1 // SPDX-License-Identifier: LGPL-2.1 2 /* 3 * 4 * Copyright (C) International Business Machines Corp., 2002,2008 5 * Author(s): Steve French (sfrench@us.ibm.com) 6 * 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/ctype.h> 11 #include <linux/mempool.h> 12 #include <linux/vmalloc.h> 13 #include "cifspdu.h" 14 #include "cifsglob.h" 15 #include "cifsproto.h" 16 #include "cifs_debug.h" 17 #include "smberr.h" 18 #include "nterr.h" 19 #include "cifs_unicode.h" 20 #include "smb2pdu.h" 21 #include "cifsfs.h" 22 #ifdef CONFIG_CIFS_DFS_UPCALL 23 #include "dns_resolve.h" 24 #include "dfs_cache.h" 25 #include "dfs.h" 26 #endif 27 #include "fs_context.h" 28 #include "cached_dir.h" 29 30 extern mempool_t *cifs_sm_req_poolp; 31 extern mempool_t *cifs_req_poolp; 32 33 /* The xid serves as a useful identifier for each incoming vfs request, 34 in a similar way to the mid which is useful to track each sent smb, 35 and CurrentXid can also provide a running counter (although it 36 will eventually wrap past zero) of the total vfs operations handled 37 since the cifs fs was mounted */ 38 39 unsigned int 40 _get_xid(void) 41 { 42 unsigned int xid; 43 44 spin_lock(&GlobalMid_Lock); 45 GlobalTotalActiveXid++; 46 47 /* keep high water mark for number of simultaneous ops in filesystem */ 48 if (GlobalTotalActiveXid > GlobalMaxActiveXid) 49 GlobalMaxActiveXid = GlobalTotalActiveXid; 50 if (GlobalTotalActiveXid > 65000) 51 cifs_dbg(FYI, "warning: more than 65000 requests active\n"); 52 xid = GlobalCurrentXid++; 53 spin_unlock(&GlobalMid_Lock); 54 return xid; 55 } 56 57 void 58 _free_xid(unsigned int xid) 59 { 60 spin_lock(&GlobalMid_Lock); 61 /* if (GlobalTotalActiveXid == 0) 62 BUG(); */ 63 GlobalTotalActiveXid--; 64 spin_unlock(&GlobalMid_Lock); 65 } 66 67 struct cifs_ses * 68 sesInfoAlloc(void) 69 { 70 struct cifs_ses *ret_buf; 71 72 ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL); 73 if (ret_buf) { 74 atomic_inc(&sesInfoAllocCount); 75 spin_lock_init(&ret_buf->ses_lock); 76 ret_buf->ses_status = SES_NEW; 77 ++ret_buf->ses_count; 78 INIT_LIST_HEAD(&ret_buf->smb_ses_list); 79 INIT_LIST_HEAD(&ret_buf->tcon_list); 80 mutex_init(&ret_buf->session_mutex); 81 spin_lock_init(&ret_buf->iface_lock); 82 INIT_LIST_HEAD(&ret_buf->iface_list); 83 spin_lock_init(&ret_buf->chan_lock); 84 } 85 return ret_buf; 86 } 87 88 void 89 sesInfoFree(struct cifs_ses *buf_to_free) 90 { 91 struct cifs_server_iface *iface = NULL, *niface = NULL; 92 93 if (buf_to_free == NULL) { 94 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n"); 95 return; 96 } 97 98 unload_nls(buf_to_free->local_nls); 99 atomic_dec(&sesInfoAllocCount); 100 kfree(buf_to_free->serverOS); 101 kfree(buf_to_free->serverDomain); 102 kfree(buf_to_free->serverNOS); 103 kfree_sensitive(buf_to_free->password); 104 kfree(buf_to_free->user_name); 105 kfree(buf_to_free->domainName); 106 kfree_sensitive(buf_to_free->auth_key.response); 107 spin_lock(&buf_to_free->iface_lock); 108 list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list, 109 iface_head) 110 kref_put(&iface->refcount, release_iface); 111 spin_unlock(&buf_to_free->iface_lock); 112 kfree_sensitive(buf_to_free); 113 } 114 115 struct cifs_tcon * 116 tcon_info_alloc(bool dir_leases_enabled) 117 { 118 struct cifs_tcon *ret_buf; 119 120 ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL); 121 if (!ret_buf) 122 return NULL; 123 124 if (dir_leases_enabled == true) { 125 ret_buf->cfids = init_cached_dirs(); 126 if (!ret_buf->cfids) { 127 kfree(ret_buf); 128 return NULL; 129 } 130 } 131 /* else ret_buf->cfids is already set to NULL above */ 132 133 atomic_inc(&tconInfoAllocCount); 134 ret_buf->status = TID_NEW; 135 ++ret_buf->tc_count; 136 spin_lock_init(&ret_buf->tc_lock); 137 INIT_LIST_HEAD(&ret_buf->openFileList); 138 INIT_LIST_HEAD(&ret_buf->tcon_list); 139 spin_lock_init(&ret_buf->open_file_lock); 140 spin_lock_init(&ret_buf->stat_lock); 141 atomic_set(&ret_buf->num_local_opens, 0); 142 atomic_set(&ret_buf->num_remote_opens, 0); 143 ret_buf->stats_from_time = ktime_get_real_seconds(); 144 145 return ret_buf; 146 } 147 148 void 149 tconInfoFree(struct cifs_tcon *tcon) 150 { 151 if (tcon == NULL) { 152 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n"); 153 return; 154 } 155 free_cached_dirs(tcon->cfids); 156 atomic_dec(&tconInfoAllocCount); 157 kfree(tcon->nativeFileSystem); 158 kfree_sensitive(tcon->password); 159 kfree(tcon->origin_fullpath); 160 kfree(tcon); 161 } 162 163 struct smb_hdr * 164 cifs_buf_get(void) 165 { 166 struct smb_hdr *ret_buf = NULL; 167 /* 168 * SMB2 header is bigger than CIFS one - no problems to clean some 169 * more bytes for CIFS. 170 */ 171 size_t buf_size = sizeof(struct smb2_hdr); 172 173 /* 174 * We could use negotiated size instead of max_msgsize - 175 * but it may be more efficient to always alloc same size 176 * albeit slightly larger than necessary and maxbuffersize 177 * defaults to this and can not be bigger. 178 */ 179 ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS); 180 181 /* clear the first few header bytes */ 182 /* for most paths, more is cleared in header_assemble */ 183 memset(ret_buf, 0, buf_size + 3); 184 atomic_inc(&buf_alloc_count); 185 #ifdef CONFIG_CIFS_STATS2 186 atomic_inc(&total_buf_alloc_count); 187 #endif /* CONFIG_CIFS_STATS2 */ 188 189 return ret_buf; 190 } 191 192 void 193 cifs_buf_release(void *buf_to_free) 194 { 195 if (buf_to_free == NULL) { 196 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/ 197 return; 198 } 199 mempool_free(buf_to_free, cifs_req_poolp); 200 201 atomic_dec(&buf_alloc_count); 202 return; 203 } 204 205 struct smb_hdr * 206 cifs_small_buf_get(void) 207 { 208 struct smb_hdr *ret_buf = NULL; 209 210 /* We could use negotiated size instead of max_msgsize - 211 but it may be more efficient to always alloc same size 212 albeit slightly larger than necessary and maxbuffersize 213 defaults to this and can not be bigger */ 214 ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS); 215 /* No need to clear memory here, cleared in header assemble */ 216 /* memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/ 217 atomic_inc(&small_buf_alloc_count); 218 #ifdef CONFIG_CIFS_STATS2 219 atomic_inc(&total_small_buf_alloc_count); 220 #endif /* CONFIG_CIFS_STATS2 */ 221 222 return ret_buf; 223 } 224 225 void 226 cifs_small_buf_release(void *buf_to_free) 227 { 228 229 if (buf_to_free == NULL) { 230 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n"); 231 return; 232 } 233 mempool_free(buf_to_free, cifs_sm_req_poolp); 234 235 atomic_dec(&small_buf_alloc_count); 236 return; 237 } 238 239 void 240 free_rsp_buf(int resp_buftype, void *rsp) 241 { 242 if (resp_buftype == CIFS_SMALL_BUFFER) 243 cifs_small_buf_release(rsp); 244 else if (resp_buftype == CIFS_LARGE_BUFFER) 245 cifs_buf_release(rsp); 246 } 247 248 /* NB: MID can not be set if treeCon not passed in, in that 249 case it is responsbility of caller to set the mid */ 250 void 251 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ , 252 const struct cifs_tcon *treeCon, int word_count 253 /* length of fixed section (word count) in two byte units */) 254 { 255 char *temp = (char *) buffer; 256 257 memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */ 258 259 buffer->smb_buf_length = cpu_to_be32( 260 (2 * word_count) + sizeof(struct smb_hdr) - 261 4 /* RFC 1001 length field does not count */ + 262 2 /* for bcc field itself */) ; 263 264 buffer->Protocol[0] = 0xFF; 265 buffer->Protocol[1] = 'S'; 266 buffer->Protocol[2] = 'M'; 267 buffer->Protocol[3] = 'B'; 268 buffer->Command = smb_command; 269 buffer->Flags = 0x00; /* case sensitive */ 270 buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES; 271 buffer->Pid = cpu_to_le16((__u16)current->tgid); 272 buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16)); 273 if (treeCon) { 274 buffer->Tid = treeCon->tid; 275 if (treeCon->ses) { 276 if (treeCon->ses->capabilities & CAP_UNICODE) 277 buffer->Flags2 |= SMBFLG2_UNICODE; 278 if (treeCon->ses->capabilities & CAP_STATUS32) 279 buffer->Flags2 |= SMBFLG2_ERR_STATUS; 280 281 /* Uid is not converted */ 282 buffer->Uid = treeCon->ses->Suid; 283 if (treeCon->ses->server) 284 buffer->Mid = get_next_mid(treeCon->ses->server); 285 } 286 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS) 287 buffer->Flags2 |= SMBFLG2_DFS; 288 if (treeCon->nocase) 289 buffer->Flags |= SMBFLG_CASELESS; 290 if ((treeCon->ses) && (treeCon->ses->server)) 291 if (treeCon->ses->server->sign) 292 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE; 293 } 294 295 /* endian conversion of flags is now done just before sending */ 296 buffer->WordCount = (char) word_count; 297 return; 298 } 299 300 static int 301 check_smb_hdr(struct smb_hdr *smb) 302 { 303 /* does it have the right SMB "signature" ? */ 304 if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) { 305 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n", 306 *(unsigned int *)smb->Protocol); 307 return 1; 308 } 309 310 /* if it's a response then accept */ 311 if (smb->Flags & SMBFLG_RESPONSE) 312 return 0; 313 314 /* only one valid case where server sends us request */ 315 if (smb->Command == SMB_COM_LOCKING_ANDX) 316 return 0; 317 318 cifs_dbg(VFS, "Server sent request, not response. mid=%u\n", 319 get_mid(smb)); 320 return 1; 321 } 322 323 int 324 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server) 325 { 326 struct smb_hdr *smb = (struct smb_hdr *)buf; 327 __u32 rfclen = be32_to_cpu(smb->smb_buf_length); 328 __u32 clc_len; /* calculated length */ 329 cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n", 330 total_read, rfclen); 331 332 /* is this frame too small to even get to a BCC? */ 333 if (total_read < 2 + sizeof(struct smb_hdr)) { 334 if ((total_read >= sizeof(struct smb_hdr) - 1) 335 && (smb->Status.CifsError != 0)) { 336 /* it's an error return */ 337 smb->WordCount = 0; 338 /* some error cases do not return wct and bcc */ 339 return 0; 340 } else if ((total_read == sizeof(struct smb_hdr) + 1) && 341 (smb->WordCount == 0)) { 342 char *tmp = (char *)smb; 343 /* Need to work around a bug in two servers here */ 344 /* First, check if the part of bcc they sent was zero */ 345 if (tmp[sizeof(struct smb_hdr)] == 0) { 346 /* some servers return only half of bcc 347 * on simple responses (wct, bcc both zero) 348 * in particular have seen this on 349 * ulogoffX and FindClose. This leaves 350 * one byte of bcc potentially unitialized 351 */ 352 /* zero rest of bcc */ 353 tmp[sizeof(struct smb_hdr)+1] = 0; 354 return 0; 355 } 356 cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n"); 357 } else { 358 cifs_dbg(VFS, "Length less than smb header size\n"); 359 } 360 return -EIO; 361 } else if (total_read < sizeof(*smb) + 2 * smb->WordCount) { 362 cifs_dbg(VFS, "%s: can't read BCC due to invalid WordCount(%u)\n", 363 __func__, smb->WordCount); 364 return -EIO; 365 } 366 367 /* otherwise, there is enough to get to the BCC */ 368 if (check_smb_hdr(smb)) 369 return -EIO; 370 clc_len = smbCalcSize(smb); 371 372 if (4 + rfclen != total_read) { 373 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n", 374 rfclen); 375 return -EIO; 376 } 377 378 if (4 + rfclen != clc_len) { 379 __u16 mid = get_mid(smb); 380 /* check if bcc wrapped around for large read responses */ 381 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) { 382 /* check if lengths match mod 64K */ 383 if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF)) 384 return 0; /* bcc wrapped */ 385 } 386 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n", 387 clc_len, 4 + rfclen, mid); 388 389 if (4 + rfclen < clc_len) { 390 cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n", 391 rfclen, mid); 392 return -EIO; 393 } else if (rfclen > clc_len + 512) { 394 /* 395 * Some servers (Windows XP in particular) send more 396 * data than the lengths in the SMB packet would 397 * indicate on certain calls (byte range locks and 398 * trans2 find first calls in particular). While the 399 * client can handle such a frame by ignoring the 400 * trailing data, we choose limit the amount of extra 401 * data to 512 bytes. 402 */ 403 cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n", 404 rfclen, mid); 405 return -EIO; 406 } 407 } 408 return 0; 409 } 410 411 bool 412 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv) 413 { 414 struct smb_hdr *buf = (struct smb_hdr *)buffer; 415 struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf; 416 struct TCP_Server_Info *pserver; 417 struct cifs_ses *ses; 418 struct cifs_tcon *tcon; 419 struct cifsInodeInfo *pCifsInode; 420 struct cifsFileInfo *netfile; 421 422 cifs_dbg(FYI, "Checking for oplock break or dnotify response\n"); 423 if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) && 424 (pSMB->hdr.Flags & SMBFLG_RESPONSE)) { 425 struct smb_com_transaction_change_notify_rsp *pSMBr = 426 (struct smb_com_transaction_change_notify_rsp *)buf; 427 struct file_notify_information *pnotify; 428 __u32 data_offset = 0; 429 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length); 430 431 if (get_bcc(buf) > sizeof(struct file_notify_information)) { 432 data_offset = le32_to_cpu(pSMBr->DataOffset); 433 434 if (data_offset > 435 len - sizeof(struct file_notify_information)) { 436 cifs_dbg(FYI, "Invalid data_offset %u\n", 437 data_offset); 438 return true; 439 } 440 pnotify = (struct file_notify_information *) 441 ((char *)&pSMBr->hdr.Protocol + data_offset); 442 cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n", 443 pnotify->FileName, pnotify->Action); 444 /* cifs_dump_mem("Rcvd notify Data: ",buf, 445 sizeof(struct smb_hdr)+60); */ 446 return true; 447 } 448 if (pSMBr->hdr.Status.CifsError) { 449 cifs_dbg(FYI, "notify err 0x%x\n", 450 pSMBr->hdr.Status.CifsError); 451 return true; 452 } 453 return false; 454 } 455 if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX) 456 return false; 457 if (pSMB->hdr.Flags & SMBFLG_RESPONSE) { 458 /* no sense logging error on invalid handle on oplock 459 break - harmless race between close request and oplock 460 break response is expected from time to time writing out 461 large dirty files cached on the client */ 462 if ((NT_STATUS_INVALID_HANDLE) == 463 le32_to_cpu(pSMB->hdr.Status.CifsError)) { 464 cifs_dbg(FYI, "Invalid handle on oplock break\n"); 465 return true; 466 } else if (ERRbadfid == 467 le16_to_cpu(pSMB->hdr.Status.DosError.Error)) { 468 return true; 469 } else { 470 return false; /* on valid oplock brk we get "request" */ 471 } 472 } 473 if (pSMB->hdr.WordCount != 8) 474 return false; 475 476 cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n", 477 pSMB->LockType, pSMB->OplockLevel); 478 if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE)) 479 return false; 480 481 /* If server is a channel, select the primary channel */ 482 pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv; 483 484 /* look up tcon based on tid & uid */ 485 spin_lock(&cifs_tcp_ses_lock); 486 list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) { 487 if (cifs_ses_exiting(ses)) 488 continue; 489 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) { 490 if (tcon->tid != buf->Tid) 491 continue; 492 493 cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks); 494 spin_lock(&tcon->open_file_lock); 495 list_for_each_entry(netfile, &tcon->openFileList, tlist) { 496 if (pSMB->Fid != netfile->fid.netfid) 497 continue; 498 499 cifs_dbg(FYI, "file id match, oplock break\n"); 500 pCifsInode = CIFS_I(d_inode(netfile->dentry)); 501 502 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, 503 &pCifsInode->flags); 504 505 netfile->oplock_epoch = 0; 506 netfile->oplock_level = pSMB->OplockLevel; 507 netfile->oplock_break_cancelled = false; 508 cifs_queue_oplock_break(netfile); 509 510 spin_unlock(&tcon->open_file_lock); 511 spin_unlock(&cifs_tcp_ses_lock); 512 return true; 513 } 514 spin_unlock(&tcon->open_file_lock); 515 spin_unlock(&cifs_tcp_ses_lock); 516 cifs_dbg(FYI, "No matching file for oplock break\n"); 517 return true; 518 } 519 } 520 spin_unlock(&cifs_tcp_ses_lock); 521 cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n"); 522 return true; 523 } 524 525 void 526 dump_smb(void *buf, int smb_buf_length) 527 { 528 if (traceSMB == 0) 529 return; 530 531 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf, 532 smb_buf_length, true); 533 } 534 535 void 536 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb) 537 { 538 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) { 539 struct cifs_tcon *tcon = NULL; 540 541 if (cifs_sb->master_tlink) 542 tcon = cifs_sb_master_tcon(cifs_sb); 543 544 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM; 545 cifs_sb->mnt_cifs_serverino_autodisabled = true; 546 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n", 547 tcon ? tcon->tree_name : "new server"); 548 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n"); 549 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n"); 550 551 } 552 } 553 554 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock) 555 { 556 oplock &= 0xF; 557 558 if (oplock == OPLOCK_EXCLUSIVE) { 559 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG; 560 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n", 561 &cinode->netfs.inode); 562 } else if (oplock == OPLOCK_READ) { 563 cinode->oplock = CIFS_CACHE_READ_FLG; 564 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n", 565 &cinode->netfs.inode); 566 } else 567 cinode->oplock = 0; 568 } 569 570 /* 571 * We wait for oplock breaks to be processed before we attempt to perform 572 * writes. 573 */ 574 int cifs_get_writer(struct cifsInodeInfo *cinode) 575 { 576 int rc; 577 578 start: 579 rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK, 580 TASK_KILLABLE); 581 if (rc) 582 return rc; 583 584 spin_lock(&cinode->writers_lock); 585 if (!cinode->writers) 586 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 587 cinode->writers++; 588 /* Check to see if we have started servicing an oplock break */ 589 if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) { 590 cinode->writers--; 591 if (cinode->writers == 0) { 592 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 593 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS); 594 } 595 spin_unlock(&cinode->writers_lock); 596 goto start; 597 } 598 spin_unlock(&cinode->writers_lock); 599 return 0; 600 } 601 602 void cifs_put_writer(struct cifsInodeInfo *cinode) 603 { 604 spin_lock(&cinode->writers_lock); 605 cinode->writers--; 606 if (cinode->writers == 0) { 607 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 608 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS); 609 } 610 spin_unlock(&cinode->writers_lock); 611 } 612 613 /** 614 * cifs_queue_oplock_break - queue the oplock break handler for cfile 615 * @cfile: The file to break the oplock on 616 * 617 * This function is called from the demultiplex thread when it 618 * receives an oplock break for @cfile. 619 * 620 * Assumes the tcon->open_file_lock is held. 621 * Assumes cfile->file_info_lock is NOT held. 622 */ 623 void cifs_queue_oplock_break(struct cifsFileInfo *cfile) 624 { 625 /* 626 * Bump the handle refcount now while we hold the 627 * open_file_lock to enforce the validity of it for the oplock 628 * break handler. The matching put is done at the end of the 629 * handler. 630 */ 631 cifsFileInfo_get(cfile); 632 633 queue_work(cifsoplockd_wq, &cfile->oplock_break); 634 } 635 636 void cifs_done_oplock_break(struct cifsInodeInfo *cinode) 637 { 638 clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags); 639 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK); 640 } 641 642 bool 643 backup_cred(struct cifs_sb_info *cifs_sb) 644 { 645 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) { 646 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid())) 647 return true; 648 } 649 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) { 650 if (in_group_p(cifs_sb->ctx->backupgid)) 651 return true; 652 } 653 654 return false; 655 } 656 657 void 658 cifs_del_pending_open(struct cifs_pending_open *open) 659 { 660 spin_lock(&tlink_tcon(open->tlink)->open_file_lock); 661 list_del(&open->olist); 662 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock); 663 } 664 665 void 666 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink, 667 struct cifs_pending_open *open) 668 { 669 memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE); 670 open->oplock = CIFS_OPLOCK_NO_CHANGE; 671 open->tlink = tlink; 672 fid->pending_open = open; 673 list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens); 674 } 675 676 void 677 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink, 678 struct cifs_pending_open *open) 679 { 680 spin_lock(&tlink_tcon(tlink)->open_file_lock); 681 cifs_add_pending_open_locked(fid, tlink, open); 682 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock); 683 } 684 685 /* 686 * Critical section which runs after acquiring deferred_lock. 687 * As there is no reference count on cifs_deferred_close, pdclose 688 * should not be used outside deferred_lock. 689 */ 690 bool 691 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose) 692 { 693 struct cifs_deferred_close *dclose; 694 695 list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) { 696 if ((dclose->netfid == cfile->fid.netfid) && 697 (dclose->persistent_fid == cfile->fid.persistent_fid) && 698 (dclose->volatile_fid == cfile->fid.volatile_fid)) { 699 *pdclose = dclose; 700 return true; 701 } 702 } 703 return false; 704 } 705 706 /* 707 * Critical section which runs after acquiring deferred_lock. 708 */ 709 void 710 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose) 711 { 712 bool is_deferred = false; 713 struct cifs_deferred_close *pdclose; 714 715 is_deferred = cifs_is_deferred_close(cfile, &pdclose); 716 if (is_deferred) { 717 kfree(dclose); 718 return; 719 } 720 721 dclose->tlink = cfile->tlink; 722 dclose->netfid = cfile->fid.netfid; 723 dclose->persistent_fid = cfile->fid.persistent_fid; 724 dclose->volatile_fid = cfile->fid.volatile_fid; 725 list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes); 726 } 727 728 /* 729 * Critical section which runs after acquiring deferred_lock. 730 */ 731 void 732 cifs_del_deferred_close(struct cifsFileInfo *cfile) 733 { 734 bool is_deferred = false; 735 struct cifs_deferred_close *dclose; 736 737 is_deferred = cifs_is_deferred_close(cfile, &dclose); 738 if (!is_deferred) 739 return; 740 list_del(&dclose->dlist); 741 kfree(dclose); 742 } 743 744 void 745 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode) 746 { 747 struct cifsFileInfo *cfile = NULL; 748 struct file_list *tmp_list, *tmp_next_list; 749 struct list_head file_head; 750 751 if (cifs_inode == NULL) 752 return; 753 754 INIT_LIST_HEAD(&file_head); 755 spin_lock(&cifs_inode->open_file_lock); 756 list_for_each_entry(cfile, &cifs_inode->openFileList, flist) { 757 if (delayed_work_pending(&cfile->deferred)) { 758 if (cancel_delayed_work(&cfile->deferred)) { 759 spin_lock(&cifs_inode->deferred_lock); 760 cifs_del_deferred_close(cfile); 761 spin_unlock(&cifs_inode->deferred_lock); 762 763 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 764 if (tmp_list == NULL) 765 break; 766 tmp_list->cfile = cfile; 767 list_add_tail(&tmp_list->list, &file_head); 768 } 769 } 770 } 771 spin_unlock(&cifs_inode->open_file_lock); 772 773 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 774 _cifsFileInfo_put(tmp_list->cfile, false, false); 775 list_del(&tmp_list->list); 776 kfree(tmp_list); 777 } 778 } 779 780 void 781 cifs_close_all_deferred_files(struct cifs_tcon *tcon) 782 { 783 struct cifsFileInfo *cfile; 784 struct file_list *tmp_list, *tmp_next_list; 785 struct list_head file_head; 786 787 INIT_LIST_HEAD(&file_head); 788 spin_lock(&tcon->open_file_lock); 789 list_for_each_entry(cfile, &tcon->openFileList, tlist) { 790 if (delayed_work_pending(&cfile->deferred)) { 791 if (cancel_delayed_work(&cfile->deferred)) { 792 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 793 cifs_del_deferred_close(cfile); 794 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 795 796 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 797 if (tmp_list == NULL) 798 break; 799 tmp_list->cfile = cfile; 800 list_add_tail(&tmp_list->list, &file_head); 801 } 802 } 803 } 804 spin_unlock(&tcon->open_file_lock); 805 806 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 807 _cifsFileInfo_put(tmp_list->cfile, true, false); 808 list_del(&tmp_list->list); 809 kfree(tmp_list); 810 } 811 } 812 void 813 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path) 814 { 815 struct cifsFileInfo *cfile; 816 struct file_list *tmp_list, *tmp_next_list; 817 struct list_head file_head; 818 void *page; 819 const char *full_path; 820 821 INIT_LIST_HEAD(&file_head); 822 page = alloc_dentry_path(); 823 spin_lock(&tcon->open_file_lock); 824 list_for_each_entry(cfile, &tcon->openFileList, tlist) { 825 full_path = build_path_from_dentry(cfile->dentry, page); 826 if (strstr(full_path, path)) { 827 if (delayed_work_pending(&cfile->deferred)) { 828 if (cancel_delayed_work(&cfile->deferred)) { 829 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 830 cifs_del_deferred_close(cfile); 831 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 832 833 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 834 if (tmp_list == NULL) 835 break; 836 tmp_list->cfile = cfile; 837 list_add_tail(&tmp_list->list, &file_head); 838 } 839 } 840 } 841 } 842 spin_unlock(&tcon->open_file_lock); 843 844 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 845 _cifsFileInfo_put(tmp_list->cfile, true, false); 846 list_del(&tmp_list->list); 847 kfree(tmp_list); 848 } 849 free_dentry_path(page); 850 } 851 852 /* parses DFS referral V3 structure 853 * caller is responsible for freeing target_nodes 854 * returns: 855 * - on success - 0 856 * - on failure - errno 857 */ 858 int 859 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size, 860 unsigned int *num_of_nodes, 861 struct dfs_info3_param **target_nodes, 862 const struct nls_table *nls_codepage, int remap, 863 const char *searchName, bool is_unicode) 864 { 865 int i, rc = 0; 866 char *data_end; 867 struct dfs_referral_level_3 *ref; 868 869 *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals); 870 871 if (*num_of_nodes < 1) { 872 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n", 873 *num_of_nodes); 874 rc = -EINVAL; 875 goto parse_DFS_referrals_exit; 876 } 877 878 ref = (struct dfs_referral_level_3 *) &(rsp->referrals); 879 if (ref->VersionNumber != cpu_to_le16(3)) { 880 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n", 881 le16_to_cpu(ref->VersionNumber)); 882 rc = -EINVAL; 883 goto parse_DFS_referrals_exit; 884 } 885 886 /* get the upper boundary of the resp buffer */ 887 data_end = (char *)rsp + rsp_size; 888 889 cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n", 890 *num_of_nodes, le32_to_cpu(rsp->DFSFlags)); 891 892 *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param), 893 GFP_KERNEL); 894 if (*target_nodes == NULL) { 895 rc = -ENOMEM; 896 goto parse_DFS_referrals_exit; 897 } 898 899 /* collect necessary data from referrals */ 900 for (i = 0; i < *num_of_nodes; i++) { 901 char *temp; 902 int max_len; 903 struct dfs_info3_param *node = (*target_nodes)+i; 904 905 node->flags = le32_to_cpu(rsp->DFSFlags); 906 if (is_unicode) { 907 __le16 *tmp = kmalloc(strlen(searchName)*2 + 2, 908 GFP_KERNEL); 909 if (tmp == NULL) { 910 rc = -ENOMEM; 911 goto parse_DFS_referrals_exit; 912 } 913 cifsConvertToUTF16((__le16 *) tmp, searchName, 914 PATH_MAX, nls_codepage, remap); 915 node->path_consumed = cifs_utf16_bytes(tmp, 916 le16_to_cpu(rsp->PathConsumed), 917 nls_codepage); 918 kfree(tmp); 919 } else 920 node->path_consumed = le16_to_cpu(rsp->PathConsumed); 921 922 node->server_type = le16_to_cpu(ref->ServerType); 923 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags); 924 925 /* copy DfsPath */ 926 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset); 927 max_len = data_end - temp; 928 node->path_name = cifs_strndup_from_utf16(temp, max_len, 929 is_unicode, nls_codepage); 930 if (!node->path_name) { 931 rc = -ENOMEM; 932 goto parse_DFS_referrals_exit; 933 } 934 935 /* copy link target UNC */ 936 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset); 937 max_len = data_end - temp; 938 node->node_name = cifs_strndup_from_utf16(temp, max_len, 939 is_unicode, nls_codepage); 940 if (!node->node_name) { 941 rc = -ENOMEM; 942 goto parse_DFS_referrals_exit; 943 } 944 945 node->ttl = le32_to_cpu(ref->TimeToLive); 946 947 ref++; 948 } 949 950 parse_DFS_referrals_exit: 951 if (rc) { 952 free_dfs_info_array(*target_nodes, *num_of_nodes); 953 *target_nodes = NULL; 954 *num_of_nodes = 0; 955 } 956 return rc; 957 } 958 959 struct cifs_aio_ctx * 960 cifs_aio_ctx_alloc(void) 961 { 962 struct cifs_aio_ctx *ctx; 963 964 /* 965 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io 966 * to false so that we know when we have to unreference pages within 967 * cifs_aio_ctx_release() 968 */ 969 ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL); 970 if (!ctx) 971 return NULL; 972 973 INIT_LIST_HEAD(&ctx->list); 974 mutex_init(&ctx->aio_mutex); 975 init_completion(&ctx->done); 976 kref_init(&ctx->refcount); 977 return ctx; 978 } 979 980 void 981 cifs_aio_ctx_release(struct kref *refcount) 982 { 983 struct cifs_aio_ctx *ctx = container_of(refcount, 984 struct cifs_aio_ctx, refcount); 985 986 cifsFileInfo_put(ctx->cfile); 987 988 /* 989 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly 990 * which means that iov_iter_extract_pages() was a success and thus 991 * that we may have references or pins on pages that we need to 992 * release. 993 */ 994 if (ctx->bv) { 995 if (ctx->should_dirty || ctx->bv_need_unpin) { 996 unsigned int i; 997 998 for (i = 0; i < ctx->nr_pinned_pages; i++) { 999 struct page *page = ctx->bv[i].bv_page; 1000 1001 if (ctx->should_dirty) 1002 set_page_dirty(page); 1003 if (ctx->bv_need_unpin) 1004 unpin_user_page(page); 1005 } 1006 } 1007 kvfree(ctx->bv); 1008 } 1009 1010 kfree(ctx); 1011 } 1012 1013 /** 1014 * cifs_alloc_hash - allocate hash and hash context together 1015 * @name: The name of the crypto hash algo 1016 * @sdesc: SHASH descriptor where to put the pointer to the hash TFM 1017 * 1018 * The caller has to make sure @sdesc is initialized to either NULL or 1019 * a valid context. It can be freed via cifs_free_hash(). 1020 */ 1021 int 1022 cifs_alloc_hash(const char *name, struct shash_desc **sdesc) 1023 { 1024 int rc = 0; 1025 struct crypto_shash *alg = NULL; 1026 1027 if (*sdesc) 1028 return 0; 1029 1030 alg = crypto_alloc_shash(name, 0, 0); 1031 if (IS_ERR(alg)) { 1032 cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name); 1033 rc = PTR_ERR(alg); 1034 *sdesc = NULL; 1035 return rc; 1036 } 1037 1038 *sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL); 1039 if (*sdesc == NULL) { 1040 cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name); 1041 crypto_free_shash(alg); 1042 return -ENOMEM; 1043 } 1044 1045 (*sdesc)->tfm = alg; 1046 return 0; 1047 } 1048 1049 /** 1050 * cifs_free_hash - free hash and hash context together 1051 * @sdesc: Where to find the pointer to the hash TFM 1052 * 1053 * Freeing a NULL descriptor is safe. 1054 */ 1055 void 1056 cifs_free_hash(struct shash_desc **sdesc) 1057 { 1058 if (unlikely(!sdesc) || !*sdesc) 1059 return; 1060 1061 if ((*sdesc)->tfm) { 1062 crypto_free_shash((*sdesc)->tfm); 1063 (*sdesc)->tfm = NULL; 1064 } 1065 1066 kfree_sensitive(*sdesc); 1067 *sdesc = NULL; 1068 } 1069 1070 void extract_unc_hostname(const char *unc, const char **h, size_t *len) 1071 { 1072 const char *end; 1073 1074 /* skip initial slashes */ 1075 while (*unc && (*unc == '\\' || *unc == '/')) 1076 unc++; 1077 1078 end = unc; 1079 1080 while (*end && !(*end == '\\' || *end == '/')) 1081 end++; 1082 1083 *h = unc; 1084 *len = end - unc; 1085 } 1086 1087 /** 1088 * copy_path_name - copy src path to dst, possibly truncating 1089 * @dst: The destination buffer 1090 * @src: The source name 1091 * 1092 * returns number of bytes written (including trailing nul) 1093 */ 1094 int copy_path_name(char *dst, const char *src) 1095 { 1096 int name_len; 1097 1098 /* 1099 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it 1100 * will truncate and strlen(dst) will be PATH_MAX-1 1101 */ 1102 name_len = strscpy(dst, src, PATH_MAX); 1103 if (WARN_ON_ONCE(name_len < 0)) 1104 name_len = PATH_MAX-1; 1105 1106 /* we count the trailing nul */ 1107 name_len++; 1108 return name_len; 1109 } 1110 1111 struct super_cb_data { 1112 void *data; 1113 struct super_block *sb; 1114 }; 1115 1116 static void tcon_super_cb(struct super_block *sb, void *arg) 1117 { 1118 struct super_cb_data *sd = arg; 1119 struct cifs_sb_info *cifs_sb; 1120 struct cifs_tcon *t1 = sd->data, *t2; 1121 1122 if (sd->sb) 1123 return; 1124 1125 cifs_sb = CIFS_SB(sb); 1126 t2 = cifs_sb_master_tcon(cifs_sb); 1127 1128 spin_lock(&t2->tc_lock); 1129 if (t1->ses == t2->ses && 1130 t1->ses->server == t2->ses->server && 1131 t2->origin_fullpath && 1132 dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath)) 1133 sd->sb = sb; 1134 spin_unlock(&t2->tc_lock); 1135 } 1136 1137 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *), 1138 void *data) 1139 { 1140 struct super_cb_data sd = { 1141 .data = data, 1142 .sb = NULL, 1143 }; 1144 struct file_system_type **fs_type = (struct file_system_type *[]) { 1145 &cifs_fs_type, &smb3_fs_type, NULL, 1146 }; 1147 1148 for (; *fs_type; fs_type++) { 1149 iterate_supers_type(*fs_type, f, &sd); 1150 if (sd.sb) { 1151 /* 1152 * Grab an active reference in order to prevent automounts (DFS links) 1153 * of expiring and then freeing up our cifs superblock pointer while 1154 * we're doing failover. 1155 */ 1156 cifs_sb_active(sd.sb); 1157 return sd.sb; 1158 } 1159 } 1160 pr_warn_once("%s: could not find dfs superblock\n", __func__); 1161 return ERR_PTR(-EINVAL); 1162 } 1163 1164 static void __cifs_put_super(struct super_block *sb) 1165 { 1166 if (!IS_ERR_OR_NULL(sb)) 1167 cifs_sb_deactive(sb); 1168 } 1169 1170 struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon) 1171 { 1172 spin_lock(&tcon->tc_lock); 1173 if (!tcon->origin_fullpath) { 1174 spin_unlock(&tcon->tc_lock); 1175 return ERR_PTR(-ENOENT); 1176 } 1177 spin_unlock(&tcon->tc_lock); 1178 return __cifs_get_super(tcon_super_cb, tcon); 1179 } 1180 1181 void cifs_put_tcp_super(struct super_block *sb) 1182 { 1183 __cifs_put_super(sb); 1184 } 1185 1186 #ifdef CONFIG_CIFS_DFS_UPCALL 1187 int match_target_ip(struct TCP_Server_Info *server, 1188 const char *share, size_t share_len, 1189 bool *result) 1190 { 1191 int rc; 1192 char *target; 1193 struct sockaddr_storage ss; 1194 1195 *result = false; 1196 1197 target = kzalloc(share_len + 3, GFP_KERNEL); 1198 if (!target) 1199 return -ENOMEM; 1200 1201 scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share); 1202 1203 cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2); 1204 1205 rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL); 1206 kfree(target); 1207 1208 if (rc < 0) 1209 return rc; 1210 1211 spin_lock(&server->srv_lock); 1212 *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss); 1213 spin_unlock(&server->srv_lock); 1214 cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result); 1215 return 0; 1216 } 1217 1218 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix) 1219 { 1220 int rc; 1221 1222 kfree(cifs_sb->prepath); 1223 cifs_sb->prepath = NULL; 1224 1225 if (prefix && *prefix) { 1226 cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC); 1227 if (IS_ERR(cifs_sb->prepath)) { 1228 rc = PTR_ERR(cifs_sb->prepath); 1229 cifs_sb->prepath = NULL; 1230 return rc; 1231 } 1232 if (cifs_sb->prepath) 1233 convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb)); 1234 } 1235 1236 cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH; 1237 return 0; 1238 } 1239 1240 /* 1241 * Handle weird Windows SMB server behaviour. It responds with 1242 * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for 1243 * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains 1244 * non-ASCII unicode symbols. 1245 */ 1246 int cifs_inval_name_dfs_link_error(const unsigned int xid, 1247 struct cifs_tcon *tcon, 1248 struct cifs_sb_info *cifs_sb, 1249 const char *full_path, 1250 bool *islink) 1251 { 1252 struct cifs_ses *ses = tcon->ses; 1253 size_t len; 1254 char *path; 1255 char *ref_path; 1256 1257 *islink = false; 1258 1259 /* 1260 * Fast path - skip check when @full_path doesn't have a prefix path to 1261 * look up or tcon is not DFS. 1262 */ 1263 if (strlen(full_path) < 2 || !cifs_sb || 1264 (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) || 1265 !is_tcon_dfs(tcon)) 1266 return 0; 1267 1268 spin_lock(&tcon->tc_lock); 1269 if (!tcon->origin_fullpath) { 1270 spin_unlock(&tcon->tc_lock); 1271 return 0; 1272 } 1273 spin_unlock(&tcon->tc_lock); 1274 1275 /* 1276 * Slow path - tcon is DFS and @full_path has prefix path, so attempt 1277 * to get a referral to figure out whether it is an DFS link. 1278 */ 1279 len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1; 1280 path = kmalloc(len, GFP_KERNEL); 1281 if (!path) 1282 return -ENOMEM; 1283 1284 scnprintf(path, len, "%s%s", tcon->tree_name, full_path); 1285 ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls, 1286 cifs_remap(cifs_sb)); 1287 kfree(path); 1288 1289 if (IS_ERR(ref_path)) { 1290 if (PTR_ERR(ref_path) != -EINVAL) 1291 return PTR_ERR(ref_path); 1292 } else { 1293 struct dfs_info3_param *refs = NULL; 1294 int num_refs = 0; 1295 1296 /* 1297 * XXX: we are not using dfs_cache_find() here because we might 1298 * end up filling all the DFS cache and thus potentially 1299 * removing cached DFS targets that the client would eventually 1300 * need during failover. 1301 */ 1302 ses = CIFS_DFS_ROOT_SES(ses); 1303 if (ses->server->ops->get_dfs_refer && 1304 !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs, 1305 &num_refs, cifs_sb->local_nls, 1306 cifs_remap(cifs_sb))) 1307 *islink = refs[0].server_type == DFS_TYPE_LINK; 1308 free_dfs_info_array(refs, num_refs); 1309 kfree(ref_path); 1310 } 1311 return 0; 1312 } 1313 #endif 1314 1315 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry) 1316 { 1317 int timeout = 10; 1318 int rc; 1319 1320 spin_lock(&server->srv_lock); 1321 if (server->tcpStatus != CifsNeedReconnect) { 1322 spin_unlock(&server->srv_lock); 1323 return 0; 1324 } 1325 timeout *= server->nr_targets; 1326 spin_unlock(&server->srv_lock); 1327 1328 /* 1329 * Give demultiplex thread up to 10 seconds to each target available for 1330 * reconnect -- should be greater than cifs socket timeout which is 7 1331 * seconds. 1332 * 1333 * On "soft" mounts we wait once. Hard mounts keep retrying until 1334 * process is killed or server comes back on-line. 1335 */ 1336 do { 1337 rc = wait_event_interruptible_timeout(server->response_q, 1338 (server->tcpStatus != CifsNeedReconnect), 1339 timeout * HZ); 1340 if (rc < 0) { 1341 cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n", 1342 __func__); 1343 return -ERESTARTSYS; 1344 } 1345 1346 /* are we still trying to reconnect? */ 1347 spin_lock(&server->srv_lock); 1348 if (server->tcpStatus != CifsNeedReconnect) { 1349 spin_unlock(&server->srv_lock); 1350 return 0; 1351 } 1352 spin_unlock(&server->srv_lock); 1353 } while (retry); 1354 1355 cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__); 1356 return -EHOSTDOWN; 1357 } 1358