buffer? */
1803 			if (to_copy == data_length - offset) {
1804 				queue_length--;
1805 				/*
1806 				 * No need to lock if we are not at the
1807 				 * end of the queue
1808 				 */
1809 				if (queue_length)
1810 					list_del(&response->list);
1811 				else {
1812 					spin_lock_irq(
1813 						&info->reassembly_queue_lock);
1814 					list_del(&response->list);
1815 					spin_unlock_irq(
1816 						&info->reassembly_queue_lock);
1817 				}
1818 				queue_removed++;
1819 				info->count_reassembly_queue--;
1820 				info->count_dequeue_reassembly_queue++;
1821 				put_receive_buffer(info, response);
1822 				offset = 0;
1823 				log_read(INFO, "put_receive_buffer offset=0\n");
1824 			} else
1825 				offset += to_copy;
1826 
1827 			to_read -= to_copy;
1828 			data_read += to_copy;
1829 
1830 			log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
1831 				 to_copy, data_length - offset,
1832 				 to_read, data_read, offset);
1833 		}
1834 
1835 		spin_lock_irq(&info->reassembly_queue_lock);
1836 		info->reassembly_data_length -= data_read;
1837 		info->reassembly_queue_length -= queue_removed;
1838 		spin_unlock_irq(&info->reassembly_queue_lock);
1839 
1840 		info->first_entry_offset = offset;
1841 		log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
1842 			 data_read, info->reassembly_data_length,
1843 			 info->first_entry_offset);
1844 read_rfc1002_done:
1845 		return data_read;
1846 	}
1847 
1848 	log_read(INFO, "wait_event on more data\n");
1849 	rc = wait_event_interruptible(
1850 		info->wait_reassembly_queue,
1851 		info->reassembly_data_length >= size ||
1852 			info->transport_status != SMBD_CONNECTED);
1853 	/* Don't return any data if interrupted */
1854 	if (rc)
1855 		return rc;
1856 
1857 	if (info->transport_status != SMBD_CONNECTED) {
1858 		log_read(ERR, "disconnected\n");
1859 		return -ECONNABORTED;
1860 	}
1861 
1862 	goto again;
1863 }
1864 
1865 /*
1866  * Receive a page from receive reassembly queue
1867  * page: the page to read data into
1868  * to_read: the length of data to read
1869  * return value: actual data read
1870  */
1871 static int smbd_recv_page(struct smbd_connection *info,
1872 		struct page *page, unsigned int page_offset,
1873 		unsigned int to_read)
1874 {
1875 	int ret;
1876 	char *to_address;
1877 	void *page_address;
1878 
1879 	/* make sure we have the page ready for read */
1880 	ret = wait_event_interruptible(
1881 		info->wait_reassembly_queue,
1882 		info->reassembly_data_length >= to_read ||
1883 			info->transport_status != SMBD_CONNECTED);
1884 	if (ret)
1885 		return ret;
1886 
1887 	/* now we can read from reassembly queue and not sleep */
1888 	page_address = kmap_atomic(page);
1889 	to_address = (char *) page_address + page_offset;
1890 
1891 	log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
1892 		page, to_address, to_read);
1893 
1894 	ret = smbd_recv_buf(info, to_address, to_read);
1895 	kunmap_atomic(page_address);
1896 
1897 	return ret;
1898 }
1899 
1900 /*
1901  * Receive data from transport
1902  * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
1903  * return: total bytes read, or 0. SMB Direct will not do partial read.
1904  */
1905 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
1906 {
1907 	char *buf;
1908 	struct page *page;
1909 	unsigned int to_read, page_offset;
1910 	int rc;
1911 
1912 	if (iov_iter_rw(&msg->msg_iter) == WRITE) {
1913 		/* It's a bug in upper layer to get there */
1914 		cifs_dbg(VFS, "Invalid msg iter dir %u\n",
1915 			 iov_iter_rw(&msg->msg_iter));
1916 		rc = -EINVAL;
1917 		goto out;
1918 	}
1919 
1920 	switch (iov_iter_type(&msg->msg_iter)) {
1921 	case ITER_KVEC:
1922 		buf = msg->msg_iter.kvec->iov_base;
1923 		to_read = msg->msg_iter.kvec->iov_len;
1924 		rc = smbd_recv_buf(info, buf, to_read);
1925 		break;
1926 
1927 	case ITER_BVEC:
1928 		page = msg->msg_iter.bvec->bv_page;
1929 		page_offset = msg->msg_iter.bvec->bv_offset;
1930 		to_read = msg->msg_iter.bvec->bv_len;
1931 		rc = smbd_recv_page(info, page, page_offset, to_read);
1932 		break;
1933 
1934 	default:
1935 		/* It's a bug in upper layer to get there */
1936 		cifs_dbg(VFS, "Invalid msg type %d\n",
1937 			 iov_iter_type(&msg->msg_iter));
1938 		rc = -EINVAL;
1939 	}
1940 
1941 out:
1942 	/* SMBDirect will read it all or nothing */
1943 	if (rc > 0)
1944 		msg->msg_iter.count = 0;
1945 	return rc;
1946 }
1947 
1948 /*
1949  * Send data to transport
1950  * Each rqst is transported as a SMBDirect payload
1951  * rqst: the data to write
1952  * return value: 0 if successfully write, otherwise error code
1953  */
1954 int smbd_send(struct TCP_Server_Info *server,
1955 	int num_rqst, struct smb_rqst *rqst_array)
1956 {
1957 	struct smbd_connection *info = server->smbd_conn;
1958 	struct smb_rqst *rqst;
1959 	struct iov_iter iter;
1960 	unsigned int remaining_data_length, klen;
1961 	int rc, i, rqst_idx;
1962 
1963 	if (info->transport_status != SMBD_CONNECTED)
1964 		return -EAGAIN;
1965 
1966 	/*
1967 	 * Add in the page array if there is one. The caller needs to set
1968 	 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
1969 	 * ends at page boundary
1970 	 */
1971 	remaining_data_length = 0;
1972 	for (i = 0; i < num_rqst; i++)
1973 		remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
1974 
1975 	if (unlikely(remaining_data_length > info->max_fragmented_send_size)) {
1976 		/* assertion: payload never exceeds negotiated maximum */
1977 		log_write(ERR, "payload size %d > max size %d\n",
1978 			remaining_data_length, info->max_fragmented_send_size);
1979 		return -EINVAL;
1980 	}
1981 
1982 	log_write(INFO, "num_rqst=%d total length=%u\n",
1983 			num_rqst, remaining_data_length);
1984 
1985 	rqst_idx = 0;
1986 	do {
1987 		rqst = &rqst_array[rqst_idx];
1988 
1989 		cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
1990 			 rqst_idx, smb_rqst_len(server, rqst));
1991 		for (i = 0; i < rqst->rq_nvec; i++)
1992 			dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len);
1993 
1994 		log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n",
1995 			  rqst_idx, rqst->rq_nvec, remaining_data_length,
1996 			  iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst));
1997 
1998 		/* Send the metadata pages. */
1999 		klen = 0;
2000 		for (i = 0; i < rqst->rq_nvec; i++)
2001 			klen += rqst->rq_iov[i].iov_len;
2002 		iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen);
2003 
2004 		rc = smbd_post_send_iter(info, &iter, &remaining_data_length);
2005 		if (rc < 0)
2006 			break;
2007 
2008 		if (iov_iter_count(&rqst->rq_iter) > 0) {
2009 			/* And then the data pages if there are any */
2010 			rc = smbd_post_send_iter(info, &rqst->rq_iter,
2011 						 &remaining_data_length);
2012 			if (rc < 0)
2013 				break;
2014 		}
2015 
2016 	} while (++rqst_idx < num_rqst);
2017 
2018 	/*
2019 	 * As an optimization, we don't wait for individual I/O to finish
2020 	 * before sending the next one.
2021 	 * Send them all and wait for pending send count to get to 0
2022 	 * that means all the I/Os have been out and we are good to return
2023 	 */
2024 
2025 	wait_event(info->wait_send_pending,
2026 		atomic_read(&info->send_pending) == 0);
2027 
2028 	return rc;
2029 }
2030 
2031 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2032 {
2033 	struct smbd_mr *mr;
2034 	struct ib_cqe *cqe;
2035 
2036 	if (wc->status) {
2037 		log_rdma_mr(ERR, "status=%d\n", wc->status);
2038 		cqe = wc->wr_cqe;
2039 		mr = container_of(cqe, struct smbd_mr, cqe);
2040 		smbd_disconnect_rdma_connection(mr->conn);
2041 	}
2042 }
2043 
2044 /*
2045  * The work queue function that recovers MRs
2046  * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2047  * again. Both calls are slow, so finish them in a workqueue. This will not
2048  * block I/O path.
2049  * There is one workqueue that recovers MRs, there is no need to lock as the
2050  * I/O requests calling smbd_register_mr will never update the links in the
2051  * mr_list.
2052  */
2053 static void smbd_mr_recovery_work(struct work_struct *work)
2054 {
2055 	struct smbd_connection *info =
2056 		container_of(work, struct smbd_connection, mr_recovery_work);
2057 	struct smbd_mr *smbdirect_mr;
2058 	int rc;
2059 
2060 	list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2061 		if (smbdirect_mr->state == MR_ERROR) {
2062 
2063 			/* recover this MR entry */
2064 			rc = ib_dereg_mr(smbdirect_mr->mr);
2065 			if (rc) {
2066 				log_rdma_mr(ERR,
2067 					"ib_dereg_mr failed rc=%x\n",
2068 					rc);
2069 				smbd_disconnect_rdma_connection(info);
2070 				continue;
2071 			}
2072 
2073 			smbdirect_mr->mr = ib_alloc_mr(
2074 				info->pd, info->mr_type,
2075 				info->max_frmr_depth);
2076 			if (IS_ERR(smbdirect_mr->mr)) {
2077 				log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2078 					    info->mr_type,
2079 					    info->max_frmr_depth);
2080 				smbd_disconnect_rdma_connection(info);
2081 				continue;
2082 			}
2083 		} else
2084 			/* This MR is being used, don't recover it */
2085 			continue;
2086 
2087 		smbdirect_mr->state = MR_READY;
2088 
2089 		/* smbdirect_mr->state is updated by this function
2090 		 * and is read and updated by I/O issuing CPUs trying
2091 		 * to get a MR, the call to atomic_inc_return
2092 		 * implicates a memory barrier and guarantees this
2093 		 * value is updated before waking up any calls to
2094 		 * get_mr() from the I/O issuing CPUs
2095 		 */
2096 		if (atomic_inc_return(&info->mr_ready_count) == 1)
2097 			wake_up_interruptible(&info->wait_mr);
2098 	}
2099 }
2100 
2101 static void destroy_mr_list(struct smbd_connection *info)
2102 {
2103 	struct smbd_mr *mr, *tmp;
2104 
2105 	cancel_work_sync(&info->mr_recovery_work);
2106 	list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2107 		if (mr->state == MR_INVALIDATED)
2108 			ib_dma_unmap_sg(info->id->device, mr->sgt.sgl,
2109 				mr->sgt.nents, mr->dir);
2110 		ib_dereg_mr(mr->mr);
2111 		kfree(mr->sgt.sgl);
2112 		kfree(mr);
2113 	}
2114 }
2115 
2116 /*
2117  * Allocate MRs used for RDMA read/write
2118  * The number of MRs will not exceed hardware capability in responder_resources
2119  * All MRs are kept in mr_list. The MR can be recovered after it's used
2120  * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2121  * as MRs are used and recovered for I/O, but the list links will not change
2122  */
2123 static int allocate_mr_list(struct smbd_connection *info)
2124 {
2125 	int i;
2126 	struct smbd_mr *smbdirect_mr, *tmp;
2127 
2128 	INIT_LIST_HEAD(&info->mr_list);
2129 	init_waitqueue_head(&info->wait_mr);
2130 	spin_lock_init(&info->mr_list_lock);
2131 	atomic_set(&info->mr_ready_count, 0);
2132 	atomic_set(&info->mr_used_count, 0);
2133 	init_waitqueue_head(&info->wait_for_mr_cleanup);
2134 	INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2135 	/* Allocate more MRs (2x) than hardware responder_resources */
2136 	for (i = 0; i < info->responder_resources * 2; i++) {
2137 		smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2138 		if (!smbdirect_mr)
2139 			goto cleanup_entries;
2140 		smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
2141 					info->max_frmr_depth);
2142 		if (IS_ERR(smbdirect_mr->mr)) {
2143 			log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2144 				    info->mr_type, info->max_frmr_depth);
2145 			goto out;
2146 		}
2147 		smbdirect_mr->sgt.sgl = kcalloc(info->max_frmr_depth,
2148 						sizeof(struct scatterlist),
2149 						GFP_KERNEL);
2150 		if (!smbdirect_mr->sgt.sgl) {
2151 			log_rdma_mr(ERR, "failed to allocate sgl\n");
2152 			ib_dereg_mr(smbdirect_mr->mr);
2153 			goto out;
2154 		}
2155 		smbdirect_mr->state = MR_READY;
2156 		smbdirect_mr->conn = info;
2157 
2158 		list_add_tail(&smbdirect_mr->list, &info->mr_list);
2159 		atomic_inc(&info->mr_ready_count);
2160 	}
2161 	return 0;
2162 
2163 out:
2164 	kfree(smbdirect_mr);
2165 cleanup_entries:
2166 	list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2167 		list_del(&smbdirect_mr->list);
2168 		ib_dereg_mr(smbdirect_mr->mr);
2169 		kfree(smbdirect_mr->sgt.sgl);
2170 		kfree(smbdirect_mr);
2171 	}
2172 	return -ENOMEM;
2173 }
2174 
2175 /*
2176  * Get a MR from mr_list. This function waits until there is at least one
2177  * MR available in the list. It may access the list while the
2178  * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2179  * as they never modify the same places. However, there may be several CPUs
2180  * issueing I/O trying to get MR at the same time, mr_list_lock is used to
2181  * protect this situation.
2182  */
2183 static struct smbd_mr *get_mr(struct smbd_connection *info)
2184 {
2185 	struct smbd_mr *ret;
2186 	int rc;
2187 again:
2188 	rc = wait_event_interruptible(info->wait_mr,
2189 		atomic_read(&info->mr_ready_count) ||
2190 		info->transport_status != SMBD_CONNECTED);
2191 	if (rc) {
2192 		log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2193 		return NULL;
2194 	}
2195 
2196 	if (info->transport_status != SMBD_CONNECTED) {
2197 		log_rdma_mr(ERR, "info->transport_status=%x\n",
2198 			info->transport_status);
2199 		return NULL;
2200 	}
2201 
2202 	spin_lock(&info->mr_list_lock);
2203 	list_for_each_entry(ret, &info->mr_list, list) {
2204 		if (ret->state == MR_READY) {
2205 			ret->state = MR_REGISTERED;
2206 			spin_unlock(&info->mr_list_lock);
2207 			atomic_dec(&info->mr_ready_count);
2208 			atomic_inc(&info->mr_used_count);
2209 			return ret;
2210 		}
2211 	}
2212 
2213 	spin_unlock(&info->mr_list_lock);
2214 	/*
2215 	 * It is possible that we could fail to get MR because other processes may
2216 	 * try to acquire a MR at the same time. If this is the case, retry it.
2217 	 */
2218 	goto again;
2219 }
2220 
2221 /*
2222  * Transcribe the pages from an iterator into an MR scatterlist.
2223  */
2224 static int smbd_iter_to_mr(struct smbd_connection *info,
2225 			   struct iov_iter *iter,
2226 			   struct sg_table *sgt,
2227 			   unsigned int max_sg)
2228 {
2229 	int ret;
2230 
2231 	memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist));
2232 
2233 	ret = extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0);
2234 	WARN_ON(ret < 0);
2235 	if (sgt->nents > 0)
2236 		sg_mark_end(&sgt->sgl[sgt->nents - 1]);
2237 	return ret;
2238 }
2239 
2240 /*
2241  * Register memory for RDMA read/write
2242  * iter: the buffer to register memory with
2243  * writing: true if this is a RDMA write (SMB read), false for RDMA read
2244  * need_invalidate: true if this MR needs to be locally invalidated after I/O
2245  * return value: the MR registered, NULL if failed.
2246  */
2247 struct smbd_mr *smbd_register_mr(struct smbd_connection *info,
2248 				 struct iov_iter *iter,
2249 				 bool writing, bool need_invalidate)
2250 {
2251 	struct smbd_mr *smbdirect_mr;
2252 	int rc, num_pages;
2253 	enum dma_data_direction dir;
2254 	struct ib_reg_wr *reg_wr;
2255 
2256 	num_pages = iov_iter_npages(iter, info->max_frmr_depth + 1);
2257 	if (num_pages > info->max_frmr_depth) {
2258 		log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2259 			num_pages, info->max_frmr_depth);
2260 		WARN_ON_ONCE(1);
2261 		return NULL;
2262 	}
2263 
2264 	smbdirect_mr = get_mr(info);
2265 	if (!smbdirect_mr) {
2266 		log_rdma_mr(ERR, "get_mr returning NULL\n");
2267 		return NULL;
2268 	}
2269 
2270 	dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2271 	smbdirect_mr->dir = dir;
2272 	smbdirect_mr->need_invalidate = need_invalidate;
2273 	smbdirect_mr->sgt.nents = 0;
2274 	smbdirect_mr->sgt.orig_nents = 0;
2275 
2276 	log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n",
2277 		    num_pages, iov_iter_count(iter), info->max_frmr_depth);
2278 	smbd_iter_to_mr(info, iter, &smbdirect_mr->sgt, info->max_frmr_depth);
2279 
2280 	rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgt.sgl,
2281 			   smbdirect_mr->sgt.nents, dir);
2282 	if (!rc) {
2283 		log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2284 			num_pages, dir, rc);
2285 		goto dma_map_error;
2286 	}
2287 
2288 	rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgt.sgl,
2289 			  smbdirect_mr->sgt.nents, NULL, PAGE_SIZE);
2290 	if (rc != smbdirect_mr->sgt.nents) {
2291 		log_rdma_mr(ERR,
2292 			"ib_map_mr_sg failed rc = %d nents = %x\n",
2293 			rc, smbdirect_mr->sgt.nents);
2294 		goto map_mr_error;
2295 	}
2296 
2297 	ib_update_fast_reg_key(smbdirect_mr->mr,
2298 		ib_inc_rkey(smbdirect_mr->mr->rkey));
2299 	reg_wr = &smbdirect_mr->wr;
2300 	reg_wr->wr.opcode = IB_WR_REG_MR;
2301 	smbdirect_mr->cqe.done = register_mr_done;
2302 	reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2303 	reg_wr->wr.num_sge = 0;
2304 	reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2305 	reg_wr->mr = smbdirect_mr->mr;
2306 	reg_wr->key = smbdirect_mr->mr->rkey;
2307 	reg_wr->access = writing ?
2308 			IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2309 			IB_ACCESS_REMOTE_READ;
2310 
2311 	/*
2312 	 * There is no need for waiting for complemtion on ib_post_send
2313 	 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2314 	 * on the next ib_post_send when we actaully send I/O to remote peer
2315 	 */
2316 	rc = ib_post_send(info->id->qp, &reg_wr->wr, NULL);
2317 	if (!rc)
2318 		return smbdirect_mr;
2319 
2320 	log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2321 		rc, reg_wr->key);
2322 
2323 	/* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2324 map_mr_error:
2325 	ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgt.sgl,
2326 			smbdirect_mr->sgt.nents, smbdirect_mr->dir);
2327 
2328 dma_map_error:
2329 	smbdirect_mr->state = MR_ERROR;
2330 	if (atomic_dec_and_test(&info->mr_used_count))
2331 		wake_up(&info->wait_for_mr_cleanup);
2332 
2333 	smbd_disconnect_rdma_connection(info);
2334 
2335 	return NULL;
2336 }
2337 
2338 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2339 {
2340 	struct smbd_mr *smbdirect_mr;
2341 	struct ib_cqe *cqe;
2342 
2343 	cqe = wc->wr_cqe;
2344 	smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2345 	smbdirect_mr->state = MR_INVALIDATED;
2346 	if (wc->status != IB_WC_SUCCESS) {
2347 		log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2348 		smbdirect_mr->state = MR_ERROR;
2349 	}
2350 	complete(&smbdirect_mr->invalidate_done);
2351 }
2352 
2353 /*
2354  * Deregister a MR after I/O is done
2355  * This function may wait if remote invalidation is not used
2356  * and we have to locally invalidate the buffer to prevent data is being
2357  * modified by remote peer after upper layer consumes it
2358  */
2359 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2360 {
2361 	struct ib_send_wr *wr;
2362 	struct smbd_connection *info = smbdirect_mr->conn;
2363 	int rc = 0;
2364 
2365 	if (smbdirect_mr->need_invalidate) {
2366 		/* Need to finish local invalidation before returning */
2367 		wr = &smbdirect_mr->inv_wr;
2368 		wr->opcode = IB_WR_LOCAL_INV;
2369 		smbdirect_mr->cqe.done = local_inv_done;
2370 		wr->wr_cqe = &smbdirect_mr->cqe;
2371 		wr->num_sge = 0;
2372 		wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2373 		wr->send_flags = IB_SEND_SIGNALED;
2374 
2375 		init_completion(&smbdirect_mr->invalidate_done);
2376 		rc = ib_post_send(info->id->qp, wr, NULL);
2377 		if (rc) {
2378 			log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2379 			smbd_disconnect_rdma_connection(info);
2380 			goto done;
2381 		}
2382 		wait_for_completion(&smbdirect_mr->invalidate_done);
2383 		smbdirect_mr->need_invalidate = false;
2384 	} else
2385 		/*
2386 		 * For remote invalidation, just set it to MR_INVALIDATED
2387 		 * and defer to mr_recovery_work to recover the MR for next use
2388 		 */
2389 		smbdirect_mr->state = MR_INVALIDATED;
2390 
2391 	if (smbdirect_mr->state == MR_INVALIDATED) {
2392 		ib_dma_unmap_sg(
2393 			info->id->device, smbdirect_mr->sgt.sgl,
2394 			smbdirect_mr->sgt.nents,
2395 			smbdirect_mr->dir);
2396 		smbdirect_mr->state = MR_READY;
2397 		if (atomic_inc_return(&info->mr_ready_count) == 1)
2398 			wake_up_interruptible(&info->wait_mr);
2399 	} else
2400 		/*
2401 		 * Schedule the work to do MR recovery for future I/Os MR
2402 		 * recovery is slow and don't want it to block current I/O
2403 		 */
2404 		queue_work(info->workqueue, &info->mr_recovery_work);
2405 
2406 done:
2407 	if (atomic_dec_and_test(&info->mr_used_count))
2408 		wake_up(&info->wait_for_mr_cleanup);
2409 
2410 	return rc;
2411 }
2412 
2413 static bool smb_set_sge(struct smb_extract_to_rdma *rdma,
2414 			struct page *lowest_page, size_t off, size_t len)
2415 {
2416 	struct ib_sge *sge = &rdma->sge[rdma->nr_sge];
2417 	u64 addr;
2418 
2419 	addr = ib_dma_map_page(rdma->device, lowest_page,
2420 			       off, len, rdma->direction);
2421 	if (ib_dma_mapping_error(rdma->device, addr))
2422 		return false;
2423 
2424 	sge->addr   = addr;
2425 	sge->length = len;
2426 	sge->lkey   = rdma->local_dma_lkey;
2427 	rdma->nr_sge++;
2428 	return true;
2429 }
2430 
2431 /*
2432  * Extract page fragments from a BVEC-class iterator and add them to an RDMA
2433  * element list.  The pages are not pinned.
2434  */
2435 static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter,
2436 					struct smb_extract_to_rdma *rdma,
2437 					ssize_t maxsize)
2438 {
2439 	const struct bio_vec *bv = iter->bvec;
2440 	unsigned long start = iter->iov_offset;
2441 	unsigned int i;
2442 	ssize_t ret = 0;
2443 
2444 	for (i = 0; i < iter->nr_segs; i++) {
2445 		size_t off, len;
2446 
2447 		len = bv[i].bv_len;
2448 		if (start >= len) {
2449 			start -= len;
2450 			continue;
2451 		}
2452 
2453 		len = min_t(size_t, maxsize, len - start);
2454 		off = bv[i].bv_offset + start;
2455 
2456 		if (!smb_set_sge(rdma, bv[i].bv_page, off, len))
2457 			return -EIO;
2458 
2459 		ret += len;
2460 		maxsize -= len;
2461 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2462 			break;
2463 		start = 0;
2464 	}
2465 
2466 	return ret;
2467 }
2468 
2469 /*
2470  * Extract fragments from a KVEC-class iterator and add them to an RDMA list.
2471  * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers.
2472  * The pages are not pinned.
2473  */
2474 static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter,
2475 					struct smb_extract_to_rdma *rdma,
2476 					ssize_t maxsize)
2477 {
2478 	const struct kvec *kv = iter->kvec;
2479 	unsigned long start = iter->iov_offset;
2480 	unsigned int i;
2481 	ssize_t ret = 0;
2482 
2483 	for (i = 0; i < iter->nr_segs; i++) {
2484 		struct page *page;
2485 		unsigned long kaddr;
2486 		size_t off, len, seg;
2487 
2488 		len = kv[i].iov_len;
2489 		if (start >= len) {
2490 			start -= len;
2491 			continue;
2492 		}
2493 
2494 		kaddr = (unsigned long)kv[i].iov_base + start;
2495 		off = kaddr & ~PAGE_MASK;
2496 		len = min_t(size_t, maxsize, len - start);
2497 		kaddr &= PAGE_MASK;
2498 
2499 		maxsize -= len;
2500 		do {
2501 			seg = min_t(size_t, len, PAGE_SIZE - off);
2502 
2503 			if (is_vmalloc_or_module_addr((void *)kaddr))
2504 				page = vmalloc_to_page((void *)kaddr);
2505 			else
2506 				page = virt_to_page((void *)kaddr);
2507 
2508 			if (!smb_set_sge(rdma, page, off, seg))
2509 				return -EIO;
2510 
2511 			ret += seg;
2512 			len -= seg;
2513 			kaddr += PAGE_SIZE;
2514 			off = 0;
2515 		} while (len > 0 && rdma->nr_sge < rdma->max_sge);
2516 
2517 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2518 			break;
2519 		start = 0;
2520 	}
2521 
2522 	return ret;
2523 }
2524 
2525 /*
2526  * Extract folio fragments from an XARRAY-class iterator and add them to an
2527  * RDMA list.  The folios are not pinned.
2528  */
2529 static ssize_t smb_extract_xarray_to_rdma(struct iov_iter *iter,
2530 					  struct smb_extract_to_rdma *rdma,
2531 					  ssize_t maxsize)
2532 {
2533 	struct xarray *xa = iter->xarray;
2534 	struct folio *folio;
2535 	loff_t start = iter->xarray_start + iter->iov_offset;
2536 	pgoff_t index = start / PAGE_SIZE;
2537 	ssize_t ret = 0;
2538 	size_t off, len;
2539 	XA_STATE(xas, xa, index);
2540 
2541 	rcu_read_lock();
2542 
2543 	xas_for_each(&xas, folio, ULONG_MAX) {
2544 		if (xas_retry(&xas, folio))
2545 			continue;
2546 		if (WARN_ON(xa_is_value(folio)))
2547 			break;
2548 		if (WARN_ON(folio_test_hugetlb(folio)))
2549 			break;
2550 
2551 		off = offset_in_folio(folio, start);
2552 		len = min_t(size_t, maxsize, folio_size(folio) - off);
2553 
2554 		if (!smb_set_sge(rdma, folio_page(folio, 0), off, len)) {
2555 			rcu_read_unlock();
2556 			return -EIO;
2557 		}
2558 
2559 		maxsize -= len;
2560 		ret += len;
2561 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2562 			break;
2563 	}
2564 
2565 	rcu_read_unlock();
2566 	return ret;
2567 }
2568 
2569 /*
2570  * Extract page fragments from up to the given amount of the source iterator
2571  * and build up an RDMA list that refers to all of those bits.  The RDMA list
2572  * is appended to, up to the maximum number of elements set in the parameter
2573  * block.
2574  *
2575  * The extracted page fragments are not pinned or ref'd in any way; if an
2576  * IOVEC/UBUF-type iterator is to be used, it should be converted to a
2577  * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some
2578  * way.
2579  */
2580 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
2581 					struct smb_extract_to_rdma *rdma)
2582 {
2583 	ssize_t ret;
2584 	int before = rdma->nr_sge;
2585 
2586 	switch (iov_iter_type(iter)) {
2587 	case ITER_BVEC:
2588 		ret = smb_extract_bvec_to_rdma(iter, rdma, len);
2589 		break;
2590 	case ITER_KVEC:
2591 		ret = smb_extract_kvec_to_rdma(iter, rdma, len);
2592 		break;
2593 	case ITER_XARRAY:
2594 		ret = smb_extract_xarray_to_rdma(iter, rdma, len);
2595 		break;
2596 	default:
2597 		WARN_ON_ONCE(1);
2598 		return -EIO;
2599 	}
2600 
2601 	if (ret > 0) {
2602 		iov_iter_advance(iter, ret);
2603 	} else if (ret < 0) {
2604 		while (rdma->nr_sge > before) {
2605 			struct ib_sge *sge = &rdma->sge[rdma->nr_sge--];
2606 
2607 			ib_dma_unmap_single(rdma->device, sge->addr, sge->length,
2608 					    rdma->direction);
2609 			sge->addr = 0;
2610 		}
2611 	}
2612 
2613 	return ret;
2614 }
2615