xref: /openbmc/linux/fs/smb/client/misc.c (revision 63fb4af8)
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #include "dfs.h"
26 #endif
27 #include "fs_context.h"
28 #include "cached_dir.h"
29 
30 extern mempool_t *cifs_sm_req_poolp;
31 extern mempool_t *cifs_req_poolp;
32 
33 /* The xid serves as a useful identifier for each incoming vfs request,
34    in a similar way to the mid which is useful to track each sent smb,
35    and CurrentXid can also provide a running counter (although it
36    will eventually wrap past zero) of the total vfs operations handled
37    since the cifs fs was mounted */
38 
39 unsigned int
40 _get_xid(void)
41 {
42 	unsigned int xid;
43 
44 	spin_lock(&GlobalMid_Lock);
45 	GlobalTotalActiveXid++;
46 
47 	/* keep high water mark for number of simultaneous ops in filesystem */
48 	if (GlobalTotalActiveXid > GlobalMaxActiveXid)
49 		GlobalMaxActiveXid = GlobalTotalActiveXid;
50 	if (GlobalTotalActiveXid > 65000)
51 		cifs_dbg(FYI, "warning: more than 65000 requests active\n");
52 	xid = GlobalCurrentXid++;
53 	spin_unlock(&GlobalMid_Lock);
54 	return xid;
55 }
56 
57 void
58 _free_xid(unsigned int xid)
59 {
60 	spin_lock(&GlobalMid_Lock);
61 	/* if (GlobalTotalActiveXid == 0)
62 		BUG(); */
63 	GlobalTotalActiveXid--;
64 	spin_unlock(&GlobalMid_Lock);
65 }
66 
67 struct cifs_ses *
68 sesInfoAlloc(void)
69 {
70 	struct cifs_ses *ret_buf;
71 
72 	ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
73 	if (ret_buf) {
74 		atomic_inc(&sesInfoAllocCount);
75 		spin_lock_init(&ret_buf->ses_lock);
76 		ret_buf->ses_status = SES_NEW;
77 		++ret_buf->ses_count;
78 		INIT_LIST_HEAD(&ret_buf->smb_ses_list);
79 		INIT_LIST_HEAD(&ret_buf->tcon_list);
80 		mutex_init(&ret_buf->session_mutex);
81 		spin_lock_init(&ret_buf->iface_lock);
82 		INIT_LIST_HEAD(&ret_buf->iface_list);
83 		spin_lock_init(&ret_buf->chan_lock);
84 	}
85 	return ret_buf;
86 }
87 
88 void
89 sesInfoFree(struct cifs_ses *buf_to_free)
90 {
91 	struct cifs_server_iface *iface = NULL, *niface = NULL;
92 
93 	if (buf_to_free == NULL) {
94 		cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
95 		return;
96 	}
97 
98 	unload_nls(buf_to_free->local_nls);
99 	atomic_dec(&sesInfoAllocCount);
100 	kfree(buf_to_free->serverOS);
101 	kfree(buf_to_free->serverDomain);
102 	kfree(buf_to_free->serverNOS);
103 	kfree_sensitive(buf_to_free->password);
104 	kfree(buf_to_free->user_name);
105 	kfree(buf_to_free->domainName);
106 	kfree_sensitive(buf_to_free->auth_key.response);
107 	spin_lock(&buf_to_free->iface_lock);
108 	list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
109 				 iface_head)
110 		kref_put(&iface->refcount, release_iface);
111 	spin_unlock(&buf_to_free->iface_lock);
112 	kfree_sensitive(buf_to_free);
113 }
114 
115 struct cifs_tcon *
116 tcon_info_alloc(bool dir_leases_enabled)
117 {
118 	struct cifs_tcon *ret_buf;
119 
120 	ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
121 	if (!ret_buf)
122 		return NULL;
123 
124 	if (dir_leases_enabled == true) {
125 		ret_buf->cfids = init_cached_dirs();
126 		if (!ret_buf->cfids) {
127 			kfree(ret_buf);
128 			return NULL;
129 		}
130 	}
131 	/* else ret_buf->cfids is already set to NULL above */
132 
133 	atomic_inc(&tconInfoAllocCount);
134 	ret_buf->status = TID_NEW;
135 	++ret_buf->tc_count;
136 	spin_lock_init(&ret_buf->tc_lock);
137 	INIT_LIST_HEAD(&ret_buf->openFileList);
138 	INIT_LIST_HEAD(&ret_buf->tcon_list);
139 	spin_lock_init(&ret_buf->open_file_lock);
140 	spin_lock_init(&ret_buf->stat_lock);
141 	atomic_set(&ret_buf->num_local_opens, 0);
142 	atomic_set(&ret_buf->num_remote_opens, 0);
143 	ret_buf->stats_from_time = ktime_get_real_seconds();
144 
145 	return ret_buf;
146 }
147 
148 void
149 tconInfoFree(struct cifs_tcon *tcon)
150 {
151 	if (tcon == NULL) {
152 		cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
153 		return;
154 	}
155 	free_cached_dirs(tcon->cfids);
156 	atomic_dec(&tconInfoAllocCount);
157 	kfree(tcon->nativeFileSystem);
158 	kfree_sensitive(tcon->password);
159 	kfree(tcon->origin_fullpath);
160 	kfree(tcon);
161 }
162 
163 struct smb_hdr *
164 cifs_buf_get(void)
165 {
166 	struct smb_hdr *ret_buf = NULL;
167 	/*
168 	 * SMB2 header is bigger than CIFS one - no problems to clean some
169 	 * more bytes for CIFS.
170 	 */
171 	size_t buf_size = sizeof(struct smb2_hdr);
172 
173 	/*
174 	 * We could use negotiated size instead of max_msgsize -
175 	 * but it may be more efficient to always alloc same size
176 	 * albeit slightly larger than necessary and maxbuffersize
177 	 * defaults to this and can not be bigger.
178 	 */
179 	ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
180 
181 	/* clear the first few header bytes */
182 	/* for most paths, more is cleared in header_assemble */
183 	memset(ret_buf, 0, buf_size + 3);
184 	atomic_inc(&buf_alloc_count);
185 #ifdef CONFIG_CIFS_STATS2
186 	atomic_inc(&total_buf_alloc_count);
187 #endif /* CONFIG_CIFS_STATS2 */
188 
189 	return ret_buf;
190 }
191 
192 void
193 cifs_buf_release(void *buf_to_free)
194 {
195 	if (buf_to_free == NULL) {
196 		/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
197 		return;
198 	}
199 	mempool_free(buf_to_free, cifs_req_poolp);
200 
201 	atomic_dec(&buf_alloc_count);
202 	return;
203 }
204 
205 struct smb_hdr *
206 cifs_small_buf_get(void)
207 {
208 	struct smb_hdr *ret_buf = NULL;
209 
210 /* We could use negotiated size instead of max_msgsize -
211    but it may be more efficient to always alloc same size
212    albeit slightly larger than necessary and maxbuffersize
213    defaults to this and can not be bigger */
214 	ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
215 	/* No need to clear memory here, cleared in header assemble */
216 	/*	memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
217 	atomic_inc(&small_buf_alloc_count);
218 #ifdef CONFIG_CIFS_STATS2
219 	atomic_inc(&total_small_buf_alloc_count);
220 #endif /* CONFIG_CIFS_STATS2 */
221 
222 	return ret_buf;
223 }
224 
225 void
226 cifs_small_buf_release(void *buf_to_free)
227 {
228 
229 	if (buf_to_free == NULL) {
230 		cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
231 		return;
232 	}
233 	mempool_free(buf_to_free, cifs_sm_req_poolp);
234 
235 	atomic_dec(&small_buf_alloc_count);
236 	return;
237 }
238 
239 void
240 free_rsp_buf(int resp_buftype, void *rsp)
241 {
242 	if (resp_buftype == CIFS_SMALL_BUFFER)
243 		cifs_small_buf_release(rsp);
244 	else if (resp_buftype == CIFS_LARGE_BUFFER)
245 		cifs_buf_release(rsp);
246 }
247 
248 /* NB: MID can not be set if treeCon not passed in, in that
249    case it is responsbility of caller to set the mid */
250 void
251 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
252 		const struct cifs_tcon *treeCon, int word_count
253 		/* length of fixed section (word count) in two byte units  */)
254 {
255 	char *temp = (char *) buffer;
256 
257 	memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
258 
259 	buffer->smb_buf_length = cpu_to_be32(
260 	    (2 * word_count) + sizeof(struct smb_hdr) -
261 	    4 /*  RFC 1001 length field does not count */  +
262 	    2 /* for bcc field itself */) ;
263 
264 	buffer->Protocol[0] = 0xFF;
265 	buffer->Protocol[1] = 'S';
266 	buffer->Protocol[2] = 'M';
267 	buffer->Protocol[3] = 'B';
268 	buffer->Command = smb_command;
269 	buffer->Flags = 0x00;	/* case sensitive */
270 	buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
271 	buffer->Pid = cpu_to_le16((__u16)current->tgid);
272 	buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
273 	if (treeCon) {
274 		buffer->Tid = treeCon->tid;
275 		if (treeCon->ses) {
276 			if (treeCon->ses->capabilities & CAP_UNICODE)
277 				buffer->Flags2 |= SMBFLG2_UNICODE;
278 			if (treeCon->ses->capabilities & CAP_STATUS32)
279 				buffer->Flags2 |= SMBFLG2_ERR_STATUS;
280 
281 			/* Uid is not converted */
282 			buffer->Uid = treeCon->ses->Suid;
283 			if (treeCon->ses->server)
284 				buffer->Mid = get_next_mid(treeCon->ses->server);
285 		}
286 		if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
287 			buffer->Flags2 |= SMBFLG2_DFS;
288 		if (treeCon->nocase)
289 			buffer->Flags  |= SMBFLG_CASELESS;
290 		if ((treeCon->ses) && (treeCon->ses->server))
291 			if (treeCon->ses->server->sign)
292 				buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
293 	}
294 
295 /*  endian conversion of flags is now done just before sending */
296 	buffer->WordCount = (char) word_count;
297 	return;
298 }
299 
300 static int
301 check_smb_hdr(struct smb_hdr *smb)
302 {
303 	/* does it have the right SMB "signature" ? */
304 	if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
305 		cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
306 			 *(unsigned int *)smb->Protocol);
307 		return 1;
308 	}
309 
310 	/* if it's a response then accept */
311 	if (smb->Flags & SMBFLG_RESPONSE)
312 		return 0;
313 
314 	/* only one valid case where server sends us request */
315 	if (smb->Command == SMB_COM_LOCKING_ANDX)
316 		return 0;
317 
318 	cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
319 		 get_mid(smb));
320 	return 1;
321 }
322 
323 int
324 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
325 {
326 	struct smb_hdr *smb = (struct smb_hdr *)buf;
327 	__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
328 	__u32 clc_len;  /* calculated length */
329 	cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
330 		 total_read, rfclen);
331 
332 	/* is this frame too small to even get to a BCC? */
333 	if (total_read < 2 + sizeof(struct smb_hdr)) {
334 		if ((total_read >= sizeof(struct smb_hdr) - 1)
335 			    && (smb->Status.CifsError != 0)) {
336 			/* it's an error return */
337 			smb->WordCount = 0;
338 			/* some error cases do not return wct and bcc */
339 			return 0;
340 		} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
341 				(smb->WordCount == 0)) {
342 			char *tmp = (char *)smb;
343 			/* Need to work around a bug in two servers here */
344 			/* First, check if the part of bcc they sent was zero */
345 			if (tmp[sizeof(struct smb_hdr)] == 0) {
346 				/* some servers return only half of bcc
347 				 * on simple responses (wct, bcc both zero)
348 				 * in particular have seen this on
349 				 * ulogoffX and FindClose. This leaves
350 				 * one byte of bcc potentially unitialized
351 				 */
352 				/* zero rest of bcc */
353 				tmp[sizeof(struct smb_hdr)+1] = 0;
354 				return 0;
355 			}
356 			cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
357 		} else {
358 			cifs_dbg(VFS, "Length less than smb header size\n");
359 		}
360 		return -EIO;
361 	} else if (total_read < sizeof(*smb) + 2 * smb->WordCount) {
362 		cifs_dbg(VFS, "%s: can't read BCC due to invalid WordCount(%u)\n",
363 			 __func__, smb->WordCount);
364 		return -EIO;
365 	}
366 
367 	/* otherwise, there is enough to get to the BCC */
368 	if (check_smb_hdr(smb))
369 		return -EIO;
370 	clc_len = smbCalcSize(smb);
371 
372 	if (4 + rfclen != total_read) {
373 		cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
374 			 rfclen);
375 		return -EIO;
376 	}
377 
378 	if (4 + rfclen != clc_len) {
379 		__u16 mid = get_mid(smb);
380 		/* check if bcc wrapped around for large read responses */
381 		if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
382 			/* check if lengths match mod 64K */
383 			if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
384 				return 0; /* bcc wrapped */
385 		}
386 		cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
387 			 clc_len, 4 + rfclen, mid);
388 
389 		if (4 + rfclen < clc_len) {
390 			cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
391 				 rfclen, mid);
392 			return -EIO;
393 		} else if (rfclen > clc_len + 512) {
394 			/*
395 			 * Some servers (Windows XP in particular) send more
396 			 * data than the lengths in the SMB packet would
397 			 * indicate on certain calls (byte range locks and
398 			 * trans2 find first calls in particular). While the
399 			 * client can handle such a frame by ignoring the
400 			 * trailing data, we choose limit the amount of extra
401 			 * data to 512 bytes.
402 			 */
403 			cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
404 				 rfclen, mid);
405 			return -EIO;
406 		}
407 	}
408 	return 0;
409 }
410 
411 bool
412 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
413 {
414 	struct smb_hdr *buf = (struct smb_hdr *)buffer;
415 	struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
416 	struct TCP_Server_Info *pserver;
417 	struct cifs_ses *ses;
418 	struct cifs_tcon *tcon;
419 	struct cifsInodeInfo *pCifsInode;
420 	struct cifsFileInfo *netfile;
421 
422 	cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
423 	if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
424 	   (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
425 		struct smb_com_transaction_change_notify_rsp *pSMBr =
426 			(struct smb_com_transaction_change_notify_rsp *)buf;
427 		struct file_notify_information *pnotify;
428 		__u32 data_offset = 0;
429 		size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
430 
431 		if (get_bcc(buf) > sizeof(struct file_notify_information)) {
432 			data_offset = le32_to_cpu(pSMBr->DataOffset);
433 
434 			if (data_offset >
435 			    len - sizeof(struct file_notify_information)) {
436 				cifs_dbg(FYI, "Invalid data_offset %u\n",
437 					 data_offset);
438 				return true;
439 			}
440 			pnotify = (struct file_notify_information *)
441 				((char *)&pSMBr->hdr.Protocol + data_offset);
442 			cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
443 				 pnotify->FileName, pnotify->Action);
444 			/*   cifs_dump_mem("Rcvd notify Data: ",buf,
445 				sizeof(struct smb_hdr)+60); */
446 			return true;
447 		}
448 		if (pSMBr->hdr.Status.CifsError) {
449 			cifs_dbg(FYI, "notify err 0x%x\n",
450 				 pSMBr->hdr.Status.CifsError);
451 			return true;
452 		}
453 		return false;
454 	}
455 	if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
456 		return false;
457 	if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
458 		/* no sense logging error on invalid handle on oplock
459 		   break - harmless race between close request and oplock
460 		   break response is expected from time to time writing out
461 		   large dirty files cached on the client */
462 		if ((NT_STATUS_INVALID_HANDLE) ==
463 		   le32_to_cpu(pSMB->hdr.Status.CifsError)) {
464 			cifs_dbg(FYI, "Invalid handle on oplock break\n");
465 			return true;
466 		} else if (ERRbadfid ==
467 		   le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
468 			return true;
469 		} else {
470 			return false; /* on valid oplock brk we get "request" */
471 		}
472 	}
473 	if (pSMB->hdr.WordCount != 8)
474 		return false;
475 
476 	cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
477 		 pSMB->LockType, pSMB->OplockLevel);
478 	if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
479 		return false;
480 
481 	/* If server is a channel, select the primary channel */
482 	pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
483 
484 	/* look up tcon based on tid & uid */
485 	spin_lock(&cifs_tcp_ses_lock);
486 	list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
487 		if (cifs_ses_exiting(ses))
488 			continue;
489 		list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
490 			if (tcon->tid != buf->Tid)
491 				continue;
492 
493 			cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
494 			spin_lock(&tcon->open_file_lock);
495 			list_for_each_entry(netfile, &tcon->openFileList, tlist) {
496 				if (pSMB->Fid != netfile->fid.netfid)
497 					continue;
498 
499 				cifs_dbg(FYI, "file id match, oplock break\n");
500 				pCifsInode = CIFS_I(d_inode(netfile->dentry));
501 
502 				set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
503 					&pCifsInode->flags);
504 
505 				netfile->oplock_epoch = 0;
506 				netfile->oplock_level = pSMB->OplockLevel;
507 				netfile->oplock_break_cancelled = false;
508 				cifs_queue_oplock_break(netfile);
509 
510 				spin_unlock(&tcon->open_file_lock);
511 				spin_unlock(&cifs_tcp_ses_lock);
512 				return true;
513 			}
514 			spin_unlock(&tcon->open_file_lock);
515 			spin_unlock(&cifs_tcp_ses_lock);
516 			cifs_dbg(FYI, "No matching file for oplock break\n");
517 			return true;
518 		}
519 	}
520 	spin_unlock(&cifs_tcp_ses_lock);
521 	cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
522 	return true;
523 }
524 
525 void
526 dump_smb(void *buf, int smb_buf_length)
527 {
528 	if (traceSMB == 0)
529 		return;
530 
531 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
532 		       smb_buf_length, true);
533 }
534 
535 void
536 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
537 {
538 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
539 		struct cifs_tcon *tcon = NULL;
540 
541 		if (cifs_sb->master_tlink)
542 			tcon = cifs_sb_master_tcon(cifs_sb);
543 
544 		cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
545 		cifs_sb->mnt_cifs_serverino_autodisabled = true;
546 		cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
547 			 tcon ? tcon->tree_name : "new server");
548 		cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
549 		cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
550 
551 	}
552 }
553 
554 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
555 {
556 	oplock &= 0xF;
557 
558 	if (oplock == OPLOCK_EXCLUSIVE) {
559 		cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
560 		cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
561 			 &cinode->netfs.inode);
562 	} else if (oplock == OPLOCK_READ) {
563 		cinode->oplock = CIFS_CACHE_READ_FLG;
564 		cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
565 			 &cinode->netfs.inode);
566 	} else
567 		cinode->oplock = 0;
568 }
569 
570 /*
571  * We wait for oplock breaks to be processed before we attempt to perform
572  * writes.
573  */
574 int cifs_get_writer(struct cifsInodeInfo *cinode)
575 {
576 	int rc;
577 
578 start:
579 	rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
580 			 TASK_KILLABLE);
581 	if (rc)
582 		return rc;
583 
584 	spin_lock(&cinode->writers_lock);
585 	if (!cinode->writers)
586 		set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
587 	cinode->writers++;
588 	/* Check to see if we have started servicing an oplock break */
589 	if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
590 		cinode->writers--;
591 		if (cinode->writers == 0) {
592 			clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
593 			wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
594 		}
595 		spin_unlock(&cinode->writers_lock);
596 		goto start;
597 	}
598 	spin_unlock(&cinode->writers_lock);
599 	return 0;
600 }
601 
602 void cifs_put_writer(struct cifsInodeInfo *cinode)
603 {
604 	spin_lock(&cinode->writers_lock);
605 	cinode->writers--;
606 	if (cinode->writers == 0) {
607 		clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
608 		wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
609 	}
610 	spin_unlock(&cinode->writers_lock);
611 }
612 
613 /**
614  * cifs_queue_oplock_break - queue the oplock break handler for cfile
615  * @cfile: The file to break the oplock on
616  *
617  * This function is called from the demultiplex thread when it
618  * receives an oplock break for @cfile.
619  *
620  * Assumes the tcon->open_file_lock is held.
621  * Assumes cfile->file_info_lock is NOT held.
622  */
623 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
624 {
625 	/*
626 	 * Bump the handle refcount now while we hold the
627 	 * open_file_lock to enforce the validity of it for the oplock
628 	 * break handler. The matching put is done at the end of the
629 	 * handler.
630 	 */
631 	cifsFileInfo_get(cfile);
632 
633 	queue_work(cifsoplockd_wq, &cfile->oplock_break);
634 }
635 
636 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
637 {
638 	clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
639 	wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
640 }
641 
642 bool
643 backup_cred(struct cifs_sb_info *cifs_sb)
644 {
645 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
646 		if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
647 			return true;
648 	}
649 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
650 		if (in_group_p(cifs_sb->ctx->backupgid))
651 			return true;
652 	}
653 
654 	return false;
655 }
656 
657 void
658 cifs_del_pending_open(struct cifs_pending_open *open)
659 {
660 	spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
661 	list_del(&open->olist);
662 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
663 }
664 
665 void
666 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
667 			     struct cifs_pending_open *open)
668 {
669 	memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
670 	open->oplock = CIFS_OPLOCK_NO_CHANGE;
671 	open->tlink = tlink;
672 	fid->pending_open = open;
673 	list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
674 }
675 
676 void
677 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
678 		      struct cifs_pending_open *open)
679 {
680 	spin_lock(&tlink_tcon(tlink)->open_file_lock);
681 	cifs_add_pending_open_locked(fid, tlink, open);
682 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
683 }
684 
685 /*
686  * Critical section which runs after acquiring deferred_lock.
687  * As there is no reference count on cifs_deferred_close, pdclose
688  * should not be used outside deferred_lock.
689  */
690 bool
691 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
692 {
693 	struct cifs_deferred_close *dclose;
694 
695 	list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
696 		if ((dclose->netfid == cfile->fid.netfid) &&
697 			(dclose->persistent_fid == cfile->fid.persistent_fid) &&
698 			(dclose->volatile_fid == cfile->fid.volatile_fid)) {
699 			*pdclose = dclose;
700 			return true;
701 		}
702 	}
703 	return false;
704 }
705 
706 /*
707  * Critical section which runs after acquiring deferred_lock.
708  */
709 void
710 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
711 {
712 	bool is_deferred = false;
713 	struct cifs_deferred_close *pdclose;
714 
715 	is_deferred = cifs_is_deferred_close(cfile, &pdclose);
716 	if (is_deferred) {
717 		kfree(dclose);
718 		return;
719 	}
720 
721 	dclose->tlink = cfile->tlink;
722 	dclose->netfid = cfile->fid.netfid;
723 	dclose->persistent_fid = cfile->fid.persistent_fid;
724 	dclose->volatile_fid = cfile->fid.volatile_fid;
725 	list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
726 }
727 
728 /*
729  * Critical section which runs after acquiring deferred_lock.
730  */
731 void
732 cifs_del_deferred_close(struct cifsFileInfo *cfile)
733 {
734 	bool is_deferred = false;
735 	struct cifs_deferred_close *dclose;
736 
737 	is_deferred = cifs_is_deferred_close(cfile, &dclose);
738 	if (!is_deferred)
739 		return;
740 	list_del(&dclose->dlist);
741 	kfree(dclose);
742 }
743 
744 void
745 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
746 {
747 	struct cifsFileInfo *cfile = NULL;
748 	struct file_list *tmp_list, *tmp_next_list;
749 	struct list_head file_head;
750 
751 	if (cifs_inode == NULL)
752 		return;
753 
754 	INIT_LIST_HEAD(&file_head);
755 	spin_lock(&cifs_inode->open_file_lock);
756 	list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
757 		if (delayed_work_pending(&cfile->deferred)) {
758 			if (cancel_delayed_work(&cfile->deferred)) {
759 				spin_lock(&cifs_inode->deferred_lock);
760 				cifs_del_deferred_close(cfile);
761 				spin_unlock(&cifs_inode->deferred_lock);
762 
763 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
764 				if (tmp_list == NULL)
765 					break;
766 				tmp_list->cfile = cfile;
767 				list_add_tail(&tmp_list->list, &file_head);
768 			}
769 		}
770 	}
771 	spin_unlock(&cifs_inode->open_file_lock);
772 
773 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
774 		_cifsFileInfo_put(tmp_list->cfile, false, false);
775 		list_del(&tmp_list->list);
776 		kfree(tmp_list);
777 	}
778 }
779 
780 void
781 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
782 {
783 	struct cifsFileInfo *cfile;
784 	struct file_list *tmp_list, *tmp_next_list;
785 	struct list_head file_head;
786 
787 	INIT_LIST_HEAD(&file_head);
788 	spin_lock(&tcon->open_file_lock);
789 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
790 		if (delayed_work_pending(&cfile->deferred)) {
791 			if (cancel_delayed_work(&cfile->deferred)) {
792 				spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
793 				cifs_del_deferred_close(cfile);
794 				spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
795 
796 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
797 				if (tmp_list == NULL)
798 					break;
799 				tmp_list->cfile = cfile;
800 				list_add_tail(&tmp_list->list, &file_head);
801 			}
802 		}
803 	}
804 	spin_unlock(&tcon->open_file_lock);
805 
806 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
807 		_cifsFileInfo_put(tmp_list->cfile, true, false);
808 		list_del(&tmp_list->list);
809 		kfree(tmp_list);
810 	}
811 }
812 void
813 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
814 {
815 	struct cifsFileInfo *cfile;
816 	struct file_list *tmp_list, *tmp_next_list;
817 	struct list_head file_head;
818 	void *page;
819 	const char *full_path;
820 
821 	INIT_LIST_HEAD(&file_head);
822 	page = alloc_dentry_path();
823 	spin_lock(&tcon->open_file_lock);
824 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
825 		full_path = build_path_from_dentry(cfile->dentry, page);
826 		if (strstr(full_path, path)) {
827 			if (delayed_work_pending(&cfile->deferred)) {
828 				if (cancel_delayed_work(&cfile->deferred)) {
829 					spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
830 					cifs_del_deferred_close(cfile);
831 					spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
832 
833 					tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
834 					if (tmp_list == NULL)
835 						break;
836 					tmp_list->cfile = cfile;
837 					list_add_tail(&tmp_list->list, &file_head);
838 				}
839 			}
840 		}
841 	}
842 	spin_unlock(&tcon->open_file_lock);
843 
844 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
845 		_cifsFileInfo_put(tmp_list->cfile, true, false);
846 		list_del(&tmp_list->list);
847 		kfree(tmp_list);
848 	}
849 	free_dentry_path(page);
850 }
851 
852 /* parses DFS referral V3 structure
853  * caller is responsible for freeing target_nodes
854  * returns:
855  * - on success - 0
856  * - on failure - errno
857  */
858 int
859 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
860 		    unsigned int *num_of_nodes,
861 		    struct dfs_info3_param **target_nodes,
862 		    const struct nls_table *nls_codepage, int remap,
863 		    const char *searchName, bool is_unicode)
864 {
865 	int i, rc = 0;
866 	char *data_end;
867 	struct dfs_referral_level_3 *ref;
868 
869 	*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
870 
871 	if (*num_of_nodes < 1) {
872 		cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
873 			 *num_of_nodes);
874 		rc = -EINVAL;
875 		goto parse_DFS_referrals_exit;
876 	}
877 
878 	ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
879 	if (ref->VersionNumber != cpu_to_le16(3)) {
880 		cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
881 			 le16_to_cpu(ref->VersionNumber));
882 		rc = -EINVAL;
883 		goto parse_DFS_referrals_exit;
884 	}
885 
886 	/* get the upper boundary of the resp buffer */
887 	data_end = (char *)rsp + rsp_size;
888 
889 	cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
890 		 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
891 
892 	*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
893 				GFP_KERNEL);
894 	if (*target_nodes == NULL) {
895 		rc = -ENOMEM;
896 		goto parse_DFS_referrals_exit;
897 	}
898 
899 	/* collect necessary data from referrals */
900 	for (i = 0; i < *num_of_nodes; i++) {
901 		char *temp;
902 		int max_len;
903 		struct dfs_info3_param *node = (*target_nodes)+i;
904 
905 		node->flags = le32_to_cpu(rsp->DFSFlags);
906 		if (is_unicode) {
907 			__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
908 						GFP_KERNEL);
909 			if (tmp == NULL) {
910 				rc = -ENOMEM;
911 				goto parse_DFS_referrals_exit;
912 			}
913 			cifsConvertToUTF16((__le16 *) tmp, searchName,
914 					   PATH_MAX, nls_codepage, remap);
915 			node->path_consumed = cifs_utf16_bytes(tmp,
916 					le16_to_cpu(rsp->PathConsumed),
917 					nls_codepage);
918 			kfree(tmp);
919 		} else
920 			node->path_consumed = le16_to_cpu(rsp->PathConsumed);
921 
922 		node->server_type = le16_to_cpu(ref->ServerType);
923 		node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
924 
925 		/* copy DfsPath */
926 		temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
927 		max_len = data_end - temp;
928 		node->path_name = cifs_strndup_from_utf16(temp, max_len,
929 						is_unicode, nls_codepage);
930 		if (!node->path_name) {
931 			rc = -ENOMEM;
932 			goto parse_DFS_referrals_exit;
933 		}
934 
935 		/* copy link target UNC */
936 		temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
937 		max_len = data_end - temp;
938 		node->node_name = cifs_strndup_from_utf16(temp, max_len,
939 						is_unicode, nls_codepage);
940 		if (!node->node_name) {
941 			rc = -ENOMEM;
942 			goto parse_DFS_referrals_exit;
943 		}
944 
945 		node->ttl = le32_to_cpu(ref->TimeToLive);
946 
947 		ref++;
948 	}
949 
950 parse_DFS_referrals_exit:
951 	if (rc) {
952 		free_dfs_info_array(*target_nodes, *num_of_nodes);
953 		*target_nodes = NULL;
954 		*num_of_nodes = 0;
955 	}
956 	return rc;
957 }
958 
959 struct cifs_aio_ctx *
960 cifs_aio_ctx_alloc(void)
961 {
962 	struct cifs_aio_ctx *ctx;
963 
964 	/*
965 	 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
966 	 * to false so that we know when we have to unreference pages within
967 	 * cifs_aio_ctx_release()
968 	 */
969 	ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
970 	if (!ctx)
971 		return NULL;
972 
973 	INIT_LIST_HEAD(&ctx->list);
974 	mutex_init(&ctx->aio_mutex);
975 	init_completion(&ctx->done);
976 	kref_init(&ctx->refcount);
977 	return ctx;
978 }
979 
980 void
981 cifs_aio_ctx_release(struct kref *refcount)
982 {
983 	struct cifs_aio_ctx *ctx = container_of(refcount,
984 					struct cifs_aio_ctx, refcount);
985 
986 	cifsFileInfo_put(ctx->cfile);
987 
988 	/*
989 	 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
990 	 * which means that iov_iter_extract_pages() was a success and thus
991 	 * that we may have references or pins on pages that we need to
992 	 * release.
993 	 */
994 	if (ctx->bv) {
995 		if (ctx->should_dirty || ctx->bv_need_unpin) {
996 			unsigned int i;
997 
998 			for (i = 0; i < ctx->nr_pinned_pages; i++) {
999 				struct page *page = ctx->bv[i].bv_page;
1000 
1001 				if (ctx->should_dirty)
1002 					set_page_dirty(page);
1003 				if (ctx->bv_need_unpin)
1004 					unpin_user_page(page);
1005 			}
1006 		}
1007 		kvfree(ctx->bv);
1008 	}
1009 
1010 	kfree(ctx);
1011 }
1012 
1013 /**
1014  * cifs_alloc_hash - allocate hash and hash context together
1015  * @name: The name of the crypto hash algo
1016  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1017  *
1018  * The caller has to make sure @sdesc is initialized to either NULL or
1019  * a valid context. It can be freed via cifs_free_hash().
1020  */
1021 int
1022 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1023 {
1024 	int rc = 0;
1025 	struct crypto_shash *alg = NULL;
1026 
1027 	if (*sdesc)
1028 		return 0;
1029 
1030 	alg = crypto_alloc_shash(name, 0, 0);
1031 	if (IS_ERR(alg)) {
1032 		cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1033 		rc = PTR_ERR(alg);
1034 		*sdesc = NULL;
1035 		return rc;
1036 	}
1037 
1038 	*sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1039 	if (*sdesc == NULL) {
1040 		cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1041 		crypto_free_shash(alg);
1042 		return -ENOMEM;
1043 	}
1044 
1045 	(*sdesc)->tfm = alg;
1046 	return 0;
1047 }
1048 
1049 /**
1050  * cifs_free_hash - free hash and hash context together
1051  * @sdesc: Where to find the pointer to the hash TFM
1052  *
1053  * Freeing a NULL descriptor is safe.
1054  */
1055 void
1056 cifs_free_hash(struct shash_desc **sdesc)
1057 {
1058 	if (unlikely(!sdesc) || !*sdesc)
1059 		return;
1060 
1061 	if ((*sdesc)->tfm) {
1062 		crypto_free_shash((*sdesc)->tfm);
1063 		(*sdesc)->tfm = NULL;
1064 	}
1065 
1066 	kfree_sensitive(*sdesc);
1067 	*sdesc = NULL;
1068 }
1069 
1070 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1071 {
1072 	const char *end;
1073 
1074 	/* skip initial slashes */
1075 	while (*unc && (*unc == '\\' || *unc == '/'))
1076 		unc++;
1077 
1078 	end = unc;
1079 
1080 	while (*end && !(*end == '\\' || *end == '/'))
1081 		end++;
1082 
1083 	*h = unc;
1084 	*len = end - unc;
1085 }
1086 
1087 /**
1088  * copy_path_name - copy src path to dst, possibly truncating
1089  * @dst: The destination buffer
1090  * @src: The source name
1091  *
1092  * returns number of bytes written (including trailing nul)
1093  */
1094 int copy_path_name(char *dst, const char *src)
1095 {
1096 	int name_len;
1097 
1098 	/*
1099 	 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1100 	 * will truncate and strlen(dst) will be PATH_MAX-1
1101 	 */
1102 	name_len = strscpy(dst, src, PATH_MAX);
1103 	if (WARN_ON_ONCE(name_len < 0))
1104 		name_len = PATH_MAX-1;
1105 
1106 	/* we count the trailing nul */
1107 	name_len++;
1108 	return name_len;
1109 }
1110 
1111 struct super_cb_data {
1112 	void *data;
1113 	struct super_block *sb;
1114 };
1115 
1116 static void tcon_super_cb(struct super_block *sb, void *arg)
1117 {
1118 	struct super_cb_data *sd = arg;
1119 	struct cifs_sb_info *cifs_sb;
1120 	struct cifs_tcon *t1 = sd->data, *t2;
1121 
1122 	if (sd->sb)
1123 		return;
1124 
1125 	cifs_sb = CIFS_SB(sb);
1126 	t2 = cifs_sb_master_tcon(cifs_sb);
1127 
1128 	spin_lock(&t2->tc_lock);
1129 	if (t1->ses == t2->ses &&
1130 	    t1->ses->server == t2->ses->server &&
1131 	    t2->origin_fullpath &&
1132 	    dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
1133 		sd->sb = sb;
1134 	spin_unlock(&t2->tc_lock);
1135 }
1136 
1137 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1138 					    void *data)
1139 {
1140 	struct super_cb_data sd = {
1141 		.data = data,
1142 		.sb = NULL,
1143 	};
1144 	struct file_system_type **fs_type = (struct file_system_type *[]) {
1145 		&cifs_fs_type, &smb3_fs_type, NULL,
1146 	};
1147 
1148 	for (; *fs_type; fs_type++) {
1149 		iterate_supers_type(*fs_type, f, &sd);
1150 		if (sd.sb) {
1151 			/*
1152 			 * Grab an active reference in order to prevent automounts (DFS links)
1153 			 * of expiring and then freeing up our cifs superblock pointer while
1154 			 * we're doing failover.
1155 			 */
1156 			cifs_sb_active(sd.sb);
1157 			return sd.sb;
1158 		}
1159 	}
1160 	pr_warn_once("%s: could not find dfs superblock\n", __func__);
1161 	return ERR_PTR(-EINVAL);
1162 }
1163 
1164 static void __cifs_put_super(struct super_block *sb)
1165 {
1166 	if (!IS_ERR_OR_NULL(sb))
1167 		cifs_sb_deactive(sb);
1168 }
1169 
1170 struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
1171 {
1172 	spin_lock(&tcon->tc_lock);
1173 	if (!tcon->origin_fullpath) {
1174 		spin_unlock(&tcon->tc_lock);
1175 		return ERR_PTR(-ENOENT);
1176 	}
1177 	spin_unlock(&tcon->tc_lock);
1178 	return __cifs_get_super(tcon_super_cb, tcon);
1179 }
1180 
1181 void cifs_put_tcp_super(struct super_block *sb)
1182 {
1183 	__cifs_put_super(sb);
1184 }
1185 
1186 #ifdef CONFIG_CIFS_DFS_UPCALL
1187 int match_target_ip(struct TCP_Server_Info *server,
1188 		    const char *share, size_t share_len,
1189 		    bool *result)
1190 {
1191 	int rc;
1192 	char *target;
1193 	struct sockaddr_storage ss;
1194 
1195 	*result = false;
1196 
1197 	target = kzalloc(share_len + 3, GFP_KERNEL);
1198 	if (!target)
1199 		return -ENOMEM;
1200 
1201 	scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1202 
1203 	cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1204 
1205 	rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1206 	kfree(target);
1207 
1208 	if (rc < 0)
1209 		return rc;
1210 
1211 	spin_lock(&server->srv_lock);
1212 	*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1213 	spin_unlock(&server->srv_lock);
1214 	cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1215 	return 0;
1216 }
1217 
1218 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1219 {
1220 	int rc;
1221 
1222 	kfree(cifs_sb->prepath);
1223 	cifs_sb->prepath = NULL;
1224 
1225 	if (prefix && *prefix) {
1226 		cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1227 		if (IS_ERR(cifs_sb->prepath)) {
1228 			rc = PTR_ERR(cifs_sb->prepath);
1229 			cifs_sb->prepath = NULL;
1230 			return rc;
1231 		}
1232 		if (cifs_sb->prepath)
1233 			convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1234 	}
1235 
1236 	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1237 	return 0;
1238 }
1239 
1240 /*
1241  * Handle weird Windows SMB server behaviour. It responds with
1242  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1243  * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1244  * non-ASCII unicode symbols.
1245  */
1246 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1247 				   struct cifs_tcon *tcon,
1248 				   struct cifs_sb_info *cifs_sb,
1249 				   const char *full_path,
1250 				   bool *islink)
1251 {
1252 	struct cifs_ses *ses = tcon->ses;
1253 	size_t len;
1254 	char *path;
1255 	char *ref_path;
1256 
1257 	*islink = false;
1258 
1259 	/*
1260 	 * Fast path - skip check when @full_path doesn't have a prefix path to
1261 	 * look up or tcon is not DFS.
1262 	 */
1263 	if (strlen(full_path) < 2 || !cifs_sb ||
1264 	    (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1265 	    !is_tcon_dfs(tcon))
1266 		return 0;
1267 
1268 	spin_lock(&tcon->tc_lock);
1269 	if (!tcon->origin_fullpath) {
1270 		spin_unlock(&tcon->tc_lock);
1271 		return 0;
1272 	}
1273 	spin_unlock(&tcon->tc_lock);
1274 
1275 	/*
1276 	 * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1277 	 * to get a referral to figure out whether it is an DFS link.
1278 	 */
1279 	len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1280 	path = kmalloc(len, GFP_KERNEL);
1281 	if (!path)
1282 		return -ENOMEM;
1283 
1284 	scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1285 	ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1286 					    cifs_remap(cifs_sb));
1287 	kfree(path);
1288 
1289 	if (IS_ERR(ref_path)) {
1290 		if (PTR_ERR(ref_path) != -EINVAL)
1291 			return PTR_ERR(ref_path);
1292 	} else {
1293 		struct dfs_info3_param *refs = NULL;
1294 		int num_refs = 0;
1295 
1296 		/*
1297 		 * XXX: we are not using dfs_cache_find() here because we might
1298 		 * end up filling all the DFS cache and thus potentially
1299 		 * removing cached DFS targets that the client would eventually
1300 		 * need during failover.
1301 		 */
1302 		ses = CIFS_DFS_ROOT_SES(ses);
1303 		if (ses->server->ops->get_dfs_refer &&
1304 		    !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1305 						     &num_refs, cifs_sb->local_nls,
1306 						     cifs_remap(cifs_sb)))
1307 			*islink = refs[0].server_type == DFS_TYPE_LINK;
1308 		free_dfs_info_array(refs, num_refs);
1309 		kfree(ref_path);
1310 	}
1311 	return 0;
1312 }
1313 #endif
1314 
1315 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1316 {
1317 	int timeout = 10;
1318 	int rc;
1319 
1320 	spin_lock(&server->srv_lock);
1321 	if (server->tcpStatus != CifsNeedReconnect) {
1322 		spin_unlock(&server->srv_lock);
1323 		return 0;
1324 	}
1325 	timeout *= server->nr_targets;
1326 	spin_unlock(&server->srv_lock);
1327 
1328 	/*
1329 	 * Give demultiplex thread up to 10 seconds to each target available for
1330 	 * reconnect -- should be greater than cifs socket timeout which is 7
1331 	 * seconds.
1332 	 *
1333 	 * On "soft" mounts we wait once. Hard mounts keep retrying until
1334 	 * process is killed or server comes back on-line.
1335 	 */
1336 	do {
1337 		rc = wait_event_interruptible_timeout(server->response_q,
1338 						      (server->tcpStatus != CifsNeedReconnect),
1339 						      timeout * HZ);
1340 		if (rc < 0) {
1341 			cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1342 				 __func__);
1343 			return -ERESTARTSYS;
1344 		}
1345 
1346 		/* are we still trying to reconnect? */
1347 		spin_lock(&server->srv_lock);
1348 		if (server->tcpStatus != CifsNeedReconnect) {
1349 			spin_unlock(&server->srv_lock);
1350 			return 0;
1351 		}
1352 		spin_unlock(&server->srv_lock);
1353 	} while (retry);
1354 
1355 	cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1356 	return -EHOSTDOWN;
1357 }
1358