1 // SPDX-License-Identifier: LGPL-2.1 2 /* 3 * 4 * Copyright (C) International Business Machines Corp., 2002,2008 5 * Author(s): Steve French (sfrench@us.ibm.com) 6 * 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/ctype.h> 11 #include <linux/mempool.h> 12 #include <linux/vmalloc.h> 13 #include "cifspdu.h" 14 #include "cifsglob.h" 15 #include "cifsproto.h" 16 #include "cifs_debug.h" 17 #include "smberr.h" 18 #include "nterr.h" 19 #include "cifs_unicode.h" 20 #include "smb2pdu.h" 21 #include "cifsfs.h" 22 #ifdef CONFIG_CIFS_DFS_UPCALL 23 #include "dns_resolve.h" 24 #include "dfs_cache.h" 25 #include "dfs.h" 26 #endif 27 #include "fs_context.h" 28 #include "cached_dir.h" 29 30 extern mempool_t *cifs_sm_req_poolp; 31 extern mempool_t *cifs_req_poolp; 32 33 /* The xid serves as a useful identifier for each incoming vfs request, 34 in a similar way to the mid which is useful to track each sent smb, 35 and CurrentXid can also provide a running counter (although it 36 will eventually wrap past zero) of the total vfs operations handled 37 since the cifs fs was mounted */ 38 39 unsigned int 40 _get_xid(void) 41 { 42 unsigned int xid; 43 44 spin_lock(&GlobalMid_Lock); 45 GlobalTotalActiveXid++; 46 47 /* keep high water mark for number of simultaneous ops in filesystem */ 48 if (GlobalTotalActiveXid > GlobalMaxActiveXid) 49 GlobalMaxActiveXid = GlobalTotalActiveXid; 50 if (GlobalTotalActiveXid > 65000) 51 cifs_dbg(FYI, "warning: more than 65000 requests active\n"); 52 xid = GlobalCurrentXid++; 53 spin_unlock(&GlobalMid_Lock); 54 return xid; 55 } 56 57 void 58 _free_xid(unsigned int xid) 59 { 60 spin_lock(&GlobalMid_Lock); 61 /* if (GlobalTotalActiveXid == 0) 62 BUG(); */ 63 GlobalTotalActiveXid--; 64 spin_unlock(&GlobalMid_Lock); 65 } 66 67 struct cifs_ses * 68 sesInfoAlloc(void) 69 { 70 struct cifs_ses *ret_buf; 71 72 ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL); 73 if (ret_buf) { 74 atomic_inc(&sesInfoAllocCount); 75 spin_lock_init(&ret_buf->ses_lock); 76 ret_buf->ses_status = SES_NEW; 77 ++ret_buf->ses_count; 78 INIT_LIST_HEAD(&ret_buf->smb_ses_list); 79 INIT_LIST_HEAD(&ret_buf->tcon_list); 80 mutex_init(&ret_buf->session_mutex); 81 spin_lock_init(&ret_buf->iface_lock); 82 INIT_LIST_HEAD(&ret_buf->iface_list); 83 spin_lock_init(&ret_buf->chan_lock); 84 } 85 return ret_buf; 86 } 87 88 void 89 sesInfoFree(struct cifs_ses *buf_to_free) 90 { 91 struct cifs_server_iface *iface = NULL, *niface = NULL; 92 93 if (buf_to_free == NULL) { 94 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n"); 95 return; 96 } 97 98 atomic_dec(&sesInfoAllocCount); 99 kfree(buf_to_free->serverOS); 100 kfree(buf_to_free->serverDomain); 101 kfree(buf_to_free->serverNOS); 102 kfree_sensitive(buf_to_free->password); 103 kfree(buf_to_free->user_name); 104 kfree(buf_to_free->domainName); 105 kfree_sensitive(buf_to_free->auth_key.response); 106 spin_lock(&buf_to_free->iface_lock); 107 list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list, 108 iface_head) 109 kref_put(&iface->refcount, release_iface); 110 spin_unlock(&buf_to_free->iface_lock); 111 kfree_sensitive(buf_to_free); 112 } 113 114 struct cifs_tcon * 115 tconInfoAlloc(void) 116 { 117 struct cifs_tcon *ret_buf; 118 119 ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL); 120 if (!ret_buf) 121 return NULL; 122 ret_buf->cfids = init_cached_dirs(); 123 if (!ret_buf->cfids) { 124 kfree(ret_buf); 125 return NULL; 126 } 127 128 atomic_inc(&tconInfoAllocCount); 129 ret_buf->status = TID_NEW; 130 ++ret_buf->tc_count; 131 spin_lock_init(&ret_buf->tc_lock); 132 INIT_LIST_HEAD(&ret_buf->openFileList); 133 INIT_LIST_HEAD(&ret_buf->tcon_list); 134 spin_lock_init(&ret_buf->open_file_lock); 135 spin_lock_init(&ret_buf->stat_lock); 136 atomic_set(&ret_buf->num_local_opens, 0); 137 atomic_set(&ret_buf->num_remote_opens, 0); 138 #ifdef CONFIG_CIFS_DFS_UPCALL 139 INIT_LIST_HEAD(&ret_buf->dfs_ses_list); 140 #endif 141 142 return ret_buf; 143 } 144 145 void 146 tconInfoFree(struct cifs_tcon *tcon) 147 { 148 if (tcon == NULL) { 149 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n"); 150 return; 151 } 152 free_cached_dirs(tcon->cfids); 153 atomic_dec(&tconInfoAllocCount); 154 kfree(tcon->nativeFileSystem); 155 kfree_sensitive(tcon->password); 156 #ifdef CONFIG_CIFS_DFS_UPCALL 157 dfs_put_root_smb_sessions(&tcon->dfs_ses_list); 158 #endif 159 kfree(tcon); 160 } 161 162 struct smb_hdr * 163 cifs_buf_get(void) 164 { 165 struct smb_hdr *ret_buf = NULL; 166 /* 167 * SMB2 header is bigger than CIFS one - no problems to clean some 168 * more bytes for CIFS. 169 */ 170 size_t buf_size = sizeof(struct smb2_hdr); 171 172 /* 173 * We could use negotiated size instead of max_msgsize - 174 * but it may be more efficient to always alloc same size 175 * albeit slightly larger than necessary and maxbuffersize 176 * defaults to this and can not be bigger. 177 */ 178 ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS); 179 180 /* clear the first few header bytes */ 181 /* for most paths, more is cleared in header_assemble */ 182 memset(ret_buf, 0, buf_size + 3); 183 atomic_inc(&buf_alloc_count); 184 #ifdef CONFIG_CIFS_STATS2 185 atomic_inc(&total_buf_alloc_count); 186 #endif /* CONFIG_CIFS_STATS2 */ 187 188 return ret_buf; 189 } 190 191 void 192 cifs_buf_release(void *buf_to_free) 193 { 194 if (buf_to_free == NULL) { 195 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/ 196 return; 197 } 198 mempool_free(buf_to_free, cifs_req_poolp); 199 200 atomic_dec(&buf_alloc_count); 201 return; 202 } 203 204 struct smb_hdr * 205 cifs_small_buf_get(void) 206 { 207 struct smb_hdr *ret_buf = NULL; 208 209 /* We could use negotiated size instead of max_msgsize - 210 but it may be more efficient to always alloc same size 211 albeit slightly larger than necessary and maxbuffersize 212 defaults to this and can not be bigger */ 213 ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS); 214 /* No need to clear memory here, cleared in header assemble */ 215 /* memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/ 216 atomic_inc(&small_buf_alloc_count); 217 #ifdef CONFIG_CIFS_STATS2 218 atomic_inc(&total_small_buf_alloc_count); 219 #endif /* CONFIG_CIFS_STATS2 */ 220 221 return ret_buf; 222 } 223 224 void 225 cifs_small_buf_release(void *buf_to_free) 226 { 227 228 if (buf_to_free == NULL) { 229 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n"); 230 return; 231 } 232 mempool_free(buf_to_free, cifs_sm_req_poolp); 233 234 atomic_dec(&small_buf_alloc_count); 235 return; 236 } 237 238 void 239 free_rsp_buf(int resp_buftype, void *rsp) 240 { 241 if (resp_buftype == CIFS_SMALL_BUFFER) 242 cifs_small_buf_release(rsp); 243 else if (resp_buftype == CIFS_LARGE_BUFFER) 244 cifs_buf_release(rsp); 245 } 246 247 /* NB: MID can not be set if treeCon not passed in, in that 248 case it is responsbility of caller to set the mid */ 249 void 250 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ , 251 const struct cifs_tcon *treeCon, int word_count 252 /* length of fixed section (word count) in two byte units */) 253 { 254 char *temp = (char *) buffer; 255 256 memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */ 257 258 buffer->smb_buf_length = cpu_to_be32( 259 (2 * word_count) + sizeof(struct smb_hdr) - 260 4 /* RFC 1001 length field does not count */ + 261 2 /* for bcc field itself */) ; 262 263 buffer->Protocol[0] = 0xFF; 264 buffer->Protocol[1] = 'S'; 265 buffer->Protocol[2] = 'M'; 266 buffer->Protocol[3] = 'B'; 267 buffer->Command = smb_command; 268 buffer->Flags = 0x00; /* case sensitive */ 269 buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES; 270 buffer->Pid = cpu_to_le16((__u16)current->tgid); 271 buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16)); 272 if (treeCon) { 273 buffer->Tid = treeCon->tid; 274 if (treeCon->ses) { 275 if (treeCon->ses->capabilities & CAP_UNICODE) 276 buffer->Flags2 |= SMBFLG2_UNICODE; 277 if (treeCon->ses->capabilities & CAP_STATUS32) 278 buffer->Flags2 |= SMBFLG2_ERR_STATUS; 279 280 /* Uid is not converted */ 281 buffer->Uid = treeCon->ses->Suid; 282 if (treeCon->ses->server) 283 buffer->Mid = get_next_mid(treeCon->ses->server); 284 } 285 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS) 286 buffer->Flags2 |= SMBFLG2_DFS; 287 if (treeCon->nocase) 288 buffer->Flags |= SMBFLG_CASELESS; 289 if ((treeCon->ses) && (treeCon->ses->server)) 290 if (treeCon->ses->server->sign) 291 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE; 292 } 293 294 /* endian conversion of flags is now done just before sending */ 295 buffer->WordCount = (char) word_count; 296 return; 297 } 298 299 static int 300 check_smb_hdr(struct smb_hdr *smb) 301 { 302 /* does it have the right SMB "signature" ? */ 303 if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) { 304 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n", 305 *(unsigned int *)smb->Protocol); 306 return 1; 307 } 308 309 /* if it's a response then accept */ 310 if (smb->Flags & SMBFLG_RESPONSE) 311 return 0; 312 313 /* only one valid case where server sends us request */ 314 if (smb->Command == SMB_COM_LOCKING_ANDX) 315 return 0; 316 317 cifs_dbg(VFS, "Server sent request, not response. mid=%u\n", 318 get_mid(smb)); 319 return 1; 320 } 321 322 int 323 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server) 324 { 325 struct smb_hdr *smb = (struct smb_hdr *)buf; 326 __u32 rfclen = be32_to_cpu(smb->smb_buf_length); 327 __u32 clc_len; /* calculated length */ 328 cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n", 329 total_read, rfclen); 330 331 /* is this frame too small to even get to a BCC? */ 332 if (total_read < 2 + sizeof(struct smb_hdr)) { 333 if ((total_read >= sizeof(struct smb_hdr) - 1) 334 && (smb->Status.CifsError != 0)) { 335 /* it's an error return */ 336 smb->WordCount = 0; 337 /* some error cases do not return wct and bcc */ 338 return 0; 339 } else if ((total_read == sizeof(struct smb_hdr) + 1) && 340 (smb->WordCount == 0)) { 341 char *tmp = (char *)smb; 342 /* Need to work around a bug in two servers here */ 343 /* First, check if the part of bcc they sent was zero */ 344 if (tmp[sizeof(struct smb_hdr)] == 0) { 345 /* some servers return only half of bcc 346 * on simple responses (wct, bcc both zero) 347 * in particular have seen this on 348 * ulogoffX and FindClose. This leaves 349 * one byte of bcc potentially unitialized 350 */ 351 /* zero rest of bcc */ 352 tmp[sizeof(struct smb_hdr)+1] = 0; 353 return 0; 354 } 355 cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n"); 356 } else { 357 cifs_dbg(VFS, "Length less than smb header size\n"); 358 } 359 return -EIO; 360 } 361 362 /* otherwise, there is enough to get to the BCC */ 363 if (check_smb_hdr(smb)) 364 return -EIO; 365 clc_len = smbCalcSize(smb); 366 367 if (4 + rfclen != total_read) { 368 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n", 369 rfclen); 370 return -EIO; 371 } 372 373 if (4 + rfclen != clc_len) { 374 __u16 mid = get_mid(smb); 375 /* check if bcc wrapped around for large read responses */ 376 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) { 377 /* check if lengths match mod 64K */ 378 if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF)) 379 return 0; /* bcc wrapped */ 380 } 381 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n", 382 clc_len, 4 + rfclen, mid); 383 384 if (4 + rfclen < clc_len) { 385 cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n", 386 rfclen, mid); 387 return -EIO; 388 } else if (rfclen > clc_len + 512) { 389 /* 390 * Some servers (Windows XP in particular) send more 391 * data than the lengths in the SMB packet would 392 * indicate on certain calls (byte range locks and 393 * trans2 find first calls in particular). While the 394 * client can handle such a frame by ignoring the 395 * trailing data, we choose limit the amount of extra 396 * data to 512 bytes. 397 */ 398 cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n", 399 rfclen, mid); 400 return -EIO; 401 } 402 } 403 return 0; 404 } 405 406 bool 407 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv) 408 { 409 struct smb_hdr *buf = (struct smb_hdr *)buffer; 410 struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf; 411 struct TCP_Server_Info *pserver; 412 struct cifs_ses *ses; 413 struct cifs_tcon *tcon; 414 struct cifsInodeInfo *pCifsInode; 415 struct cifsFileInfo *netfile; 416 417 cifs_dbg(FYI, "Checking for oplock break or dnotify response\n"); 418 if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) && 419 (pSMB->hdr.Flags & SMBFLG_RESPONSE)) { 420 struct smb_com_transaction_change_notify_rsp *pSMBr = 421 (struct smb_com_transaction_change_notify_rsp *)buf; 422 struct file_notify_information *pnotify; 423 __u32 data_offset = 0; 424 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length); 425 426 if (get_bcc(buf) > sizeof(struct file_notify_information)) { 427 data_offset = le32_to_cpu(pSMBr->DataOffset); 428 429 if (data_offset > 430 len - sizeof(struct file_notify_information)) { 431 cifs_dbg(FYI, "Invalid data_offset %u\n", 432 data_offset); 433 return true; 434 } 435 pnotify = (struct file_notify_information *) 436 ((char *)&pSMBr->hdr.Protocol + data_offset); 437 cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n", 438 pnotify->FileName, pnotify->Action); 439 /* cifs_dump_mem("Rcvd notify Data: ",buf, 440 sizeof(struct smb_hdr)+60); */ 441 return true; 442 } 443 if (pSMBr->hdr.Status.CifsError) { 444 cifs_dbg(FYI, "notify err 0x%x\n", 445 pSMBr->hdr.Status.CifsError); 446 return true; 447 } 448 return false; 449 } 450 if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX) 451 return false; 452 if (pSMB->hdr.Flags & SMBFLG_RESPONSE) { 453 /* no sense logging error on invalid handle on oplock 454 break - harmless race between close request and oplock 455 break response is expected from time to time writing out 456 large dirty files cached on the client */ 457 if ((NT_STATUS_INVALID_HANDLE) == 458 le32_to_cpu(pSMB->hdr.Status.CifsError)) { 459 cifs_dbg(FYI, "Invalid handle on oplock break\n"); 460 return true; 461 } else if (ERRbadfid == 462 le16_to_cpu(pSMB->hdr.Status.DosError.Error)) { 463 return true; 464 } else { 465 return false; /* on valid oplock brk we get "request" */ 466 } 467 } 468 if (pSMB->hdr.WordCount != 8) 469 return false; 470 471 cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n", 472 pSMB->LockType, pSMB->OplockLevel); 473 if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE)) 474 return false; 475 476 /* If server is a channel, select the primary channel */ 477 pserver = CIFS_SERVER_IS_CHAN(srv) ? srv->primary_server : srv; 478 479 /* look up tcon based on tid & uid */ 480 spin_lock(&cifs_tcp_ses_lock); 481 list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) { 482 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) { 483 if (tcon->tid != buf->Tid) 484 continue; 485 486 cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks); 487 spin_lock(&tcon->open_file_lock); 488 list_for_each_entry(netfile, &tcon->openFileList, tlist) { 489 if (pSMB->Fid != netfile->fid.netfid) 490 continue; 491 492 cifs_dbg(FYI, "file id match, oplock break\n"); 493 pCifsInode = CIFS_I(d_inode(netfile->dentry)); 494 495 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, 496 &pCifsInode->flags); 497 498 netfile->oplock_epoch = 0; 499 netfile->oplock_level = pSMB->OplockLevel; 500 netfile->oplock_break_cancelled = false; 501 cifs_queue_oplock_break(netfile); 502 503 spin_unlock(&tcon->open_file_lock); 504 spin_unlock(&cifs_tcp_ses_lock); 505 return true; 506 } 507 spin_unlock(&tcon->open_file_lock); 508 spin_unlock(&cifs_tcp_ses_lock); 509 cifs_dbg(FYI, "No matching file for oplock break\n"); 510 return true; 511 } 512 } 513 spin_unlock(&cifs_tcp_ses_lock); 514 cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n"); 515 return true; 516 } 517 518 void 519 dump_smb(void *buf, int smb_buf_length) 520 { 521 if (traceSMB == 0) 522 return; 523 524 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf, 525 smb_buf_length, true); 526 } 527 528 void 529 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb) 530 { 531 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) { 532 struct cifs_tcon *tcon = NULL; 533 534 if (cifs_sb->master_tlink) 535 tcon = cifs_sb_master_tcon(cifs_sb); 536 537 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM; 538 cifs_sb->mnt_cifs_serverino_autodisabled = true; 539 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n", 540 tcon ? tcon->tree_name : "new server"); 541 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n"); 542 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n"); 543 544 } 545 } 546 547 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock) 548 { 549 oplock &= 0xF; 550 551 if (oplock == OPLOCK_EXCLUSIVE) { 552 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG; 553 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n", 554 &cinode->netfs.inode); 555 } else if (oplock == OPLOCK_READ) { 556 cinode->oplock = CIFS_CACHE_READ_FLG; 557 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n", 558 &cinode->netfs.inode); 559 } else 560 cinode->oplock = 0; 561 } 562 563 /* 564 * We wait for oplock breaks to be processed before we attempt to perform 565 * writes. 566 */ 567 int cifs_get_writer(struct cifsInodeInfo *cinode) 568 { 569 int rc; 570 571 start: 572 rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK, 573 TASK_KILLABLE); 574 if (rc) 575 return rc; 576 577 spin_lock(&cinode->writers_lock); 578 if (!cinode->writers) 579 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 580 cinode->writers++; 581 /* Check to see if we have started servicing an oplock break */ 582 if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) { 583 cinode->writers--; 584 if (cinode->writers == 0) { 585 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 586 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS); 587 } 588 spin_unlock(&cinode->writers_lock); 589 goto start; 590 } 591 spin_unlock(&cinode->writers_lock); 592 return 0; 593 } 594 595 void cifs_put_writer(struct cifsInodeInfo *cinode) 596 { 597 spin_lock(&cinode->writers_lock); 598 cinode->writers--; 599 if (cinode->writers == 0) { 600 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 601 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS); 602 } 603 spin_unlock(&cinode->writers_lock); 604 } 605 606 /** 607 * cifs_queue_oplock_break - queue the oplock break handler for cfile 608 * @cfile: The file to break the oplock on 609 * 610 * This function is called from the demultiplex thread when it 611 * receives an oplock break for @cfile. 612 * 613 * Assumes the tcon->open_file_lock is held. 614 * Assumes cfile->file_info_lock is NOT held. 615 */ 616 void cifs_queue_oplock_break(struct cifsFileInfo *cfile) 617 { 618 /* 619 * Bump the handle refcount now while we hold the 620 * open_file_lock to enforce the validity of it for the oplock 621 * break handler. The matching put is done at the end of the 622 * handler. 623 */ 624 cifsFileInfo_get(cfile); 625 626 queue_work(cifsoplockd_wq, &cfile->oplock_break); 627 } 628 629 void cifs_done_oplock_break(struct cifsInodeInfo *cinode) 630 { 631 clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags); 632 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK); 633 } 634 635 bool 636 backup_cred(struct cifs_sb_info *cifs_sb) 637 { 638 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) { 639 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid())) 640 return true; 641 } 642 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) { 643 if (in_group_p(cifs_sb->ctx->backupgid)) 644 return true; 645 } 646 647 return false; 648 } 649 650 void 651 cifs_del_pending_open(struct cifs_pending_open *open) 652 { 653 spin_lock(&tlink_tcon(open->tlink)->open_file_lock); 654 list_del(&open->olist); 655 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock); 656 } 657 658 void 659 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink, 660 struct cifs_pending_open *open) 661 { 662 memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE); 663 open->oplock = CIFS_OPLOCK_NO_CHANGE; 664 open->tlink = tlink; 665 fid->pending_open = open; 666 list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens); 667 } 668 669 void 670 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink, 671 struct cifs_pending_open *open) 672 { 673 spin_lock(&tlink_tcon(tlink)->open_file_lock); 674 cifs_add_pending_open_locked(fid, tlink, open); 675 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock); 676 } 677 678 /* 679 * Critical section which runs after acquiring deferred_lock. 680 * As there is no reference count on cifs_deferred_close, pdclose 681 * should not be used outside deferred_lock. 682 */ 683 bool 684 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose) 685 { 686 struct cifs_deferred_close *dclose; 687 688 list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) { 689 if ((dclose->netfid == cfile->fid.netfid) && 690 (dclose->persistent_fid == cfile->fid.persistent_fid) && 691 (dclose->volatile_fid == cfile->fid.volatile_fid)) { 692 *pdclose = dclose; 693 return true; 694 } 695 } 696 return false; 697 } 698 699 /* 700 * Critical section which runs after acquiring deferred_lock. 701 */ 702 void 703 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose) 704 { 705 bool is_deferred = false; 706 struct cifs_deferred_close *pdclose; 707 708 is_deferred = cifs_is_deferred_close(cfile, &pdclose); 709 if (is_deferred) { 710 kfree(dclose); 711 return; 712 } 713 714 dclose->tlink = cfile->tlink; 715 dclose->netfid = cfile->fid.netfid; 716 dclose->persistent_fid = cfile->fid.persistent_fid; 717 dclose->volatile_fid = cfile->fid.volatile_fid; 718 list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes); 719 } 720 721 /* 722 * Critical section which runs after acquiring deferred_lock. 723 */ 724 void 725 cifs_del_deferred_close(struct cifsFileInfo *cfile) 726 { 727 bool is_deferred = false; 728 struct cifs_deferred_close *dclose; 729 730 is_deferred = cifs_is_deferred_close(cfile, &dclose); 731 if (!is_deferred) 732 return; 733 list_del(&dclose->dlist); 734 kfree(dclose); 735 } 736 737 void 738 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode) 739 { 740 struct cifsFileInfo *cfile = NULL; 741 struct file_list *tmp_list, *tmp_next_list; 742 struct list_head file_head; 743 744 if (cifs_inode == NULL) 745 return; 746 747 INIT_LIST_HEAD(&file_head); 748 spin_lock(&cifs_inode->open_file_lock); 749 list_for_each_entry(cfile, &cifs_inode->openFileList, flist) { 750 if (delayed_work_pending(&cfile->deferred)) { 751 if (cancel_delayed_work(&cfile->deferred)) { 752 spin_lock(&cifs_inode->deferred_lock); 753 cifs_del_deferred_close(cfile); 754 spin_unlock(&cifs_inode->deferred_lock); 755 756 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 757 if (tmp_list == NULL) 758 break; 759 tmp_list->cfile = cfile; 760 list_add_tail(&tmp_list->list, &file_head); 761 } 762 } 763 } 764 spin_unlock(&cifs_inode->open_file_lock); 765 766 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 767 _cifsFileInfo_put(tmp_list->cfile, false, false); 768 list_del(&tmp_list->list); 769 kfree(tmp_list); 770 } 771 } 772 773 void 774 cifs_close_all_deferred_files(struct cifs_tcon *tcon) 775 { 776 struct cifsFileInfo *cfile; 777 struct file_list *tmp_list, *tmp_next_list; 778 struct list_head file_head; 779 780 INIT_LIST_HEAD(&file_head); 781 spin_lock(&tcon->open_file_lock); 782 list_for_each_entry(cfile, &tcon->openFileList, tlist) { 783 if (delayed_work_pending(&cfile->deferred)) { 784 if (cancel_delayed_work(&cfile->deferred)) { 785 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 786 cifs_del_deferred_close(cfile); 787 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 788 789 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 790 if (tmp_list == NULL) 791 break; 792 tmp_list->cfile = cfile; 793 list_add_tail(&tmp_list->list, &file_head); 794 } 795 } 796 } 797 spin_unlock(&tcon->open_file_lock); 798 799 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 800 _cifsFileInfo_put(tmp_list->cfile, true, false); 801 list_del(&tmp_list->list); 802 kfree(tmp_list); 803 } 804 } 805 void 806 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path) 807 { 808 struct cifsFileInfo *cfile; 809 struct file_list *tmp_list, *tmp_next_list; 810 struct list_head file_head; 811 void *page; 812 const char *full_path; 813 814 INIT_LIST_HEAD(&file_head); 815 page = alloc_dentry_path(); 816 spin_lock(&tcon->open_file_lock); 817 list_for_each_entry(cfile, &tcon->openFileList, tlist) { 818 full_path = build_path_from_dentry(cfile->dentry, page); 819 if (strstr(full_path, path)) { 820 if (delayed_work_pending(&cfile->deferred)) { 821 if (cancel_delayed_work(&cfile->deferred)) { 822 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 823 cifs_del_deferred_close(cfile); 824 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 825 826 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 827 if (tmp_list == NULL) 828 break; 829 tmp_list->cfile = cfile; 830 list_add_tail(&tmp_list->list, &file_head); 831 } 832 } 833 } 834 } 835 spin_unlock(&tcon->open_file_lock); 836 837 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 838 _cifsFileInfo_put(tmp_list->cfile, true, false); 839 list_del(&tmp_list->list); 840 kfree(tmp_list); 841 } 842 free_dentry_path(page); 843 } 844 845 /* parses DFS referral V3 structure 846 * caller is responsible for freeing target_nodes 847 * returns: 848 * - on success - 0 849 * - on failure - errno 850 */ 851 int 852 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size, 853 unsigned int *num_of_nodes, 854 struct dfs_info3_param **target_nodes, 855 const struct nls_table *nls_codepage, int remap, 856 const char *searchName, bool is_unicode) 857 { 858 int i, rc = 0; 859 char *data_end; 860 struct dfs_referral_level_3 *ref; 861 862 *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals); 863 864 if (*num_of_nodes < 1) { 865 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n", 866 *num_of_nodes); 867 rc = -EINVAL; 868 goto parse_DFS_referrals_exit; 869 } 870 871 ref = (struct dfs_referral_level_3 *) &(rsp->referrals); 872 if (ref->VersionNumber != cpu_to_le16(3)) { 873 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n", 874 le16_to_cpu(ref->VersionNumber)); 875 rc = -EINVAL; 876 goto parse_DFS_referrals_exit; 877 } 878 879 /* get the upper boundary of the resp buffer */ 880 data_end = (char *)rsp + rsp_size; 881 882 cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n", 883 *num_of_nodes, le32_to_cpu(rsp->DFSFlags)); 884 885 *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param), 886 GFP_KERNEL); 887 if (*target_nodes == NULL) { 888 rc = -ENOMEM; 889 goto parse_DFS_referrals_exit; 890 } 891 892 /* collect necessary data from referrals */ 893 for (i = 0; i < *num_of_nodes; i++) { 894 char *temp; 895 int max_len; 896 struct dfs_info3_param *node = (*target_nodes)+i; 897 898 node->flags = le32_to_cpu(rsp->DFSFlags); 899 if (is_unicode) { 900 __le16 *tmp = kmalloc(strlen(searchName)*2 + 2, 901 GFP_KERNEL); 902 if (tmp == NULL) { 903 rc = -ENOMEM; 904 goto parse_DFS_referrals_exit; 905 } 906 cifsConvertToUTF16((__le16 *) tmp, searchName, 907 PATH_MAX, nls_codepage, remap); 908 node->path_consumed = cifs_utf16_bytes(tmp, 909 le16_to_cpu(rsp->PathConsumed), 910 nls_codepage); 911 kfree(tmp); 912 } else 913 node->path_consumed = le16_to_cpu(rsp->PathConsumed); 914 915 node->server_type = le16_to_cpu(ref->ServerType); 916 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags); 917 918 /* copy DfsPath */ 919 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset); 920 max_len = data_end - temp; 921 node->path_name = cifs_strndup_from_utf16(temp, max_len, 922 is_unicode, nls_codepage); 923 if (!node->path_name) { 924 rc = -ENOMEM; 925 goto parse_DFS_referrals_exit; 926 } 927 928 /* copy link target UNC */ 929 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset); 930 max_len = data_end - temp; 931 node->node_name = cifs_strndup_from_utf16(temp, max_len, 932 is_unicode, nls_codepage); 933 if (!node->node_name) { 934 rc = -ENOMEM; 935 goto parse_DFS_referrals_exit; 936 } 937 938 node->ttl = le32_to_cpu(ref->TimeToLive); 939 940 ref++; 941 } 942 943 parse_DFS_referrals_exit: 944 if (rc) { 945 free_dfs_info_array(*target_nodes, *num_of_nodes); 946 *target_nodes = NULL; 947 *num_of_nodes = 0; 948 } 949 return rc; 950 } 951 952 struct cifs_aio_ctx * 953 cifs_aio_ctx_alloc(void) 954 { 955 struct cifs_aio_ctx *ctx; 956 957 /* 958 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io 959 * to false so that we know when we have to unreference pages within 960 * cifs_aio_ctx_release() 961 */ 962 ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL); 963 if (!ctx) 964 return NULL; 965 966 INIT_LIST_HEAD(&ctx->list); 967 mutex_init(&ctx->aio_mutex); 968 init_completion(&ctx->done); 969 kref_init(&ctx->refcount); 970 return ctx; 971 } 972 973 void 974 cifs_aio_ctx_release(struct kref *refcount) 975 { 976 struct cifs_aio_ctx *ctx = container_of(refcount, 977 struct cifs_aio_ctx, refcount); 978 979 cifsFileInfo_put(ctx->cfile); 980 981 /* 982 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly 983 * which means that iov_iter_extract_pages() was a success and thus 984 * that we may have references or pins on pages that we need to 985 * release. 986 */ 987 if (ctx->bv) { 988 if (ctx->should_dirty || ctx->bv_need_unpin) { 989 unsigned int i; 990 991 for (i = 0; i < ctx->nr_pinned_pages; i++) { 992 struct page *page = ctx->bv[i].bv_page; 993 994 if (ctx->should_dirty) 995 set_page_dirty(page); 996 if (ctx->bv_need_unpin) 997 unpin_user_page(page); 998 } 999 } 1000 kvfree(ctx->bv); 1001 } 1002 1003 kfree(ctx); 1004 } 1005 1006 /** 1007 * cifs_alloc_hash - allocate hash and hash context together 1008 * @name: The name of the crypto hash algo 1009 * @sdesc: SHASH descriptor where to put the pointer to the hash TFM 1010 * 1011 * The caller has to make sure @sdesc is initialized to either NULL or 1012 * a valid context. It can be freed via cifs_free_hash(). 1013 */ 1014 int 1015 cifs_alloc_hash(const char *name, struct shash_desc **sdesc) 1016 { 1017 int rc = 0; 1018 struct crypto_shash *alg = NULL; 1019 1020 if (*sdesc) 1021 return 0; 1022 1023 alg = crypto_alloc_shash(name, 0, 0); 1024 if (IS_ERR(alg)) { 1025 cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name); 1026 rc = PTR_ERR(alg); 1027 *sdesc = NULL; 1028 return rc; 1029 } 1030 1031 *sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL); 1032 if (*sdesc == NULL) { 1033 cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name); 1034 crypto_free_shash(alg); 1035 return -ENOMEM; 1036 } 1037 1038 (*sdesc)->tfm = alg; 1039 return 0; 1040 } 1041 1042 /** 1043 * cifs_free_hash - free hash and hash context together 1044 * @sdesc: Where to find the pointer to the hash TFM 1045 * 1046 * Freeing a NULL descriptor is safe. 1047 */ 1048 void 1049 cifs_free_hash(struct shash_desc **sdesc) 1050 { 1051 if (unlikely(!sdesc) || !*sdesc) 1052 return; 1053 1054 if ((*sdesc)->tfm) { 1055 crypto_free_shash((*sdesc)->tfm); 1056 (*sdesc)->tfm = NULL; 1057 } 1058 1059 kfree_sensitive(*sdesc); 1060 *sdesc = NULL; 1061 } 1062 1063 void extract_unc_hostname(const char *unc, const char **h, size_t *len) 1064 { 1065 const char *end; 1066 1067 /* skip initial slashes */ 1068 while (*unc && (*unc == '\\' || *unc == '/')) 1069 unc++; 1070 1071 end = unc; 1072 1073 while (*end && !(*end == '\\' || *end == '/')) 1074 end++; 1075 1076 *h = unc; 1077 *len = end - unc; 1078 } 1079 1080 /** 1081 * copy_path_name - copy src path to dst, possibly truncating 1082 * @dst: The destination buffer 1083 * @src: The source name 1084 * 1085 * returns number of bytes written (including trailing nul) 1086 */ 1087 int copy_path_name(char *dst, const char *src) 1088 { 1089 int name_len; 1090 1091 /* 1092 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it 1093 * will truncate and strlen(dst) will be PATH_MAX-1 1094 */ 1095 name_len = strscpy(dst, src, PATH_MAX); 1096 if (WARN_ON_ONCE(name_len < 0)) 1097 name_len = PATH_MAX-1; 1098 1099 /* we count the trailing nul */ 1100 name_len++; 1101 return name_len; 1102 } 1103 1104 struct super_cb_data { 1105 void *data; 1106 struct super_block *sb; 1107 }; 1108 1109 static void tcp_super_cb(struct super_block *sb, void *arg) 1110 { 1111 struct super_cb_data *sd = arg; 1112 struct TCP_Server_Info *server = sd->data; 1113 struct cifs_sb_info *cifs_sb; 1114 struct cifs_tcon *tcon; 1115 1116 if (sd->sb) 1117 return; 1118 1119 cifs_sb = CIFS_SB(sb); 1120 tcon = cifs_sb_master_tcon(cifs_sb); 1121 if (tcon->ses->server == server) 1122 sd->sb = sb; 1123 } 1124 1125 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *), 1126 void *data) 1127 { 1128 struct super_cb_data sd = { 1129 .data = data, 1130 .sb = NULL, 1131 }; 1132 struct file_system_type **fs_type = (struct file_system_type *[]) { 1133 &cifs_fs_type, &smb3_fs_type, NULL, 1134 }; 1135 1136 for (; *fs_type; fs_type++) { 1137 iterate_supers_type(*fs_type, f, &sd); 1138 if (sd.sb) { 1139 /* 1140 * Grab an active reference in order to prevent automounts (DFS links) 1141 * of expiring and then freeing up our cifs superblock pointer while 1142 * we're doing failover. 1143 */ 1144 cifs_sb_active(sd.sb); 1145 return sd.sb; 1146 } 1147 } 1148 return ERR_PTR(-EINVAL); 1149 } 1150 1151 static void __cifs_put_super(struct super_block *sb) 1152 { 1153 if (!IS_ERR_OR_NULL(sb)) 1154 cifs_sb_deactive(sb); 1155 } 1156 1157 struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server) 1158 { 1159 return __cifs_get_super(tcp_super_cb, server); 1160 } 1161 1162 void cifs_put_tcp_super(struct super_block *sb) 1163 { 1164 __cifs_put_super(sb); 1165 } 1166 1167 #ifdef CONFIG_CIFS_DFS_UPCALL 1168 int match_target_ip(struct TCP_Server_Info *server, 1169 const char *share, size_t share_len, 1170 bool *result) 1171 { 1172 int rc; 1173 char *target; 1174 struct sockaddr_storage ss; 1175 1176 *result = false; 1177 1178 target = kzalloc(share_len + 3, GFP_KERNEL); 1179 if (!target) 1180 return -ENOMEM; 1181 1182 scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share); 1183 1184 cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2); 1185 1186 rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL); 1187 kfree(target); 1188 1189 if (rc < 0) 1190 return rc; 1191 1192 spin_lock(&server->srv_lock); 1193 *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss); 1194 spin_unlock(&server->srv_lock); 1195 cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result); 1196 return 0; 1197 } 1198 1199 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix) 1200 { 1201 kfree(cifs_sb->prepath); 1202 1203 if (prefix && *prefix) { 1204 cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC); 1205 if (!cifs_sb->prepath) 1206 return -ENOMEM; 1207 1208 convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb)); 1209 } else 1210 cifs_sb->prepath = NULL; 1211 1212 cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH; 1213 return 0; 1214 } 1215 1216 /* 1217 * Handle weird Windows SMB server behaviour. It responds with 1218 * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for 1219 * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains 1220 * non-ASCII unicode symbols. 1221 */ 1222 int cifs_inval_name_dfs_link_error(const unsigned int xid, 1223 struct cifs_tcon *tcon, 1224 struct cifs_sb_info *cifs_sb, 1225 const char *full_path, 1226 bool *islink) 1227 { 1228 struct cifs_ses *ses = tcon->ses; 1229 size_t len; 1230 char *path; 1231 char *ref_path; 1232 1233 *islink = false; 1234 1235 /* 1236 * Fast path - skip check when @full_path doesn't have a prefix path to 1237 * look up or tcon is not DFS. 1238 */ 1239 if (strlen(full_path) < 2 || !cifs_sb || 1240 (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) || 1241 !is_tcon_dfs(tcon) || !ses->server->origin_fullpath) 1242 return 0; 1243 1244 /* 1245 * Slow path - tcon is DFS and @full_path has prefix path, so attempt 1246 * to get a referral to figure out whether it is an DFS link. 1247 */ 1248 len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1; 1249 path = kmalloc(len, GFP_KERNEL); 1250 if (!path) 1251 return -ENOMEM; 1252 1253 scnprintf(path, len, "%s%s", tcon->tree_name, full_path); 1254 ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls, 1255 cifs_remap(cifs_sb)); 1256 kfree(path); 1257 1258 if (IS_ERR(ref_path)) { 1259 if (PTR_ERR(ref_path) != -EINVAL) 1260 return PTR_ERR(ref_path); 1261 } else { 1262 struct dfs_info3_param *refs = NULL; 1263 int num_refs = 0; 1264 1265 /* 1266 * XXX: we are not using dfs_cache_find() here because we might 1267 * end filling all the DFS cache and thus potentially 1268 * removing cached DFS targets that the client would eventually 1269 * need during failover. 1270 */ 1271 ses = CIFS_DFS_ROOT_SES(ses); 1272 if (ses->server->ops->get_dfs_refer && 1273 !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs, 1274 &num_refs, cifs_sb->local_nls, 1275 cifs_remap(cifs_sb))) 1276 *islink = refs[0].server_type == DFS_TYPE_LINK; 1277 free_dfs_info_array(refs, num_refs); 1278 kfree(ref_path); 1279 } 1280 return 0; 1281 } 1282 #endif 1283 1284 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry) 1285 { 1286 int timeout = 10; 1287 int rc; 1288 1289 spin_lock(&server->srv_lock); 1290 if (server->tcpStatus != CifsNeedReconnect) { 1291 spin_unlock(&server->srv_lock); 1292 return 0; 1293 } 1294 timeout *= server->nr_targets; 1295 spin_unlock(&server->srv_lock); 1296 1297 /* 1298 * Give demultiplex thread up to 10 seconds to each target available for 1299 * reconnect -- should be greater than cifs socket timeout which is 7 1300 * seconds. 1301 * 1302 * On "soft" mounts we wait once. Hard mounts keep retrying until 1303 * process is killed or server comes back on-line. 1304 */ 1305 do { 1306 rc = wait_event_interruptible_timeout(server->response_q, 1307 (server->tcpStatus != CifsNeedReconnect), 1308 timeout * HZ); 1309 if (rc < 0) { 1310 cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n", 1311 __func__); 1312 return -ERESTARTSYS; 1313 } 1314 1315 /* are we still trying to reconnect? */ 1316 spin_lock(&server->srv_lock); 1317 if (server->tcpStatus != CifsNeedReconnect) { 1318 spin_unlock(&server->srv_lock); 1319 return 0; 1320 } 1321 spin_unlock(&server->srv_lock); 1322 } while (retry); 1323 1324 cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__); 1325 return -EHOSTDOWN; 1326 } 1327