1 // SPDX-License-Identifier: LGPL-2.1 2 /* 3 * 4 * Copyright (C) International Business Machines Corp., 2002,2008 5 * Author(s): Steve French (sfrench@us.ibm.com) 6 * 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/ctype.h> 11 #include <linux/mempool.h> 12 #include <linux/vmalloc.h> 13 #include "cifspdu.h" 14 #include "cifsglob.h" 15 #include "cifsproto.h" 16 #include "cifs_debug.h" 17 #include "smberr.h" 18 #include "nterr.h" 19 #include "cifs_unicode.h" 20 #include "smb2pdu.h" 21 #include "cifsfs.h" 22 #ifdef CONFIG_CIFS_DFS_UPCALL 23 #include "dns_resolve.h" 24 #include "dfs_cache.h" 25 #include "dfs.h" 26 #endif 27 #include "fs_context.h" 28 #include "cached_dir.h" 29 30 extern mempool_t *cifs_sm_req_poolp; 31 extern mempool_t *cifs_req_poolp; 32 33 /* The xid serves as a useful identifier for each incoming vfs request, 34 in a similar way to the mid which is useful to track each sent smb, 35 and CurrentXid can also provide a running counter (although it 36 will eventually wrap past zero) of the total vfs operations handled 37 since the cifs fs was mounted */ 38 39 unsigned int 40 _get_xid(void) 41 { 42 unsigned int xid; 43 44 spin_lock(&GlobalMid_Lock); 45 GlobalTotalActiveXid++; 46 47 /* keep high water mark for number of simultaneous ops in filesystem */ 48 if (GlobalTotalActiveXid > GlobalMaxActiveXid) 49 GlobalMaxActiveXid = GlobalTotalActiveXid; 50 if (GlobalTotalActiveXid > 65000) 51 cifs_dbg(FYI, "warning: more than 65000 requests active\n"); 52 xid = GlobalCurrentXid++; 53 spin_unlock(&GlobalMid_Lock); 54 return xid; 55 } 56 57 void 58 _free_xid(unsigned int xid) 59 { 60 spin_lock(&GlobalMid_Lock); 61 /* if (GlobalTotalActiveXid == 0) 62 BUG(); */ 63 GlobalTotalActiveXid--; 64 spin_unlock(&GlobalMid_Lock); 65 } 66 67 struct cifs_ses * 68 sesInfoAlloc(void) 69 { 70 struct cifs_ses *ret_buf; 71 72 ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL); 73 if (ret_buf) { 74 atomic_inc(&sesInfoAllocCount); 75 spin_lock_init(&ret_buf->ses_lock); 76 ret_buf->ses_status = SES_NEW; 77 ++ret_buf->ses_count; 78 INIT_LIST_HEAD(&ret_buf->smb_ses_list); 79 INIT_LIST_HEAD(&ret_buf->tcon_list); 80 mutex_init(&ret_buf->session_mutex); 81 spin_lock_init(&ret_buf->iface_lock); 82 INIT_LIST_HEAD(&ret_buf->iface_list); 83 spin_lock_init(&ret_buf->chan_lock); 84 } 85 return ret_buf; 86 } 87 88 void 89 sesInfoFree(struct cifs_ses *buf_to_free) 90 { 91 struct cifs_server_iface *iface = NULL, *niface = NULL; 92 93 if (buf_to_free == NULL) { 94 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n"); 95 return; 96 } 97 98 unload_nls(buf_to_free->local_nls); 99 atomic_dec(&sesInfoAllocCount); 100 kfree(buf_to_free->serverOS); 101 kfree(buf_to_free->serverDomain); 102 kfree(buf_to_free->serverNOS); 103 kfree_sensitive(buf_to_free->password); 104 kfree(buf_to_free->user_name); 105 kfree(buf_to_free->domainName); 106 kfree_sensitive(buf_to_free->auth_key.response); 107 spin_lock(&buf_to_free->iface_lock); 108 list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list, 109 iface_head) 110 kref_put(&iface->refcount, release_iface); 111 spin_unlock(&buf_to_free->iface_lock); 112 kfree_sensitive(buf_to_free); 113 } 114 115 struct cifs_tcon * 116 tcon_info_alloc(bool dir_leases_enabled) 117 { 118 struct cifs_tcon *ret_buf; 119 120 ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL); 121 if (!ret_buf) 122 return NULL; 123 124 if (dir_leases_enabled == true) { 125 ret_buf->cfids = init_cached_dirs(); 126 if (!ret_buf->cfids) { 127 kfree(ret_buf); 128 return NULL; 129 } 130 } 131 /* else ret_buf->cfids is already set to NULL above */ 132 133 atomic_inc(&tconInfoAllocCount); 134 ret_buf->status = TID_NEW; 135 ++ret_buf->tc_count; 136 spin_lock_init(&ret_buf->tc_lock); 137 INIT_LIST_HEAD(&ret_buf->openFileList); 138 INIT_LIST_HEAD(&ret_buf->tcon_list); 139 spin_lock_init(&ret_buf->open_file_lock); 140 spin_lock_init(&ret_buf->stat_lock); 141 atomic_set(&ret_buf->num_local_opens, 0); 142 atomic_set(&ret_buf->num_remote_opens, 0); 143 ret_buf->stats_from_time = ktime_get_real_seconds(); 144 #ifdef CONFIG_CIFS_FSCACHE 145 mutex_init(&ret_buf->fscache_lock); 146 #endif 147 148 return ret_buf; 149 } 150 151 void 152 tconInfoFree(struct cifs_tcon *tcon) 153 { 154 if (tcon == NULL) { 155 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n"); 156 return; 157 } 158 free_cached_dirs(tcon->cfids); 159 atomic_dec(&tconInfoAllocCount); 160 kfree(tcon->nativeFileSystem); 161 kfree_sensitive(tcon->password); 162 kfree(tcon->origin_fullpath); 163 kfree(tcon); 164 } 165 166 struct smb_hdr * 167 cifs_buf_get(void) 168 { 169 struct smb_hdr *ret_buf = NULL; 170 /* 171 * SMB2 header is bigger than CIFS one - no problems to clean some 172 * more bytes for CIFS. 173 */ 174 size_t buf_size = sizeof(struct smb2_hdr); 175 176 /* 177 * We could use negotiated size instead of max_msgsize - 178 * but it may be more efficient to always alloc same size 179 * albeit slightly larger than necessary and maxbuffersize 180 * defaults to this and can not be bigger. 181 */ 182 ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS); 183 184 /* clear the first few header bytes */ 185 /* for most paths, more is cleared in header_assemble */ 186 memset(ret_buf, 0, buf_size + 3); 187 atomic_inc(&buf_alloc_count); 188 #ifdef CONFIG_CIFS_STATS2 189 atomic_inc(&total_buf_alloc_count); 190 #endif /* CONFIG_CIFS_STATS2 */ 191 192 return ret_buf; 193 } 194 195 void 196 cifs_buf_release(void *buf_to_free) 197 { 198 if (buf_to_free == NULL) { 199 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/ 200 return; 201 } 202 mempool_free(buf_to_free, cifs_req_poolp); 203 204 atomic_dec(&buf_alloc_count); 205 return; 206 } 207 208 struct smb_hdr * 209 cifs_small_buf_get(void) 210 { 211 struct smb_hdr *ret_buf = NULL; 212 213 /* We could use negotiated size instead of max_msgsize - 214 but it may be more efficient to always alloc same size 215 albeit slightly larger than necessary and maxbuffersize 216 defaults to this and can not be bigger */ 217 ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS); 218 /* No need to clear memory here, cleared in header assemble */ 219 /* memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/ 220 atomic_inc(&small_buf_alloc_count); 221 #ifdef CONFIG_CIFS_STATS2 222 atomic_inc(&total_small_buf_alloc_count); 223 #endif /* CONFIG_CIFS_STATS2 */ 224 225 return ret_buf; 226 } 227 228 void 229 cifs_small_buf_release(void *buf_to_free) 230 { 231 232 if (buf_to_free == NULL) { 233 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n"); 234 return; 235 } 236 mempool_free(buf_to_free, cifs_sm_req_poolp); 237 238 atomic_dec(&small_buf_alloc_count); 239 return; 240 } 241 242 void 243 free_rsp_buf(int resp_buftype, void *rsp) 244 { 245 if (resp_buftype == CIFS_SMALL_BUFFER) 246 cifs_small_buf_release(rsp); 247 else if (resp_buftype == CIFS_LARGE_BUFFER) 248 cifs_buf_release(rsp); 249 } 250 251 /* NB: MID can not be set if treeCon not passed in, in that 252 case it is responsbility of caller to set the mid */ 253 void 254 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ , 255 const struct cifs_tcon *treeCon, int word_count 256 /* length of fixed section (word count) in two byte units */) 257 { 258 char *temp = (char *) buffer; 259 260 memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */ 261 262 buffer->smb_buf_length = cpu_to_be32( 263 (2 * word_count) + sizeof(struct smb_hdr) - 264 4 /* RFC 1001 length field does not count */ + 265 2 /* for bcc field itself */) ; 266 267 buffer->Protocol[0] = 0xFF; 268 buffer->Protocol[1] = 'S'; 269 buffer->Protocol[2] = 'M'; 270 buffer->Protocol[3] = 'B'; 271 buffer->Command = smb_command; 272 buffer->Flags = 0x00; /* case sensitive */ 273 buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES; 274 buffer->Pid = cpu_to_le16((__u16)current->tgid); 275 buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16)); 276 if (treeCon) { 277 buffer->Tid = treeCon->tid; 278 if (treeCon->ses) { 279 if (treeCon->ses->capabilities & CAP_UNICODE) 280 buffer->Flags2 |= SMBFLG2_UNICODE; 281 if (treeCon->ses->capabilities & CAP_STATUS32) 282 buffer->Flags2 |= SMBFLG2_ERR_STATUS; 283 284 /* Uid is not converted */ 285 buffer->Uid = treeCon->ses->Suid; 286 if (treeCon->ses->server) 287 buffer->Mid = get_next_mid(treeCon->ses->server); 288 } 289 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS) 290 buffer->Flags2 |= SMBFLG2_DFS; 291 if (treeCon->nocase) 292 buffer->Flags |= SMBFLG_CASELESS; 293 if ((treeCon->ses) && (treeCon->ses->server)) 294 if (treeCon->ses->server->sign) 295 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE; 296 } 297 298 /* endian conversion of flags is now done just before sending */ 299 buffer->WordCount = (char) word_count; 300 return; 301 } 302 303 static int 304 check_smb_hdr(struct smb_hdr *smb) 305 { 306 /* does it have the right SMB "signature" ? */ 307 if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) { 308 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n", 309 *(unsigned int *)smb->Protocol); 310 return 1; 311 } 312 313 /* if it's a response then accept */ 314 if (smb->Flags & SMBFLG_RESPONSE) 315 return 0; 316 317 /* only one valid case where server sends us request */ 318 if (smb->Command == SMB_COM_LOCKING_ANDX) 319 return 0; 320 321 cifs_dbg(VFS, "Server sent request, not response. mid=%u\n", 322 get_mid(smb)); 323 return 1; 324 } 325 326 int 327 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server) 328 { 329 struct smb_hdr *smb = (struct smb_hdr *)buf; 330 __u32 rfclen = be32_to_cpu(smb->smb_buf_length); 331 __u32 clc_len; /* calculated length */ 332 cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n", 333 total_read, rfclen); 334 335 /* is this frame too small to even get to a BCC? */ 336 if (total_read < 2 + sizeof(struct smb_hdr)) { 337 if ((total_read >= sizeof(struct smb_hdr) - 1) 338 && (smb->Status.CifsError != 0)) { 339 /* it's an error return */ 340 smb->WordCount = 0; 341 /* some error cases do not return wct and bcc */ 342 return 0; 343 } else if ((total_read == sizeof(struct smb_hdr) + 1) && 344 (smb->WordCount == 0)) { 345 char *tmp = (char *)smb; 346 /* Need to work around a bug in two servers here */ 347 /* First, check if the part of bcc they sent was zero */ 348 if (tmp[sizeof(struct smb_hdr)] == 0) { 349 /* some servers return only half of bcc 350 * on simple responses (wct, bcc both zero) 351 * in particular have seen this on 352 * ulogoffX and FindClose. This leaves 353 * one byte of bcc potentially unitialized 354 */ 355 /* zero rest of bcc */ 356 tmp[sizeof(struct smb_hdr)+1] = 0; 357 return 0; 358 } 359 cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n"); 360 } else { 361 cifs_dbg(VFS, "Length less than smb header size\n"); 362 } 363 return -EIO; 364 } else if (total_read < sizeof(*smb) + 2 * smb->WordCount) { 365 cifs_dbg(VFS, "%s: can't read BCC due to invalid WordCount(%u)\n", 366 __func__, smb->WordCount); 367 return -EIO; 368 } 369 370 /* otherwise, there is enough to get to the BCC */ 371 if (check_smb_hdr(smb)) 372 return -EIO; 373 clc_len = smbCalcSize(smb); 374 375 if (4 + rfclen != total_read) { 376 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n", 377 rfclen); 378 return -EIO; 379 } 380 381 if (4 + rfclen != clc_len) { 382 __u16 mid = get_mid(smb); 383 /* check if bcc wrapped around for large read responses */ 384 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) { 385 /* check if lengths match mod 64K */ 386 if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF)) 387 return 0; /* bcc wrapped */ 388 } 389 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n", 390 clc_len, 4 + rfclen, mid); 391 392 if (4 + rfclen < clc_len) { 393 cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n", 394 rfclen, mid); 395 return -EIO; 396 } else if (rfclen > clc_len + 512) { 397 /* 398 * Some servers (Windows XP in particular) send more 399 * data than the lengths in the SMB packet would 400 * indicate on certain calls (byte range locks and 401 * trans2 find first calls in particular). While the 402 * client can handle such a frame by ignoring the 403 * trailing data, we choose limit the amount of extra 404 * data to 512 bytes. 405 */ 406 cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n", 407 rfclen, mid); 408 return -EIO; 409 } 410 } 411 return 0; 412 } 413 414 bool 415 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv) 416 { 417 struct smb_hdr *buf = (struct smb_hdr *)buffer; 418 struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf; 419 struct TCP_Server_Info *pserver; 420 struct cifs_ses *ses; 421 struct cifs_tcon *tcon; 422 struct cifsInodeInfo *pCifsInode; 423 struct cifsFileInfo *netfile; 424 425 cifs_dbg(FYI, "Checking for oplock break or dnotify response\n"); 426 if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) && 427 (pSMB->hdr.Flags & SMBFLG_RESPONSE)) { 428 struct smb_com_transaction_change_notify_rsp *pSMBr = 429 (struct smb_com_transaction_change_notify_rsp *)buf; 430 struct file_notify_information *pnotify; 431 __u32 data_offset = 0; 432 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length); 433 434 if (get_bcc(buf) > sizeof(struct file_notify_information)) { 435 data_offset = le32_to_cpu(pSMBr->DataOffset); 436 437 if (data_offset > 438 len - sizeof(struct file_notify_information)) { 439 cifs_dbg(FYI, "Invalid data_offset %u\n", 440 data_offset); 441 return true; 442 } 443 pnotify = (struct file_notify_information *) 444 ((char *)&pSMBr->hdr.Protocol + data_offset); 445 cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n", 446 pnotify->FileName, pnotify->Action); 447 /* cifs_dump_mem("Rcvd notify Data: ",buf, 448 sizeof(struct smb_hdr)+60); */ 449 return true; 450 } 451 if (pSMBr->hdr.Status.CifsError) { 452 cifs_dbg(FYI, "notify err 0x%x\n", 453 pSMBr->hdr.Status.CifsError); 454 return true; 455 } 456 return false; 457 } 458 if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX) 459 return false; 460 if (pSMB->hdr.Flags & SMBFLG_RESPONSE) { 461 /* no sense logging error on invalid handle on oplock 462 break - harmless race between close request and oplock 463 break response is expected from time to time writing out 464 large dirty files cached on the client */ 465 if ((NT_STATUS_INVALID_HANDLE) == 466 le32_to_cpu(pSMB->hdr.Status.CifsError)) { 467 cifs_dbg(FYI, "Invalid handle on oplock break\n"); 468 return true; 469 } else if (ERRbadfid == 470 le16_to_cpu(pSMB->hdr.Status.DosError.Error)) { 471 return true; 472 } else { 473 return false; /* on valid oplock brk we get "request" */ 474 } 475 } 476 if (pSMB->hdr.WordCount != 8) 477 return false; 478 479 cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n", 480 pSMB->LockType, pSMB->OplockLevel); 481 if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE)) 482 return false; 483 484 /* If server is a channel, select the primary channel */ 485 pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv; 486 487 /* look up tcon based on tid & uid */ 488 spin_lock(&cifs_tcp_ses_lock); 489 list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) { 490 if (cifs_ses_exiting(ses)) 491 continue; 492 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) { 493 if (tcon->tid != buf->Tid) 494 continue; 495 496 cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks); 497 spin_lock(&tcon->open_file_lock); 498 list_for_each_entry(netfile, &tcon->openFileList, tlist) { 499 if (pSMB->Fid != netfile->fid.netfid) 500 continue; 501 502 cifs_dbg(FYI, "file id match, oplock break\n"); 503 pCifsInode = CIFS_I(d_inode(netfile->dentry)); 504 505 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, 506 &pCifsInode->flags); 507 508 netfile->oplock_epoch = 0; 509 netfile->oplock_level = pSMB->OplockLevel; 510 netfile->oplock_break_cancelled = false; 511 cifs_queue_oplock_break(netfile); 512 513 spin_unlock(&tcon->open_file_lock); 514 spin_unlock(&cifs_tcp_ses_lock); 515 return true; 516 } 517 spin_unlock(&tcon->open_file_lock); 518 spin_unlock(&cifs_tcp_ses_lock); 519 cifs_dbg(FYI, "No matching file for oplock break\n"); 520 return true; 521 } 522 } 523 spin_unlock(&cifs_tcp_ses_lock); 524 cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n"); 525 return true; 526 } 527 528 void 529 dump_smb(void *buf, int smb_buf_length) 530 { 531 if (traceSMB == 0) 532 return; 533 534 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf, 535 smb_buf_length, true); 536 } 537 538 void 539 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb) 540 { 541 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) { 542 struct cifs_tcon *tcon = NULL; 543 544 if (cifs_sb->master_tlink) 545 tcon = cifs_sb_master_tcon(cifs_sb); 546 547 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM; 548 cifs_sb->mnt_cifs_serverino_autodisabled = true; 549 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n", 550 tcon ? tcon->tree_name : "new server"); 551 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n"); 552 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n"); 553 554 } 555 } 556 557 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock) 558 { 559 oplock &= 0xF; 560 561 if (oplock == OPLOCK_EXCLUSIVE) { 562 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG; 563 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n", 564 &cinode->netfs.inode); 565 } else if (oplock == OPLOCK_READ) { 566 cinode->oplock = CIFS_CACHE_READ_FLG; 567 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n", 568 &cinode->netfs.inode); 569 } else 570 cinode->oplock = 0; 571 } 572 573 /* 574 * We wait for oplock breaks to be processed before we attempt to perform 575 * writes. 576 */ 577 int cifs_get_writer(struct cifsInodeInfo *cinode) 578 { 579 int rc; 580 581 start: 582 rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK, 583 TASK_KILLABLE); 584 if (rc) 585 return rc; 586 587 spin_lock(&cinode->writers_lock); 588 if (!cinode->writers) 589 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 590 cinode->writers++; 591 /* Check to see if we have started servicing an oplock break */ 592 if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) { 593 cinode->writers--; 594 if (cinode->writers == 0) { 595 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 596 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS); 597 } 598 spin_unlock(&cinode->writers_lock); 599 goto start; 600 } 601 spin_unlock(&cinode->writers_lock); 602 return 0; 603 } 604 605 void cifs_put_writer(struct cifsInodeInfo *cinode) 606 { 607 spin_lock(&cinode->writers_lock); 608 cinode->writers--; 609 if (cinode->writers == 0) { 610 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 611 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS); 612 } 613 spin_unlock(&cinode->writers_lock); 614 } 615 616 /** 617 * cifs_queue_oplock_break - queue the oplock break handler for cfile 618 * @cfile: The file to break the oplock on 619 * 620 * This function is called from the demultiplex thread when it 621 * receives an oplock break for @cfile. 622 * 623 * Assumes the tcon->open_file_lock is held. 624 * Assumes cfile->file_info_lock is NOT held. 625 */ 626 void cifs_queue_oplock_break(struct cifsFileInfo *cfile) 627 { 628 /* 629 * Bump the handle refcount now while we hold the 630 * open_file_lock to enforce the validity of it for the oplock 631 * break handler. The matching put is done at the end of the 632 * handler. 633 */ 634 cifsFileInfo_get(cfile); 635 636 queue_work(cifsoplockd_wq, &cfile->oplock_break); 637 } 638 639 void cifs_done_oplock_break(struct cifsInodeInfo *cinode) 640 { 641 clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags); 642 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK); 643 } 644 645 bool 646 backup_cred(struct cifs_sb_info *cifs_sb) 647 { 648 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) { 649 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid())) 650 return true; 651 } 652 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) { 653 if (in_group_p(cifs_sb->ctx->backupgid)) 654 return true; 655 } 656 657 return false; 658 } 659 660 void 661 cifs_del_pending_open(struct cifs_pending_open *open) 662 { 663 spin_lock(&tlink_tcon(open->tlink)->open_file_lock); 664 list_del(&open->olist); 665 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock); 666 } 667 668 void 669 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink, 670 struct cifs_pending_open *open) 671 { 672 memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE); 673 open->oplock = CIFS_OPLOCK_NO_CHANGE; 674 open->tlink = tlink; 675 fid->pending_open = open; 676 list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens); 677 } 678 679 void 680 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink, 681 struct cifs_pending_open *open) 682 { 683 spin_lock(&tlink_tcon(tlink)->open_file_lock); 684 cifs_add_pending_open_locked(fid, tlink, open); 685 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock); 686 } 687 688 /* 689 * Critical section which runs after acquiring deferred_lock. 690 * As there is no reference count on cifs_deferred_close, pdclose 691 * should not be used outside deferred_lock. 692 */ 693 bool 694 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose) 695 { 696 struct cifs_deferred_close *dclose; 697 698 list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) { 699 if ((dclose->netfid == cfile->fid.netfid) && 700 (dclose->persistent_fid == cfile->fid.persistent_fid) && 701 (dclose->volatile_fid == cfile->fid.volatile_fid)) { 702 *pdclose = dclose; 703 return true; 704 } 705 } 706 return false; 707 } 708 709 /* 710 * Critical section which runs after acquiring deferred_lock. 711 */ 712 void 713 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose) 714 { 715 bool is_deferred = false; 716 struct cifs_deferred_close *pdclose; 717 718 is_deferred = cifs_is_deferred_close(cfile, &pdclose); 719 if (is_deferred) { 720 kfree(dclose); 721 return; 722 } 723 724 dclose->tlink = cfile->tlink; 725 dclose->netfid = cfile->fid.netfid; 726 dclose->persistent_fid = cfile->fid.persistent_fid; 727 dclose->volatile_fid = cfile->fid.volatile_fid; 728 list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes); 729 } 730 731 /* 732 * Critical section which runs after acquiring deferred_lock. 733 */ 734 void 735 cifs_del_deferred_close(struct cifsFileInfo *cfile) 736 { 737 bool is_deferred = false; 738 struct cifs_deferred_close *dclose; 739 740 is_deferred = cifs_is_deferred_close(cfile, &dclose); 741 if (!is_deferred) 742 return; 743 list_del(&dclose->dlist); 744 kfree(dclose); 745 } 746 747 void 748 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode) 749 { 750 struct cifsFileInfo *cfile = NULL; 751 struct file_list *tmp_list, *tmp_next_list; 752 struct list_head file_head; 753 754 if (cifs_inode == NULL) 755 return; 756 757 INIT_LIST_HEAD(&file_head); 758 spin_lock(&cifs_inode->open_file_lock); 759 list_for_each_entry(cfile, &cifs_inode->openFileList, flist) { 760 if (delayed_work_pending(&cfile->deferred)) { 761 if (cancel_delayed_work(&cfile->deferred)) { 762 spin_lock(&cifs_inode->deferred_lock); 763 cifs_del_deferred_close(cfile); 764 spin_unlock(&cifs_inode->deferred_lock); 765 766 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 767 if (tmp_list == NULL) 768 break; 769 tmp_list->cfile = cfile; 770 list_add_tail(&tmp_list->list, &file_head); 771 } 772 } 773 } 774 spin_unlock(&cifs_inode->open_file_lock); 775 776 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 777 _cifsFileInfo_put(tmp_list->cfile, false, false); 778 list_del(&tmp_list->list); 779 kfree(tmp_list); 780 } 781 } 782 783 void 784 cifs_close_all_deferred_files(struct cifs_tcon *tcon) 785 { 786 struct cifsFileInfo *cfile; 787 struct file_list *tmp_list, *tmp_next_list; 788 struct list_head file_head; 789 790 INIT_LIST_HEAD(&file_head); 791 spin_lock(&tcon->open_file_lock); 792 list_for_each_entry(cfile, &tcon->openFileList, tlist) { 793 if (delayed_work_pending(&cfile->deferred)) { 794 if (cancel_delayed_work(&cfile->deferred)) { 795 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 796 cifs_del_deferred_close(cfile); 797 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 798 799 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 800 if (tmp_list == NULL) 801 break; 802 tmp_list->cfile = cfile; 803 list_add_tail(&tmp_list->list, &file_head); 804 } 805 } 806 } 807 spin_unlock(&tcon->open_file_lock); 808 809 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 810 _cifsFileInfo_put(tmp_list->cfile, true, false); 811 list_del(&tmp_list->list); 812 kfree(tmp_list); 813 } 814 } 815 void 816 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path) 817 { 818 struct cifsFileInfo *cfile; 819 struct file_list *tmp_list, *tmp_next_list; 820 struct list_head file_head; 821 void *page; 822 const char *full_path; 823 824 INIT_LIST_HEAD(&file_head); 825 page = alloc_dentry_path(); 826 spin_lock(&tcon->open_file_lock); 827 list_for_each_entry(cfile, &tcon->openFileList, tlist) { 828 full_path = build_path_from_dentry(cfile->dentry, page); 829 if (strstr(full_path, path)) { 830 if (delayed_work_pending(&cfile->deferred)) { 831 if (cancel_delayed_work(&cfile->deferred)) { 832 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 833 cifs_del_deferred_close(cfile); 834 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 835 836 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 837 if (tmp_list == NULL) 838 break; 839 tmp_list->cfile = cfile; 840 list_add_tail(&tmp_list->list, &file_head); 841 } 842 } 843 } 844 } 845 spin_unlock(&tcon->open_file_lock); 846 847 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 848 _cifsFileInfo_put(tmp_list->cfile, true, false); 849 list_del(&tmp_list->list); 850 kfree(tmp_list); 851 } 852 free_dentry_path(page); 853 } 854 855 /* parses DFS referral V3 structure 856 * caller is responsible for freeing target_nodes 857 * returns: 858 * - on success - 0 859 * - on failure - errno 860 */ 861 int 862 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size, 863 unsigned int *num_of_nodes, 864 struct dfs_info3_param **target_nodes, 865 const struct nls_table *nls_codepage, int remap, 866 const char *searchName, bool is_unicode) 867 { 868 int i, rc = 0; 869 char *data_end; 870 struct dfs_referral_level_3 *ref; 871 872 *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals); 873 874 if (*num_of_nodes < 1) { 875 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n", 876 *num_of_nodes); 877 rc = -EINVAL; 878 goto parse_DFS_referrals_exit; 879 } 880 881 ref = (struct dfs_referral_level_3 *) &(rsp->referrals); 882 if (ref->VersionNumber != cpu_to_le16(3)) { 883 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n", 884 le16_to_cpu(ref->VersionNumber)); 885 rc = -EINVAL; 886 goto parse_DFS_referrals_exit; 887 } 888 889 /* get the upper boundary of the resp buffer */ 890 data_end = (char *)rsp + rsp_size; 891 892 cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n", 893 *num_of_nodes, le32_to_cpu(rsp->DFSFlags)); 894 895 *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param), 896 GFP_KERNEL); 897 if (*target_nodes == NULL) { 898 rc = -ENOMEM; 899 goto parse_DFS_referrals_exit; 900 } 901 902 /* collect necessary data from referrals */ 903 for (i = 0; i < *num_of_nodes; i++) { 904 char *temp; 905 int max_len; 906 struct dfs_info3_param *node = (*target_nodes)+i; 907 908 node->flags = le32_to_cpu(rsp->DFSFlags); 909 if (is_unicode) { 910 __le16 *tmp = kmalloc(strlen(searchName)*2 + 2, 911 GFP_KERNEL); 912 if (tmp == NULL) { 913 rc = -ENOMEM; 914 goto parse_DFS_referrals_exit; 915 } 916 cifsConvertToUTF16((__le16 *) tmp, searchName, 917 PATH_MAX, nls_codepage, remap); 918 node->path_consumed = cifs_utf16_bytes(tmp, 919 le16_to_cpu(rsp->PathConsumed), 920 nls_codepage); 921 kfree(tmp); 922 } else 923 node->path_consumed = le16_to_cpu(rsp->PathConsumed); 924 925 node->server_type = le16_to_cpu(ref->ServerType); 926 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags); 927 928 /* copy DfsPath */ 929 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset); 930 max_len = data_end - temp; 931 node->path_name = cifs_strndup_from_utf16(temp, max_len, 932 is_unicode, nls_codepage); 933 if (!node->path_name) { 934 rc = -ENOMEM; 935 goto parse_DFS_referrals_exit; 936 } 937 938 /* copy link target UNC */ 939 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset); 940 max_len = data_end - temp; 941 node->node_name = cifs_strndup_from_utf16(temp, max_len, 942 is_unicode, nls_codepage); 943 if (!node->node_name) { 944 rc = -ENOMEM; 945 goto parse_DFS_referrals_exit; 946 } 947 948 node->ttl = le32_to_cpu(ref->TimeToLive); 949 950 ref++; 951 } 952 953 parse_DFS_referrals_exit: 954 if (rc) { 955 free_dfs_info_array(*target_nodes, *num_of_nodes); 956 *target_nodes = NULL; 957 *num_of_nodes = 0; 958 } 959 return rc; 960 } 961 962 struct cifs_aio_ctx * 963 cifs_aio_ctx_alloc(void) 964 { 965 struct cifs_aio_ctx *ctx; 966 967 /* 968 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io 969 * to false so that we know when we have to unreference pages within 970 * cifs_aio_ctx_release() 971 */ 972 ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL); 973 if (!ctx) 974 return NULL; 975 976 INIT_LIST_HEAD(&ctx->list); 977 mutex_init(&ctx->aio_mutex); 978 init_completion(&ctx->done); 979 kref_init(&ctx->refcount); 980 return ctx; 981 } 982 983 void 984 cifs_aio_ctx_release(struct kref *refcount) 985 { 986 struct cifs_aio_ctx *ctx = container_of(refcount, 987 struct cifs_aio_ctx, refcount); 988 989 cifsFileInfo_put(ctx->cfile); 990 991 /* 992 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly 993 * which means that iov_iter_extract_pages() was a success and thus 994 * that we may have references or pins on pages that we need to 995 * release. 996 */ 997 if (ctx->bv) { 998 if (ctx->should_dirty || ctx->bv_need_unpin) { 999 unsigned int i; 1000 1001 for (i = 0; i < ctx->nr_pinned_pages; i++) { 1002 struct page *page = ctx->bv[i].bv_page; 1003 1004 if (ctx->should_dirty) 1005 set_page_dirty(page); 1006 if (ctx->bv_need_unpin) 1007 unpin_user_page(page); 1008 } 1009 } 1010 kvfree(ctx->bv); 1011 } 1012 1013 kfree(ctx); 1014 } 1015 1016 /** 1017 * cifs_alloc_hash - allocate hash and hash context together 1018 * @name: The name of the crypto hash algo 1019 * @sdesc: SHASH descriptor where to put the pointer to the hash TFM 1020 * 1021 * The caller has to make sure @sdesc is initialized to either NULL or 1022 * a valid context. It can be freed via cifs_free_hash(). 1023 */ 1024 int 1025 cifs_alloc_hash(const char *name, struct shash_desc **sdesc) 1026 { 1027 int rc = 0; 1028 struct crypto_shash *alg = NULL; 1029 1030 if (*sdesc) 1031 return 0; 1032 1033 alg = crypto_alloc_shash(name, 0, 0); 1034 if (IS_ERR(alg)) { 1035 cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name); 1036 rc = PTR_ERR(alg); 1037 *sdesc = NULL; 1038 return rc; 1039 } 1040 1041 *sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL); 1042 if (*sdesc == NULL) { 1043 cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name); 1044 crypto_free_shash(alg); 1045 return -ENOMEM; 1046 } 1047 1048 (*sdesc)->tfm = alg; 1049 return 0; 1050 } 1051 1052 /** 1053 * cifs_free_hash - free hash and hash context together 1054 * @sdesc: Where to find the pointer to the hash TFM 1055 * 1056 * Freeing a NULL descriptor is safe. 1057 */ 1058 void 1059 cifs_free_hash(struct shash_desc **sdesc) 1060 { 1061 if (unlikely(!sdesc) || !*sdesc) 1062 return; 1063 1064 if ((*sdesc)->tfm) { 1065 crypto_free_shash((*sdesc)->tfm); 1066 (*sdesc)->tfm = NULL; 1067 } 1068 1069 kfree_sensitive(*sdesc); 1070 *sdesc = NULL; 1071 } 1072 1073 void extract_unc_hostname(const char *unc, const char **h, size_t *len) 1074 { 1075 const char *end; 1076 1077 /* skip initial slashes */ 1078 while (*unc && (*unc == '\\' || *unc == '/')) 1079 unc++; 1080 1081 end = unc; 1082 1083 while (*end && !(*end == '\\' || *end == '/')) 1084 end++; 1085 1086 *h = unc; 1087 *len = end - unc; 1088 } 1089 1090 /** 1091 * copy_path_name - copy src path to dst, possibly truncating 1092 * @dst: The destination buffer 1093 * @src: The source name 1094 * 1095 * returns number of bytes written (including trailing nul) 1096 */ 1097 int copy_path_name(char *dst, const char *src) 1098 { 1099 int name_len; 1100 1101 /* 1102 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it 1103 * will truncate and strlen(dst) will be PATH_MAX-1 1104 */ 1105 name_len = strscpy(dst, src, PATH_MAX); 1106 if (WARN_ON_ONCE(name_len < 0)) 1107 name_len = PATH_MAX-1; 1108 1109 /* we count the trailing nul */ 1110 name_len++; 1111 return name_len; 1112 } 1113 1114 struct super_cb_data { 1115 void *data; 1116 struct super_block *sb; 1117 }; 1118 1119 static void tcon_super_cb(struct super_block *sb, void *arg) 1120 { 1121 struct super_cb_data *sd = arg; 1122 struct cifs_sb_info *cifs_sb; 1123 struct cifs_tcon *t1 = sd->data, *t2; 1124 1125 if (sd->sb) 1126 return; 1127 1128 cifs_sb = CIFS_SB(sb); 1129 t2 = cifs_sb_master_tcon(cifs_sb); 1130 1131 spin_lock(&t2->tc_lock); 1132 if (t1->ses == t2->ses && 1133 t1->ses->server == t2->ses->server && 1134 t2->origin_fullpath && 1135 dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath)) 1136 sd->sb = sb; 1137 spin_unlock(&t2->tc_lock); 1138 } 1139 1140 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *), 1141 void *data) 1142 { 1143 struct super_cb_data sd = { 1144 .data = data, 1145 .sb = NULL, 1146 }; 1147 struct file_system_type **fs_type = (struct file_system_type *[]) { 1148 &cifs_fs_type, &smb3_fs_type, NULL, 1149 }; 1150 1151 for (; *fs_type; fs_type++) { 1152 iterate_supers_type(*fs_type, f, &sd); 1153 if (sd.sb) { 1154 /* 1155 * Grab an active reference in order to prevent automounts (DFS links) 1156 * of expiring and then freeing up our cifs superblock pointer while 1157 * we're doing failover. 1158 */ 1159 cifs_sb_active(sd.sb); 1160 return sd.sb; 1161 } 1162 } 1163 pr_warn_once("%s: could not find dfs superblock\n", __func__); 1164 return ERR_PTR(-EINVAL); 1165 } 1166 1167 static void __cifs_put_super(struct super_block *sb) 1168 { 1169 if (!IS_ERR_OR_NULL(sb)) 1170 cifs_sb_deactive(sb); 1171 } 1172 1173 struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon) 1174 { 1175 spin_lock(&tcon->tc_lock); 1176 if (!tcon->origin_fullpath) { 1177 spin_unlock(&tcon->tc_lock); 1178 return ERR_PTR(-ENOENT); 1179 } 1180 spin_unlock(&tcon->tc_lock); 1181 return __cifs_get_super(tcon_super_cb, tcon); 1182 } 1183 1184 void cifs_put_tcp_super(struct super_block *sb) 1185 { 1186 __cifs_put_super(sb); 1187 } 1188 1189 #ifdef CONFIG_CIFS_DFS_UPCALL 1190 int match_target_ip(struct TCP_Server_Info *server, 1191 const char *share, size_t share_len, 1192 bool *result) 1193 { 1194 int rc; 1195 char *target; 1196 struct sockaddr_storage ss; 1197 1198 *result = false; 1199 1200 target = kzalloc(share_len + 3, GFP_KERNEL); 1201 if (!target) 1202 return -ENOMEM; 1203 1204 scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share); 1205 1206 cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2); 1207 1208 rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL); 1209 kfree(target); 1210 1211 if (rc < 0) 1212 return rc; 1213 1214 spin_lock(&server->srv_lock); 1215 *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss); 1216 spin_unlock(&server->srv_lock); 1217 cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result); 1218 return 0; 1219 } 1220 1221 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix) 1222 { 1223 int rc; 1224 1225 kfree(cifs_sb->prepath); 1226 cifs_sb->prepath = NULL; 1227 1228 if (prefix && *prefix) { 1229 cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC); 1230 if (IS_ERR(cifs_sb->prepath)) { 1231 rc = PTR_ERR(cifs_sb->prepath); 1232 cifs_sb->prepath = NULL; 1233 return rc; 1234 } 1235 if (cifs_sb->prepath) 1236 convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb)); 1237 } 1238 1239 cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH; 1240 return 0; 1241 } 1242 1243 /* 1244 * Handle weird Windows SMB server behaviour. It responds with 1245 * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for 1246 * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains 1247 * non-ASCII unicode symbols. 1248 */ 1249 int cifs_inval_name_dfs_link_error(const unsigned int xid, 1250 struct cifs_tcon *tcon, 1251 struct cifs_sb_info *cifs_sb, 1252 const char *full_path, 1253 bool *islink) 1254 { 1255 struct cifs_ses *ses = tcon->ses; 1256 size_t len; 1257 char *path; 1258 char *ref_path; 1259 1260 *islink = false; 1261 1262 /* 1263 * Fast path - skip check when @full_path doesn't have a prefix path to 1264 * look up or tcon is not DFS. 1265 */ 1266 if (strlen(full_path) < 2 || !cifs_sb || 1267 (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) || 1268 !is_tcon_dfs(tcon)) 1269 return 0; 1270 1271 spin_lock(&tcon->tc_lock); 1272 if (!tcon->origin_fullpath) { 1273 spin_unlock(&tcon->tc_lock); 1274 return 0; 1275 } 1276 spin_unlock(&tcon->tc_lock); 1277 1278 /* 1279 * Slow path - tcon is DFS and @full_path has prefix path, so attempt 1280 * to get a referral to figure out whether it is an DFS link. 1281 */ 1282 len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1; 1283 path = kmalloc(len, GFP_KERNEL); 1284 if (!path) 1285 return -ENOMEM; 1286 1287 scnprintf(path, len, "%s%s", tcon->tree_name, full_path); 1288 ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls, 1289 cifs_remap(cifs_sb)); 1290 kfree(path); 1291 1292 if (IS_ERR(ref_path)) { 1293 if (PTR_ERR(ref_path) != -EINVAL) 1294 return PTR_ERR(ref_path); 1295 } else { 1296 struct dfs_info3_param *refs = NULL; 1297 int num_refs = 0; 1298 1299 /* 1300 * XXX: we are not using dfs_cache_find() here because we might 1301 * end up filling all the DFS cache and thus potentially 1302 * removing cached DFS targets that the client would eventually 1303 * need during failover. 1304 */ 1305 ses = CIFS_DFS_ROOT_SES(ses); 1306 if (ses->server->ops->get_dfs_refer && 1307 !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs, 1308 &num_refs, cifs_sb->local_nls, 1309 cifs_remap(cifs_sb))) 1310 *islink = refs[0].server_type == DFS_TYPE_LINK; 1311 free_dfs_info_array(refs, num_refs); 1312 kfree(ref_path); 1313 } 1314 return 0; 1315 } 1316 #endif 1317 1318 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry) 1319 { 1320 int timeout = 10; 1321 int rc; 1322 1323 spin_lock(&server->srv_lock); 1324 if (server->tcpStatus != CifsNeedReconnect) { 1325 spin_unlock(&server->srv_lock); 1326 return 0; 1327 } 1328 timeout *= server->nr_targets; 1329 spin_unlock(&server->srv_lock); 1330 1331 /* 1332 * Give demultiplex thread up to 10 seconds to each target available for 1333 * reconnect -- should be greater than cifs socket timeout which is 7 1334 * seconds. 1335 * 1336 * On "soft" mounts we wait once. Hard mounts keep retrying until 1337 * process is killed or server comes back on-line. 1338 */ 1339 do { 1340 rc = wait_event_interruptible_timeout(server->response_q, 1341 (server->tcpStatus != CifsNeedReconnect), 1342 timeout * HZ); 1343 if (rc < 0) { 1344 cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n", 1345 __func__); 1346 return -ERESTARTSYS; 1347 } 1348 1349 /* are we still trying to reconnect? */ 1350 spin_lock(&server->srv_lock); 1351 if (server->tcpStatus != CifsNeedReconnect) { 1352 spin_unlock(&server->srv_lock); 1353 return 0; 1354 } 1355 spin_unlock(&server->srv_lock); 1356 } while (retry); 1357 1358 cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__); 1359 return -EHOSTDOWN; 1360 } 1361