xref: /openbmc/linux/fs/smb/client/misc.c (revision 414772b8f7d7a9ccbfb5f0f3fd51bbfb8d54501a)
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #include "dfs.h"
26 #endif
27 #include "fs_context.h"
28 #include "cached_dir.h"
29 
30 extern mempool_t *cifs_sm_req_poolp;
31 extern mempool_t *cifs_req_poolp;
32 
33 /* The xid serves as a useful identifier for each incoming vfs request,
34    in a similar way to the mid which is useful to track each sent smb,
35    and CurrentXid can also provide a running counter (although it
36    will eventually wrap past zero) of the total vfs operations handled
37    since the cifs fs was mounted */
38 
39 unsigned int
40 _get_xid(void)
41 {
42 	unsigned int xid;
43 
44 	spin_lock(&GlobalMid_Lock);
45 	GlobalTotalActiveXid++;
46 
47 	/* keep high water mark for number of simultaneous ops in filesystem */
48 	if (GlobalTotalActiveXid > GlobalMaxActiveXid)
49 		GlobalMaxActiveXid = GlobalTotalActiveXid;
50 	if (GlobalTotalActiveXid > 65000)
51 		cifs_dbg(FYI, "warning: more than 65000 requests active\n");
52 	xid = GlobalCurrentXid++;
53 	spin_unlock(&GlobalMid_Lock);
54 	return xid;
55 }
56 
57 void
58 _free_xid(unsigned int xid)
59 {
60 	spin_lock(&GlobalMid_Lock);
61 	/* if (GlobalTotalActiveXid == 0)
62 		BUG(); */
63 	GlobalTotalActiveXid--;
64 	spin_unlock(&GlobalMid_Lock);
65 }
66 
67 struct cifs_ses *
68 sesInfoAlloc(void)
69 {
70 	struct cifs_ses *ret_buf;
71 
72 	ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
73 	if (ret_buf) {
74 		atomic_inc(&sesInfoAllocCount);
75 		spin_lock_init(&ret_buf->ses_lock);
76 		ret_buf->ses_status = SES_NEW;
77 		++ret_buf->ses_count;
78 		INIT_LIST_HEAD(&ret_buf->smb_ses_list);
79 		INIT_LIST_HEAD(&ret_buf->tcon_list);
80 		mutex_init(&ret_buf->session_mutex);
81 		spin_lock_init(&ret_buf->iface_lock);
82 		INIT_LIST_HEAD(&ret_buf->iface_list);
83 		spin_lock_init(&ret_buf->chan_lock);
84 	}
85 	return ret_buf;
86 }
87 
88 void
89 sesInfoFree(struct cifs_ses *buf_to_free)
90 {
91 	struct cifs_server_iface *iface = NULL, *niface = NULL;
92 
93 	if (buf_to_free == NULL) {
94 		cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
95 		return;
96 	}
97 
98 	atomic_dec(&sesInfoAllocCount);
99 	kfree(buf_to_free->serverOS);
100 	kfree(buf_to_free->serverDomain);
101 	kfree(buf_to_free->serverNOS);
102 	kfree_sensitive(buf_to_free->password);
103 	kfree(buf_to_free->user_name);
104 	kfree(buf_to_free->domainName);
105 	kfree_sensitive(buf_to_free->auth_key.response);
106 	spin_lock(&buf_to_free->iface_lock);
107 	list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
108 				 iface_head)
109 		kref_put(&iface->refcount, release_iface);
110 	spin_unlock(&buf_to_free->iface_lock);
111 	kfree_sensitive(buf_to_free);
112 }
113 
114 struct cifs_tcon *
115 tconInfoAlloc(void)
116 {
117 	struct cifs_tcon *ret_buf;
118 
119 	ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
120 	if (!ret_buf)
121 		return NULL;
122 	ret_buf->cfids = init_cached_dirs();
123 	if (!ret_buf->cfids) {
124 		kfree(ret_buf);
125 		return NULL;
126 	}
127 
128 	atomic_inc(&tconInfoAllocCount);
129 	ret_buf->status = TID_NEW;
130 	++ret_buf->tc_count;
131 	spin_lock_init(&ret_buf->tc_lock);
132 	INIT_LIST_HEAD(&ret_buf->openFileList);
133 	INIT_LIST_HEAD(&ret_buf->tcon_list);
134 	spin_lock_init(&ret_buf->open_file_lock);
135 	spin_lock_init(&ret_buf->stat_lock);
136 	atomic_set(&ret_buf->num_local_opens, 0);
137 	atomic_set(&ret_buf->num_remote_opens, 0);
138 #ifdef CONFIG_CIFS_DFS_UPCALL
139 	INIT_LIST_HEAD(&ret_buf->dfs_ses_list);
140 #endif
141 
142 	return ret_buf;
143 }
144 
145 void
146 tconInfoFree(struct cifs_tcon *tcon)
147 {
148 	if (tcon == NULL) {
149 		cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
150 		return;
151 	}
152 	free_cached_dirs(tcon->cfids);
153 	atomic_dec(&tconInfoAllocCount);
154 	kfree(tcon->nativeFileSystem);
155 	kfree_sensitive(tcon->password);
156 #ifdef CONFIG_CIFS_DFS_UPCALL
157 	dfs_put_root_smb_sessions(&tcon->dfs_ses_list);
158 #endif
159 	kfree(tcon->origin_fullpath);
160 	kfree(tcon);
161 }
162 
163 struct smb_hdr *
164 cifs_buf_get(void)
165 {
166 	struct smb_hdr *ret_buf = NULL;
167 	/*
168 	 * SMB2 header is bigger than CIFS one - no problems to clean some
169 	 * more bytes for CIFS.
170 	 */
171 	size_t buf_size = sizeof(struct smb2_hdr);
172 
173 	/*
174 	 * We could use negotiated size instead of max_msgsize -
175 	 * but it may be more efficient to always alloc same size
176 	 * albeit slightly larger than necessary and maxbuffersize
177 	 * defaults to this and can not be bigger.
178 	 */
179 	ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
180 
181 	/* clear the first few header bytes */
182 	/* for most paths, more is cleared in header_assemble */
183 	memset(ret_buf, 0, buf_size + 3);
184 	atomic_inc(&buf_alloc_count);
185 #ifdef CONFIG_CIFS_STATS2
186 	atomic_inc(&total_buf_alloc_count);
187 #endif /* CONFIG_CIFS_STATS2 */
188 
189 	return ret_buf;
190 }
191 
192 void
193 cifs_buf_release(void *buf_to_free)
194 {
195 	if (buf_to_free == NULL) {
196 		/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
197 		return;
198 	}
199 	mempool_free(buf_to_free, cifs_req_poolp);
200 
201 	atomic_dec(&buf_alloc_count);
202 	return;
203 }
204 
205 struct smb_hdr *
206 cifs_small_buf_get(void)
207 {
208 	struct smb_hdr *ret_buf = NULL;
209 
210 /* We could use negotiated size instead of max_msgsize -
211    but it may be more efficient to always alloc same size
212    albeit slightly larger than necessary and maxbuffersize
213    defaults to this and can not be bigger */
214 	ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
215 	/* No need to clear memory here, cleared in header assemble */
216 	/*	memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
217 	atomic_inc(&small_buf_alloc_count);
218 #ifdef CONFIG_CIFS_STATS2
219 	atomic_inc(&total_small_buf_alloc_count);
220 #endif /* CONFIG_CIFS_STATS2 */
221 
222 	return ret_buf;
223 }
224 
225 void
226 cifs_small_buf_release(void *buf_to_free)
227 {
228 
229 	if (buf_to_free == NULL) {
230 		cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
231 		return;
232 	}
233 	mempool_free(buf_to_free, cifs_sm_req_poolp);
234 
235 	atomic_dec(&small_buf_alloc_count);
236 	return;
237 }
238 
239 void
240 free_rsp_buf(int resp_buftype, void *rsp)
241 {
242 	if (resp_buftype == CIFS_SMALL_BUFFER)
243 		cifs_small_buf_release(rsp);
244 	else if (resp_buftype == CIFS_LARGE_BUFFER)
245 		cifs_buf_release(rsp);
246 }
247 
248 /* NB: MID can not be set if treeCon not passed in, in that
249    case it is responsbility of caller to set the mid */
250 void
251 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
252 		const struct cifs_tcon *treeCon, int word_count
253 		/* length of fixed section (word count) in two byte units  */)
254 {
255 	char *temp = (char *) buffer;
256 
257 	memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
258 
259 	buffer->smb_buf_length = cpu_to_be32(
260 	    (2 * word_count) + sizeof(struct smb_hdr) -
261 	    4 /*  RFC 1001 length field does not count */  +
262 	    2 /* for bcc field itself */) ;
263 
264 	buffer->Protocol[0] = 0xFF;
265 	buffer->Protocol[1] = 'S';
266 	buffer->Protocol[2] = 'M';
267 	buffer->Protocol[3] = 'B';
268 	buffer->Command = smb_command;
269 	buffer->Flags = 0x00;	/* case sensitive */
270 	buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
271 	buffer->Pid = cpu_to_le16((__u16)current->tgid);
272 	buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
273 	if (treeCon) {
274 		buffer->Tid = treeCon->tid;
275 		if (treeCon->ses) {
276 			if (treeCon->ses->capabilities & CAP_UNICODE)
277 				buffer->Flags2 |= SMBFLG2_UNICODE;
278 			if (treeCon->ses->capabilities & CAP_STATUS32)
279 				buffer->Flags2 |= SMBFLG2_ERR_STATUS;
280 
281 			/* Uid is not converted */
282 			buffer->Uid = treeCon->ses->Suid;
283 			if (treeCon->ses->server)
284 				buffer->Mid = get_next_mid(treeCon->ses->server);
285 		}
286 		if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
287 			buffer->Flags2 |= SMBFLG2_DFS;
288 		if (treeCon->nocase)
289 			buffer->Flags  |= SMBFLG_CASELESS;
290 		if ((treeCon->ses) && (treeCon->ses->server))
291 			if (treeCon->ses->server->sign)
292 				buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
293 	}
294 
295 /*  endian conversion of flags is now done just before sending */
296 	buffer->WordCount = (char) word_count;
297 	return;
298 }
299 
300 static int
301 check_smb_hdr(struct smb_hdr *smb)
302 {
303 	/* does it have the right SMB "signature" ? */
304 	if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
305 		cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
306 			 *(unsigned int *)smb->Protocol);
307 		return 1;
308 	}
309 
310 	/* if it's a response then accept */
311 	if (smb->Flags & SMBFLG_RESPONSE)
312 		return 0;
313 
314 	/* only one valid case where server sends us request */
315 	if (smb->Command == SMB_COM_LOCKING_ANDX)
316 		return 0;
317 
318 	cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
319 		 get_mid(smb));
320 	return 1;
321 }
322 
323 int
324 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
325 {
326 	struct smb_hdr *smb = (struct smb_hdr *)buf;
327 	__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
328 	__u32 clc_len;  /* calculated length */
329 	cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
330 		 total_read, rfclen);
331 
332 	/* is this frame too small to even get to a BCC? */
333 	if (total_read < 2 + sizeof(struct smb_hdr)) {
334 		if ((total_read >= sizeof(struct smb_hdr) - 1)
335 			    && (smb->Status.CifsError != 0)) {
336 			/* it's an error return */
337 			smb->WordCount = 0;
338 			/* some error cases do not return wct and bcc */
339 			return 0;
340 		} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
341 				(smb->WordCount == 0)) {
342 			char *tmp = (char *)smb;
343 			/* Need to work around a bug in two servers here */
344 			/* First, check if the part of bcc they sent was zero */
345 			if (tmp[sizeof(struct smb_hdr)] == 0) {
346 				/* some servers return only half of bcc
347 				 * on simple responses (wct, bcc both zero)
348 				 * in particular have seen this on
349 				 * ulogoffX and FindClose. This leaves
350 				 * one byte of bcc potentially unitialized
351 				 */
352 				/* zero rest of bcc */
353 				tmp[sizeof(struct smb_hdr)+1] = 0;
354 				return 0;
355 			}
356 			cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
357 		} else {
358 			cifs_dbg(VFS, "Length less than smb header size\n");
359 		}
360 		return -EIO;
361 	}
362 
363 	/* otherwise, there is enough to get to the BCC */
364 	if (check_smb_hdr(smb))
365 		return -EIO;
366 	clc_len = smbCalcSize(smb);
367 
368 	if (4 + rfclen != total_read) {
369 		cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
370 			 rfclen);
371 		return -EIO;
372 	}
373 
374 	if (4 + rfclen != clc_len) {
375 		__u16 mid = get_mid(smb);
376 		/* check if bcc wrapped around for large read responses */
377 		if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
378 			/* check if lengths match mod 64K */
379 			if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
380 				return 0; /* bcc wrapped */
381 		}
382 		cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
383 			 clc_len, 4 + rfclen, mid);
384 
385 		if (4 + rfclen < clc_len) {
386 			cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
387 				 rfclen, mid);
388 			return -EIO;
389 		} else if (rfclen > clc_len + 512) {
390 			/*
391 			 * Some servers (Windows XP in particular) send more
392 			 * data than the lengths in the SMB packet would
393 			 * indicate on certain calls (byte range locks and
394 			 * trans2 find first calls in particular). While the
395 			 * client can handle such a frame by ignoring the
396 			 * trailing data, we choose limit the amount of extra
397 			 * data to 512 bytes.
398 			 */
399 			cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
400 				 rfclen, mid);
401 			return -EIO;
402 		}
403 	}
404 	return 0;
405 }
406 
407 bool
408 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
409 {
410 	struct smb_hdr *buf = (struct smb_hdr *)buffer;
411 	struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
412 	struct TCP_Server_Info *pserver;
413 	struct cifs_ses *ses;
414 	struct cifs_tcon *tcon;
415 	struct cifsInodeInfo *pCifsInode;
416 	struct cifsFileInfo *netfile;
417 
418 	cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
419 	if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
420 	   (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
421 		struct smb_com_transaction_change_notify_rsp *pSMBr =
422 			(struct smb_com_transaction_change_notify_rsp *)buf;
423 		struct file_notify_information *pnotify;
424 		__u32 data_offset = 0;
425 		size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
426 
427 		if (get_bcc(buf) > sizeof(struct file_notify_information)) {
428 			data_offset = le32_to_cpu(pSMBr->DataOffset);
429 
430 			if (data_offset >
431 			    len - sizeof(struct file_notify_information)) {
432 				cifs_dbg(FYI, "Invalid data_offset %u\n",
433 					 data_offset);
434 				return true;
435 			}
436 			pnotify = (struct file_notify_information *)
437 				((char *)&pSMBr->hdr.Protocol + data_offset);
438 			cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
439 				 pnotify->FileName, pnotify->Action);
440 			/*   cifs_dump_mem("Rcvd notify Data: ",buf,
441 				sizeof(struct smb_hdr)+60); */
442 			return true;
443 		}
444 		if (pSMBr->hdr.Status.CifsError) {
445 			cifs_dbg(FYI, "notify err 0x%x\n",
446 				 pSMBr->hdr.Status.CifsError);
447 			return true;
448 		}
449 		return false;
450 	}
451 	if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
452 		return false;
453 	if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
454 		/* no sense logging error on invalid handle on oplock
455 		   break - harmless race between close request and oplock
456 		   break response is expected from time to time writing out
457 		   large dirty files cached on the client */
458 		if ((NT_STATUS_INVALID_HANDLE) ==
459 		   le32_to_cpu(pSMB->hdr.Status.CifsError)) {
460 			cifs_dbg(FYI, "Invalid handle on oplock break\n");
461 			return true;
462 		} else if (ERRbadfid ==
463 		   le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
464 			return true;
465 		} else {
466 			return false; /* on valid oplock brk we get "request" */
467 		}
468 	}
469 	if (pSMB->hdr.WordCount != 8)
470 		return false;
471 
472 	cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
473 		 pSMB->LockType, pSMB->OplockLevel);
474 	if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
475 		return false;
476 
477 	/* If server is a channel, select the primary channel */
478 	pserver = CIFS_SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
479 
480 	/* look up tcon based on tid & uid */
481 	spin_lock(&cifs_tcp_ses_lock);
482 	list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
483 		list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
484 			if (tcon->tid != buf->Tid)
485 				continue;
486 
487 			cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
488 			spin_lock(&tcon->open_file_lock);
489 			list_for_each_entry(netfile, &tcon->openFileList, tlist) {
490 				if (pSMB->Fid != netfile->fid.netfid)
491 					continue;
492 
493 				cifs_dbg(FYI, "file id match, oplock break\n");
494 				pCifsInode = CIFS_I(d_inode(netfile->dentry));
495 
496 				set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
497 					&pCifsInode->flags);
498 
499 				netfile->oplock_epoch = 0;
500 				netfile->oplock_level = pSMB->OplockLevel;
501 				netfile->oplock_break_cancelled = false;
502 				cifs_queue_oplock_break(netfile);
503 
504 				spin_unlock(&tcon->open_file_lock);
505 				spin_unlock(&cifs_tcp_ses_lock);
506 				return true;
507 			}
508 			spin_unlock(&tcon->open_file_lock);
509 			spin_unlock(&cifs_tcp_ses_lock);
510 			cifs_dbg(FYI, "No matching file for oplock break\n");
511 			return true;
512 		}
513 	}
514 	spin_unlock(&cifs_tcp_ses_lock);
515 	cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
516 	return true;
517 }
518 
519 void
520 dump_smb(void *buf, int smb_buf_length)
521 {
522 	if (traceSMB == 0)
523 		return;
524 
525 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
526 		       smb_buf_length, true);
527 }
528 
529 void
530 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
531 {
532 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
533 		struct cifs_tcon *tcon = NULL;
534 
535 		if (cifs_sb->master_tlink)
536 			tcon = cifs_sb_master_tcon(cifs_sb);
537 
538 		cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
539 		cifs_sb->mnt_cifs_serverino_autodisabled = true;
540 		cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
541 			 tcon ? tcon->tree_name : "new server");
542 		cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
543 		cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
544 
545 	}
546 }
547 
548 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
549 {
550 	oplock &= 0xF;
551 
552 	if (oplock == OPLOCK_EXCLUSIVE) {
553 		cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
554 		cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
555 			 &cinode->netfs.inode);
556 	} else if (oplock == OPLOCK_READ) {
557 		cinode->oplock = CIFS_CACHE_READ_FLG;
558 		cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
559 			 &cinode->netfs.inode);
560 	} else
561 		cinode->oplock = 0;
562 }
563 
564 /*
565  * We wait for oplock breaks to be processed before we attempt to perform
566  * writes.
567  */
568 int cifs_get_writer(struct cifsInodeInfo *cinode)
569 {
570 	int rc;
571 
572 start:
573 	rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
574 			 TASK_KILLABLE);
575 	if (rc)
576 		return rc;
577 
578 	spin_lock(&cinode->writers_lock);
579 	if (!cinode->writers)
580 		set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
581 	cinode->writers++;
582 	/* Check to see if we have started servicing an oplock break */
583 	if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
584 		cinode->writers--;
585 		if (cinode->writers == 0) {
586 			clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
587 			wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
588 		}
589 		spin_unlock(&cinode->writers_lock);
590 		goto start;
591 	}
592 	spin_unlock(&cinode->writers_lock);
593 	return 0;
594 }
595 
596 void cifs_put_writer(struct cifsInodeInfo *cinode)
597 {
598 	spin_lock(&cinode->writers_lock);
599 	cinode->writers--;
600 	if (cinode->writers == 0) {
601 		clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
602 		wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
603 	}
604 	spin_unlock(&cinode->writers_lock);
605 }
606 
607 /**
608  * cifs_queue_oplock_break - queue the oplock break handler for cfile
609  * @cfile: The file to break the oplock on
610  *
611  * This function is called from the demultiplex thread when it
612  * receives an oplock break for @cfile.
613  *
614  * Assumes the tcon->open_file_lock is held.
615  * Assumes cfile->file_info_lock is NOT held.
616  */
617 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
618 {
619 	/*
620 	 * Bump the handle refcount now while we hold the
621 	 * open_file_lock to enforce the validity of it for the oplock
622 	 * break handler. The matching put is done at the end of the
623 	 * handler.
624 	 */
625 	cifsFileInfo_get(cfile);
626 
627 	queue_work(cifsoplockd_wq, &cfile->oplock_break);
628 }
629 
630 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
631 {
632 	clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
633 	wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
634 }
635 
636 bool
637 backup_cred(struct cifs_sb_info *cifs_sb)
638 {
639 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
640 		if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
641 			return true;
642 	}
643 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
644 		if (in_group_p(cifs_sb->ctx->backupgid))
645 			return true;
646 	}
647 
648 	return false;
649 }
650 
651 void
652 cifs_del_pending_open(struct cifs_pending_open *open)
653 {
654 	spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
655 	list_del(&open->olist);
656 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
657 }
658 
659 void
660 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
661 			     struct cifs_pending_open *open)
662 {
663 	memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
664 	open->oplock = CIFS_OPLOCK_NO_CHANGE;
665 	open->tlink = tlink;
666 	fid->pending_open = open;
667 	list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
668 }
669 
670 void
671 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
672 		      struct cifs_pending_open *open)
673 {
674 	spin_lock(&tlink_tcon(tlink)->open_file_lock);
675 	cifs_add_pending_open_locked(fid, tlink, open);
676 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
677 }
678 
679 /*
680  * Critical section which runs after acquiring deferred_lock.
681  * As there is no reference count on cifs_deferred_close, pdclose
682  * should not be used outside deferred_lock.
683  */
684 bool
685 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
686 {
687 	struct cifs_deferred_close *dclose;
688 
689 	list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
690 		if ((dclose->netfid == cfile->fid.netfid) &&
691 			(dclose->persistent_fid == cfile->fid.persistent_fid) &&
692 			(dclose->volatile_fid == cfile->fid.volatile_fid)) {
693 			*pdclose = dclose;
694 			return true;
695 		}
696 	}
697 	return false;
698 }
699 
700 /*
701  * Critical section which runs after acquiring deferred_lock.
702  */
703 void
704 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
705 {
706 	bool is_deferred = false;
707 	struct cifs_deferred_close *pdclose;
708 
709 	is_deferred = cifs_is_deferred_close(cfile, &pdclose);
710 	if (is_deferred) {
711 		kfree(dclose);
712 		return;
713 	}
714 
715 	dclose->tlink = cfile->tlink;
716 	dclose->netfid = cfile->fid.netfid;
717 	dclose->persistent_fid = cfile->fid.persistent_fid;
718 	dclose->volatile_fid = cfile->fid.volatile_fid;
719 	list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
720 }
721 
722 /*
723  * Critical section which runs after acquiring deferred_lock.
724  */
725 void
726 cifs_del_deferred_close(struct cifsFileInfo *cfile)
727 {
728 	bool is_deferred = false;
729 	struct cifs_deferred_close *dclose;
730 
731 	is_deferred = cifs_is_deferred_close(cfile, &dclose);
732 	if (!is_deferred)
733 		return;
734 	list_del(&dclose->dlist);
735 	kfree(dclose);
736 }
737 
738 void
739 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
740 {
741 	struct cifsFileInfo *cfile = NULL;
742 	struct file_list *tmp_list, *tmp_next_list;
743 	struct list_head file_head;
744 
745 	if (cifs_inode == NULL)
746 		return;
747 
748 	INIT_LIST_HEAD(&file_head);
749 	spin_lock(&cifs_inode->open_file_lock);
750 	list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
751 		if (delayed_work_pending(&cfile->deferred)) {
752 			if (cancel_delayed_work(&cfile->deferred)) {
753 				spin_lock(&cifs_inode->deferred_lock);
754 				cifs_del_deferred_close(cfile);
755 				spin_unlock(&cifs_inode->deferred_lock);
756 
757 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
758 				if (tmp_list == NULL)
759 					break;
760 				tmp_list->cfile = cfile;
761 				list_add_tail(&tmp_list->list, &file_head);
762 			}
763 		}
764 	}
765 	spin_unlock(&cifs_inode->open_file_lock);
766 
767 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
768 		_cifsFileInfo_put(tmp_list->cfile, false, false);
769 		list_del(&tmp_list->list);
770 		kfree(tmp_list);
771 	}
772 }
773 
774 void
775 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
776 {
777 	struct cifsFileInfo *cfile;
778 	struct file_list *tmp_list, *tmp_next_list;
779 	struct list_head file_head;
780 
781 	INIT_LIST_HEAD(&file_head);
782 	spin_lock(&tcon->open_file_lock);
783 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
784 		if (delayed_work_pending(&cfile->deferred)) {
785 			if (cancel_delayed_work(&cfile->deferred)) {
786 				spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
787 				cifs_del_deferred_close(cfile);
788 				spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
789 
790 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
791 				if (tmp_list == NULL)
792 					break;
793 				tmp_list->cfile = cfile;
794 				list_add_tail(&tmp_list->list, &file_head);
795 			}
796 		}
797 	}
798 	spin_unlock(&tcon->open_file_lock);
799 
800 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
801 		_cifsFileInfo_put(tmp_list->cfile, true, false);
802 		list_del(&tmp_list->list);
803 		kfree(tmp_list);
804 	}
805 }
806 void
807 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
808 {
809 	struct cifsFileInfo *cfile;
810 	struct file_list *tmp_list, *tmp_next_list;
811 	struct list_head file_head;
812 	void *page;
813 	const char *full_path;
814 
815 	INIT_LIST_HEAD(&file_head);
816 	page = alloc_dentry_path();
817 	spin_lock(&tcon->open_file_lock);
818 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
819 		full_path = build_path_from_dentry(cfile->dentry, page);
820 		if (strstr(full_path, path)) {
821 			if (delayed_work_pending(&cfile->deferred)) {
822 				if (cancel_delayed_work(&cfile->deferred)) {
823 					spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
824 					cifs_del_deferred_close(cfile);
825 					spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
826 
827 					tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
828 					if (tmp_list == NULL)
829 						break;
830 					tmp_list->cfile = cfile;
831 					list_add_tail(&tmp_list->list, &file_head);
832 				}
833 			}
834 		}
835 	}
836 	spin_unlock(&tcon->open_file_lock);
837 
838 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
839 		_cifsFileInfo_put(tmp_list->cfile, true, false);
840 		list_del(&tmp_list->list);
841 		kfree(tmp_list);
842 	}
843 	free_dentry_path(page);
844 }
845 
846 /* parses DFS referral V3 structure
847  * caller is responsible for freeing target_nodes
848  * returns:
849  * - on success - 0
850  * - on failure - errno
851  */
852 int
853 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
854 		    unsigned int *num_of_nodes,
855 		    struct dfs_info3_param **target_nodes,
856 		    const struct nls_table *nls_codepage, int remap,
857 		    const char *searchName, bool is_unicode)
858 {
859 	int i, rc = 0;
860 	char *data_end;
861 	struct dfs_referral_level_3 *ref;
862 
863 	*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
864 
865 	if (*num_of_nodes < 1) {
866 		cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
867 			 *num_of_nodes);
868 		rc = -EINVAL;
869 		goto parse_DFS_referrals_exit;
870 	}
871 
872 	ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
873 	if (ref->VersionNumber != cpu_to_le16(3)) {
874 		cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
875 			 le16_to_cpu(ref->VersionNumber));
876 		rc = -EINVAL;
877 		goto parse_DFS_referrals_exit;
878 	}
879 
880 	/* get the upper boundary of the resp buffer */
881 	data_end = (char *)rsp + rsp_size;
882 
883 	cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
884 		 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
885 
886 	*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
887 				GFP_KERNEL);
888 	if (*target_nodes == NULL) {
889 		rc = -ENOMEM;
890 		goto parse_DFS_referrals_exit;
891 	}
892 
893 	/* collect necessary data from referrals */
894 	for (i = 0; i < *num_of_nodes; i++) {
895 		char *temp;
896 		int max_len;
897 		struct dfs_info3_param *node = (*target_nodes)+i;
898 
899 		node->flags = le32_to_cpu(rsp->DFSFlags);
900 		if (is_unicode) {
901 			__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
902 						GFP_KERNEL);
903 			if (tmp == NULL) {
904 				rc = -ENOMEM;
905 				goto parse_DFS_referrals_exit;
906 			}
907 			cifsConvertToUTF16((__le16 *) tmp, searchName,
908 					   PATH_MAX, nls_codepage, remap);
909 			node->path_consumed = cifs_utf16_bytes(tmp,
910 					le16_to_cpu(rsp->PathConsumed),
911 					nls_codepage);
912 			kfree(tmp);
913 		} else
914 			node->path_consumed = le16_to_cpu(rsp->PathConsumed);
915 
916 		node->server_type = le16_to_cpu(ref->ServerType);
917 		node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
918 
919 		/* copy DfsPath */
920 		temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
921 		max_len = data_end - temp;
922 		node->path_name = cifs_strndup_from_utf16(temp, max_len,
923 						is_unicode, nls_codepage);
924 		if (!node->path_name) {
925 			rc = -ENOMEM;
926 			goto parse_DFS_referrals_exit;
927 		}
928 
929 		/* copy link target UNC */
930 		temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
931 		max_len = data_end - temp;
932 		node->node_name = cifs_strndup_from_utf16(temp, max_len,
933 						is_unicode, nls_codepage);
934 		if (!node->node_name) {
935 			rc = -ENOMEM;
936 			goto parse_DFS_referrals_exit;
937 		}
938 
939 		node->ttl = le32_to_cpu(ref->TimeToLive);
940 
941 		ref++;
942 	}
943 
944 parse_DFS_referrals_exit:
945 	if (rc) {
946 		free_dfs_info_array(*target_nodes, *num_of_nodes);
947 		*target_nodes = NULL;
948 		*num_of_nodes = 0;
949 	}
950 	return rc;
951 }
952 
953 struct cifs_aio_ctx *
954 cifs_aio_ctx_alloc(void)
955 {
956 	struct cifs_aio_ctx *ctx;
957 
958 	/*
959 	 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
960 	 * to false so that we know when we have to unreference pages within
961 	 * cifs_aio_ctx_release()
962 	 */
963 	ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
964 	if (!ctx)
965 		return NULL;
966 
967 	INIT_LIST_HEAD(&ctx->list);
968 	mutex_init(&ctx->aio_mutex);
969 	init_completion(&ctx->done);
970 	kref_init(&ctx->refcount);
971 	return ctx;
972 }
973 
974 void
975 cifs_aio_ctx_release(struct kref *refcount)
976 {
977 	struct cifs_aio_ctx *ctx = container_of(refcount,
978 					struct cifs_aio_ctx, refcount);
979 
980 	cifsFileInfo_put(ctx->cfile);
981 
982 	/*
983 	 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
984 	 * which means that iov_iter_extract_pages() was a success and thus
985 	 * that we may have references or pins on pages that we need to
986 	 * release.
987 	 */
988 	if (ctx->bv) {
989 		if (ctx->should_dirty || ctx->bv_need_unpin) {
990 			unsigned int i;
991 
992 			for (i = 0; i < ctx->nr_pinned_pages; i++) {
993 				struct page *page = ctx->bv[i].bv_page;
994 
995 				if (ctx->should_dirty)
996 					set_page_dirty(page);
997 				if (ctx->bv_need_unpin)
998 					unpin_user_page(page);
999 			}
1000 		}
1001 		kvfree(ctx->bv);
1002 	}
1003 
1004 	kfree(ctx);
1005 }
1006 
1007 /**
1008  * cifs_alloc_hash - allocate hash and hash context together
1009  * @name: The name of the crypto hash algo
1010  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1011  *
1012  * The caller has to make sure @sdesc is initialized to either NULL or
1013  * a valid context. It can be freed via cifs_free_hash().
1014  */
1015 int
1016 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1017 {
1018 	int rc = 0;
1019 	struct crypto_shash *alg = NULL;
1020 
1021 	if (*sdesc)
1022 		return 0;
1023 
1024 	alg = crypto_alloc_shash(name, 0, 0);
1025 	if (IS_ERR(alg)) {
1026 		cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1027 		rc = PTR_ERR(alg);
1028 		*sdesc = NULL;
1029 		return rc;
1030 	}
1031 
1032 	*sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1033 	if (*sdesc == NULL) {
1034 		cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1035 		crypto_free_shash(alg);
1036 		return -ENOMEM;
1037 	}
1038 
1039 	(*sdesc)->tfm = alg;
1040 	return 0;
1041 }
1042 
1043 /**
1044  * cifs_free_hash - free hash and hash context together
1045  * @sdesc: Where to find the pointer to the hash TFM
1046  *
1047  * Freeing a NULL descriptor is safe.
1048  */
1049 void
1050 cifs_free_hash(struct shash_desc **sdesc)
1051 {
1052 	if (unlikely(!sdesc) || !*sdesc)
1053 		return;
1054 
1055 	if ((*sdesc)->tfm) {
1056 		crypto_free_shash((*sdesc)->tfm);
1057 		(*sdesc)->tfm = NULL;
1058 	}
1059 
1060 	kfree_sensitive(*sdesc);
1061 	*sdesc = NULL;
1062 }
1063 
1064 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1065 {
1066 	const char *end;
1067 
1068 	/* skip initial slashes */
1069 	while (*unc && (*unc == '\\' || *unc == '/'))
1070 		unc++;
1071 
1072 	end = unc;
1073 
1074 	while (*end && !(*end == '\\' || *end == '/'))
1075 		end++;
1076 
1077 	*h = unc;
1078 	*len = end - unc;
1079 }
1080 
1081 /**
1082  * copy_path_name - copy src path to dst, possibly truncating
1083  * @dst: The destination buffer
1084  * @src: The source name
1085  *
1086  * returns number of bytes written (including trailing nul)
1087  */
1088 int copy_path_name(char *dst, const char *src)
1089 {
1090 	int name_len;
1091 
1092 	/*
1093 	 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1094 	 * will truncate and strlen(dst) will be PATH_MAX-1
1095 	 */
1096 	name_len = strscpy(dst, src, PATH_MAX);
1097 	if (WARN_ON_ONCE(name_len < 0))
1098 		name_len = PATH_MAX-1;
1099 
1100 	/* we count the trailing nul */
1101 	name_len++;
1102 	return name_len;
1103 }
1104 
1105 struct super_cb_data {
1106 	void *data;
1107 	struct super_block *sb;
1108 };
1109 
1110 static void tcon_super_cb(struct super_block *sb, void *arg)
1111 {
1112 	struct super_cb_data *sd = arg;
1113 	struct cifs_sb_info *cifs_sb;
1114 	struct cifs_tcon *t1 = sd->data, *t2;
1115 
1116 	if (sd->sb)
1117 		return;
1118 
1119 	cifs_sb = CIFS_SB(sb);
1120 	t2 = cifs_sb_master_tcon(cifs_sb);
1121 
1122 	spin_lock(&t2->tc_lock);
1123 	if (t1->ses == t2->ses &&
1124 	    t1->ses->server == t2->ses->server &&
1125 	    t2->origin_fullpath &&
1126 	    dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
1127 		sd->sb = sb;
1128 	spin_unlock(&t2->tc_lock);
1129 }
1130 
1131 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1132 					    void *data)
1133 {
1134 	struct super_cb_data sd = {
1135 		.data = data,
1136 		.sb = NULL,
1137 	};
1138 	struct file_system_type **fs_type = (struct file_system_type *[]) {
1139 		&cifs_fs_type, &smb3_fs_type, NULL,
1140 	};
1141 
1142 	for (; *fs_type; fs_type++) {
1143 		iterate_supers_type(*fs_type, f, &sd);
1144 		if (sd.sb) {
1145 			/*
1146 			 * Grab an active reference in order to prevent automounts (DFS links)
1147 			 * of expiring and then freeing up our cifs superblock pointer while
1148 			 * we're doing failover.
1149 			 */
1150 			cifs_sb_active(sd.sb);
1151 			return sd.sb;
1152 		}
1153 	}
1154 	pr_warn_once("%s: could not find dfs superblock\n", __func__);
1155 	return ERR_PTR(-EINVAL);
1156 }
1157 
1158 static void __cifs_put_super(struct super_block *sb)
1159 {
1160 	if (!IS_ERR_OR_NULL(sb))
1161 		cifs_sb_deactive(sb);
1162 }
1163 
1164 struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
1165 {
1166 	spin_lock(&tcon->tc_lock);
1167 	if (!tcon->origin_fullpath) {
1168 		spin_unlock(&tcon->tc_lock);
1169 		return ERR_PTR(-ENOENT);
1170 	}
1171 	spin_unlock(&tcon->tc_lock);
1172 	return __cifs_get_super(tcon_super_cb, tcon);
1173 }
1174 
1175 void cifs_put_tcp_super(struct super_block *sb)
1176 {
1177 	__cifs_put_super(sb);
1178 }
1179 
1180 #ifdef CONFIG_CIFS_DFS_UPCALL
1181 int match_target_ip(struct TCP_Server_Info *server,
1182 		    const char *share, size_t share_len,
1183 		    bool *result)
1184 {
1185 	int rc;
1186 	char *target;
1187 	struct sockaddr_storage ss;
1188 
1189 	*result = false;
1190 
1191 	target = kzalloc(share_len + 3, GFP_KERNEL);
1192 	if (!target)
1193 		return -ENOMEM;
1194 
1195 	scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1196 
1197 	cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1198 
1199 	rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1200 	kfree(target);
1201 
1202 	if (rc < 0)
1203 		return rc;
1204 
1205 	spin_lock(&server->srv_lock);
1206 	*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1207 	spin_unlock(&server->srv_lock);
1208 	cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1209 	return 0;
1210 }
1211 
1212 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1213 {
1214 	int rc;
1215 
1216 	kfree(cifs_sb->prepath);
1217 	cifs_sb->prepath = NULL;
1218 
1219 	if (prefix && *prefix) {
1220 		cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1221 		if (IS_ERR(cifs_sb->prepath)) {
1222 			rc = PTR_ERR(cifs_sb->prepath);
1223 			cifs_sb->prepath = NULL;
1224 			return rc;
1225 		}
1226 		if (cifs_sb->prepath)
1227 			convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1228 	}
1229 
1230 	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1231 	return 0;
1232 }
1233 
1234 /*
1235  * Handle weird Windows SMB server behaviour. It responds with
1236  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1237  * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1238  * non-ASCII unicode symbols.
1239  */
1240 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1241 				   struct cifs_tcon *tcon,
1242 				   struct cifs_sb_info *cifs_sb,
1243 				   const char *full_path,
1244 				   bool *islink)
1245 {
1246 	struct cifs_ses *ses = tcon->ses;
1247 	size_t len;
1248 	char *path;
1249 	char *ref_path;
1250 
1251 	*islink = false;
1252 
1253 	/*
1254 	 * Fast path - skip check when @full_path doesn't have a prefix path to
1255 	 * look up or tcon is not DFS.
1256 	 */
1257 	if (strlen(full_path) < 2 || !cifs_sb ||
1258 	    (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1259 	    !is_tcon_dfs(tcon))
1260 		return 0;
1261 
1262 	spin_lock(&tcon->tc_lock);
1263 	if (!tcon->origin_fullpath) {
1264 		spin_unlock(&tcon->tc_lock);
1265 		return 0;
1266 	}
1267 	spin_unlock(&tcon->tc_lock);
1268 
1269 	/*
1270 	 * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1271 	 * to get a referral to figure out whether it is an DFS link.
1272 	 */
1273 	len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1274 	path = kmalloc(len, GFP_KERNEL);
1275 	if (!path)
1276 		return -ENOMEM;
1277 
1278 	scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1279 	ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1280 					    cifs_remap(cifs_sb));
1281 	kfree(path);
1282 
1283 	if (IS_ERR(ref_path)) {
1284 		if (PTR_ERR(ref_path) != -EINVAL)
1285 			return PTR_ERR(ref_path);
1286 	} else {
1287 		struct dfs_info3_param *refs = NULL;
1288 		int num_refs = 0;
1289 
1290 		/*
1291 		 * XXX: we are not using dfs_cache_find() here because we might
1292 		 * end up filling all the DFS cache and thus potentially
1293 		 * removing cached DFS targets that the client would eventually
1294 		 * need during failover.
1295 		 */
1296 		ses = CIFS_DFS_ROOT_SES(ses);
1297 		if (ses->server->ops->get_dfs_refer &&
1298 		    !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1299 						     &num_refs, cifs_sb->local_nls,
1300 						     cifs_remap(cifs_sb)))
1301 			*islink = refs[0].server_type == DFS_TYPE_LINK;
1302 		free_dfs_info_array(refs, num_refs);
1303 		kfree(ref_path);
1304 	}
1305 	return 0;
1306 }
1307 #endif
1308 
1309 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1310 {
1311 	int timeout = 10;
1312 	int rc;
1313 
1314 	spin_lock(&server->srv_lock);
1315 	if (server->tcpStatus != CifsNeedReconnect) {
1316 		spin_unlock(&server->srv_lock);
1317 		return 0;
1318 	}
1319 	timeout *= server->nr_targets;
1320 	spin_unlock(&server->srv_lock);
1321 
1322 	/*
1323 	 * Give demultiplex thread up to 10 seconds to each target available for
1324 	 * reconnect -- should be greater than cifs socket timeout which is 7
1325 	 * seconds.
1326 	 *
1327 	 * On "soft" mounts we wait once. Hard mounts keep retrying until
1328 	 * process is killed or server comes back on-line.
1329 	 */
1330 	do {
1331 		rc = wait_event_interruptible_timeout(server->response_q,
1332 						      (server->tcpStatus != CifsNeedReconnect),
1333 						      timeout * HZ);
1334 		if (rc < 0) {
1335 			cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1336 				 __func__);
1337 			return -ERESTARTSYS;
1338 		}
1339 
1340 		/* are we still trying to reconnect? */
1341 		spin_lock(&server->srv_lock);
1342 		if (server->tcpStatus != CifsNeedReconnect) {
1343 			spin_unlock(&server->srv_lock);
1344 			return 0;
1345 		}
1346 		spin_unlock(&server->srv_lock);
1347 	} while (retry);
1348 
1349 	cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1350 	return -EHOSTDOWN;
1351 }
1352