xref: /openbmc/linux/fs/smb/client/misc.c (revision 479965a2)
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #include "dfs.h"
26 #endif
27 #include "fs_context.h"
28 #include "cached_dir.h"
29 
30 extern mempool_t *cifs_sm_req_poolp;
31 extern mempool_t *cifs_req_poolp;
32 
33 /* The xid serves as a useful identifier for each incoming vfs request,
34    in a similar way to the mid which is useful to track each sent smb,
35    and CurrentXid can also provide a running counter (although it
36    will eventually wrap past zero) of the total vfs operations handled
37    since the cifs fs was mounted */
38 
39 unsigned int
40 _get_xid(void)
41 {
42 	unsigned int xid;
43 
44 	spin_lock(&GlobalMid_Lock);
45 	GlobalTotalActiveXid++;
46 
47 	/* keep high water mark for number of simultaneous ops in filesystem */
48 	if (GlobalTotalActiveXid > GlobalMaxActiveXid)
49 		GlobalMaxActiveXid = GlobalTotalActiveXid;
50 	if (GlobalTotalActiveXid > 65000)
51 		cifs_dbg(FYI, "warning: more than 65000 requests active\n");
52 	xid = GlobalCurrentXid++;
53 	spin_unlock(&GlobalMid_Lock);
54 	return xid;
55 }
56 
57 void
58 _free_xid(unsigned int xid)
59 {
60 	spin_lock(&GlobalMid_Lock);
61 	/* if (GlobalTotalActiveXid == 0)
62 		BUG(); */
63 	GlobalTotalActiveXid--;
64 	spin_unlock(&GlobalMid_Lock);
65 }
66 
67 struct cifs_ses *
68 sesInfoAlloc(void)
69 {
70 	struct cifs_ses *ret_buf;
71 
72 	ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
73 	if (ret_buf) {
74 		atomic_inc(&sesInfoAllocCount);
75 		spin_lock_init(&ret_buf->ses_lock);
76 		ret_buf->ses_status = SES_NEW;
77 		++ret_buf->ses_count;
78 		INIT_LIST_HEAD(&ret_buf->smb_ses_list);
79 		INIT_LIST_HEAD(&ret_buf->tcon_list);
80 		mutex_init(&ret_buf->session_mutex);
81 		spin_lock_init(&ret_buf->iface_lock);
82 		INIT_LIST_HEAD(&ret_buf->iface_list);
83 		spin_lock_init(&ret_buf->chan_lock);
84 	}
85 	return ret_buf;
86 }
87 
88 void
89 sesInfoFree(struct cifs_ses *buf_to_free)
90 {
91 	struct cifs_server_iface *iface = NULL, *niface = NULL;
92 
93 	if (buf_to_free == NULL) {
94 		cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
95 		return;
96 	}
97 
98 	unload_nls(buf_to_free->local_nls);
99 	atomic_dec(&sesInfoAllocCount);
100 	kfree(buf_to_free->serverOS);
101 	kfree(buf_to_free->serverDomain);
102 	kfree(buf_to_free->serverNOS);
103 	kfree_sensitive(buf_to_free->password);
104 	kfree(buf_to_free->user_name);
105 	kfree(buf_to_free->domainName);
106 	kfree_sensitive(buf_to_free->auth_key.response);
107 	spin_lock(&buf_to_free->iface_lock);
108 	list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
109 				 iface_head)
110 		kref_put(&iface->refcount, release_iface);
111 	spin_unlock(&buf_to_free->iface_lock);
112 	kfree_sensitive(buf_to_free);
113 }
114 
115 struct cifs_tcon *
116 tconInfoAlloc(void)
117 {
118 	struct cifs_tcon *ret_buf;
119 
120 	ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
121 	if (!ret_buf)
122 		return NULL;
123 	ret_buf->cfids = init_cached_dirs();
124 	if (!ret_buf->cfids) {
125 		kfree(ret_buf);
126 		return NULL;
127 	}
128 
129 	atomic_inc(&tconInfoAllocCount);
130 	ret_buf->status = TID_NEW;
131 	++ret_buf->tc_count;
132 	spin_lock_init(&ret_buf->tc_lock);
133 	INIT_LIST_HEAD(&ret_buf->openFileList);
134 	INIT_LIST_HEAD(&ret_buf->tcon_list);
135 	spin_lock_init(&ret_buf->open_file_lock);
136 	spin_lock_init(&ret_buf->stat_lock);
137 	atomic_set(&ret_buf->num_local_opens, 0);
138 	atomic_set(&ret_buf->num_remote_opens, 0);
139 #ifdef CONFIG_CIFS_DFS_UPCALL
140 	INIT_LIST_HEAD(&ret_buf->dfs_ses_list);
141 #endif
142 
143 	return ret_buf;
144 }
145 
146 void
147 tconInfoFree(struct cifs_tcon *tcon)
148 {
149 	if (tcon == NULL) {
150 		cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
151 		return;
152 	}
153 	free_cached_dirs(tcon->cfids);
154 	atomic_dec(&tconInfoAllocCount);
155 	kfree(tcon->nativeFileSystem);
156 	kfree_sensitive(tcon->password);
157 #ifdef CONFIG_CIFS_DFS_UPCALL
158 	dfs_put_root_smb_sessions(&tcon->dfs_ses_list);
159 #endif
160 	kfree(tcon->origin_fullpath);
161 	kfree(tcon);
162 }
163 
164 struct smb_hdr *
165 cifs_buf_get(void)
166 {
167 	struct smb_hdr *ret_buf = NULL;
168 	/*
169 	 * SMB2 header is bigger than CIFS one - no problems to clean some
170 	 * more bytes for CIFS.
171 	 */
172 	size_t buf_size = sizeof(struct smb2_hdr);
173 
174 	/*
175 	 * We could use negotiated size instead of max_msgsize -
176 	 * but it may be more efficient to always alloc same size
177 	 * albeit slightly larger than necessary and maxbuffersize
178 	 * defaults to this and can not be bigger.
179 	 */
180 	ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
181 
182 	/* clear the first few header bytes */
183 	/* for most paths, more is cleared in header_assemble */
184 	memset(ret_buf, 0, buf_size + 3);
185 	atomic_inc(&buf_alloc_count);
186 #ifdef CONFIG_CIFS_STATS2
187 	atomic_inc(&total_buf_alloc_count);
188 #endif /* CONFIG_CIFS_STATS2 */
189 
190 	return ret_buf;
191 }
192 
193 void
194 cifs_buf_release(void *buf_to_free)
195 {
196 	if (buf_to_free == NULL) {
197 		/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
198 		return;
199 	}
200 	mempool_free(buf_to_free, cifs_req_poolp);
201 
202 	atomic_dec(&buf_alloc_count);
203 	return;
204 }
205 
206 struct smb_hdr *
207 cifs_small_buf_get(void)
208 {
209 	struct smb_hdr *ret_buf = NULL;
210 
211 /* We could use negotiated size instead of max_msgsize -
212    but it may be more efficient to always alloc same size
213    albeit slightly larger than necessary and maxbuffersize
214    defaults to this and can not be bigger */
215 	ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
216 	/* No need to clear memory here, cleared in header assemble */
217 	/*	memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
218 	atomic_inc(&small_buf_alloc_count);
219 #ifdef CONFIG_CIFS_STATS2
220 	atomic_inc(&total_small_buf_alloc_count);
221 #endif /* CONFIG_CIFS_STATS2 */
222 
223 	return ret_buf;
224 }
225 
226 void
227 cifs_small_buf_release(void *buf_to_free)
228 {
229 
230 	if (buf_to_free == NULL) {
231 		cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
232 		return;
233 	}
234 	mempool_free(buf_to_free, cifs_sm_req_poolp);
235 
236 	atomic_dec(&small_buf_alloc_count);
237 	return;
238 }
239 
240 void
241 free_rsp_buf(int resp_buftype, void *rsp)
242 {
243 	if (resp_buftype == CIFS_SMALL_BUFFER)
244 		cifs_small_buf_release(rsp);
245 	else if (resp_buftype == CIFS_LARGE_BUFFER)
246 		cifs_buf_release(rsp);
247 }
248 
249 /* NB: MID can not be set if treeCon not passed in, in that
250    case it is responsbility of caller to set the mid */
251 void
252 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
253 		const struct cifs_tcon *treeCon, int word_count
254 		/* length of fixed section (word count) in two byte units  */)
255 {
256 	char *temp = (char *) buffer;
257 
258 	memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
259 
260 	buffer->smb_buf_length = cpu_to_be32(
261 	    (2 * word_count) + sizeof(struct smb_hdr) -
262 	    4 /*  RFC 1001 length field does not count */  +
263 	    2 /* for bcc field itself */) ;
264 
265 	buffer->Protocol[0] = 0xFF;
266 	buffer->Protocol[1] = 'S';
267 	buffer->Protocol[2] = 'M';
268 	buffer->Protocol[3] = 'B';
269 	buffer->Command = smb_command;
270 	buffer->Flags = 0x00;	/* case sensitive */
271 	buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
272 	buffer->Pid = cpu_to_le16((__u16)current->tgid);
273 	buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
274 	if (treeCon) {
275 		buffer->Tid = treeCon->tid;
276 		if (treeCon->ses) {
277 			if (treeCon->ses->capabilities & CAP_UNICODE)
278 				buffer->Flags2 |= SMBFLG2_UNICODE;
279 			if (treeCon->ses->capabilities & CAP_STATUS32)
280 				buffer->Flags2 |= SMBFLG2_ERR_STATUS;
281 
282 			/* Uid is not converted */
283 			buffer->Uid = treeCon->ses->Suid;
284 			if (treeCon->ses->server)
285 				buffer->Mid = get_next_mid(treeCon->ses->server);
286 		}
287 		if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
288 			buffer->Flags2 |= SMBFLG2_DFS;
289 		if (treeCon->nocase)
290 			buffer->Flags  |= SMBFLG_CASELESS;
291 		if ((treeCon->ses) && (treeCon->ses->server))
292 			if (treeCon->ses->server->sign)
293 				buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
294 	}
295 
296 /*  endian conversion of flags is now done just before sending */
297 	buffer->WordCount = (char) word_count;
298 	return;
299 }
300 
301 static int
302 check_smb_hdr(struct smb_hdr *smb)
303 {
304 	/* does it have the right SMB "signature" ? */
305 	if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
306 		cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
307 			 *(unsigned int *)smb->Protocol);
308 		return 1;
309 	}
310 
311 	/* if it's a response then accept */
312 	if (smb->Flags & SMBFLG_RESPONSE)
313 		return 0;
314 
315 	/* only one valid case where server sends us request */
316 	if (smb->Command == SMB_COM_LOCKING_ANDX)
317 		return 0;
318 
319 	cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
320 		 get_mid(smb));
321 	return 1;
322 }
323 
324 int
325 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
326 {
327 	struct smb_hdr *smb = (struct smb_hdr *)buf;
328 	__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
329 	__u32 clc_len;  /* calculated length */
330 	cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
331 		 total_read, rfclen);
332 
333 	/* is this frame too small to even get to a BCC? */
334 	if (total_read < 2 + sizeof(struct smb_hdr)) {
335 		if ((total_read >= sizeof(struct smb_hdr) - 1)
336 			    && (smb->Status.CifsError != 0)) {
337 			/* it's an error return */
338 			smb->WordCount = 0;
339 			/* some error cases do not return wct and bcc */
340 			return 0;
341 		} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
342 				(smb->WordCount == 0)) {
343 			char *tmp = (char *)smb;
344 			/* Need to work around a bug in two servers here */
345 			/* First, check if the part of bcc they sent was zero */
346 			if (tmp[sizeof(struct smb_hdr)] == 0) {
347 				/* some servers return only half of bcc
348 				 * on simple responses (wct, bcc both zero)
349 				 * in particular have seen this on
350 				 * ulogoffX and FindClose. This leaves
351 				 * one byte of bcc potentially unitialized
352 				 */
353 				/* zero rest of bcc */
354 				tmp[sizeof(struct smb_hdr)+1] = 0;
355 				return 0;
356 			}
357 			cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
358 		} else {
359 			cifs_dbg(VFS, "Length less than smb header size\n");
360 		}
361 		return -EIO;
362 	}
363 
364 	/* otherwise, there is enough to get to the BCC */
365 	if (check_smb_hdr(smb))
366 		return -EIO;
367 	clc_len = smbCalcSize(smb);
368 
369 	if (4 + rfclen != total_read) {
370 		cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
371 			 rfclen);
372 		return -EIO;
373 	}
374 
375 	if (4 + rfclen != clc_len) {
376 		__u16 mid = get_mid(smb);
377 		/* check if bcc wrapped around for large read responses */
378 		if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
379 			/* check if lengths match mod 64K */
380 			if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
381 				return 0; /* bcc wrapped */
382 		}
383 		cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
384 			 clc_len, 4 + rfclen, mid);
385 
386 		if (4 + rfclen < clc_len) {
387 			cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
388 				 rfclen, mid);
389 			return -EIO;
390 		} else if (rfclen > clc_len + 512) {
391 			/*
392 			 * Some servers (Windows XP in particular) send more
393 			 * data than the lengths in the SMB packet would
394 			 * indicate on certain calls (byte range locks and
395 			 * trans2 find first calls in particular). While the
396 			 * client can handle such a frame by ignoring the
397 			 * trailing data, we choose limit the amount of extra
398 			 * data to 512 bytes.
399 			 */
400 			cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
401 				 rfclen, mid);
402 			return -EIO;
403 		}
404 	}
405 	return 0;
406 }
407 
408 bool
409 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
410 {
411 	struct smb_hdr *buf = (struct smb_hdr *)buffer;
412 	struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
413 	struct TCP_Server_Info *pserver;
414 	struct cifs_ses *ses;
415 	struct cifs_tcon *tcon;
416 	struct cifsInodeInfo *pCifsInode;
417 	struct cifsFileInfo *netfile;
418 
419 	cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
420 	if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
421 	   (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
422 		struct smb_com_transaction_change_notify_rsp *pSMBr =
423 			(struct smb_com_transaction_change_notify_rsp *)buf;
424 		struct file_notify_information *pnotify;
425 		__u32 data_offset = 0;
426 		size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
427 
428 		if (get_bcc(buf) > sizeof(struct file_notify_information)) {
429 			data_offset = le32_to_cpu(pSMBr->DataOffset);
430 
431 			if (data_offset >
432 			    len - sizeof(struct file_notify_information)) {
433 				cifs_dbg(FYI, "Invalid data_offset %u\n",
434 					 data_offset);
435 				return true;
436 			}
437 			pnotify = (struct file_notify_information *)
438 				((char *)&pSMBr->hdr.Protocol + data_offset);
439 			cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
440 				 pnotify->FileName, pnotify->Action);
441 			/*   cifs_dump_mem("Rcvd notify Data: ",buf,
442 				sizeof(struct smb_hdr)+60); */
443 			return true;
444 		}
445 		if (pSMBr->hdr.Status.CifsError) {
446 			cifs_dbg(FYI, "notify err 0x%x\n",
447 				 pSMBr->hdr.Status.CifsError);
448 			return true;
449 		}
450 		return false;
451 	}
452 	if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
453 		return false;
454 	if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
455 		/* no sense logging error on invalid handle on oplock
456 		   break - harmless race between close request and oplock
457 		   break response is expected from time to time writing out
458 		   large dirty files cached on the client */
459 		if ((NT_STATUS_INVALID_HANDLE) ==
460 		   le32_to_cpu(pSMB->hdr.Status.CifsError)) {
461 			cifs_dbg(FYI, "Invalid handle on oplock break\n");
462 			return true;
463 		} else if (ERRbadfid ==
464 		   le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
465 			return true;
466 		} else {
467 			return false; /* on valid oplock brk we get "request" */
468 		}
469 	}
470 	if (pSMB->hdr.WordCount != 8)
471 		return false;
472 
473 	cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
474 		 pSMB->LockType, pSMB->OplockLevel);
475 	if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
476 		return false;
477 
478 	/* If server is a channel, select the primary channel */
479 	pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
480 
481 	/* look up tcon based on tid & uid */
482 	spin_lock(&cifs_tcp_ses_lock);
483 	list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
484 		list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
485 			if (tcon->tid != buf->Tid)
486 				continue;
487 
488 			cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
489 			spin_lock(&tcon->open_file_lock);
490 			list_for_each_entry(netfile, &tcon->openFileList, tlist) {
491 				if (pSMB->Fid != netfile->fid.netfid)
492 					continue;
493 
494 				cifs_dbg(FYI, "file id match, oplock break\n");
495 				pCifsInode = CIFS_I(d_inode(netfile->dentry));
496 
497 				set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
498 					&pCifsInode->flags);
499 
500 				netfile->oplock_epoch = 0;
501 				netfile->oplock_level = pSMB->OplockLevel;
502 				netfile->oplock_break_cancelled = false;
503 				cifs_queue_oplock_break(netfile);
504 
505 				spin_unlock(&tcon->open_file_lock);
506 				spin_unlock(&cifs_tcp_ses_lock);
507 				return true;
508 			}
509 			spin_unlock(&tcon->open_file_lock);
510 			spin_unlock(&cifs_tcp_ses_lock);
511 			cifs_dbg(FYI, "No matching file for oplock break\n");
512 			return true;
513 		}
514 	}
515 	spin_unlock(&cifs_tcp_ses_lock);
516 	cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
517 	return true;
518 }
519 
520 void
521 dump_smb(void *buf, int smb_buf_length)
522 {
523 	if (traceSMB == 0)
524 		return;
525 
526 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
527 		       smb_buf_length, true);
528 }
529 
530 void
531 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
532 {
533 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
534 		struct cifs_tcon *tcon = NULL;
535 
536 		if (cifs_sb->master_tlink)
537 			tcon = cifs_sb_master_tcon(cifs_sb);
538 
539 		cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
540 		cifs_sb->mnt_cifs_serverino_autodisabled = true;
541 		cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
542 			 tcon ? tcon->tree_name : "new server");
543 		cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
544 		cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
545 
546 	}
547 }
548 
549 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
550 {
551 	oplock &= 0xF;
552 
553 	if (oplock == OPLOCK_EXCLUSIVE) {
554 		cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
555 		cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
556 			 &cinode->netfs.inode);
557 	} else if (oplock == OPLOCK_READ) {
558 		cinode->oplock = CIFS_CACHE_READ_FLG;
559 		cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
560 			 &cinode->netfs.inode);
561 	} else
562 		cinode->oplock = 0;
563 }
564 
565 /*
566  * We wait for oplock breaks to be processed before we attempt to perform
567  * writes.
568  */
569 int cifs_get_writer(struct cifsInodeInfo *cinode)
570 {
571 	int rc;
572 
573 start:
574 	rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
575 			 TASK_KILLABLE);
576 	if (rc)
577 		return rc;
578 
579 	spin_lock(&cinode->writers_lock);
580 	if (!cinode->writers)
581 		set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
582 	cinode->writers++;
583 	/* Check to see if we have started servicing an oplock break */
584 	if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
585 		cinode->writers--;
586 		if (cinode->writers == 0) {
587 			clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
588 			wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
589 		}
590 		spin_unlock(&cinode->writers_lock);
591 		goto start;
592 	}
593 	spin_unlock(&cinode->writers_lock);
594 	return 0;
595 }
596 
597 void cifs_put_writer(struct cifsInodeInfo *cinode)
598 {
599 	spin_lock(&cinode->writers_lock);
600 	cinode->writers--;
601 	if (cinode->writers == 0) {
602 		clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
603 		wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
604 	}
605 	spin_unlock(&cinode->writers_lock);
606 }
607 
608 /**
609  * cifs_queue_oplock_break - queue the oplock break handler for cfile
610  * @cfile: The file to break the oplock on
611  *
612  * This function is called from the demultiplex thread when it
613  * receives an oplock break for @cfile.
614  *
615  * Assumes the tcon->open_file_lock is held.
616  * Assumes cfile->file_info_lock is NOT held.
617  */
618 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
619 {
620 	/*
621 	 * Bump the handle refcount now while we hold the
622 	 * open_file_lock to enforce the validity of it for the oplock
623 	 * break handler. The matching put is done at the end of the
624 	 * handler.
625 	 */
626 	cifsFileInfo_get(cfile);
627 
628 	queue_work(cifsoplockd_wq, &cfile->oplock_break);
629 }
630 
631 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
632 {
633 	clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
634 	wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
635 }
636 
637 bool
638 backup_cred(struct cifs_sb_info *cifs_sb)
639 {
640 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
641 		if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
642 			return true;
643 	}
644 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
645 		if (in_group_p(cifs_sb->ctx->backupgid))
646 			return true;
647 	}
648 
649 	return false;
650 }
651 
652 void
653 cifs_del_pending_open(struct cifs_pending_open *open)
654 {
655 	spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
656 	list_del(&open->olist);
657 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
658 }
659 
660 void
661 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
662 			     struct cifs_pending_open *open)
663 {
664 	memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
665 	open->oplock = CIFS_OPLOCK_NO_CHANGE;
666 	open->tlink = tlink;
667 	fid->pending_open = open;
668 	list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
669 }
670 
671 void
672 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
673 		      struct cifs_pending_open *open)
674 {
675 	spin_lock(&tlink_tcon(tlink)->open_file_lock);
676 	cifs_add_pending_open_locked(fid, tlink, open);
677 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
678 }
679 
680 /*
681  * Critical section which runs after acquiring deferred_lock.
682  * As there is no reference count on cifs_deferred_close, pdclose
683  * should not be used outside deferred_lock.
684  */
685 bool
686 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
687 {
688 	struct cifs_deferred_close *dclose;
689 
690 	list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
691 		if ((dclose->netfid == cfile->fid.netfid) &&
692 			(dclose->persistent_fid == cfile->fid.persistent_fid) &&
693 			(dclose->volatile_fid == cfile->fid.volatile_fid)) {
694 			*pdclose = dclose;
695 			return true;
696 		}
697 	}
698 	return false;
699 }
700 
701 /*
702  * Critical section which runs after acquiring deferred_lock.
703  */
704 void
705 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
706 {
707 	bool is_deferred = false;
708 	struct cifs_deferred_close *pdclose;
709 
710 	is_deferred = cifs_is_deferred_close(cfile, &pdclose);
711 	if (is_deferred) {
712 		kfree(dclose);
713 		return;
714 	}
715 
716 	dclose->tlink = cfile->tlink;
717 	dclose->netfid = cfile->fid.netfid;
718 	dclose->persistent_fid = cfile->fid.persistent_fid;
719 	dclose->volatile_fid = cfile->fid.volatile_fid;
720 	list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
721 }
722 
723 /*
724  * Critical section which runs after acquiring deferred_lock.
725  */
726 void
727 cifs_del_deferred_close(struct cifsFileInfo *cfile)
728 {
729 	bool is_deferred = false;
730 	struct cifs_deferred_close *dclose;
731 
732 	is_deferred = cifs_is_deferred_close(cfile, &dclose);
733 	if (!is_deferred)
734 		return;
735 	list_del(&dclose->dlist);
736 	kfree(dclose);
737 }
738 
739 void
740 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
741 {
742 	struct cifsFileInfo *cfile = NULL;
743 	struct file_list *tmp_list, *tmp_next_list;
744 	struct list_head file_head;
745 
746 	if (cifs_inode == NULL)
747 		return;
748 
749 	INIT_LIST_HEAD(&file_head);
750 	spin_lock(&cifs_inode->open_file_lock);
751 	list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
752 		if (delayed_work_pending(&cfile->deferred)) {
753 			if (cancel_delayed_work(&cfile->deferred)) {
754 				spin_lock(&cifs_inode->deferred_lock);
755 				cifs_del_deferred_close(cfile);
756 				spin_unlock(&cifs_inode->deferred_lock);
757 
758 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
759 				if (tmp_list == NULL)
760 					break;
761 				tmp_list->cfile = cfile;
762 				list_add_tail(&tmp_list->list, &file_head);
763 			}
764 		}
765 	}
766 	spin_unlock(&cifs_inode->open_file_lock);
767 
768 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
769 		_cifsFileInfo_put(tmp_list->cfile, false, false);
770 		list_del(&tmp_list->list);
771 		kfree(tmp_list);
772 	}
773 }
774 
775 void
776 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
777 {
778 	struct cifsFileInfo *cfile;
779 	struct file_list *tmp_list, *tmp_next_list;
780 	struct list_head file_head;
781 
782 	INIT_LIST_HEAD(&file_head);
783 	spin_lock(&tcon->open_file_lock);
784 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
785 		if (delayed_work_pending(&cfile->deferred)) {
786 			if (cancel_delayed_work(&cfile->deferred)) {
787 				spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
788 				cifs_del_deferred_close(cfile);
789 				spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
790 
791 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
792 				if (tmp_list == NULL)
793 					break;
794 				tmp_list->cfile = cfile;
795 				list_add_tail(&tmp_list->list, &file_head);
796 			}
797 		}
798 	}
799 	spin_unlock(&tcon->open_file_lock);
800 
801 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
802 		_cifsFileInfo_put(tmp_list->cfile, true, false);
803 		list_del(&tmp_list->list);
804 		kfree(tmp_list);
805 	}
806 }
807 void
808 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
809 {
810 	struct cifsFileInfo *cfile;
811 	struct file_list *tmp_list, *tmp_next_list;
812 	struct list_head file_head;
813 	void *page;
814 	const char *full_path;
815 
816 	INIT_LIST_HEAD(&file_head);
817 	page = alloc_dentry_path();
818 	spin_lock(&tcon->open_file_lock);
819 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
820 		full_path = build_path_from_dentry(cfile->dentry, page);
821 		if (strstr(full_path, path)) {
822 			if (delayed_work_pending(&cfile->deferred)) {
823 				if (cancel_delayed_work(&cfile->deferred)) {
824 					spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
825 					cifs_del_deferred_close(cfile);
826 					spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
827 
828 					tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
829 					if (tmp_list == NULL)
830 						break;
831 					tmp_list->cfile = cfile;
832 					list_add_tail(&tmp_list->list, &file_head);
833 				}
834 			}
835 		}
836 	}
837 	spin_unlock(&tcon->open_file_lock);
838 
839 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
840 		_cifsFileInfo_put(tmp_list->cfile, true, false);
841 		list_del(&tmp_list->list);
842 		kfree(tmp_list);
843 	}
844 	free_dentry_path(page);
845 }
846 
847 /* parses DFS referral V3 structure
848  * caller is responsible for freeing target_nodes
849  * returns:
850  * - on success - 0
851  * - on failure - errno
852  */
853 int
854 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
855 		    unsigned int *num_of_nodes,
856 		    struct dfs_info3_param **target_nodes,
857 		    const struct nls_table *nls_codepage, int remap,
858 		    const char *searchName, bool is_unicode)
859 {
860 	int i, rc = 0;
861 	char *data_end;
862 	struct dfs_referral_level_3 *ref;
863 
864 	*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
865 
866 	if (*num_of_nodes < 1) {
867 		cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
868 			 *num_of_nodes);
869 		rc = -EINVAL;
870 		goto parse_DFS_referrals_exit;
871 	}
872 
873 	ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
874 	if (ref->VersionNumber != cpu_to_le16(3)) {
875 		cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
876 			 le16_to_cpu(ref->VersionNumber));
877 		rc = -EINVAL;
878 		goto parse_DFS_referrals_exit;
879 	}
880 
881 	/* get the upper boundary of the resp buffer */
882 	data_end = (char *)rsp + rsp_size;
883 
884 	cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
885 		 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
886 
887 	*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
888 				GFP_KERNEL);
889 	if (*target_nodes == NULL) {
890 		rc = -ENOMEM;
891 		goto parse_DFS_referrals_exit;
892 	}
893 
894 	/* collect necessary data from referrals */
895 	for (i = 0; i < *num_of_nodes; i++) {
896 		char *temp;
897 		int max_len;
898 		struct dfs_info3_param *node = (*target_nodes)+i;
899 
900 		node->flags = le32_to_cpu(rsp->DFSFlags);
901 		if (is_unicode) {
902 			__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
903 						GFP_KERNEL);
904 			if (tmp == NULL) {
905 				rc = -ENOMEM;
906 				goto parse_DFS_referrals_exit;
907 			}
908 			cifsConvertToUTF16((__le16 *) tmp, searchName,
909 					   PATH_MAX, nls_codepage, remap);
910 			node->path_consumed = cifs_utf16_bytes(tmp,
911 					le16_to_cpu(rsp->PathConsumed),
912 					nls_codepage);
913 			kfree(tmp);
914 		} else
915 			node->path_consumed = le16_to_cpu(rsp->PathConsumed);
916 
917 		node->server_type = le16_to_cpu(ref->ServerType);
918 		node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
919 
920 		/* copy DfsPath */
921 		temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
922 		max_len = data_end - temp;
923 		node->path_name = cifs_strndup_from_utf16(temp, max_len,
924 						is_unicode, nls_codepage);
925 		if (!node->path_name) {
926 			rc = -ENOMEM;
927 			goto parse_DFS_referrals_exit;
928 		}
929 
930 		/* copy link target UNC */
931 		temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
932 		max_len = data_end - temp;
933 		node->node_name = cifs_strndup_from_utf16(temp, max_len,
934 						is_unicode, nls_codepage);
935 		if (!node->node_name) {
936 			rc = -ENOMEM;
937 			goto parse_DFS_referrals_exit;
938 		}
939 
940 		node->ttl = le32_to_cpu(ref->TimeToLive);
941 
942 		ref++;
943 	}
944 
945 parse_DFS_referrals_exit:
946 	if (rc) {
947 		free_dfs_info_array(*target_nodes, *num_of_nodes);
948 		*target_nodes = NULL;
949 		*num_of_nodes = 0;
950 	}
951 	return rc;
952 }
953 
954 struct cifs_aio_ctx *
955 cifs_aio_ctx_alloc(void)
956 {
957 	struct cifs_aio_ctx *ctx;
958 
959 	/*
960 	 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
961 	 * to false so that we know when we have to unreference pages within
962 	 * cifs_aio_ctx_release()
963 	 */
964 	ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
965 	if (!ctx)
966 		return NULL;
967 
968 	INIT_LIST_HEAD(&ctx->list);
969 	mutex_init(&ctx->aio_mutex);
970 	init_completion(&ctx->done);
971 	kref_init(&ctx->refcount);
972 	return ctx;
973 }
974 
975 void
976 cifs_aio_ctx_release(struct kref *refcount)
977 {
978 	struct cifs_aio_ctx *ctx = container_of(refcount,
979 					struct cifs_aio_ctx, refcount);
980 
981 	cifsFileInfo_put(ctx->cfile);
982 
983 	/*
984 	 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
985 	 * which means that iov_iter_extract_pages() was a success and thus
986 	 * that we may have references or pins on pages that we need to
987 	 * release.
988 	 */
989 	if (ctx->bv) {
990 		if (ctx->should_dirty || ctx->bv_need_unpin) {
991 			unsigned int i;
992 
993 			for (i = 0; i < ctx->nr_pinned_pages; i++) {
994 				struct page *page = ctx->bv[i].bv_page;
995 
996 				if (ctx->should_dirty)
997 					set_page_dirty(page);
998 				if (ctx->bv_need_unpin)
999 					unpin_user_page(page);
1000 			}
1001 		}
1002 		kvfree(ctx->bv);
1003 	}
1004 
1005 	kfree(ctx);
1006 }
1007 
1008 /**
1009  * cifs_alloc_hash - allocate hash and hash context together
1010  * @name: The name of the crypto hash algo
1011  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1012  *
1013  * The caller has to make sure @sdesc is initialized to either NULL or
1014  * a valid context. It can be freed via cifs_free_hash().
1015  */
1016 int
1017 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1018 {
1019 	int rc = 0;
1020 	struct crypto_shash *alg = NULL;
1021 
1022 	if (*sdesc)
1023 		return 0;
1024 
1025 	alg = crypto_alloc_shash(name, 0, 0);
1026 	if (IS_ERR(alg)) {
1027 		cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1028 		rc = PTR_ERR(alg);
1029 		*sdesc = NULL;
1030 		return rc;
1031 	}
1032 
1033 	*sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1034 	if (*sdesc == NULL) {
1035 		cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1036 		crypto_free_shash(alg);
1037 		return -ENOMEM;
1038 	}
1039 
1040 	(*sdesc)->tfm = alg;
1041 	return 0;
1042 }
1043 
1044 /**
1045  * cifs_free_hash - free hash and hash context together
1046  * @sdesc: Where to find the pointer to the hash TFM
1047  *
1048  * Freeing a NULL descriptor is safe.
1049  */
1050 void
1051 cifs_free_hash(struct shash_desc **sdesc)
1052 {
1053 	if (unlikely(!sdesc) || !*sdesc)
1054 		return;
1055 
1056 	if ((*sdesc)->tfm) {
1057 		crypto_free_shash((*sdesc)->tfm);
1058 		(*sdesc)->tfm = NULL;
1059 	}
1060 
1061 	kfree_sensitive(*sdesc);
1062 	*sdesc = NULL;
1063 }
1064 
1065 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1066 {
1067 	const char *end;
1068 
1069 	/* skip initial slashes */
1070 	while (*unc && (*unc == '\\' || *unc == '/'))
1071 		unc++;
1072 
1073 	end = unc;
1074 
1075 	while (*end && !(*end == '\\' || *end == '/'))
1076 		end++;
1077 
1078 	*h = unc;
1079 	*len = end - unc;
1080 }
1081 
1082 /**
1083  * copy_path_name - copy src path to dst, possibly truncating
1084  * @dst: The destination buffer
1085  * @src: The source name
1086  *
1087  * returns number of bytes written (including trailing nul)
1088  */
1089 int copy_path_name(char *dst, const char *src)
1090 {
1091 	int name_len;
1092 
1093 	/*
1094 	 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1095 	 * will truncate and strlen(dst) will be PATH_MAX-1
1096 	 */
1097 	name_len = strscpy(dst, src, PATH_MAX);
1098 	if (WARN_ON_ONCE(name_len < 0))
1099 		name_len = PATH_MAX-1;
1100 
1101 	/* we count the trailing nul */
1102 	name_len++;
1103 	return name_len;
1104 }
1105 
1106 struct super_cb_data {
1107 	void *data;
1108 	struct super_block *sb;
1109 };
1110 
1111 static void tcon_super_cb(struct super_block *sb, void *arg)
1112 {
1113 	struct super_cb_data *sd = arg;
1114 	struct cifs_sb_info *cifs_sb;
1115 	struct cifs_tcon *t1 = sd->data, *t2;
1116 
1117 	if (sd->sb)
1118 		return;
1119 
1120 	cifs_sb = CIFS_SB(sb);
1121 	t2 = cifs_sb_master_tcon(cifs_sb);
1122 
1123 	spin_lock(&t2->tc_lock);
1124 	if (t1->ses == t2->ses &&
1125 	    t1->ses->server == t2->ses->server &&
1126 	    t2->origin_fullpath &&
1127 	    dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
1128 		sd->sb = sb;
1129 	spin_unlock(&t2->tc_lock);
1130 }
1131 
1132 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1133 					    void *data)
1134 {
1135 	struct super_cb_data sd = {
1136 		.data = data,
1137 		.sb = NULL,
1138 	};
1139 	struct file_system_type **fs_type = (struct file_system_type *[]) {
1140 		&cifs_fs_type, &smb3_fs_type, NULL,
1141 	};
1142 
1143 	for (; *fs_type; fs_type++) {
1144 		iterate_supers_type(*fs_type, f, &sd);
1145 		if (sd.sb) {
1146 			/*
1147 			 * Grab an active reference in order to prevent automounts (DFS links)
1148 			 * of expiring and then freeing up our cifs superblock pointer while
1149 			 * we're doing failover.
1150 			 */
1151 			cifs_sb_active(sd.sb);
1152 			return sd.sb;
1153 		}
1154 	}
1155 	pr_warn_once("%s: could not find dfs superblock\n", __func__);
1156 	return ERR_PTR(-EINVAL);
1157 }
1158 
1159 static void __cifs_put_super(struct super_block *sb)
1160 {
1161 	if (!IS_ERR_OR_NULL(sb))
1162 		cifs_sb_deactive(sb);
1163 }
1164 
1165 struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
1166 {
1167 	spin_lock(&tcon->tc_lock);
1168 	if (!tcon->origin_fullpath) {
1169 		spin_unlock(&tcon->tc_lock);
1170 		return ERR_PTR(-ENOENT);
1171 	}
1172 	spin_unlock(&tcon->tc_lock);
1173 	return __cifs_get_super(tcon_super_cb, tcon);
1174 }
1175 
1176 void cifs_put_tcp_super(struct super_block *sb)
1177 {
1178 	__cifs_put_super(sb);
1179 }
1180 
1181 #ifdef CONFIG_CIFS_DFS_UPCALL
1182 int match_target_ip(struct TCP_Server_Info *server,
1183 		    const char *share, size_t share_len,
1184 		    bool *result)
1185 {
1186 	int rc;
1187 	char *target;
1188 	struct sockaddr_storage ss;
1189 
1190 	*result = false;
1191 
1192 	target = kzalloc(share_len + 3, GFP_KERNEL);
1193 	if (!target)
1194 		return -ENOMEM;
1195 
1196 	scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1197 
1198 	cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1199 
1200 	rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1201 	kfree(target);
1202 
1203 	if (rc < 0)
1204 		return rc;
1205 
1206 	spin_lock(&server->srv_lock);
1207 	*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1208 	spin_unlock(&server->srv_lock);
1209 	cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1210 	return 0;
1211 }
1212 
1213 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1214 {
1215 	int rc;
1216 
1217 	kfree(cifs_sb->prepath);
1218 	cifs_sb->prepath = NULL;
1219 
1220 	if (prefix && *prefix) {
1221 		cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1222 		if (IS_ERR(cifs_sb->prepath)) {
1223 			rc = PTR_ERR(cifs_sb->prepath);
1224 			cifs_sb->prepath = NULL;
1225 			return rc;
1226 		}
1227 		if (cifs_sb->prepath)
1228 			convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1229 	}
1230 
1231 	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1232 	return 0;
1233 }
1234 
1235 /*
1236  * Handle weird Windows SMB server behaviour. It responds with
1237  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1238  * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1239  * non-ASCII unicode symbols.
1240  */
1241 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1242 				   struct cifs_tcon *tcon,
1243 				   struct cifs_sb_info *cifs_sb,
1244 				   const char *full_path,
1245 				   bool *islink)
1246 {
1247 	struct cifs_ses *ses = tcon->ses;
1248 	size_t len;
1249 	char *path;
1250 	char *ref_path;
1251 
1252 	*islink = false;
1253 
1254 	/*
1255 	 * Fast path - skip check when @full_path doesn't have a prefix path to
1256 	 * look up or tcon is not DFS.
1257 	 */
1258 	if (strlen(full_path) < 2 || !cifs_sb ||
1259 	    (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1260 	    !is_tcon_dfs(tcon))
1261 		return 0;
1262 
1263 	spin_lock(&tcon->tc_lock);
1264 	if (!tcon->origin_fullpath) {
1265 		spin_unlock(&tcon->tc_lock);
1266 		return 0;
1267 	}
1268 	spin_unlock(&tcon->tc_lock);
1269 
1270 	/*
1271 	 * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1272 	 * to get a referral to figure out whether it is an DFS link.
1273 	 */
1274 	len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1275 	path = kmalloc(len, GFP_KERNEL);
1276 	if (!path)
1277 		return -ENOMEM;
1278 
1279 	scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1280 	ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1281 					    cifs_remap(cifs_sb));
1282 	kfree(path);
1283 
1284 	if (IS_ERR(ref_path)) {
1285 		if (PTR_ERR(ref_path) != -EINVAL)
1286 			return PTR_ERR(ref_path);
1287 	} else {
1288 		struct dfs_info3_param *refs = NULL;
1289 		int num_refs = 0;
1290 
1291 		/*
1292 		 * XXX: we are not using dfs_cache_find() here because we might
1293 		 * end up filling all the DFS cache and thus potentially
1294 		 * removing cached DFS targets that the client would eventually
1295 		 * need during failover.
1296 		 */
1297 		ses = CIFS_DFS_ROOT_SES(ses);
1298 		if (ses->server->ops->get_dfs_refer &&
1299 		    !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1300 						     &num_refs, cifs_sb->local_nls,
1301 						     cifs_remap(cifs_sb)))
1302 			*islink = refs[0].server_type == DFS_TYPE_LINK;
1303 		free_dfs_info_array(refs, num_refs);
1304 		kfree(ref_path);
1305 	}
1306 	return 0;
1307 }
1308 #endif
1309 
1310 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1311 {
1312 	int timeout = 10;
1313 	int rc;
1314 
1315 	spin_lock(&server->srv_lock);
1316 	if (server->tcpStatus != CifsNeedReconnect) {
1317 		spin_unlock(&server->srv_lock);
1318 		return 0;
1319 	}
1320 	timeout *= server->nr_targets;
1321 	spin_unlock(&server->srv_lock);
1322 
1323 	/*
1324 	 * Give demultiplex thread up to 10 seconds to each target available for
1325 	 * reconnect -- should be greater than cifs socket timeout which is 7
1326 	 * seconds.
1327 	 *
1328 	 * On "soft" mounts we wait once. Hard mounts keep retrying until
1329 	 * process is killed or server comes back on-line.
1330 	 */
1331 	do {
1332 		rc = wait_event_interruptible_timeout(server->response_q,
1333 						      (server->tcpStatus != CifsNeedReconnect),
1334 						      timeout * HZ);
1335 		if (rc < 0) {
1336 			cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1337 				 __func__);
1338 			return -ERESTARTSYS;
1339 		}
1340 
1341 		/* are we still trying to reconnect? */
1342 		spin_lock(&server->srv_lock);
1343 		if (server->tcpStatus != CifsNeedReconnect) {
1344 			spin_unlock(&server->srv_lock);
1345 			return 0;
1346 		}
1347 		spin_unlock(&server->srv_lock);
1348 	} while (retry);
1349 
1350 	cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1351 	return -EHOSTDOWN;
1352 }
1353