xref: /openbmc/linux/fs/smb/client/misc.c (revision 54d8c1d3)
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #include "dfs.h"
26 #endif
27 #include "fs_context.h"
28 #include "cached_dir.h"
29 
30 extern mempool_t *cifs_sm_req_poolp;
31 extern mempool_t *cifs_req_poolp;
32 
33 /* The xid serves as a useful identifier for each incoming vfs request,
34    in a similar way to the mid which is useful to track each sent smb,
35    and CurrentXid can also provide a running counter (although it
36    will eventually wrap past zero) of the total vfs operations handled
37    since the cifs fs was mounted */
38 
39 unsigned int
40 _get_xid(void)
41 {
42 	unsigned int xid;
43 
44 	spin_lock(&GlobalMid_Lock);
45 	GlobalTotalActiveXid++;
46 
47 	/* keep high water mark for number of simultaneous ops in filesystem */
48 	if (GlobalTotalActiveXid > GlobalMaxActiveXid)
49 		GlobalMaxActiveXid = GlobalTotalActiveXid;
50 	if (GlobalTotalActiveXid > 65000)
51 		cifs_dbg(FYI, "warning: more than 65000 requests active\n");
52 	xid = GlobalCurrentXid++;
53 	spin_unlock(&GlobalMid_Lock);
54 	return xid;
55 }
56 
57 void
58 _free_xid(unsigned int xid)
59 {
60 	spin_lock(&GlobalMid_Lock);
61 	/* if (GlobalTotalActiveXid == 0)
62 		BUG(); */
63 	GlobalTotalActiveXid--;
64 	spin_unlock(&GlobalMid_Lock);
65 }
66 
67 struct cifs_ses *
68 sesInfoAlloc(void)
69 {
70 	struct cifs_ses *ret_buf;
71 
72 	ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
73 	if (ret_buf) {
74 		atomic_inc(&sesInfoAllocCount);
75 		spin_lock_init(&ret_buf->ses_lock);
76 		ret_buf->ses_status = SES_NEW;
77 		++ret_buf->ses_count;
78 		INIT_LIST_HEAD(&ret_buf->smb_ses_list);
79 		INIT_LIST_HEAD(&ret_buf->tcon_list);
80 		mutex_init(&ret_buf->session_mutex);
81 		spin_lock_init(&ret_buf->iface_lock);
82 		INIT_LIST_HEAD(&ret_buf->iface_list);
83 		spin_lock_init(&ret_buf->chan_lock);
84 	}
85 	return ret_buf;
86 }
87 
88 void
89 sesInfoFree(struct cifs_ses *buf_to_free)
90 {
91 	struct cifs_server_iface *iface = NULL, *niface = NULL;
92 
93 	if (buf_to_free == NULL) {
94 		cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
95 		return;
96 	}
97 
98 	unload_nls(buf_to_free->local_nls);
99 	atomic_dec(&sesInfoAllocCount);
100 	kfree(buf_to_free->serverOS);
101 	kfree(buf_to_free->serverDomain);
102 	kfree(buf_to_free->serverNOS);
103 	kfree_sensitive(buf_to_free->password);
104 	kfree(buf_to_free->user_name);
105 	kfree(buf_to_free->domainName);
106 	kfree_sensitive(buf_to_free->auth_key.response);
107 	spin_lock(&buf_to_free->iface_lock);
108 	list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
109 				 iface_head)
110 		kref_put(&iface->refcount, release_iface);
111 	spin_unlock(&buf_to_free->iface_lock);
112 	kfree_sensitive(buf_to_free);
113 }
114 
115 struct cifs_tcon *
116 tcon_info_alloc(bool dir_leases_enabled)
117 {
118 	struct cifs_tcon *ret_buf;
119 
120 	ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
121 	if (!ret_buf)
122 		return NULL;
123 
124 	if (dir_leases_enabled == true) {
125 		ret_buf->cfids = init_cached_dirs();
126 		if (!ret_buf->cfids) {
127 			kfree(ret_buf);
128 			return NULL;
129 		}
130 	}
131 	/* else ret_buf->cfids is already set to NULL above */
132 
133 	atomic_inc(&tconInfoAllocCount);
134 	ret_buf->status = TID_NEW;
135 	++ret_buf->tc_count;
136 	spin_lock_init(&ret_buf->tc_lock);
137 	INIT_LIST_HEAD(&ret_buf->openFileList);
138 	INIT_LIST_HEAD(&ret_buf->tcon_list);
139 	spin_lock_init(&ret_buf->open_file_lock);
140 	spin_lock_init(&ret_buf->stat_lock);
141 	atomic_set(&ret_buf->num_local_opens, 0);
142 	atomic_set(&ret_buf->num_remote_opens, 0);
143 #ifdef CONFIG_CIFS_DFS_UPCALL
144 	INIT_LIST_HEAD(&ret_buf->dfs_ses_list);
145 #endif
146 
147 	return ret_buf;
148 }
149 
150 void
151 tconInfoFree(struct cifs_tcon *tcon)
152 {
153 	if (tcon == NULL) {
154 		cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
155 		return;
156 	}
157 	free_cached_dirs(tcon->cfids);
158 	atomic_dec(&tconInfoAllocCount);
159 	kfree(tcon->nativeFileSystem);
160 	kfree_sensitive(tcon->password);
161 #ifdef CONFIG_CIFS_DFS_UPCALL
162 	dfs_put_root_smb_sessions(&tcon->dfs_ses_list);
163 #endif
164 	kfree(tcon->origin_fullpath);
165 	kfree(tcon);
166 }
167 
168 struct smb_hdr *
169 cifs_buf_get(void)
170 {
171 	struct smb_hdr *ret_buf = NULL;
172 	/*
173 	 * SMB2 header is bigger than CIFS one - no problems to clean some
174 	 * more bytes for CIFS.
175 	 */
176 	size_t buf_size = sizeof(struct smb2_hdr);
177 
178 	/*
179 	 * We could use negotiated size instead of max_msgsize -
180 	 * but it may be more efficient to always alloc same size
181 	 * albeit slightly larger than necessary and maxbuffersize
182 	 * defaults to this and can not be bigger.
183 	 */
184 	ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
185 
186 	/* clear the first few header bytes */
187 	/* for most paths, more is cleared in header_assemble */
188 	memset(ret_buf, 0, buf_size + 3);
189 	atomic_inc(&buf_alloc_count);
190 #ifdef CONFIG_CIFS_STATS2
191 	atomic_inc(&total_buf_alloc_count);
192 #endif /* CONFIG_CIFS_STATS2 */
193 
194 	return ret_buf;
195 }
196 
197 void
198 cifs_buf_release(void *buf_to_free)
199 {
200 	if (buf_to_free == NULL) {
201 		/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
202 		return;
203 	}
204 	mempool_free(buf_to_free, cifs_req_poolp);
205 
206 	atomic_dec(&buf_alloc_count);
207 	return;
208 }
209 
210 struct smb_hdr *
211 cifs_small_buf_get(void)
212 {
213 	struct smb_hdr *ret_buf = NULL;
214 
215 /* We could use negotiated size instead of max_msgsize -
216    but it may be more efficient to always alloc same size
217    albeit slightly larger than necessary and maxbuffersize
218    defaults to this and can not be bigger */
219 	ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
220 	/* No need to clear memory here, cleared in header assemble */
221 	/*	memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
222 	atomic_inc(&small_buf_alloc_count);
223 #ifdef CONFIG_CIFS_STATS2
224 	atomic_inc(&total_small_buf_alloc_count);
225 #endif /* CONFIG_CIFS_STATS2 */
226 
227 	return ret_buf;
228 }
229 
230 void
231 cifs_small_buf_release(void *buf_to_free)
232 {
233 
234 	if (buf_to_free == NULL) {
235 		cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
236 		return;
237 	}
238 	mempool_free(buf_to_free, cifs_sm_req_poolp);
239 
240 	atomic_dec(&small_buf_alloc_count);
241 	return;
242 }
243 
244 void
245 free_rsp_buf(int resp_buftype, void *rsp)
246 {
247 	if (resp_buftype == CIFS_SMALL_BUFFER)
248 		cifs_small_buf_release(rsp);
249 	else if (resp_buftype == CIFS_LARGE_BUFFER)
250 		cifs_buf_release(rsp);
251 }
252 
253 /* NB: MID can not be set if treeCon not passed in, in that
254    case it is responsbility of caller to set the mid */
255 void
256 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
257 		const struct cifs_tcon *treeCon, int word_count
258 		/* length of fixed section (word count) in two byte units  */)
259 {
260 	char *temp = (char *) buffer;
261 
262 	memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
263 
264 	buffer->smb_buf_length = cpu_to_be32(
265 	    (2 * word_count) + sizeof(struct smb_hdr) -
266 	    4 /*  RFC 1001 length field does not count */  +
267 	    2 /* for bcc field itself */) ;
268 
269 	buffer->Protocol[0] = 0xFF;
270 	buffer->Protocol[1] = 'S';
271 	buffer->Protocol[2] = 'M';
272 	buffer->Protocol[3] = 'B';
273 	buffer->Command = smb_command;
274 	buffer->Flags = 0x00;	/* case sensitive */
275 	buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
276 	buffer->Pid = cpu_to_le16((__u16)current->tgid);
277 	buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
278 	if (treeCon) {
279 		buffer->Tid = treeCon->tid;
280 		if (treeCon->ses) {
281 			if (treeCon->ses->capabilities & CAP_UNICODE)
282 				buffer->Flags2 |= SMBFLG2_UNICODE;
283 			if (treeCon->ses->capabilities & CAP_STATUS32)
284 				buffer->Flags2 |= SMBFLG2_ERR_STATUS;
285 
286 			/* Uid is not converted */
287 			buffer->Uid = treeCon->ses->Suid;
288 			if (treeCon->ses->server)
289 				buffer->Mid = get_next_mid(treeCon->ses->server);
290 		}
291 		if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
292 			buffer->Flags2 |= SMBFLG2_DFS;
293 		if (treeCon->nocase)
294 			buffer->Flags  |= SMBFLG_CASELESS;
295 		if ((treeCon->ses) && (treeCon->ses->server))
296 			if (treeCon->ses->server->sign)
297 				buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
298 	}
299 
300 /*  endian conversion of flags is now done just before sending */
301 	buffer->WordCount = (char) word_count;
302 	return;
303 }
304 
305 static int
306 check_smb_hdr(struct smb_hdr *smb)
307 {
308 	/* does it have the right SMB "signature" ? */
309 	if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
310 		cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
311 			 *(unsigned int *)smb->Protocol);
312 		return 1;
313 	}
314 
315 	/* if it's a response then accept */
316 	if (smb->Flags & SMBFLG_RESPONSE)
317 		return 0;
318 
319 	/* only one valid case where server sends us request */
320 	if (smb->Command == SMB_COM_LOCKING_ANDX)
321 		return 0;
322 
323 	cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
324 		 get_mid(smb));
325 	return 1;
326 }
327 
328 int
329 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
330 {
331 	struct smb_hdr *smb = (struct smb_hdr *)buf;
332 	__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
333 	__u32 clc_len;  /* calculated length */
334 	cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
335 		 total_read, rfclen);
336 
337 	/* is this frame too small to even get to a BCC? */
338 	if (total_read < 2 + sizeof(struct smb_hdr)) {
339 		if ((total_read >= sizeof(struct smb_hdr) - 1)
340 			    && (smb->Status.CifsError != 0)) {
341 			/* it's an error return */
342 			smb->WordCount = 0;
343 			/* some error cases do not return wct and bcc */
344 			return 0;
345 		} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
346 				(smb->WordCount == 0)) {
347 			char *tmp = (char *)smb;
348 			/* Need to work around a bug in two servers here */
349 			/* First, check if the part of bcc they sent was zero */
350 			if (tmp[sizeof(struct smb_hdr)] == 0) {
351 				/* some servers return only half of bcc
352 				 * on simple responses (wct, bcc both zero)
353 				 * in particular have seen this on
354 				 * ulogoffX and FindClose. This leaves
355 				 * one byte of bcc potentially unitialized
356 				 */
357 				/* zero rest of bcc */
358 				tmp[sizeof(struct smb_hdr)+1] = 0;
359 				return 0;
360 			}
361 			cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
362 		} else {
363 			cifs_dbg(VFS, "Length less than smb header size\n");
364 		}
365 		return -EIO;
366 	}
367 
368 	/* otherwise, there is enough to get to the BCC */
369 	if (check_smb_hdr(smb))
370 		return -EIO;
371 	clc_len = smbCalcSize(smb);
372 
373 	if (4 + rfclen != total_read) {
374 		cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
375 			 rfclen);
376 		return -EIO;
377 	}
378 
379 	if (4 + rfclen != clc_len) {
380 		__u16 mid = get_mid(smb);
381 		/* check if bcc wrapped around for large read responses */
382 		if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
383 			/* check if lengths match mod 64K */
384 			if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
385 				return 0; /* bcc wrapped */
386 		}
387 		cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
388 			 clc_len, 4 + rfclen, mid);
389 
390 		if (4 + rfclen < clc_len) {
391 			cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
392 				 rfclen, mid);
393 			return -EIO;
394 		} else if (rfclen > clc_len + 512) {
395 			/*
396 			 * Some servers (Windows XP in particular) send more
397 			 * data than the lengths in the SMB packet would
398 			 * indicate on certain calls (byte range locks and
399 			 * trans2 find first calls in particular). While the
400 			 * client can handle such a frame by ignoring the
401 			 * trailing data, we choose limit the amount of extra
402 			 * data to 512 bytes.
403 			 */
404 			cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
405 				 rfclen, mid);
406 			return -EIO;
407 		}
408 	}
409 	return 0;
410 }
411 
412 bool
413 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
414 {
415 	struct smb_hdr *buf = (struct smb_hdr *)buffer;
416 	struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
417 	struct TCP_Server_Info *pserver;
418 	struct cifs_ses *ses;
419 	struct cifs_tcon *tcon;
420 	struct cifsInodeInfo *pCifsInode;
421 	struct cifsFileInfo *netfile;
422 
423 	cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
424 	if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
425 	   (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
426 		struct smb_com_transaction_change_notify_rsp *pSMBr =
427 			(struct smb_com_transaction_change_notify_rsp *)buf;
428 		struct file_notify_information *pnotify;
429 		__u32 data_offset = 0;
430 		size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
431 
432 		if (get_bcc(buf) > sizeof(struct file_notify_information)) {
433 			data_offset = le32_to_cpu(pSMBr->DataOffset);
434 
435 			if (data_offset >
436 			    len - sizeof(struct file_notify_information)) {
437 				cifs_dbg(FYI, "Invalid data_offset %u\n",
438 					 data_offset);
439 				return true;
440 			}
441 			pnotify = (struct file_notify_information *)
442 				((char *)&pSMBr->hdr.Protocol + data_offset);
443 			cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
444 				 pnotify->FileName, pnotify->Action);
445 			/*   cifs_dump_mem("Rcvd notify Data: ",buf,
446 				sizeof(struct smb_hdr)+60); */
447 			return true;
448 		}
449 		if (pSMBr->hdr.Status.CifsError) {
450 			cifs_dbg(FYI, "notify err 0x%x\n",
451 				 pSMBr->hdr.Status.CifsError);
452 			return true;
453 		}
454 		return false;
455 	}
456 	if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
457 		return false;
458 	if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
459 		/* no sense logging error on invalid handle on oplock
460 		   break - harmless race between close request and oplock
461 		   break response is expected from time to time writing out
462 		   large dirty files cached on the client */
463 		if ((NT_STATUS_INVALID_HANDLE) ==
464 		   le32_to_cpu(pSMB->hdr.Status.CifsError)) {
465 			cifs_dbg(FYI, "Invalid handle on oplock break\n");
466 			return true;
467 		} else if (ERRbadfid ==
468 		   le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
469 			return true;
470 		} else {
471 			return false; /* on valid oplock brk we get "request" */
472 		}
473 	}
474 	if (pSMB->hdr.WordCount != 8)
475 		return false;
476 
477 	cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
478 		 pSMB->LockType, pSMB->OplockLevel);
479 	if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
480 		return false;
481 
482 	/* If server is a channel, select the primary channel */
483 	pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
484 
485 	/* look up tcon based on tid & uid */
486 	spin_lock(&cifs_tcp_ses_lock);
487 	list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
488 		list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
489 			if (tcon->tid != buf->Tid)
490 				continue;
491 
492 			cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
493 			spin_lock(&tcon->open_file_lock);
494 			list_for_each_entry(netfile, &tcon->openFileList, tlist) {
495 				if (pSMB->Fid != netfile->fid.netfid)
496 					continue;
497 
498 				cifs_dbg(FYI, "file id match, oplock break\n");
499 				pCifsInode = CIFS_I(d_inode(netfile->dentry));
500 
501 				set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
502 					&pCifsInode->flags);
503 
504 				netfile->oplock_epoch = 0;
505 				netfile->oplock_level = pSMB->OplockLevel;
506 				netfile->oplock_break_cancelled = false;
507 				cifs_queue_oplock_break(netfile);
508 
509 				spin_unlock(&tcon->open_file_lock);
510 				spin_unlock(&cifs_tcp_ses_lock);
511 				return true;
512 			}
513 			spin_unlock(&tcon->open_file_lock);
514 			spin_unlock(&cifs_tcp_ses_lock);
515 			cifs_dbg(FYI, "No matching file for oplock break\n");
516 			return true;
517 		}
518 	}
519 	spin_unlock(&cifs_tcp_ses_lock);
520 	cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
521 	return true;
522 }
523 
524 void
525 dump_smb(void *buf, int smb_buf_length)
526 {
527 	if (traceSMB == 0)
528 		return;
529 
530 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
531 		       smb_buf_length, true);
532 }
533 
534 void
535 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
536 {
537 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
538 		struct cifs_tcon *tcon = NULL;
539 
540 		if (cifs_sb->master_tlink)
541 			tcon = cifs_sb_master_tcon(cifs_sb);
542 
543 		cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
544 		cifs_sb->mnt_cifs_serverino_autodisabled = true;
545 		cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
546 			 tcon ? tcon->tree_name : "new server");
547 		cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
548 		cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
549 
550 	}
551 }
552 
553 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
554 {
555 	oplock &= 0xF;
556 
557 	if (oplock == OPLOCK_EXCLUSIVE) {
558 		cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
559 		cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
560 			 &cinode->netfs.inode);
561 	} else if (oplock == OPLOCK_READ) {
562 		cinode->oplock = CIFS_CACHE_READ_FLG;
563 		cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
564 			 &cinode->netfs.inode);
565 	} else
566 		cinode->oplock = 0;
567 }
568 
569 /*
570  * We wait for oplock breaks to be processed before we attempt to perform
571  * writes.
572  */
573 int cifs_get_writer(struct cifsInodeInfo *cinode)
574 {
575 	int rc;
576 
577 start:
578 	rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
579 			 TASK_KILLABLE);
580 	if (rc)
581 		return rc;
582 
583 	spin_lock(&cinode->writers_lock);
584 	if (!cinode->writers)
585 		set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
586 	cinode->writers++;
587 	/* Check to see if we have started servicing an oplock break */
588 	if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
589 		cinode->writers--;
590 		if (cinode->writers == 0) {
591 			clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
592 			wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
593 		}
594 		spin_unlock(&cinode->writers_lock);
595 		goto start;
596 	}
597 	spin_unlock(&cinode->writers_lock);
598 	return 0;
599 }
600 
601 void cifs_put_writer(struct cifsInodeInfo *cinode)
602 {
603 	spin_lock(&cinode->writers_lock);
604 	cinode->writers--;
605 	if (cinode->writers == 0) {
606 		clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
607 		wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
608 	}
609 	spin_unlock(&cinode->writers_lock);
610 }
611 
612 /**
613  * cifs_queue_oplock_break - queue the oplock break handler for cfile
614  * @cfile: The file to break the oplock on
615  *
616  * This function is called from the demultiplex thread when it
617  * receives an oplock break for @cfile.
618  *
619  * Assumes the tcon->open_file_lock is held.
620  * Assumes cfile->file_info_lock is NOT held.
621  */
622 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
623 {
624 	/*
625 	 * Bump the handle refcount now while we hold the
626 	 * open_file_lock to enforce the validity of it for the oplock
627 	 * break handler. The matching put is done at the end of the
628 	 * handler.
629 	 */
630 	cifsFileInfo_get(cfile);
631 
632 	queue_work(cifsoplockd_wq, &cfile->oplock_break);
633 }
634 
635 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
636 {
637 	clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
638 	wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
639 }
640 
641 bool
642 backup_cred(struct cifs_sb_info *cifs_sb)
643 {
644 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
645 		if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
646 			return true;
647 	}
648 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
649 		if (in_group_p(cifs_sb->ctx->backupgid))
650 			return true;
651 	}
652 
653 	return false;
654 }
655 
656 void
657 cifs_del_pending_open(struct cifs_pending_open *open)
658 {
659 	spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
660 	list_del(&open->olist);
661 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
662 }
663 
664 void
665 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
666 			     struct cifs_pending_open *open)
667 {
668 	memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
669 	open->oplock = CIFS_OPLOCK_NO_CHANGE;
670 	open->tlink = tlink;
671 	fid->pending_open = open;
672 	list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
673 }
674 
675 void
676 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
677 		      struct cifs_pending_open *open)
678 {
679 	spin_lock(&tlink_tcon(tlink)->open_file_lock);
680 	cifs_add_pending_open_locked(fid, tlink, open);
681 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
682 }
683 
684 /*
685  * Critical section which runs after acquiring deferred_lock.
686  * As there is no reference count on cifs_deferred_close, pdclose
687  * should not be used outside deferred_lock.
688  */
689 bool
690 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
691 {
692 	struct cifs_deferred_close *dclose;
693 
694 	list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
695 		if ((dclose->netfid == cfile->fid.netfid) &&
696 			(dclose->persistent_fid == cfile->fid.persistent_fid) &&
697 			(dclose->volatile_fid == cfile->fid.volatile_fid)) {
698 			*pdclose = dclose;
699 			return true;
700 		}
701 	}
702 	return false;
703 }
704 
705 /*
706  * Critical section which runs after acquiring deferred_lock.
707  */
708 void
709 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
710 {
711 	bool is_deferred = false;
712 	struct cifs_deferred_close *pdclose;
713 
714 	is_deferred = cifs_is_deferred_close(cfile, &pdclose);
715 	if (is_deferred) {
716 		kfree(dclose);
717 		return;
718 	}
719 
720 	dclose->tlink = cfile->tlink;
721 	dclose->netfid = cfile->fid.netfid;
722 	dclose->persistent_fid = cfile->fid.persistent_fid;
723 	dclose->volatile_fid = cfile->fid.volatile_fid;
724 	list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
725 }
726 
727 /*
728  * Critical section which runs after acquiring deferred_lock.
729  */
730 void
731 cifs_del_deferred_close(struct cifsFileInfo *cfile)
732 {
733 	bool is_deferred = false;
734 	struct cifs_deferred_close *dclose;
735 
736 	is_deferred = cifs_is_deferred_close(cfile, &dclose);
737 	if (!is_deferred)
738 		return;
739 	list_del(&dclose->dlist);
740 	kfree(dclose);
741 }
742 
743 void
744 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
745 {
746 	struct cifsFileInfo *cfile = NULL;
747 	struct file_list *tmp_list, *tmp_next_list;
748 	struct list_head file_head;
749 
750 	if (cifs_inode == NULL)
751 		return;
752 
753 	INIT_LIST_HEAD(&file_head);
754 	spin_lock(&cifs_inode->open_file_lock);
755 	list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
756 		if (delayed_work_pending(&cfile->deferred)) {
757 			if (cancel_delayed_work(&cfile->deferred)) {
758 				spin_lock(&cifs_inode->deferred_lock);
759 				cifs_del_deferred_close(cfile);
760 				spin_unlock(&cifs_inode->deferred_lock);
761 
762 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
763 				if (tmp_list == NULL)
764 					break;
765 				tmp_list->cfile = cfile;
766 				list_add_tail(&tmp_list->list, &file_head);
767 			}
768 		}
769 	}
770 	spin_unlock(&cifs_inode->open_file_lock);
771 
772 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
773 		_cifsFileInfo_put(tmp_list->cfile, false, false);
774 		list_del(&tmp_list->list);
775 		kfree(tmp_list);
776 	}
777 }
778 
779 void
780 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
781 {
782 	struct cifsFileInfo *cfile;
783 	struct file_list *tmp_list, *tmp_next_list;
784 	struct list_head file_head;
785 
786 	INIT_LIST_HEAD(&file_head);
787 	spin_lock(&tcon->open_file_lock);
788 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
789 		if (delayed_work_pending(&cfile->deferred)) {
790 			if (cancel_delayed_work(&cfile->deferred)) {
791 				spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
792 				cifs_del_deferred_close(cfile);
793 				spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
794 
795 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
796 				if (tmp_list == NULL)
797 					break;
798 				tmp_list->cfile = cfile;
799 				list_add_tail(&tmp_list->list, &file_head);
800 			}
801 		}
802 	}
803 	spin_unlock(&tcon->open_file_lock);
804 
805 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
806 		_cifsFileInfo_put(tmp_list->cfile, true, false);
807 		list_del(&tmp_list->list);
808 		kfree(tmp_list);
809 	}
810 }
811 void
812 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
813 {
814 	struct cifsFileInfo *cfile;
815 	struct file_list *tmp_list, *tmp_next_list;
816 	struct list_head file_head;
817 	void *page;
818 	const char *full_path;
819 
820 	INIT_LIST_HEAD(&file_head);
821 	page = alloc_dentry_path();
822 	spin_lock(&tcon->open_file_lock);
823 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
824 		full_path = build_path_from_dentry(cfile->dentry, page);
825 		if (strstr(full_path, path)) {
826 			if (delayed_work_pending(&cfile->deferred)) {
827 				if (cancel_delayed_work(&cfile->deferred)) {
828 					spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
829 					cifs_del_deferred_close(cfile);
830 					spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
831 
832 					tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
833 					if (tmp_list == NULL)
834 						break;
835 					tmp_list->cfile = cfile;
836 					list_add_tail(&tmp_list->list, &file_head);
837 				}
838 			}
839 		}
840 	}
841 	spin_unlock(&tcon->open_file_lock);
842 
843 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
844 		_cifsFileInfo_put(tmp_list->cfile, true, false);
845 		list_del(&tmp_list->list);
846 		kfree(tmp_list);
847 	}
848 	free_dentry_path(page);
849 }
850 
851 /* parses DFS referral V3 structure
852  * caller is responsible for freeing target_nodes
853  * returns:
854  * - on success - 0
855  * - on failure - errno
856  */
857 int
858 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
859 		    unsigned int *num_of_nodes,
860 		    struct dfs_info3_param **target_nodes,
861 		    const struct nls_table *nls_codepage, int remap,
862 		    const char *searchName, bool is_unicode)
863 {
864 	int i, rc = 0;
865 	char *data_end;
866 	struct dfs_referral_level_3 *ref;
867 
868 	*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
869 
870 	if (*num_of_nodes < 1) {
871 		cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
872 			 *num_of_nodes);
873 		rc = -EINVAL;
874 		goto parse_DFS_referrals_exit;
875 	}
876 
877 	ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
878 	if (ref->VersionNumber != cpu_to_le16(3)) {
879 		cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
880 			 le16_to_cpu(ref->VersionNumber));
881 		rc = -EINVAL;
882 		goto parse_DFS_referrals_exit;
883 	}
884 
885 	/* get the upper boundary of the resp buffer */
886 	data_end = (char *)rsp + rsp_size;
887 
888 	cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
889 		 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
890 
891 	*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
892 				GFP_KERNEL);
893 	if (*target_nodes == NULL) {
894 		rc = -ENOMEM;
895 		goto parse_DFS_referrals_exit;
896 	}
897 
898 	/* collect necessary data from referrals */
899 	for (i = 0; i < *num_of_nodes; i++) {
900 		char *temp;
901 		int max_len;
902 		struct dfs_info3_param *node = (*target_nodes)+i;
903 
904 		node->flags = le32_to_cpu(rsp->DFSFlags);
905 		if (is_unicode) {
906 			__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
907 						GFP_KERNEL);
908 			if (tmp == NULL) {
909 				rc = -ENOMEM;
910 				goto parse_DFS_referrals_exit;
911 			}
912 			cifsConvertToUTF16((__le16 *) tmp, searchName,
913 					   PATH_MAX, nls_codepage, remap);
914 			node->path_consumed = cifs_utf16_bytes(tmp,
915 					le16_to_cpu(rsp->PathConsumed),
916 					nls_codepage);
917 			kfree(tmp);
918 		} else
919 			node->path_consumed = le16_to_cpu(rsp->PathConsumed);
920 
921 		node->server_type = le16_to_cpu(ref->ServerType);
922 		node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
923 
924 		/* copy DfsPath */
925 		temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
926 		max_len = data_end - temp;
927 		node->path_name = cifs_strndup_from_utf16(temp, max_len,
928 						is_unicode, nls_codepage);
929 		if (!node->path_name) {
930 			rc = -ENOMEM;
931 			goto parse_DFS_referrals_exit;
932 		}
933 
934 		/* copy link target UNC */
935 		temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
936 		max_len = data_end - temp;
937 		node->node_name = cifs_strndup_from_utf16(temp, max_len,
938 						is_unicode, nls_codepage);
939 		if (!node->node_name) {
940 			rc = -ENOMEM;
941 			goto parse_DFS_referrals_exit;
942 		}
943 
944 		node->ttl = le32_to_cpu(ref->TimeToLive);
945 
946 		ref++;
947 	}
948 
949 parse_DFS_referrals_exit:
950 	if (rc) {
951 		free_dfs_info_array(*target_nodes, *num_of_nodes);
952 		*target_nodes = NULL;
953 		*num_of_nodes = 0;
954 	}
955 	return rc;
956 }
957 
958 struct cifs_aio_ctx *
959 cifs_aio_ctx_alloc(void)
960 {
961 	struct cifs_aio_ctx *ctx;
962 
963 	/*
964 	 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
965 	 * to false so that we know when we have to unreference pages within
966 	 * cifs_aio_ctx_release()
967 	 */
968 	ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
969 	if (!ctx)
970 		return NULL;
971 
972 	INIT_LIST_HEAD(&ctx->list);
973 	mutex_init(&ctx->aio_mutex);
974 	init_completion(&ctx->done);
975 	kref_init(&ctx->refcount);
976 	return ctx;
977 }
978 
979 void
980 cifs_aio_ctx_release(struct kref *refcount)
981 {
982 	struct cifs_aio_ctx *ctx = container_of(refcount,
983 					struct cifs_aio_ctx, refcount);
984 
985 	cifsFileInfo_put(ctx->cfile);
986 
987 	/*
988 	 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
989 	 * which means that iov_iter_extract_pages() was a success and thus
990 	 * that we may have references or pins on pages that we need to
991 	 * release.
992 	 */
993 	if (ctx->bv) {
994 		if (ctx->should_dirty || ctx->bv_need_unpin) {
995 			unsigned int i;
996 
997 			for (i = 0; i < ctx->nr_pinned_pages; i++) {
998 				struct page *page = ctx->bv[i].bv_page;
999 
1000 				if (ctx->should_dirty)
1001 					set_page_dirty(page);
1002 				if (ctx->bv_need_unpin)
1003 					unpin_user_page(page);
1004 			}
1005 		}
1006 		kvfree(ctx->bv);
1007 	}
1008 
1009 	kfree(ctx);
1010 }
1011 
1012 /**
1013  * cifs_alloc_hash - allocate hash and hash context together
1014  * @name: The name of the crypto hash algo
1015  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1016  *
1017  * The caller has to make sure @sdesc is initialized to either NULL or
1018  * a valid context. It can be freed via cifs_free_hash().
1019  */
1020 int
1021 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1022 {
1023 	int rc = 0;
1024 	struct crypto_shash *alg = NULL;
1025 
1026 	if (*sdesc)
1027 		return 0;
1028 
1029 	alg = crypto_alloc_shash(name, 0, 0);
1030 	if (IS_ERR(alg)) {
1031 		cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1032 		rc = PTR_ERR(alg);
1033 		*sdesc = NULL;
1034 		return rc;
1035 	}
1036 
1037 	*sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1038 	if (*sdesc == NULL) {
1039 		cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1040 		crypto_free_shash(alg);
1041 		return -ENOMEM;
1042 	}
1043 
1044 	(*sdesc)->tfm = alg;
1045 	return 0;
1046 }
1047 
1048 /**
1049  * cifs_free_hash - free hash and hash context together
1050  * @sdesc: Where to find the pointer to the hash TFM
1051  *
1052  * Freeing a NULL descriptor is safe.
1053  */
1054 void
1055 cifs_free_hash(struct shash_desc **sdesc)
1056 {
1057 	if (unlikely(!sdesc) || !*sdesc)
1058 		return;
1059 
1060 	if ((*sdesc)->tfm) {
1061 		crypto_free_shash((*sdesc)->tfm);
1062 		(*sdesc)->tfm = NULL;
1063 	}
1064 
1065 	kfree_sensitive(*sdesc);
1066 	*sdesc = NULL;
1067 }
1068 
1069 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1070 {
1071 	const char *end;
1072 
1073 	/* skip initial slashes */
1074 	while (*unc && (*unc == '\\' || *unc == '/'))
1075 		unc++;
1076 
1077 	end = unc;
1078 
1079 	while (*end && !(*end == '\\' || *end == '/'))
1080 		end++;
1081 
1082 	*h = unc;
1083 	*len = end - unc;
1084 }
1085 
1086 /**
1087  * copy_path_name - copy src path to dst, possibly truncating
1088  * @dst: The destination buffer
1089  * @src: The source name
1090  *
1091  * returns number of bytes written (including trailing nul)
1092  */
1093 int copy_path_name(char *dst, const char *src)
1094 {
1095 	int name_len;
1096 
1097 	/*
1098 	 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1099 	 * will truncate and strlen(dst) will be PATH_MAX-1
1100 	 */
1101 	name_len = strscpy(dst, src, PATH_MAX);
1102 	if (WARN_ON_ONCE(name_len < 0))
1103 		name_len = PATH_MAX-1;
1104 
1105 	/* we count the trailing nul */
1106 	name_len++;
1107 	return name_len;
1108 }
1109 
1110 struct super_cb_data {
1111 	void *data;
1112 	struct super_block *sb;
1113 };
1114 
1115 static void tcon_super_cb(struct super_block *sb, void *arg)
1116 {
1117 	struct super_cb_data *sd = arg;
1118 	struct cifs_sb_info *cifs_sb;
1119 	struct cifs_tcon *t1 = sd->data, *t2;
1120 
1121 	if (sd->sb)
1122 		return;
1123 
1124 	cifs_sb = CIFS_SB(sb);
1125 	t2 = cifs_sb_master_tcon(cifs_sb);
1126 
1127 	spin_lock(&t2->tc_lock);
1128 	if (t1->ses == t2->ses &&
1129 	    t1->ses->server == t2->ses->server &&
1130 	    t2->origin_fullpath &&
1131 	    dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
1132 		sd->sb = sb;
1133 	spin_unlock(&t2->tc_lock);
1134 }
1135 
1136 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1137 					    void *data)
1138 {
1139 	struct super_cb_data sd = {
1140 		.data = data,
1141 		.sb = NULL,
1142 	};
1143 	struct file_system_type **fs_type = (struct file_system_type *[]) {
1144 		&cifs_fs_type, &smb3_fs_type, NULL,
1145 	};
1146 
1147 	for (; *fs_type; fs_type++) {
1148 		iterate_supers_type(*fs_type, f, &sd);
1149 		if (sd.sb) {
1150 			/*
1151 			 * Grab an active reference in order to prevent automounts (DFS links)
1152 			 * of expiring and then freeing up our cifs superblock pointer while
1153 			 * we're doing failover.
1154 			 */
1155 			cifs_sb_active(sd.sb);
1156 			return sd.sb;
1157 		}
1158 	}
1159 	pr_warn_once("%s: could not find dfs superblock\n", __func__);
1160 	return ERR_PTR(-EINVAL);
1161 }
1162 
1163 static void __cifs_put_super(struct super_block *sb)
1164 {
1165 	if (!IS_ERR_OR_NULL(sb))
1166 		cifs_sb_deactive(sb);
1167 }
1168 
1169 struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
1170 {
1171 	spin_lock(&tcon->tc_lock);
1172 	if (!tcon->origin_fullpath) {
1173 		spin_unlock(&tcon->tc_lock);
1174 		return ERR_PTR(-ENOENT);
1175 	}
1176 	spin_unlock(&tcon->tc_lock);
1177 	return __cifs_get_super(tcon_super_cb, tcon);
1178 }
1179 
1180 void cifs_put_tcp_super(struct super_block *sb)
1181 {
1182 	__cifs_put_super(sb);
1183 }
1184 
1185 #ifdef CONFIG_CIFS_DFS_UPCALL
1186 int match_target_ip(struct TCP_Server_Info *server,
1187 		    const char *share, size_t share_len,
1188 		    bool *result)
1189 {
1190 	int rc;
1191 	char *target;
1192 	struct sockaddr_storage ss;
1193 
1194 	*result = false;
1195 
1196 	target = kzalloc(share_len + 3, GFP_KERNEL);
1197 	if (!target)
1198 		return -ENOMEM;
1199 
1200 	scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1201 
1202 	cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1203 
1204 	rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1205 	kfree(target);
1206 
1207 	if (rc < 0)
1208 		return rc;
1209 
1210 	spin_lock(&server->srv_lock);
1211 	*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1212 	spin_unlock(&server->srv_lock);
1213 	cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1214 	return 0;
1215 }
1216 
1217 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1218 {
1219 	int rc;
1220 
1221 	kfree(cifs_sb->prepath);
1222 	cifs_sb->prepath = NULL;
1223 
1224 	if (prefix && *prefix) {
1225 		cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1226 		if (IS_ERR(cifs_sb->prepath)) {
1227 			rc = PTR_ERR(cifs_sb->prepath);
1228 			cifs_sb->prepath = NULL;
1229 			return rc;
1230 		}
1231 		if (cifs_sb->prepath)
1232 			convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1233 	}
1234 
1235 	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1236 	return 0;
1237 }
1238 
1239 /*
1240  * Handle weird Windows SMB server behaviour. It responds with
1241  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1242  * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1243  * non-ASCII unicode symbols.
1244  */
1245 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1246 				   struct cifs_tcon *tcon,
1247 				   struct cifs_sb_info *cifs_sb,
1248 				   const char *full_path,
1249 				   bool *islink)
1250 {
1251 	struct cifs_ses *ses = tcon->ses;
1252 	size_t len;
1253 	char *path;
1254 	char *ref_path;
1255 
1256 	*islink = false;
1257 
1258 	/*
1259 	 * Fast path - skip check when @full_path doesn't have a prefix path to
1260 	 * look up or tcon is not DFS.
1261 	 */
1262 	if (strlen(full_path) < 2 || !cifs_sb ||
1263 	    (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1264 	    !is_tcon_dfs(tcon))
1265 		return 0;
1266 
1267 	spin_lock(&tcon->tc_lock);
1268 	if (!tcon->origin_fullpath) {
1269 		spin_unlock(&tcon->tc_lock);
1270 		return 0;
1271 	}
1272 	spin_unlock(&tcon->tc_lock);
1273 
1274 	/*
1275 	 * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1276 	 * to get a referral to figure out whether it is an DFS link.
1277 	 */
1278 	len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1279 	path = kmalloc(len, GFP_KERNEL);
1280 	if (!path)
1281 		return -ENOMEM;
1282 
1283 	scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1284 	ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1285 					    cifs_remap(cifs_sb));
1286 	kfree(path);
1287 
1288 	if (IS_ERR(ref_path)) {
1289 		if (PTR_ERR(ref_path) != -EINVAL)
1290 			return PTR_ERR(ref_path);
1291 	} else {
1292 		struct dfs_info3_param *refs = NULL;
1293 		int num_refs = 0;
1294 
1295 		/*
1296 		 * XXX: we are not using dfs_cache_find() here because we might
1297 		 * end up filling all the DFS cache and thus potentially
1298 		 * removing cached DFS targets that the client would eventually
1299 		 * need during failover.
1300 		 */
1301 		ses = CIFS_DFS_ROOT_SES(ses);
1302 		if (ses->server->ops->get_dfs_refer &&
1303 		    !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1304 						     &num_refs, cifs_sb->local_nls,
1305 						     cifs_remap(cifs_sb)))
1306 			*islink = refs[0].server_type == DFS_TYPE_LINK;
1307 		free_dfs_info_array(refs, num_refs);
1308 		kfree(ref_path);
1309 	}
1310 	return 0;
1311 }
1312 #endif
1313 
1314 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1315 {
1316 	int timeout = 10;
1317 	int rc;
1318 
1319 	spin_lock(&server->srv_lock);
1320 	if (server->tcpStatus != CifsNeedReconnect) {
1321 		spin_unlock(&server->srv_lock);
1322 		return 0;
1323 	}
1324 	timeout *= server->nr_targets;
1325 	spin_unlock(&server->srv_lock);
1326 
1327 	/*
1328 	 * Give demultiplex thread up to 10 seconds to each target available for
1329 	 * reconnect -- should be greater than cifs socket timeout which is 7
1330 	 * seconds.
1331 	 *
1332 	 * On "soft" mounts we wait once. Hard mounts keep retrying until
1333 	 * process is killed or server comes back on-line.
1334 	 */
1335 	do {
1336 		rc = wait_event_interruptible_timeout(server->response_q,
1337 						      (server->tcpStatus != CifsNeedReconnect),
1338 						      timeout * HZ);
1339 		if (rc < 0) {
1340 			cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1341 				 __func__);
1342 			return -ERESTARTSYS;
1343 		}
1344 
1345 		/* are we still trying to reconnect? */
1346 		spin_lock(&server->srv_lock);
1347 		if (server->tcpStatus != CifsNeedReconnect) {
1348 			spin_unlock(&server->srv_lock);
1349 			return 0;
1350 		}
1351 		spin_unlock(&server->srv_lock);
1352 	} while (retry);
1353 
1354 	cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1355 	return -EHOSTDOWN;
1356 }
1357