xref: /openbmc/linux/fs/smb/client/misc.c (revision c1f3c820)
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #include "dfs.h"
26 #endif
27 #include "fs_context.h"
28 #include "cached_dir.h"
29 
30 /* The xid serves as a useful identifier for each incoming vfs request,
31    in a similar way to the mid which is useful to track each sent smb,
32    and CurrentXid can also provide a running counter (although it
33    will eventually wrap past zero) of the total vfs operations handled
34    since the cifs fs was mounted */
35 
36 unsigned int
37 _get_xid(void)
38 {
39 	unsigned int xid;
40 
41 	spin_lock(&GlobalMid_Lock);
42 	GlobalTotalActiveXid++;
43 
44 	/* keep high water mark for number of simultaneous ops in filesystem */
45 	if (GlobalTotalActiveXid > GlobalMaxActiveXid)
46 		GlobalMaxActiveXid = GlobalTotalActiveXid;
47 	if (GlobalTotalActiveXid > 65000)
48 		cifs_dbg(FYI, "warning: more than 65000 requests active\n");
49 	xid = GlobalCurrentXid++;
50 	spin_unlock(&GlobalMid_Lock);
51 	return xid;
52 }
53 
54 void
55 _free_xid(unsigned int xid)
56 {
57 	spin_lock(&GlobalMid_Lock);
58 	/* if (GlobalTotalActiveXid == 0)
59 		BUG(); */
60 	GlobalTotalActiveXid--;
61 	spin_unlock(&GlobalMid_Lock);
62 }
63 
64 struct cifs_ses *
65 sesInfoAlloc(void)
66 {
67 	struct cifs_ses *ret_buf;
68 
69 	ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
70 	if (ret_buf) {
71 		atomic_inc(&sesInfoAllocCount);
72 		spin_lock_init(&ret_buf->ses_lock);
73 		ret_buf->ses_status = SES_NEW;
74 		++ret_buf->ses_count;
75 		INIT_LIST_HEAD(&ret_buf->smb_ses_list);
76 		INIT_LIST_HEAD(&ret_buf->tcon_list);
77 		mutex_init(&ret_buf->session_mutex);
78 		spin_lock_init(&ret_buf->iface_lock);
79 		INIT_LIST_HEAD(&ret_buf->iface_list);
80 		spin_lock_init(&ret_buf->chan_lock);
81 	}
82 	return ret_buf;
83 }
84 
85 void
86 sesInfoFree(struct cifs_ses *buf_to_free)
87 {
88 	struct cifs_server_iface *iface = NULL, *niface = NULL;
89 
90 	if (buf_to_free == NULL) {
91 		cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
92 		return;
93 	}
94 
95 	unload_nls(buf_to_free->local_nls);
96 	atomic_dec(&sesInfoAllocCount);
97 	kfree(buf_to_free->serverOS);
98 	kfree(buf_to_free->serverDomain);
99 	kfree(buf_to_free->serverNOS);
100 	kfree_sensitive(buf_to_free->password);
101 	kfree_sensitive(buf_to_free->password2);
102 	kfree(buf_to_free->user_name);
103 	kfree(buf_to_free->domainName);
104 	kfree_sensitive(buf_to_free->auth_key.response);
105 	spin_lock(&buf_to_free->iface_lock);
106 	list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
107 				 iface_head)
108 		kref_put(&iface->refcount, release_iface);
109 	spin_unlock(&buf_to_free->iface_lock);
110 	kfree_sensitive(buf_to_free);
111 }
112 
113 struct cifs_tcon *
114 tcon_info_alloc(bool dir_leases_enabled)
115 {
116 	struct cifs_tcon *ret_buf;
117 
118 	ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
119 	if (!ret_buf)
120 		return NULL;
121 
122 	if (dir_leases_enabled == true) {
123 		ret_buf->cfids = init_cached_dirs();
124 		if (!ret_buf->cfids) {
125 			kfree(ret_buf);
126 			return NULL;
127 		}
128 	}
129 	/* else ret_buf->cfids is already set to NULL above */
130 
131 	atomic_inc(&tconInfoAllocCount);
132 	ret_buf->status = TID_NEW;
133 	++ret_buf->tc_count;
134 	spin_lock_init(&ret_buf->tc_lock);
135 	INIT_LIST_HEAD(&ret_buf->openFileList);
136 	INIT_LIST_HEAD(&ret_buf->tcon_list);
137 	spin_lock_init(&ret_buf->open_file_lock);
138 	spin_lock_init(&ret_buf->stat_lock);
139 	atomic_set(&ret_buf->num_local_opens, 0);
140 	atomic_set(&ret_buf->num_remote_opens, 0);
141 	ret_buf->stats_from_time = ktime_get_real_seconds();
142 #ifdef CONFIG_CIFS_FSCACHE
143 	mutex_init(&ret_buf->fscache_lock);
144 #endif
145 
146 	return ret_buf;
147 }
148 
149 void
150 tconInfoFree(struct cifs_tcon *tcon)
151 {
152 	if (tcon == NULL) {
153 		cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
154 		return;
155 	}
156 	free_cached_dirs(tcon->cfids);
157 	atomic_dec(&tconInfoAllocCount);
158 	kfree(tcon->nativeFileSystem);
159 	kfree_sensitive(tcon->password);
160 	kfree(tcon->origin_fullpath);
161 	kfree(tcon);
162 }
163 
164 struct smb_hdr *
165 cifs_buf_get(void)
166 {
167 	struct smb_hdr *ret_buf = NULL;
168 	/*
169 	 * SMB2 header is bigger than CIFS one - no problems to clean some
170 	 * more bytes for CIFS.
171 	 */
172 	size_t buf_size = sizeof(struct smb2_hdr);
173 
174 	/*
175 	 * We could use negotiated size instead of max_msgsize -
176 	 * but it may be more efficient to always alloc same size
177 	 * albeit slightly larger than necessary and maxbuffersize
178 	 * defaults to this and can not be bigger.
179 	 */
180 	ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
181 
182 	/* clear the first few header bytes */
183 	/* for most paths, more is cleared in header_assemble */
184 	memset(ret_buf, 0, buf_size + 3);
185 	atomic_inc(&buf_alloc_count);
186 #ifdef CONFIG_CIFS_STATS2
187 	atomic_inc(&total_buf_alloc_count);
188 #endif /* CONFIG_CIFS_STATS2 */
189 
190 	return ret_buf;
191 }
192 
193 void
194 cifs_buf_release(void *buf_to_free)
195 {
196 	if (buf_to_free == NULL) {
197 		/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
198 		return;
199 	}
200 	mempool_free(buf_to_free, cifs_req_poolp);
201 
202 	atomic_dec(&buf_alloc_count);
203 	return;
204 }
205 
206 struct smb_hdr *
207 cifs_small_buf_get(void)
208 {
209 	struct smb_hdr *ret_buf = NULL;
210 
211 /* We could use negotiated size instead of max_msgsize -
212    but it may be more efficient to always alloc same size
213    albeit slightly larger than necessary and maxbuffersize
214    defaults to this and can not be bigger */
215 	ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
216 	/* No need to clear memory here, cleared in header assemble */
217 	/*	memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
218 	atomic_inc(&small_buf_alloc_count);
219 #ifdef CONFIG_CIFS_STATS2
220 	atomic_inc(&total_small_buf_alloc_count);
221 #endif /* CONFIG_CIFS_STATS2 */
222 
223 	return ret_buf;
224 }
225 
226 void
227 cifs_small_buf_release(void *buf_to_free)
228 {
229 
230 	if (buf_to_free == NULL) {
231 		cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
232 		return;
233 	}
234 	mempool_free(buf_to_free, cifs_sm_req_poolp);
235 
236 	atomic_dec(&small_buf_alloc_count);
237 	return;
238 }
239 
240 void
241 free_rsp_buf(int resp_buftype, void *rsp)
242 {
243 	if (resp_buftype == CIFS_SMALL_BUFFER)
244 		cifs_small_buf_release(rsp);
245 	else if (resp_buftype == CIFS_LARGE_BUFFER)
246 		cifs_buf_release(rsp);
247 }
248 
249 /* NB: MID can not be set if treeCon not passed in, in that
250    case it is responsbility of caller to set the mid */
251 void
252 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
253 		const struct cifs_tcon *treeCon, int word_count
254 		/* length of fixed section (word count) in two byte units  */)
255 {
256 	char *temp = (char *) buffer;
257 
258 	memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
259 
260 	buffer->smb_buf_length = cpu_to_be32(
261 	    (2 * word_count) + sizeof(struct smb_hdr) -
262 	    4 /*  RFC 1001 length field does not count */  +
263 	    2 /* for bcc field itself */) ;
264 
265 	buffer->Protocol[0] = 0xFF;
266 	buffer->Protocol[1] = 'S';
267 	buffer->Protocol[2] = 'M';
268 	buffer->Protocol[3] = 'B';
269 	buffer->Command = smb_command;
270 	buffer->Flags = 0x00;	/* case sensitive */
271 	buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
272 	buffer->Pid = cpu_to_le16((__u16)current->tgid);
273 	buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
274 	if (treeCon) {
275 		buffer->Tid = treeCon->tid;
276 		if (treeCon->ses) {
277 			if (treeCon->ses->capabilities & CAP_UNICODE)
278 				buffer->Flags2 |= SMBFLG2_UNICODE;
279 			if (treeCon->ses->capabilities & CAP_STATUS32)
280 				buffer->Flags2 |= SMBFLG2_ERR_STATUS;
281 
282 			/* Uid is not converted */
283 			buffer->Uid = treeCon->ses->Suid;
284 			if (treeCon->ses->server)
285 				buffer->Mid = get_next_mid(treeCon->ses->server);
286 		}
287 		if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
288 			buffer->Flags2 |= SMBFLG2_DFS;
289 		if (treeCon->nocase)
290 			buffer->Flags  |= SMBFLG_CASELESS;
291 		if ((treeCon->ses) && (treeCon->ses->server))
292 			if (treeCon->ses->server->sign)
293 				buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
294 	}
295 
296 /*  endian conversion of flags is now done just before sending */
297 	buffer->WordCount = (char) word_count;
298 	return;
299 }
300 
301 static int
302 check_smb_hdr(struct smb_hdr *smb)
303 {
304 	/* does it have the right SMB "signature" ? */
305 	if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
306 		cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
307 			 *(unsigned int *)smb->Protocol);
308 		return 1;
309 	}
310 
311 	/* if it's a response then accept */
312 	if (smb->Flags & SMBFLG_RESPONSE)
313 		return 0;
314 
315 	/* only one valid case where server sends us request */
316 	if (smb->Command == SMB_COM_LOCKING_ANDX)
317 		return 0;
318 
319 	cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
320 		 get_mid(smb));
321 	return 1;
322 }
323 
324 int
325 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
326 {
327 	struct smb_hdr *smb = (struct smb_hdr *)buf;
328 	__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
329 	__u32 clc_len;  /* calculated length */
330 	cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
331 		 total_read, rfclen);
332 
333 	/* is this frame too small to even get to a BCC? */
334 	if (total_read < 2 + sizeof(struct smb_hdr)) {
335 		if ((total_read >= sizeof(struct smb_hdr) - 1)
336 			    && (smb->Status.CifsError != 0)) {
337 			/* it's an error return */
338 			smb->WordCount = 0;
339 			/* some error cases do not return wct and bcc */
340 			return 0;
341 		} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
342 				(smb->WordCount == 0)) {
343 			char *tmp = (char *)smb;
344 			/* Need to work around a bug in two servers here */
345 			/* First, check if the part of bcc they sent was zero */
346 			if (tmp[sizeof(struct smb_hdr)] == 0) {
347 				/* some servers return only half of bcc
348 				 * on simple responses (wct, bcc both zero)
349 				 * in particular have seen this on
350 				 * ulogoffX and FindClose. This leaves
351 				 * one byte of bcc potentially unitialized
352 				 */
353 				/* zero rest of bcc */
354 				tmp[sizeof(struct smb_hdr)+1] = 0;
355 				return 0;
356 			}
357 			cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
358 		} else {
359 			cifs_dbg(VFS, "Length less than smb header size\n");
360 		}
361 		return -EIO;
362 	} else if (total_read < sizeof(*smb) + 2 * smb->WordCount) {
363 		cifs_dbg(VFS, "%s: can't read BCC due to invalid WordCount(%u)\n",
364 			 __func__, smb->WordCount);
365 		return -EIO;
366 	}
367 
368 	/* otherwise, there is enough to get to the BCC */
369 	if (check_smb_hdr(smb))
370 		return -EIO;
371 	clc_len = smbCalcSize(smb);
372 
373 	if (4 + rfclen != total_read) {
374 		cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
375 			 rfclen);
376 		return -EIO;
377 	}
378 
379 	if (4 + rfclen != clc_len) {
380 		__u16 mid = get_mid(smb);
381 		/* check if bcc wrapped around for large read responses */
382 		if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
383 			/* check if lengths match mod 64K */
384 			if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
385 				return 0; /* bcc wrapped */
386 		}
387 		cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
388 			 clc_len, 4 + rfclen, mid);
389 
390 		if (4 + rfclen < clc_len) {
391 			cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
392 				 rfclen, mid);
393 			return -EIO;
394 		} else if (rfclen > clc_len + 512) {
395 			/*
396 			 * Some servers (Windows XP in particular) send more
397 			 * data than the lengths in the SMB packet would
398 			 * indicate on certain calls (byte range locks and
399 			 * trans2 find first calls in particular). While the
400 			 * client can handle such a frame by ignoring the
401 			 * trailing data, we choose limit the amount of extra
402 			 * data to 512 bytes.
403 			 */
404 			cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
405 				 rfclen, mid);
406 			return -EIO;
407 		}
408 	}
409 	return 0;
410 }
411 
412 bool
413 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
414 {
415 	struct smb_hdr *buf = (struct smb_hdr *)buffer;
416 	struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
417 	struct TCP_Server_Info *pserver;
418 	struct cifs_ses *ses;
419 	struct cifs_tcon *tcon;
420 	struct cifsInodeInfo *pCifsInode;
421 	struct cifsFileInfo *netfile;
422 
423 	cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
424 	if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
425 	   (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
426 		struct smb_com_transaction_change_notify_rsp *pSMBr =
427 			(struct smb_com_transaction_change_notify_rsp *)buf;
428 		struct file_notify_information *pnotify;
429 		__u32 data_offset = 0;
430 		size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
431 
432 		if (get_bcc(buf) > sizeof(struct file_notify_information)) {
433 			data_offset = le32_to_cpu(pSMBr->DataOffset);
434 
435 			if (data_offset >
436 			    len - sizeof(struct file_notify_information)) {
437 				cifs_dbg(FYI, "Invalid data_offset %u\n",
438 					 data_offset);
439 				return true;
440 			}
441 			pnotify = (struct file_notify_information *)
442 				((char *)&pSMBr->hdr.Protocol + data_offset);
443 			cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
444 				 pnotify->FileName, pnotify->Action);
445 			/*   cifs_dump_mem("Rcvd notify Data: ",buf,
446 				sizeof(struct smb_hdr)+60); */
447 			return true;
448 		}
449 		if (pSMBr->hdr.Status.CifsError) {
450 			cifs_dbg(FYI, "notify err 0x%x\n",
451 				 pSMBr->hdr.Status.CifsError);
452 			return true;
453 		}
454 		return false;
455 	}
456 	if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
457 		return false;
458 	if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
459 		/* no sense logging error on invalid handle on oplock
460 		   break - harmless race between close request and oplock
461 		   break response is expected from time to time writing out
462 		   large dirty files cached on the client */
463 		if ((NT_STATUS_INVALID_HANDLE) ==
464 		   le32_to_cpu(pSMB->hdr.Status.CifsError)) {
465 			cifs_dbg(FYI, "Invalid handle on oplock break\n");
466 			return true;
467 		} else if (ERRbadfid ==
468 		   le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
469 			return true;
470 		} else {
471 			return false; /* on valid oplock brk we get "request" */
472 		}
473 	}
474 	if (pSMB->hdr.WordCount != 8)
475 		return false;
476 
477 	cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
478 		 pSMB->LockType, pSMB->OplockLevel);
479 	if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
480 		return false;
481 
482 	/* If server is a channel, select the primary channel */
483 	pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
484 
485 	/* look up tcon based on tid & uid */
486 	spin_lock(&cifs_tcp_ses_lock);
487 	list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
488 		if (cifs_ses_exiting(ses))
489 			continue;
490 		list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
491 			if (tcon->tid != buf->Tid)
492 				continue;
493 
494 			cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
495 			spin_lock(&tcon->open_file_lock);
496 			list_for_each_entry(netfile, &tcon->openFileList, tlist) {
497 				if (pSMB->Fid != netfile->fid.netfid)
498 					continue;
499 
500 				cifs_dbg(FYI, "file id match, oplock break\n");
501 				pCifsInode = CIFS_I(d_inode(netfile->dentry));
502 
503 				set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
504 					&pCifsInode->flags);
505 
506 				netfile->oplock_epoch = 0;
507 				netfile->oplock_level = pSMB->OplockLevel;
508 				netfile->oplock_break_cancelled = false;
509 				cifs_queue_oplock_break(netfile);
510 
511 				spin_unlock(&tcon->open_file_lock);
512 				spin_unlock(&cifs_tcp_ses_lock);
513 				return true;
514 			}
515 			spin_unlock(&tcon->open_file_lock);
516 			spin_unlock(&cifs_tcp_ses_lock);
517 			cifs_dbg(FYI, "No matching file for oplock break\n");
518 			return true;
519 		}
520 	}
521 	spin_unlock(&cifs_tcp_ses_lock);
522 	cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
523 	return true;
524 }
525 
526 void
527 dump_smb(void *buf, int smb_buf_length)
528 {
529 	if (traceSMB == 0)
530 		return;
531 
532 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
533 		       smb_buf_length, true);
534 }
535 
536 void
537 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
538 {
539 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
540 		struct cifs_tcon *tcon = NULL;
541 
542 		if (cifs_sb->master_tlink)
543 			tcon = cifs_sb_master_tcon(cifs_sb);
544 
545 		cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
546 		cifs_sb->mnt_cifs_serverino_autodisabled = true;
547 		cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
548 			 tcon ? tcon->tree_name : "new server");
549 		cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
550 		cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
551 
552 	}
553 }
554 
555 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
556 {
557 	oplock &= 0xF;
558 
559 	if (oplock == OPLOCK_EXCLUSIVE) {
560 		cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
561 		cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
562 			 &cinode->netfs.inode);
563 	} else if (oplock == OPLOCK_READ) {
564 		cinode->oplock = CIFS_CACHE_READ_FLG;
565 		cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
566 			 &cinode->netfs.inode);
567 	} else
568 		cinode->oplock = 0;
569 }
570 
571 /*
572  * We wait for oplock breaks to be processed before we attempt to perform
573  * writes.
574  */
575 int cifs_get_writer(struct cifsInodeInfo *cinode)
576 {
577 	int rc;
578 
579 start:
580 	rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
581 			 TASK_KILLABLE);
582 	if (rc)
583 		return rc;
584 
585 	spin_lock(&cinode->writers_lock);
586 	if (!cinode->writers)
587 		set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
588 	cinode->writers++;
589 	/* Check to see if we have started servicing an oplock break */
590 	if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
591 		cinode->writers--;
592 		if (cinode->writers == 0) {
593 			clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
594 			wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
595 		}
596 		spin_unlock(&cinode->writers_lock);
597 		goto start;
598 	}
599 	spin_unlock(&cinode->writers_lock);
600 	return 0;
601 }
602 
603 void cifs_put_writer(struct cifsInodeInfo *cinode)
604 {
605 	spin_lock(&cinode->writers_lock);
606 	cinode->writers--;
607 	if (cinode->writers == 0) {
608 		clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
609 		wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
610 	}
611 	spin_unlock(&cinode->writers_lock);
612 }
613 
614 /**
615  * cifs_queue_oplock_break - queue the oplock break handler for cfile
616  * @cfile: The file to break the oplock on
617  *
618  * This function is called from the demultiplex thread when it
619  * receives an oplock break for @cfile.
620  *
621  * Assumes the tcon->open_file_lock is held.
622  * Assumes cfile->file_info_lock is NOT held.
623  */
624 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
625 {
626 	/*
627 	 * Bump the handle refcount now while we hold the
628 	 * open_file_lock to enforce the validity of it for the oplock
629 	 * break handler. The matching put is done at the end of the
630 	 * handler.
631 	 */
632 	cifsFileInfo_get(cfile);
633 
634 	queue_work(cifsoplockd_wq, &cfile->oplock_break);
635 }
636 
637 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
638 {
639 	clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
640 	wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
641 }
642 
643 bool
644 backup_cred(struct cifs_sb_info *cifs_sb)
645 {
646 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
647 		if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
648 			return true;
649 	}
650 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
651 		if (in_group_p(cifs_sb->ctx->backupgid))
652 			return true;
653 	}
654 
655 	return false;
656 }
657 
658 void
659 cifs_del_pending_open(struct cifs_pending_open *open)
660 {
661 	spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
662 	list_del(&open->olist);
663 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
664 }
665 
666 void
667 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
668 			     struct cifs_pending_open *open)
669 {
670 	memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
671 	open->oplock = CIFS_OPLOCK_NO_CHANGE;
672 	open->tlink = tlink;
673 	fid->pending_open = open;
674 	list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
675 }
676 
677 void
678 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
679 		      struct cifs_pending_open *open)
680 {
681 	spin_lock(&tlink_tcon(tlink)->open_file_lock);
682 	cifs_add_pending_open_locked(fid, tlink, open);
683 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
684 }
685 
686 /*
687  * Critical section which runs after acquiring deferred_lock.
688  * As there is no reference count on cifs_deferred_close, pdclose
689  * should not be used outside deferred_lock.
690  */
691 bool
692 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
693 {
694 	struct cifs_deferred_close *dclose;
695 
696 	list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
697 		if ((dclose->netfid == cfile->fid.netfid) &&
698 			(dclose->persistent_fid == cfile->fid.persistent_fid) &&
699 			(dclose->volatile_fid == cfile->fid.volatile_fid)) {
700 			*pdclose = dclose;
701 			return true;
702 		}
703 	}
704 	return false;
705 }
706 
707 /*
708  * Critical section which runs after acquiring deferred_lock.
709  */
710 void
711 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
712 {
713 	bool is_deferred = false;
714 	struct cifs_deferred_close *pdclose;
715 
716 	is_deferred = cifs_is_deferred_close(cfile, &pdclose);
717 	if (is_deferred) {
718 		kfree(dclose);
719 		return;
720 	}
721 
722 	dclose->tlink = cfile->tlink;
723 	dclose->netfid = cfile->fid.netfid;
724 	dclose->persistent_fid = cfile->fid.persistent_fid;
725 	dclose->volatile_fid = cfile->fid.volatile_fid;
726 	list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
727 }
728 
729 /*
730  * Critical section which runs after acquiring deferred_lock.
731  */
732 void
733 cifs_del_deferred_close(struct cifsFileInfo *cfile)
734 {
735 	bool is_deferred = false;
736 	struct cifs_deferred_close *dclose;
737 
738 	is_deferred = cifs_is_deferred_close(cfile, &dclose);
739 	if (!is_deferred)
740 		return;
741 	list_del(&dclose->dlist);
742 	kfree(dclose);
743 }
744 
745 void
746 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
747 {
748 	struct cifsFileInfo *cfile = NULL;
749 	struct file_list *tmp_list, *tmp_next_list;
750 	struct list_head file_head;
751 
752 	if (cifs_inode == NULL)
753 		return;
754 
755 	INIT_LIST_HEAD(&file_head);
756 	spin_lock(&cifs_inode->open_file_lock);
757 	list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
758 		if (delayed_work_pending(&cfile->deferred)) {
759 			if (cancel_delayed_work(&cfile->deferred)) {
760 				spin_lock(&cifs_inode->deferred_lock);
761 				cifs_del_deferred_close(cfile);
762 				spin_unlock(&cifs_inode->deferred_lock);
763 
764 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
765 				if (tmp_list == NULL)
766 					break;
767 				tmp_list->cfile = cfile;
768 				list_add_tail(&tmp_list->list, &file_head);
769 			}
770 		}
771 	}
772 	spin_unlock(&cifs_inode->open_file_lock);
773 
774 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
775 		_cifsFileInfo_put(tmp_list->cfile, false, false);
776 		list_del(&tmp_list->list);
777 		kfree(tmp_list);
778 	}
779 }
780 
781 void
782 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
783 {
784 	struct cifsFileInfo *cfile;
785 	struct file_list *tmp_list, *tmp_next_list;
786 	struct list_head file_head;
787 
788 	INIT_LIST_HEAD(&file_head);
789 	spin_lock(&tcon->open_file_lock);
790 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
791 		if (delayed_work_pending(&cfile->deferred)) {
792 			if (cancel_delayed_work(&cfile->deferred)) {
793 				spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
794 				cifs_del_deferred_close(cfile);
795 				spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
796 
797 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
798 				if (tmp_list == NULL)
799 					break;
800 				tmp_list->cfile = cfile;
801 				list_add_tail(&tmp_list->list, &file_head);
802 			}
803 		}
804 	}
805 	spin_unlock(&tcon->open_file_lock);
806 
807 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
808 		_cifsFileInfo_put(tmp_list->cfile, true, false);
809 		list_del(&tmp_list->list);
810 		kfree(tmp_list);
811 	}
812 }
813 void
814 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
815 {
816 	struct cifsFileInfo *cfile;
817 	struct file_list *tmp_list, *tmp_next_list;
818 	struct list_head file_head;
819 	void *page;
820 	const char *full_path;
821 
822 	INIT_LIST_HEAD(&file_head);
823 	page = alloc_dentry_path();
824 	spin_lock(&tcon->open_file_lock);
825 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
826 		full_path = build_path_from_dentry(cfile->dentry, page);
827 		if (strstr(full_path, path)) {
828 			if (delayed_work_pending(&cfile->deferred)) {
829 				if (cancel_delayed_work(&cfile->deferred)) {
830 					spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
831 					cifs_del_deferred_close(cfile);
832 					spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
833 
834 					tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
835 					if (tmp_list == NULL)
836 						break;
837 					tmp_list->cfile = cfile;
838 					list_add_tail(&tmp_list->list, &file_head);
839 				}
840 			}
841 		}
842 	}
843 	spin_unlock(&tcon->open_file_lock);
844 
845 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
846 		_cifsFileInfo_put(tmp_list->cfile, true, false);
847 		list_del(&tmp_list->list);
848 		kfree(tmp_list);
849 	}
850 	free_dentry_path(page);
851 }
852 
853 /*
854  * If a dentry has been deleted, all corresponding open handles should know that
855  * so that we do not defer close them.
856  */
857 void cifs_mark_open_handles_for_deleted_file(struct inode *inode,
858 					     const char *path)
859 {
860 	struct cifsFileInfo *cfile;
861 	void *page;
862 	const char *full_path;
863 	struct cifsInodeInfo *cinode = CIFS_I(inode);
864 
865 	page = alloc_dentry_path();
866 	spin_lock(&cinode->open_file_lock);
867 
868 	/*
869 	 * note: we need to construct path from dentry and compare only if the
870 	 * inode has any hardlinks. When number of hardlinks is 1, we can just
871 	 * mark all open handles since they are going to be from the same file.
872 	 */
873 	if (inode->i_nlink > 1) {
874 		list_for_each_entry(cfile, &cinode->openFileList, flist) {
875 			full_path = build_path_from_dentry(cfile->dentry, page);
876 			if (!IS_ERR(full_path) && strcmp(full_path, path) == 0)
877 				cfile->status_file_deleted = true;
878 		}
879 	} else {
880 		list_for_each_entry(cfile, &cinode->openFileList, flist)
881 			cfile->status_file_deleted = true;
882 	}
883 	spin_unlock(&cinode->open_file_lock);
884 	free_dentry_path(page);
885 }
886 
887 /* parses DFS referral V3 structure
888  * caller is responsible for freeing target_nodes
889  * returns:
890  * - on success - 0
891  * - on failure - errno
892  */
893 int
894 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
895 		    unsigned int *num_of_nodes,
896 		    struct dfs_info3_param **target_nodes,
897 		    const struct nls_table *nls_codepage, int remap,
898 		    const char *searchName, bool is_unicode)
899 {
900 	int i, rc = 0;
901 	char *data_end;
902 	struct dfs_referral_level_3 *ref;
903 
904 	*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
905 
906 	if (*num_of_nodes < 1) {
907 		cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
908 			 *num_of_nodes);
909 		rc = -EINVAL;
910 		goto parse_DFS_referrals_exit;
911 	}
912 
913 	ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
914 	if (ref->VersionNumber != cpu_to_le16(3)) {
915 		cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
916 			 le16_to_cpu(ref->VersionNumber));
917 		rc = -EINVAL;
918 		goto parse_DFS_referrals_exit;
919 	}
920 
921 	/* get the upper boundary of the resp buffer */
922 	data_end = (char *)rsp + rsp_size;
923 
924 	cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
925 		 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
926 
927 	*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
928 				GFP_KERNEL);
929 	if (*target_nodes == NULL) {
930 		rc = -ENOMEM;
931 		goto parse_DFS_referrals_exit;
932 	}
933 
934 	/* collect necessary data from referrals */
935 	for (i = 0; i < *num_of_nodes; i++) {
936 		char *temp;
937 		int max_len;
938 		struct dfs_info3_param *node = (*target_nodes)+i;
939 
940 		node->flags = le32_to_cpu(rsp->DFSFlags);
941 		if (is_unicode) {
942 			__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
943 						GFP_KERNEL);
944 			if (tmp == NULL) {
945 				rc = -ENOMEM;
946 				goto parse_DFS_referrals_exit;
947 			}
948 			cifsConvertToUTF16((__le16 *) tmp, searchName,
949 					   PATH_MAX, nls_codepage, remap);
950 			node->path_consumed = cifs_utf16_bytes(tmp,
951 					le16_to_cpu(rsp->PathConsumed),
952 					nls_codepage);
953 			kfree(tmp);
954 		} else
955 			node->path_consumed = le16_to_cpu(rsp->PathConsumed);
956 
957 		node->server_type = le16_to_cpu(ref->ServerType);
958 		node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
959 
960 		/* copy DfsPath */
961 		temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
962 		max_len = data_end - temp;
963 		node->path_name = cifs_strndup_from_utf16(temp, max_len,
964 						is_unicode, nls_codepage);
965 		if (!node->path_name) {
966 			rc = -ENOMEM;
967 			goto parse_DFS_referrals_exit;
968 		}
969 
970 		/* copy link target UNC */
971 		temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
972 		max_len = data_end - temp;
973 		node->node_name = cifs_strndup_from_utf16(temp, max_len,
974 						is_unicode, nls_codepage);
975 		if (!node->node_name) {
976 			rc = -ENOMEM;
977 			goto parse_DFS_referrals_exit;
978 		}
979 
980 		node->ttl = le32_to_cpu(ref->TimeToLive);
981 
982 		ref++;
983 	}
984 
985 parse_DFS_referrals_exit:
986 	if (rc) {
987 		free_dfs_info_array(*target_nodes, *num_of_nodes);
988 		*target_nodes = NULL;
989 		*num_of_nodes = 0;
990 	}
991 	return rc;
992 }
993 
994 struct cifs_aio_ctx *
995 cifs_aio_ctx_alloc(void)
996 {
997 	struct cifs_aio_ctx *ctx;
998 
999 	/*
1000 	 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
1001 	 * to false so that we know when we have to unreference pages within
1002 	 * cifs_aio_ctx_release()
1003 	 */
1004 	ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
1005 	if (!ctx)
1006 		return NULL;
1007 
1008 	INIT_LIST_HEAD(&ctx->list);
1009 	mutex_init(&ctx->aio_mutex);
1010 	init_completion(&ctx->done);
1011 	kref_init(&ctx->refcount);
1012 	return ctx;
1013 }
1014 
1015 void
1016 cifs_aio_ctx_release(struct kref *refcount)
1017 {
1018 	struct cifs_aio_ctx *ctx = container_of(refcount,
1019 					struct cifs_aio_ctx, refcount);
1020 
1021 	cifsFileInfo_put(ctx->cfile);
1022 
1023 	/*
1024 	 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
1025 	 * which means that iov_iter_extract_pages() was a success and thus
1026 	 * that we may have references or pins on pages that we need to
1027 	 * release.
1028 	 */
1029 	if (ctx->bv) {
1030 		if (ctx->should_dirty || ctx->bv_need_unpin) {
1031 			unsigned int i;
1032 
1033 			for (i = 0; i < ctx->nr_pinned_pages; i++) {
1034 				struct page *page = ctx->bv[i].bv_page;
1035 
1036 				if (ctx->should_dirty)
1037 					set_page_dirty(page);
1038 				if (ctx->bv_need_unpin)
1039 					unpin_user_page(page);
1040 			}
1041 		}
1042 		kvfree(ctx->bv);
1043 	}
1044 
1045 	kfree(ctx);
1046 }
1047 
1048 /**
1049  * cifs_alloc_hash - allocate hash and hash context together
1050  * @name: The name of the crypto hash algo
1051  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1052  *
1053  * The caller has to make sure @sdesc is initialized to either NULL or
1054  * a valid context. It can be freed via cifs_free_hash().
1055  */
1056 int
1057 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1058 {
1059 	int rc = 0;
1060 	struct crypto_shash *alg = NULL;
1061 
1062 	if (*sdesc)
1063 		return 0;
1064 
1065 	alg = crypto_alloc_shash(name, 0, 0);
1066 	if (IS_ERR(alg)) {
1067 		cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1068 		rc = PTR_ERR(alg);
1069 		*sdesc = NULL;
1070 		return rc;
1071 	}
1072 
1073 	*sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1074 	if (*sdesc == NULL) {
1075 		cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1076 		crypto_free_shash(alg);
1077 		return -ENOMEM;
1078 	}
1079 
1080 	(*sdesc)->tfm = alg;
1081 	return 0;
1082 }
1083 
1084 /**
1085  * cifs_free_hash - free hash and hash context together
1086  * @sdesc: Where to find the pointer to the hash TFM
1087  *
1088  * Freeing a NULL descriptor is safe.
1089  */
1090 void
1091 cifs_free_hash(struct shash_desc **sdesc)
1092 {
1093 	if (unlikely(!sdesc) || !*sdesc)
1094 		return;
1095 
1096 	if ((*sdesc)->tfm) {
1097 		crypto_free_shash((*sdesc)->tfm);
1098 		(*sdesc)->tfm = NULL;
1099 	}
1100 
1101 	kfree_sensitive(*sdesc);
1102 	*sdesc = NULL;
1103 }
1104 
1105 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1106 {
1107 	const char *end;
1108 
1109 	/* skip initial slashes */
1110 	while (*unc && (*unc == '\\' || *unc == '/'))
1111 		unc++;
1112 
1113 	end = unc;
1114 
1115 	while (*end && !(*end == '\\' || *end == '/'))
1116 		end++;
1117 
1118 	*h = unc;
1119 	*len = end - unc;
1120 }
1121 
1122 /**
1123  * copy_path_name - copy src path to dst, possibly truncating
1124  * @dst: The destination buffer
1125  * @src: The source name
1126  *
1127  * returns number of bytes written (including trailing nul)
1128  */
1129 int copy_path_name(char *dst, const char *src)
1130 {
1131 	int name_len;
1132 
1133 	/*
1134 	 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1135 	 * will truncate and strlen(dst) will be PATH_MAX-1
1136 	 */
1137 	name_len = strscpy(dst, src, PATH_MAX);
1138 	if (WARN_ON_ONCE(name_len < 0))
1139 		name_len = PATH_MAX-1;
1140 
1141 	/* we count the trailing nul */
1142 	name_len++;
1143 	return name_len;
1144 }
1145 
1146 struct super_cb_data {
1147 	void *data;
1148 	struct super_block *sb;
1149 };
1150 
1151 static void tcon_super_cb(struct super_block *sb, void *arg)
1152 {
1153 	struct super_cb_data *sd = arg;
1154 	struct cifs_sb_info *cifs_sb;
1155 	struct cifs_tcon *t1 = sd->data, *t2;
1156 
1157 	if (sd->sb)
1158 		return;
1159 
1160 	cifs_sb = CIFS_SB(sb);
1161 	t2 = cifs_sb_master_tcon(cifs_sb);
1162 
1163 	spin_lock(&t2->tc_lock);
1164 	if (t1->ses == t2->ses &&
1165 	    t1->ses->server == t2->ses->server &&
1166 	    t2->origin_fullpath &&
1167 	    dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
1168 		sd->sb = sb;
1169 	spin_unlock(&t2->tc_lock);
1170 }
1171 
1172 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1173 					    void *data)
1174 {
1175 	struct super_cb_data sd = {
1176 		.data = data,
1177 		.sb = NULL,
1178 	};
1179 	struct file_system_type **fs_type = (struct file_system_type *[]) {
1180 		&cifs_fs_type, &smb3_fs_type, NULL,
1181 	};
1182 
1183 	for (; *fs_type; fs_type++) {
1184 		iterate_supers_type(*fs_type, f, &sd);
1185 		if (sd.sb) {
1186 			/*
1187 			 * Grab an active reference in order to prevent automounts (DFS links)
1188 			 * of expiring and then freeing up our cifs superblock pointer while
1189 			 * we're doing failover.
1190 			 */
1191 			cifs_sb_active(sd.sb);
1192 			return sd.sb;
1193 		}
1194 	}
1195 	pr_warn_once("%s: could not find dfs superblock\n", __func__);
1196 	return ERR_PTR(-EINVAL);
1197 }
1198 
1199 static void __cifs_put_super(struct super_block *sb)
1200 {
1201 	if (!IS_ERR_OR_NULL(sb))
1202 		cifs_sb_deactive(sb);
1203 }
1204 
1205 struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
1206 {
1207 	spin_lock(&tcon->tc_lock);
1208 	if (!tcon->origin_fullpath) {
1209 		spin_unlock(&tcon->tc_lock);
1210 		return ERR_PTR(-ENOENT);
1211 	}
1212 	spin_unlock(&tcon->tc_lock);
1213 	return __cifs_get_super(tcon_super_cb, tcon);
1214 }
1215 
1216 void cifs_put_tcp_super(struct super_block *sb)
1217 {
1218 	__cifs_put_super(sb);
1219 }
1220 
1221 #ifdef CONFIG_CIFS_DFS_UPCALL
1222 int match_target_ip(struct TCP_Server_Info *server,
1223 		    const char *share, size_t share_len,
1224 		    bool *result)
1225 {
1226 	int rc;
1227 	char *target;
1228 	struct sockaddr_storage ss;
1229 
1230 	*result = false;
1231 
1232 	target = kzalloc(share_len + 3, GFP_KERNEL);
1233 	if (!target)
1234 		return -ENOMEM;
1235 
1236 	scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1237 
1238 	cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1239 
1240 	rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1241 	kfree(target);
1242 
1243 	if (rc < 0)
1244 		return rc;
1245 
1246 	spin_lock(&server->srv_lock);
1247 	*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1248 	spin_unlock(&server->srv_lock);
1249 	cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1250 	return 0;
1251 }
1252 
1253 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1254 {
1255 	int rc;
1256 
1257 	kfree(cifs_sb->prepath);
1258 	cifs_sb->prepath = NULL;
1259 
1260 	if (prefix && *prefix) {
1261 		cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1262 		if (IS_ERR(cifs_sb->prepath)) {
1263 			rc = PTR_ERR(cifs_sb->prepath);
1264 			cifs_sb->prepath = NULL;
1265 			return rc;
1266 		}
1267 		if (cifs_sb->prepath)
1268 			convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1269 	}
1270 
1271 	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1272 	return 0;
1273 }
1274 
1275 /*
1276  * Handle weird Windows SMB server behaviour. It responds with
1277  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1278  * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1279  * non-ASCII unicode symbols.
1280  */
1281 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1282 				   struct cifs_tcon *tcon,
1283 				   struct cifs_sb_info *cifs_sb,
1284 				   const char *full_path,
1285 				   bool *islink)
1286 {
1287 	struct cifs_ses *ses = tcon->ses;
1288 	size_t len;
1289 	char *path;
1290 	char *ref_path;
1291 
1292 	*islink = false;
1293 
1294 	/*
1295 	 * Fast path - skip check when @full_path doesn't have a prefix path to
1296 	 * look up or tcon is not DFS.
1297 	 */
1298 	if (strlen(full_path) < 2 || !cifs_sb ||
1299 	    (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1300 	    !is_tcon_dfs(tcon))
1301 		return 0;
1302 
1303 	spin_lock(&tcon->tc_lock);
1304 	if (!tcon->origin_fullpath) {
1305 		spin_unlock(&tcon->tc_lock);
1306 		return 0;
1307 	}
1308 	spin_unlock(&tcon->tc_lock);
1309 
1310 	/*
1311 	 * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1312 	 * to get a referral to figure out whether it is an DFS link.
1313 	 */
1314 	len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1315 	path = kmalloc(len, GFP_KERNEL);
1316 	if (!path)
1317 		return -ENOMEM;
1318 
1319 	scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1320 	ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1321 					    cifs_remap(cifs_sb));
1322 	kfree(path);
1323 
1324 	if (IS_ERR(ref_path)) {
1325 		if (PTR_ERR(ref_path) != -EINVAL)
1326 			return PTR_ERR(ref_path);
1327 	} else {
1328 		struct dfs_info3_param *refs = NULL;
1329 		int num_refs = 0;
1330 
1331 		/*
1332 		 * XXX: we are not using dfs_cache_find() here because we might
1333 		 * end up filling all the DFS cache and thus potentially
1334 		 * removing cached DFS targets that the client would eventually
1335 		 * need during failover.
1336 		 */
1337 		ses = CIFS_DFS_ROOT_SES(ses);
1338 		if (ses->server->ops->get_dfs_refer &&
1339 		    !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1340 						     &num_refs, cifs_sb->local_nls,
1341 						     cifs_remap(cifs_sb)))
1342 			*islink = refs[0].server_type == DFS_TYPE_LINK;
1343 		free_dfs_info_array(refs, num_refs);
1344 		kfree(ref_path);
1345 	}
1346 	return 0;
1347 }
1348 #endif
1349 
1350 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1351 {
1352 	int timeout = 10;
1353 	int rc;
1354 
1355 	spin_lock(&server->srv_lock);
1356 	if (server->tcpStatus != CifsNeedReconnect) {
1357 		spin_unlock(&server->srv_lock);
1358 		return 0;
1359 	}
1360 	timeout *= server->nr_targets;
1361 	spin_unlock(&server->srv_lock);
1362 
1363 	/*
1364 	 * Give demultiplex thread up to 10 seconds to each target available for
1365 	 * reconnect -- should be greater than cifs socket timeout which is 7
1366 	 * seconds.
1367 	 *
1368 	 * On "soft" mounts we wait once. Hard mounts keep retrying until
1369 	 * process is killed or server comes back on-line.
1370 	 */
1371 	do {
1372 		rc = wait_event_interruptible_timeout(server->response_q,
1373 						      (server->tcpStatus != CifsNeedReconnect),
1374 						      timeout * HZ);
1375 		if (rc < 0) {
1376 			cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1377 				 __func__);
1378 			return -ERESTARTSYS;
1379 		}
1380 
1381 		/* are we still trying to reconnect? */
1382 		spin_lock(&server->srv_lock);
1383 		if (server->tcpStatus != CifsNeedReconnect) {
1384 			spin_unlock(&server->srv_lock);
1385 			return 0;
1386 		}
1387 		spin_unlock(&server->srv_lock);
1388 	} while (retry);
1389 
1390 	cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1391 	return -EHOSTDOWN;
1392 }
1393