1 // SPDX-License-Identifier: LGPL-2.1 2 /* 3 * 4 * vfs operations that deal with files 5 * 6 * Copyright (C) International Business Machines Corp., 2002,2010 7 * Author(s): Steve French (sfrench@us.ibm.com) 8 * Jeremy Allison (jra@samba.org) 9 * 10 */ 11 #include <linux/fs.h> 12 #include <linux/filelock.h> 13 #include <linux/backing-dev.h> 14 #include <linux/stat.h> 15 #include <linux/fcntl.h> 16 #include <linux/pagemap.h> 17 #include <linux/pagevec.h> 18 #include <linux/writeback.h> 19 #include <linux/task_io_accounting_ops.h> 20 #include <linux/delay.h> 21 #include <linux/mount.h> 22 #include <linux/slab.h> 23 #include <linux/swap.h> 24 #include <linux/mm.h> 25 #include <asm/div64.h> 26 #include "cifsfs.h" 27 #include "cifspdu.h" 28 #include "cifsglob.h" 29 #include "cifsproto.h" 30 #include "smb2proto.h" 31 #include "cifs_unicode.h" 32 #include "cifs_debug.h" 33 #include "cifs_fs_sb.h" 34 #include "fscache.h" 35 #include "smbdirect.h" 36 #include "fs_context.h" 37 #include "cifs_ioctl.h" 38 #include "cached_dir.h" 39 40 /* 41 * Remove the dirty flags from a span of pages. 42 */ 43 static void cifs_undirty_folios(struct inode *inode, loff_t start, unsigned int len) 44 { 45 struct address_space *mapping = inode->i_mapping; 46 struct folio *folio; 47 pgoff_t end; 48 49 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE); 50 51 rcu_read_lock(); 52 53 end = (start + len - 1) / PAGE_SIZE; 54 xas_for_each_marked(&xas, folio, end, PAGECACHE_TAG_DIRTY) { 55 if (xas_retry(&xas, folio)) 56 continue; 57 xas_pause(&xas); 58 rcu_read_unlock(); 59 folio_lock(folio); 60 folio_clear_dirty_for_io(folio); 61 folio_unlock(folio); 62 rcu_read_lock(); 63 } 64 65 rcu_read_unlock(); 66 } 67 68 /* 69 * Completion of write to server. 70 */ 71 void cifs_pages_written_back(struct inode *inode, loff_t start, unsigned int len) 72 { 73 struct address_space *mapping = inode->i_mapping; 74 struct folio *folio; 75 pgoff_t end; 76 77 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE); 78 79 if (!len) 80 return; 81 82 rcu_read_lock(); 83 84 end = (start + len - 1) / PAGE_SIZE; 85 xas_for_each(&xas, folio, end) { 86 if (xas_retry(&xas, folio)) 87 continue; 88 if (!folio_test_writeback(folio)) { 89 WARN_ONCE(1, "bad %x @%llx page %lx %lx\n", 90 len, start, folio_index(folio), end); 91 continue; 92 } 93 94 folio_detach_private(folio); 95 folio_end_writeback(folio); 96 } 97 98 rcu_read_unlock(); 99 } 100 101 /* 102 * Failure of write to server. 103 */ 104 void cifs_pages_write_failed(struct inode *inode, loff_t start, unsigned int len) 105 { 106 struct address_space *mapping = inode->i_mapping; 107 struct folio *folio; 108 pgoff_t end; 109 110 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE); 111 112 if (!len) 113 return; 114 115 rcu_read_lock(); 116 117 end = (start + len - 1) / PAGE_SIZE; 118 xas_for_each(&xas, folio, end) { 119 if (xas_retry(&xas, folio)) 120 continue; 121 if (!folio_test_writeback(folio)) { 122 WARN_ONCE(1, "bad %x @%llx page %lx %lx\n", 123 len, start, folio_index(folio), end); 124 continue; 125 } 126 127 folio_set_error(folio); 128 folio_end_writeback(folio); 129 } 130 131 rcu_read_unlock(); 132 } 133 134 /* 135 * Redirty pages after a temporary failure. 136 */ 137 void cifs_pages_write_redirty(struct inode *inode, loff_t start, unsigned int len) 138 { 139 struct address_space *mapping = inode->i_mapping; 140 struct folio *folio; 141 pgoff_t end; 142 143 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE); 144 145 if (!len) 146 return; 147 148 rcu_read_lock(); 149 150 end = (start + len - 1) / PAGE_SIZE; 151 xas_for_each(&xas, folio, end) { 152 if (!folio_test_writeback(folio)) { 153 WARN_ONCE(1, "bad %x @%llx page %lx %lx\n", 154 len, start, folio_index(folio), end); 155 continue; 156 } 157 158 filemap_dirty_folio(folio->mapping, folio); 159 folio_end_writeback(folio); 160 } 161 162 rcu_read_unlock(); 163 } 164 165 /* 166 * Mark as invalid, all open files on tree connections since they 167 * were closed when session to server was lost. 168 */ 169 void 170 cifs_mark_open_files_invalid(struct cifs_tcon *tcon) 171 { 172 struct cifsFileInfo *open_file = NULL; 173 struct list_head *tmp; 174 struct list_head *tmp1; 175 176 /* only send once per connect */ 177 spin_lock(&tcon->tc_lock); 178 if (tcon->status != TID_NEED_RECON) { 179 spin_unlock(&tcon->tc_lock); 180 return; 181 } 182 tcon->status = TID_IN_FILES_INVALIDATE; 183 spin_unlock(&tcon->tc_lock); 184 185 /* list all files open on tree connection and mark them invalid */ 186 spin_lock(&tcon->open_file_lock); 187 list_for_each_safe(tmp, tmp1, &tcon->openFileList) { 188 open_file = list_entry(tmp, struct cifsFileInfo, tlist); 189 open_file->invalidHandle = true; 190 open_file->oplock_break_cancelled = true; 191 } 192 spin_unlock(&tcon->open_file_lock); 193 194 invalidate_all_cached_dirs(tcon); 195 spin_lock(&tcon->tc_lock); 196 if (tcon->status == TID_IN_FILES_INVALIDATE) 197 tcon->status = TID_NEED_TCON; 198 spin_unlock(&tcon->tc_lock); 199 200 /* 201 * BB Add call to invalidate_inodes(sb) for all superblocks mounted 202 * to this tcon. 203 */ 204 } 205 206 static inline int cifs_convert_flags(unsigned int flags) 207 { 208 if ((flags & O_ACCMODE) == O_RDONLY) 209 return GENERIC_READ; 210 else if ((flags & O_ACCMODE) == O_WRONLY) 211 return GENERIC_WRITE; 212 else if ((flags & O_ACCMODE) == O_RDWR) { 213 /* GENERIC_ALL is too much permission to request 214 can cause unnecessary access denied on create */ 215 /* return GENERIC_ALL; */ 216 return (GENERIC_READ | GENERIC_WRITE); 217 } 218 219 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES | 220 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA | 221 FILE_READ_DATA); 222 } 223 224 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 225 static u32 cifs_posix_convert_flags(unsigned int flags) 226 { 227 u32 posix_flags = 0; 228 229 if ((flags & O_ACCMODE) == O_RDONLY) 230 posix_flags = SMB_O_RDONLY; 231 else if ((flags & O_ACCMODE) == O_WRONLY) 232 posix_flags = SMB_O_WRONLY; 233 else if ((flags & O_ACCMODE) == O_RDWR) 234 posix_flags = SMB_O_RDWR; 235 236 if (flags & O_CREAT) { 237 posix_flags |= SMB_O_CREAT; 238 if (flags & O_EXCL) 239 posix_flags |= SMB_O_EXCL; 240 } else if (flags & O_EXCL) 241 cifs_dbg(FYI, "Application %s pid %d has incorrectly set O_EXCL flag but not O_CREAT on file open. Ignoring O_EXCL\n", 242 current->comm, current->tgid); 243 244 if (flags & O_TRUNC) 245 posix_flags |= SMB_O_TRUNC; 246 /* be safe and imply O_SYNC for O_DSYNC */ 247 if (flags & O_DSYNC) 248 posix_flags |= SMB_O_SYNC; 249 if (flags & O_DIRECTORY) 250 posix_flags |= SMB_O_DIRECTORY; 251 if (flags & O_NOFOLLOW) 252 posix_flags |= SMB_O_NOFOLLOW; 253 if (flags & O_DIRECT) 254 posix_flags |= SMB_O_DIRECT; 255 256 return posix_flags; 257 } 258 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 259 260 static inline int cifs_get_disposition(unsigned int flags) 261 { 262 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL)) 263 return FILE_CREATE; 264 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC)) 265 return FILE_OVERWRITE_IF; 266 else if ((flags & O_CREAT) == O_CREAT) 267 return FILE_OPEN_IF; 268 else if ((flags & O_TRUNC) == O_TRUNC) 269 return FILE_OVERWRITE; 270 else 271 return FILE_OPEN; 272 } 273 274 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 275 int cifs_posix_open(const char *full_path, struct inode **pinode, 276 struct super_block *sb, int mode, unsigned int f_flags, 277 __u32 *poplock, __u16 *pnetfid, unsigned int xid) 278 { 279 int rc; 280 FILE_UNIX_BASIC_INFO *presp_data; 281 __u32 posix_flags = 0; 282 struct cifs_sb_info *cifs_sb = CIFS_SB(sb); 283 struct cifs_fattr fattr; 284 struct tcon_link *tlink; 285 struct cifs_tcon *tcon; 286 287 cifs_dbg(FYI, "posix open %s\n", full_path); 288 289 presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL); 290 if (presp_data == NULL) 291 return -ENOMEM; 292 293 tlink = cifs_sb_tlink(cifs_sb); 294 if (IS_ERR(tlink)) { 295 rc = PTR_ERR(tlink); 296 goto posix_open_ret; 297 } 298 299 tcon = tlink_tcon(tlink); 300 mode &= ~current_umask(); 301 302 posix_flags = cifs_posix_convert_flags(f_flags); 303 rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data, 304 poplock, full_path, cifs_sb->local_nls, 305 cifs_remap(cifs_sb)); 306 cifs_put_tlink(tlink); 307 308 if (rc) 309 goto posix_open_ret; 310 311 if (presp_data->Type == cpu_to_le32(-1)) 312 goto posix_open_ret; /* open ok, caller does qpathinfo */ 313 314 if (!pinode) 315 goto posix_open_ret; /* caller does not need info */ 316 317 cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb); 318 319 /* get new inode and set it up */ 320 if (*pinode == NULL) { 321 cifs_fill_uniqueid(sb, &fattr); 322 *pinode = cifs_iget(sb, &fattr); 323 if (!*pinode) { 324 rc = -ENOMEM; 325 goto posix_open_ret; 326 } 327 } else { 328 cifs_revalidate_mapping(*pinode); 329 rc = cifs_fattr_to_inode(*pinode, &fattr); 330 } 331 332 posix_open_ret: 333 kfree(presp_data); 334 return rc; 335 } 336 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 337 338 static int cifs_nt_open(const char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb, 339 struct cifs_tcon *tcon, unsigned int f_flags, __u32 *oplock, 340 struct cifs_fid *fid, unsigned int xid, struct cifs_open_info_data *buf) 341 { 342 int rc; 343 int desired_access; 344 int disposition; 345 int create_options = CREATE_NOT_DIR; 346 struct TCP_Server_Info *server = tcon->ses->server; 347 struct cifs_open_parms oparms; 348 349 if (!server->ops->open) 350 return -ENOSYS; 351 352 desired_access = cifs_convert_flags(f_flags); 353 354 /********************************************************************* 355 * open flag mapping table: 356 * 357 * POSIX Flag CIFS Disposition 358 * ---------- ---------------- 359 * O_CREAT FILE_OPEN_IF 360 * O_CREAT | O_EXCL FILE_CREATE 361 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF 362 * O_TRUNC FILE_OVERWRITE 363 * none of the above FILE_OPEN 364 * 365 * Note that there is not a direct match between disposition 366 * FILE_SUPERSEDE (ie create whether or not file exists although 367 * O_CREAT | O_TRUNC is similar but truncates the existing 368 * file rather than creating a new file as FILE_SUPERSEDE does 369 * (which uses the attributes / metadata passed in on open call) 370 *? 371 *? O_SYNC is a reasonable match to CIFS writethrough flag 372 *? and the read write flags match reasonably. O_LARGEFILE 373 *? is irrelevant because largefile support is always used 374 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY, 375 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation 376 *********************************************************************/ 377 378 disposition = cifs_get_disposition(f_flags); 379 380 /* BB pass O_SYNC flag through on file attributes .. BB */ 381 382 /* O_SYNC also has bit for O_DSYNC so following check picks up either */ 383 if (f_flags & O_SYNC) 384 create_options |= CREATE_WRITE_THROUGH; 385 386 if (f_flags & O_DIRECT) 387 create_options |= CREATE_NO_BUFFER; 388 389 oparms = (struct cifs_open_parms) { 390 .tcon = tcon, 391 .cifs_sb = cifs_sb, 392 .desired_access = desired_access, 393 .create_options = cifs_create_options(cifs_sb, create_options), 394 .disposition = disposition, 395 .path = full_path, 396 .fid = fid, 397 }; 398 399 rc = server->ops->open(xid, &oparms, oplock, buf); 400 if (rc) 401 return rc; 402 403 /* TODO: Add support for calling posix query info but with passing in fid */ 404 if (tcon->unix_ext) 405 rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb, 406 xid); 407 else 408 rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb, 409 xid, fid); 410 411 if (rc) { 412 server->ops->close(xid, tcon, fid); 413 if (rc == -ESTALE) 414 rc = -EOPENSTALE; 415 } 416 417 return rc; 418 } 419 420 static bool 421 cifs_has_mand_locks(struct cifsInodeInfo *cinode) 422 { 423 struct cifs_fid_locks *cur; 424 bool has_locks = false; 425 426 down_read(&cinode->lock_sem); 427 list_for_each_entry(cur, &cinode->llist, llist) { 428 if (!list_empty(&cur->locks)) { 429 has_locks = true; 430 break; 431 } 432 } 433 up_read(&cinode->lock_sem); 434 return has_locks; 435 } 436 437 void 438 cifs_down_write(struct rw_semaphore *sem) 439 { 440 while (!down_write_trylock(sem)) 441 msleep(10); 442 } 443 444 static void cifsFileInfo_put_work(struct work_struct *work); 445 446 struct cifsFileInfo *cifs_new_fileinfo(struct cifs_fid *fid, struct file *file, 447 struct tcon_link *tlink, __u32 oplock, 448 const char *symlink_target) 449 { 450 struct dentry *dentry = file_dentry(file); 451 struct inode *inode = d_inode(dentry); 452 struct cifsInodeInfo *cinode = CIFS_I(inode); 453 struct cifsFileInfo *cfile; 454 struct cifs_fid_locks *fdlocks; 455 struct cifs_tcon *tcon = tlink_tcon(tlink); 456 struct TCP_Server_Info *server = tcon->ses->server; 457 458 cfile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL); 459 if (cfile == NULL) 460 return cfile; 461 462 fdlocks = kzalloc(sizeof(struct cifs_fid_locks), GFP_KERNEL); 463 if (!fdlocks) { 464 kfree(cfile); 465 return NULL; 466 } 467 468 if (symlink_target) { 469 cfile->symlink_target = kstrdup(symlink_target, GFP_KERNEL); 470 if (!cfile->symlink_target) { 471 kfree(fdlocks); 472 kfree(cfile); 473 return NULL; 474 } 475 } 476 477 INIT_LIST_HEAD(&fdlocks->locks); 478 fdlocks->cfile = cfile; 479 cfile->llist = fdlocks; 480 481 cfile->count = 1; 482 cfile->pid = current->tgid; 483 cfile->uid = current_fsuid(); 484 cfile->dentry = dget(dentry); 485 cfile->f_flags = file->f_flags; 486 cfile->invalidHandle = false; 487 cfile->deferred_close_scheduled = false; 488 cfile->tlink = cifs_get_tlink(tlink); 489 INIT_WORK(&cfile->oplock_break, cifs_oplock_break); 490 INIT_WORK(&cfile->put, cifsFileInfo_put_work); 491 INIT_DELAYED_WORK(&cfile->deferred, smb2_deferred_work_close); 492 mutex_init(&cfile->fh_mutex); 493 spin_lock_init(&cfile->file_info_lock); 494 495 cifs_sb_active(inode->i_sb); 496 497 /* 498 * If the server returned a read oplock and we have mandatory brlocks, 499 * set oplock level to None. 500 */ 501 if (server->ops->is_read_op(oplock) && cifs_has_mand_locks(cinode)) { 502 cifs_dbg(FYI, "Reset oplock val from read to None due to mand locks\n"); 503 oplock = 0; 504 } 505 506 cifs_down_write(&cinode->lock_sem); 507 list_add(&fdlocks->llist, &cinode->llist); 508 up_write(&cinode->lock_sem); 509 510 spin_lock(&tcon->open_file_lock); 511 if (fid->pending_open->oplock != CIFS_OPLOCK_NO_CHANGE && oplock) 512 oplock = fid->pending_open->oplock; 513 list_del(&fid->pending_open->olist); 514 515 fid->purge_cache = false; 516 server->ops->set_fid(cfile, fid, oplock); 517 518 list_add(&cfile->tlist, &tcon->openFileList); 519 atomic_inc(&tcon->num_local_opens); 520 521 /* if readable file instance put first in list*/ 522 spin_lock(&cinode->open_file_lock); 523 if (file->f_mode & FMODE_READ) 524 list_add(&cfile->flist, &cinode->openFileList); 525 else 526 list_add_tail(&cfile->flist, &cinode->openFileList); 527 spin_unlock(&cinode->open_file_lock); 528 spin_unlock(&tcon->open_file_lock); 529 530 if (fid->purge_cache) 531 cifs_zap_mapping(inode); 532 533 file->private_data = cfile; 534 return cfile; 535 } 536 537 struct cifsFileInfo * 538 cifsFileInfo_get(struct cifsFileInfo *cifs_file) 539 { 540 spin_lock(&cifs_file->file_info_lock); 541 cifsFileInfo_get_locked(cifs_file); 542 spin_unlock(&cifs_file->file_info_lock); 543 return cifs_file; 544 } 545 546 static void cifsFileInfo_put_final(struct cifsFileInfo *cifs_file) 547 { 548 struct inode *inode = d_inode(cifs_file->dentry); 549 struct cifsInodeInfo *cifsi = CIFS_I(inode); 550 struct cifsLockInfo *li, *tmp; 551 struct super_block *sb = inode->i_sb; 552 553 /* 554 * Delete any outstanding lock records. We'll lose them when the file 555 * is closed anyway. 556 */ 557 cifs_down_write(&cifsi->lock_sem); 558 list_for_each_entry_safe(li, tmp, &cifs_file->llist->locks, llist) { 559 list_del(&li->llist); 560 cifs_del_lock_waiters(li); 561 kfree(li); 562 } 563 list_del(&cifs_file->llist->llist); 564 kfree(cifs_file->llist); 565 up_write(&cifsi->lock_sem); 566 567 cifs_put_tlink(cifs_file->tlink); 568 dput(cifs_file->dentry); 569 cifs_sb_deactive(sb); 570 kfree(cifs_file->symlink_target); 571 kfree(cifs_file); 572 } 573 574 static void cifsFileInfo_put_work(struct work_struct *work) 575 { 576 struct cifsFileInfo *cifs_file = container_of(work, 577 struct cifsFileInfo, put); 578 579 cifsFileInfo_put_final(cifs_file); 580 } 581 582 /** 583 * cifsFileInfo_put - release a reference of file priv data 584 * 585 * Always potentially wait for oplock handler. See _cifsFileInfo_put(). 586 * 587 * @cifs_file: cifs/smb3 specific info (eg refcounts) for an open file 588 */ 589 void cifsFileInfo_put(struct cifsFileInfo *cifs_file) 590 { 591 _cifsFileInfo_put(cifs_file, true, true); 592 } 593 594 /** 595 * _cifsFileInfo_put - release a reference of file priv data 596 * 597 * This may involve closing the filehandle @cifs_file out on the 598 * server. Must be called without holding tcon->open_file_lock, 599 * cinode->open_file_lock and cifs_file->file_info_lock. 600 * 601 * If @wait_for_oplock_handler is true and we are releasing the last 602 * reference, wait for any running oplock break handler of the file 603 * and cancel any pending one. 604 * 605 * @cifs_file: cifs/smb3 specific info (eg refcounts) for an open file 606 * @wait_oplock_handler: must be false if called from oplock_break_handler 607 * @offload: not offloaded on close and oplock breaks 608 * 609 */ 610 void _cifsFileInfo_put(struct cifsFileInfo *cifs_file, 611 bool wait_oplock_handler, bool offload) 612 { 613 struct inode *inode = d_inode(cifs_file->dentry); 614 struct cifs_tcon *tcon = tlink_tcon(cifs_file->tlink); 615 struct TCP_Server_Info *server = tcon->ses->server; 616 struct cifsInodeInfo *cifsi = CIFS_I(inode); 617 struct super_block *sb = inode->i_sb; 618 struct cifs_sb_info *cifs_sb = CIFS_SB(sb); 619 struct cifs_fid fid = {}; 620 struct cifs_pending_open open; 621 bool oplock_break_cancelled; 622 623 spin_lock(&tcon->open_file_lock); 624 spin_lock(&cifsi->open_file_lock); 625 spin_lock(&cifs_file->file_info_lock); 626 if (--cifs_file->count > 0) { 627 spin_unlock(&cifs_file->file_info_lock); 628 spin_unlock(&cifsi->open_file_lock); 629 spin_unlock(&tcon->open_file_lock); 630 return; 631 } 632 spin_unlock(&cifs_file->file_info_lock); 633 634 if (server->ops->get_lease_key) 635 server->ops->get_lease_key(inode, &fid); 636 637 /* store open in pending opens to make sure we don't miss lease break */ 638 cifs_add_pending_open_locked(&fid, cifs_file->tlink, &open); 639 640 /* remove it from the lists */ 641 list_del(&cifs_file->flist); 642 list_del(&cifs_file->tlist); 643 atomic_dec(&tcon->num_local_opens); 644 645 if (list_empty(&cifsi->openFileList)) { 646 cifs_dbg(FYI, "closing last open instance for inode %p\n", 647 d_inode(cifs_file->dentry)); 648 /* 649 * In strict cache mode we need invalidate mapping on the last 650 * close because it may cause a error when we open this file 651 * again and get at least level II oplock. 652 */ 653 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO) 654 set_bit(CIFS_INO_INVALID_MAPPING, &cifsi->flags); 655 cifs_set_oplock_level(cifsi, 0); 656 } 657 658 spin_unlock(&cifsi->open_file_lock); 659 spin_unlock(&tcon->open_file_lock); 660 661 oplock_break_cancelled = wait_oplock_handler ? 662 cancel_work_sync(&cifs_file->oplock_break) : false; 663 664 if (!tcon->need_reconnect && !cifs_file->invalidHandle) { 665 struct TCP_Server_Info *server = tcon->ses->server; 666 unsigned int xid; 667 668 xid = get_xid(); 669 if (server->ops->close_getattr) 670 server->ops->close_getattr(xid, tcon, cifs_file); 671 else if (server->ops->close) 672 server->ops->close(xid, tcon, &cifs_file->fid); 673 _free_xid(xid); 674 } 675 676 if (oplock_break_cancelled) 677 cifs_done_oplock_break(cifsi); 678 679 cifs_del_pending_open(&open); 680 681 if (offload) 682 queue_work(fileinfo_put_wq, &cifs_file->put); 683 else 684 cifsFileInfo_put_final(cifs_file); 685 } 686 687 int cifs_open(struct inode *inode, struct file *file) 688 689 { 690 int rc = -EACCES; 691 unsigned int xid; 692 __u32 oplock; 693 struct cifs_sb_info *cifs_sb; 694 struct TCP_Server_Info *server; 695 struct cifs_tcon *tcon; 696 struct tcon_link *tlink; 697 struct cifsFileInfo *cfile = NULL; 698 void *page; 699 const char *full_path; 700 bool posix_open_ok = false; 701 struct cifs_fid fid = {}; 702 struct cifs_pending_open open; 703 struct cifs_open_info_data data = {}; 704 705 xid = get_xid(); 706 707 cifs_sb = CIFS_SB(inode->i_sb); 708 if (unlikely(cifs_forced_shutdown(cifs_sb))) { 709 free_xid(xid); 710 return -EIO; 711 } 712 713 tlink = cifs_sb_tlink(cifs_sb); 714 if (IS_ERR(tlink)) { 715 free_xid(xid); 716 return PTR_ERR(tlink); 717 } 718 tcon = tlink_tcon(tlink); 719 server = tcon->ses->server; 720 721 page = alloc_dentry_path(); 722 full_path = build_path_from_dentry(file_dentry(file), page); 723 if (IS_ERR(full_path)) { 724 rc = PTR_ERR(full_path); 725 goto out; 726 } 727 728 cifs_dbg(FYI, "inode = 0x%p file flags are 0x%x for %s\n", 729 inode, file->f_flags, full_path); 730 731 if (file->f_flags & O_DIRECT && 732 cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO) { 733 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_BRL) 734 file->f_op = &cifs_file_direct_nobrl_ops; 735 else 736 file->f_op = &cifs_file_direct_ops; 737 } 738 739 /* Get the cached handle as SMB2 close is deferred */ 740 rc = cifs_get_readable_path(tcon, full_path, &cfile); 741 if (rc == 0) { 742 if (file->f_flags == cfile->f_flags) { 743 file->private_data = cfile; 744 spin_lock(&CIFS_I(inode)->deferred_lock); 745 cifs_del_deferred_close(cfile); 746 spin_unlock(&CIFS_I(inode)->deferred_lock); 747 goto use_cache; 748 } else { 749 _cifsFileInfo_put(cfile, true, false); 750 } 751 } 752 753 if (server->oplocks) 754 oplock = REQ_OPLOCK; 755 else 756 oplock = 0; 757 758 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 759 if (!tcon->broken_posix_open && tcon->unix_ext && 760 cap_unix(tcon->ses) && (CIFS_UNIX_POSIX_PATH_OPS_CAP & 761 le64_to_cpu(tcon->fsUnixInfo.Capability))) { 762 /* can not refresh inode info since size could be stale */ 763 rc = cifs_posix_open(full_path, &inode, inode->i_sb, 764 cifs_sb->ctx->file_mode /* ignored */, 765 file->f_flags, &oplock, &fid.netfid, xid); 766 if (rc == 0) { 767 cifs_dbg(FYI, "posix open succeeded\n"); 768 posix_open_ok = true; 769 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) { 770 if (tcon->ses->serverNOS) 771 cifs_dbg(VFS, "server %s of type %s returned unexpected error on SMB posix open, disabling posix open support. Check if server update available.\n", 772 tcon->ses->ip_addr, 773 tcon->ses->serverNOS); 774 tcon->broken_posix_open = true; 775 } else if ((rc != -EIO) && (rc != -EREMOTE) && 776 (rc != -EOPNOTSUPP)) /* path not found or net err */ 777 goto out; 778 /* 779 * Else fallthrough to retry open the old way on network i/o 780 * or DFS errors. 781 */ 782 } 783 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 784 785 if (server->ops->get_lease_key) 786 server->ops->get_lease_key(inode, &fid); 787 788 cifs_add_pending_open(&fid, tlink, &open); 789 790 if (!posix_open_ok) { 791 if (server->ops->get_lease_key) 792 server->ops->get_lease_key(inode, &fid); 793 794 rc = cifs_nt_open(full_path, inode, cifs_sb, tcon, file->f_flags, &oplock, &fid, 795 xid, &data); 796 if (rc) { 797 cifs_del_pending_open(&open); 798 goto out; 799 } 800 } 801 802 cfile = cifs_new_fileinfo(&fid, file, tlink, oplock, data.symlink_target); 803 if (cfile == NULL) { 804 if (server->ops->close) 805 server->ops->close(xid, tcon, &fid); 806 cifs_del_pending_open(&open); 807 rc = -ENOMEM; 808 goto out; 809 } 810 811 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 812 if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) { 813 /* 814 * Time to set mode which we can not set earlier due to 815 * problems creating new read-only files. 816 */ 817 struct cifs_unix_set_info_args args = { 818 .mode = inode->i_mode, 819 .uid = INVALID_UID, /* no change */ 820 .gid = INVALID_GID, /* no change */ 821 .ctime = NO_CHANGE_64, 822 .atime = NO_CHANGE_64, 823 .mtime = NO_CHANGE_64, 824 .device = 0, 825 }; 826 CIFSSMBUnixSetFileInfo(xid, tcon, &args, fid.netfid, 827 cfile->pid); 828 } 829 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 830 831 use_cache: 832 fscache_use_cookie(cifs_inode_cookie(file_inode(file)), 833 file->f_mode & FMODE_WRITE); 834 if (file->f_flags & O_DIRECT && 835 (!((file->f_flags & O_ACCMODE) != O_RDONLY) || 836 file->f_flags & O_APPEND)) 837 cifs_invalidate_cache(file_inode(file), 838 FSCACHE_INVAL_DIO_WRITE); 839 840 out: 841 free_dentry_path(page); 842 free_xid(xid); 843 cifs_put_tlink(tlink); 844 cifs_free_open_info(&data); 845 return rc; 846 } 847 848 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 849 static int cifs_push_posix_locks(struct cifsFileInfo *cfile); 850 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 851 852 /* 853 * Try to reacquire byte range locks that were released when session 854 * to server was lost. 855 */ 856 static int 857 cifs_relock_file(struct cifsFileInfo *cfile) 858 { 859 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry)); 860 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink); 861 int rc = 0; 862 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 863 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb); 864 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 865 866 down_read_nested(&cinode->lock_sem, SINGLE_DEPTH_NESTING); 867 if (cinode->can_cache_brlcks) { 868 /* can cache locks - no need to relock */ 869 up_read(&cinode->lock_sem); 870 return rc; 871 } 872 873 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 874 if (cap_unix(tcon->ses) && 875 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) && 876 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) 877 rc = cifs_push_posix_locks(cfile); 878 else 879 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 880 rc = tcon->ses->server->ops->push_mand_locks(cfile); 881 882 up_read(&cinode->lock_sem); 883 return rc; 884 } 885 886 static int 887 cifs_reopen_file(struct cifsFileInfo *cfile, bool can_flush) 888 { 889 int rc = -EACCES; 890 unsigned int xid; 891 __u32 oplock; 892 struct cifs_sb_info *cifs_sb; 893 struct cifs_tcon *tcon; 894 struct TCP_Server_Info *server; 895 struct cifsInodeInfo *cinode; 896 struct inode *inode; 897 void *page; 898 const char *full_path; 899 int desired_access; 900 int disposition = FILE_OPEN; 901 int create_options = CREATE_NOT_DIR; 902 struct cifs_open_parms oparms; 903 904 xid = get_xid(); 905 mutex_lock(&cfile->fh_mutex); 906 if (!cfile->invalidHandle) { 907 mutex_unlock(&cfile->fh_mutex); 908 free_xid(xid); 909 return 0; 910 } 911 912 inode = d_inode(cfile->dentry); 913 cifs_sb = CIFS_SB(inode->i_sb); 914 tcon = tlink_tcon(cfile->tlink); 915 server = tcon->ses->server; 916 917 /* 918 * Can not grab rename sem here because various ops, including those 919 * that already have the rename sem can end up causing writepage to get 920 * called and if the server was down that means we end up here, and we 921 * can never tell if the caller already has the rename_sem. 922 */ 923 page = alloc_dentry_path(); 924 full_path = build_path_from_dentry(cfile->dentry, page); 925 if (IS_ERR(full_path)) { 926 mutex_unlock(&cfile->fh_mutex); 927 free_dentry_path(page); 928 free_xid(xid); 929 return PTR_ERR(full_path); 930 } 931 932 cifs_dbg(FYI, "inode = 0x%p file flags 0x%x for %s\n", 933 inode, cfile->f_flags, full_path); 934 935 if (tcon->ses->server->oplocks) 936 oplock = REQ_OPLOCK; 937 else 938 oplock = 0; 939 940 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 941 if (tcon->unix_ext && cap_unix(tcon->ses) && 942 (CIFS_UNIX_POSIX_PATH_OPS_CAP & 943 le64_to_cpu(tcon->fsUnixInfo.Capability))) { 944 /* 945 * O_CREAT, O_EXCL and O_TRUNC already had their effect on the 946 * original open. Must mask them off for a reopen. 947 */ 948 unsigned int oflags = cfile->f_flags & 949 ~(O_CREAT | O_EXCL | O_TRUNC); 950 951 rc = cifs_posix_open(full_path, NULL, inode->i_sb, 952 cifs_sb->ctx->file_mode /* ignored */, 953 oflags, &oplock, &cfile->fid.netfid, xid); 954 if (rc == 0) { 955 cifs_dbg(FYI, "posix reopen succeeded\n"); 956 oparms.reconnect = true; 957 goto reopen_success; 958 } 959 /* 960 * fallthrough to retry open the old way on errors, especially 961 * in the reconnect path it is important to retry hard 962 */ 963 } 964 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 965 966 desired_access = cifs_convert_flags(cfile->f_flags); 967 968 /* O_SYNC also has bit for O_DSYNC so following check picks up either */ 969 if (cfile->f_flags & O_SYNC) 970 create_options |= CREATE_WRITE_THROUGH; 971 972 if (cfile->f_flags & O_DIRECT) 973 create_options |= CREATE_NO_BUFFER; 974 975 if (server->ops->get_lease_key) 976 server->ops->get_lease_key(inode, &cfile->fid); 977 978 oparms = (struct cifs_open_parms) { 979 .tcon = tcon, 980 .cifs_sb = cifs_sb, 981 .desired_access = desired_access, 982 .create_options = cifs_create_options(cifs_sb, create_options), 983 .disposition = disposition, 984 .path = full_path, 985 .fid = &cfile->fid, 986 .reconnect = true, 987 }; 988 989 /* 990 * Can not refresh inode by passing in file_info buf to be returned by 991 * ops->open and then calling get_inode_info with returned buf since 992 * file might have write behind data that needs to be flushed and server 993 * version of file size can be stale. If we knew for sure that inode was 994 * not dirty locally we could do this. 995 */ 996 rc = server->ops->open(xid, &oparms, &oplock, NULL); 997 if (rc == -ENOENT && oparms.reconnect == false) { 998 /* durable handle timeout is expired - open the file again */ 999 rc = server->ops->open(xid, &oparms, &oplock, NULL); 1000 /* indicate that we need to relock the file */ 1001 oparms.reconnect = true; 1002 } 1003 1004 if (rc) { 1005 mutex_unlock(&cfile->fh_mutex); 1006 cifs_dbg(FYI, "cifs_reopen returned 0x%x\n", rc); 1007 cifs_dbg(FYI, "oplock: %d\n", oplock); 1008 goto reopen_error_exit; 1009 } 1010 1011 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 1012 reopen_success: 1013 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 1014 cfile->invalidHandle = false; 1015 mutex_unlock(&cfile->fh_mutex); 1016 cinode = CIFS_I(inode); 1017 1018 if (can_flush) { 1019 rc = filemap_write_and_wait(inode->i_mapping); 1020 if (!is_interrupt_error(rc)) 1021 mapping_set_error(inode->i_mapping, rc); 1022 1023 if (tcon->posix_extensions) 1024 rc = smb311_posix_get_inode_info(&inode, full_path, inode->i_sb, xid); 1025 else if (tcon->unix_ext) 1026 rc = cifs_get_inode_info_unix(&inode, full_path, 1027 inode->i_sb, xid); 1028 else 1029 rc = cifs_get_inode_info(&inode, full_path, NULL, 1030 inode->i_sb, xid, NULL); 1031 } 1032 /* 1033 * Else we are writing out data to server already and could deadlock if 1034 * we tried to flush data, and since we do not know if we have data that 1035 * would invalidate the current end of file on the server we can not go 1036 * to the server to get the new inode info. 1037 */ 1038 1039 /* 1040 * If the server returned a read oplock and we have mandatory brlocks, 1041 * set oplock level to None. 1042 */ 1043 if (server->ops->is_read_op(oplock) && cifs_has_mand_locks(cinode)) { 1044 cifs_dbg(FYI, "Reset oplock val from read to None due to mand locks\n"); 1045 oplock = 0; 1046 } 1047 1048 server->ops->set_fid(cfile, &cfile->fid, oplock); 1049 if (oparms.reconnect) 1050 cifs_relock_file(cfile); 1051 1052 reopen_error_exit: 1053 free_dentry_path(page); 1054 free_xid(xid); 1055 return rc; 1056 } 1057 1058 void smb2_deferred_work_close(struct work_struct *work) 1059 { 1060 struct cifsFileInfo *cfile = container_of(work, 1061 struct cifsFileInfo, deferred.work); 1062 1063 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 1064 cifs_del_deferred_close(cfile); 1065 cfile->deferred_close_scheduled = false; 1066 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 1067 _cifsFileInfo_put(cfile, true, false); 1068 } 1069 1070 int cifs_close(struct inode *inode, struct file *file) 1071 { 1072 struct cifsFileInfo *cfile; 1073 struct cifsInodeInfo *cinode = CIFS_I(inode); 1074 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb); 1075 struct cifs_deferred_close *dclose; 1076 1077 cifs_fscache_unuse_inode_cookie(inode, file->f_mode & FMODE_WRITE); 1078 1079 if (file->private_data != NULL) { 1080 cfile = file->private_data; 1081 file->private_data = NULL; 1082 dclose = kmalloc(sizeof(struct cifs_deferred_close), GFP_KERNEL); 1083 if ((cifs_sb->ctx->closetimeo && cinode->oplock == CIFS_CACHE_RHW_FLG) 1084 && cinode->lease_granted && 1085 !test_bit(CIFS_INO_CLOSE_ON_LOCK, &cinode->flags) && 1086 dclose) { 1087 if (test_and_clear_bit(CIFS_INO_MODIFIED_ATTR, &cinode->flags)) { 1088 inode->i_ctime = inode->i_mtime = current_time(inode); 1089 } 1090 spin_lock(&cinode->deferred_lock); 1091 cifs_add_deferred_close(cfile, dclose); 1092 if (cfile->deferred_close_scheduled && 1093 delayed_work_pending(&cfile->deferred)) { 1094 /* 1095 * If there is no pending work, mod_delayed_work queues new work. 1096 * So, Increase the ref count to avoid use-after-free. 1097 */ 1098 if (!mod_delayed_work(deferredclose_wq, 1099 &cfile->deferred, cifs_sb->ctx->closetimeo)) 1100 cifsFileInfo_get(cfile); 1101 } else { 1102 /* Deferred close for files */ 1103 queue_delayed_work(deferredclose_wq, 1104 &cfile->deferred, cifs_sb->ctx->closetimeo); 1105 cfile->deferred_close_scheduled = true; 1106 spin_unlock(&cinode->deferred_lock); 1107 return 0; 1108 } 1109 spin_unlock(&cinode->deferred_lock); 1110 _cifsFileInfo_put(cfile, true, false); 1111 } else { 1112 _cifsFileInfo_put(cfile, true, false); 1113 kfree(dclose); 1114 } 1115 } 1116 1117 /* return code from the ->release op is always ignored */ 1118 return 0; 1119 } 1120 1121 void 1122 cifs_reopen_persistent_handles(struct cifs_tcon *tcon) 1123 { 1124 struct cifsFileInfo *open_file, *tmp; 1125 struct list_head tmp_list; 1126 1127 if (!tcon->use_persistent || !tcon->need_reopen_files) 1128 return; 1129 1130 tcon->need_reopen_files = false; 1131 1132 cifs_dbg(FYI, "Reopen persistent handles\n"); 1133 INIT_LIST_HEAD(&tmp_list); 1134 1135 /* list all files open on tree connection, reopen resilient handles */ 1136 spin_lock(&tcon->open_file_lock); 1137 list_for_each_entry(open_file, &tcon->openFileList, tlist) { 1138 if (!open_file->invalidHandle) 1139 continue; 1140 cifsFileInfo_get(open_file); 1141 list_add_tail(&open_file->rlist, &tmp_list); 1142 } 1143 spin_unlock(&tcon->open_file_lock); 1144 1145 list_for_each_entry_safe(open_file, tmp, &tmp_list, rlist) { 1146 if (cifs_reopen_file(open_file, false /* do not flush */)) 1147 tcon->need_reopen_files = true; 1148 list_del_init(&open_file->rlist); 1149 cifsFileInfo_put(open_file); 1150 } 1151 } 1152 1153 int cifs_closedir(struct inode *inode, struct file *file) 1154 { 1155 int rc = 0; 1156 unsigned int xid; 1157 struct cifsFileInfo *cfile = file->private_data; 1158 struct cifs_tcon *tcon; 1159 struct TCP_Server_Info *server; 1160 char *buf; 1161 1162 cifs_dbg(FYI, "Closedir inode = 0x%p\n", inode); 1163 1164 if (cfile == NULL) 1165 return rc; 1166 1167 xid = get_xid(); 1168 tcon = tlink_tcon(cfile->tlink); 1169 server = tcon->ses->server; 1170 1171 cifs_dbg(FYI, "Freeing private data in close dir\n"); 1172 spin_lock(&cfile->file_info_lock); 1173 if (server->ops->dir_needs_close(cfile)) { 1174 cfile->invalidHandle = true; 1175 spin_unlock(&cfile->file_info_lock); 1176 if (server->ops->close_dir) 1177 rc = server->ops->close_dir(xid, tcon, &cfile->fid); 1178 else 1179 rc = -ENOSYS; 1180 cifs_dbg(FYI, "Closing uncompleted readdir with rc %d\n", rc); 1181 /* not much we can do if it fails anyway, ignore rc */ 1182 rc = 0; 1183 } else 1184 spin_unlock(&cfile->file_info_lock); 1185 1186 buf = cfile->srch_inf.ntwrk_buf_start; 1187 if (buf) { 1188 cifs_dbg(FYI, "closedir free smb buf in srch struct\n"); 1189 cfile->srch_inf.ntwrk_buf_start = NULL; 1190 if (cfile->srch_inf.smallBuf) 1191 cifs_small_buf_release(buf); 1192 else 1193 cifs_buf_release(buf); 1194 } 1195 1196 cifs_put_tlink(cfile->tlink); 1197 kfree(file->private_data); 1198 file->private_data = NULL; 1199 /* BB can we lock the filestruct while this is going on? */ 1200 free_xid(xid); 1201 return rc; 1202 } 1203 1204 static struct cifsLockInfo * 1205 cifs_lock_init(__u64 offset, __u64 length, __u8 type, __u16 flags) 1206 { 1207 struct cifsLockInfo *lock = 1208 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL); 1209 if (!lock) 1210 return lock; 1211 lock->offset = offset; 1212 lock->length = length; 1213 lock->type = type; 1214 lock->pid = current->tgid; 1215 lock->flags = flags; 1216 INIT_LIST_HEAD(&lock->blist); 1217 init_waitqueue_head(&lock->block_q); 1218 return lock; 1219 } 1220 1221 void 1222 cifs_del_lock_waiters(struct cifsLockInfo *lock) 1223 { 1224 struct cifsLockInfo *li, *tmp; 1225 list_for_each_entry_safe(li, tmp, &lock->blist, blist) { 1226 list_del_init(&li->blist); 1227 wake_up(&li->block_q); 1228 } 1229 } 1230 1231 #define CIFS_LOCK_OP 0 1232 #define CIFS_READ_OP 1 1233 #define CIFS_WRITE_OP 2 1234 1235 /* @rw_check : 0 - no op, 1 - read, 2 - write */ 1236 static bool 1237 cifs_find_fid_lock_conflict(struct cifs_fid_locks *fdlocks, __u64 offset, 1238 __u64 length, __u8 type, __u16 flags, 1239 struct cifsFileInfo *cfile, 1240 struct cifsLockInfo **conf_lock, int rw_check) 1241 { 1242 struct cifsLockInfo *li; 1243 struct cifsFileInfo *cur_cfile = fdlocks->cfile; 1244 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server; 1245 1246 list_for_each_entry(li, &fdlocks->locks, llist) { 1247 if (offset + length <= li->offset || 1248 offset >= li->offset + li->length) 1249 continue; 1250 if (rw_check != CIFS_LOCK_OP && current->tgid == li->pid && 1251 server->ops->compare_fids(cfile, cur_cfile)) { 1252 /* shared lock prevents write op through the same fid */ 1253 if (!(li->type & server->vals->shared_lock_type) || 1254 rw_check != CIFS_WRITE_OP) 1255 continue; 1256 } 1257 if ((type & server->vals->shared_lock_type) && 1258 ((server->ops->compare_fids(cfile, cur_cfile) && 1259 current->tgid == li->pid) || type == li->type)) 1260 continue; 1261 if (rw_check == CIFS_LOCK_OP && 1262 (flags & FL_OFDLCK) && (li->flags & FL_OFDLCK) && 1263 server->ops->compare_fids(cfile, cur_cfile)) 1264 continue; 1265 if (conf_lock) 1266 *conf_lock = li; 1267 return true; 1268 } 1269 return false; 1270 } 1271 1272 bool 1273 cifs_find_lock_conflict(struct cifsFileInfo *cfile, __u64 offset, __u64 length, 1274 __u8 type, __u16 flags, 1275 struct cifsLockInfo **conf_lock, int rw_check) 1276 { 1277 bool rc = false; 1278 struct cifs_fid_locks *cur; 1279 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry)); 1280 1281 list_for_each_entry(cur, &cinode->llist, llist) { 1282 rc = cifs_find_fid_lock_conflict(cur, offset, length, type, 1283 flags, cfile, conf_lock, 1284 rw_check); 1285 if (rc) 1286 break; 1287 } 1288 1289 return rc; 1290 } 1291 1292 /* 1293 * Check if there is another lock that prevents us to set the lock (mandatory 1294 * style). If such a lock exists, update the flock structure with its 1295 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks 1296 * or leave it the same if we can't. Returns 0 if we don't need to request to 1297 * the server or 1 otherwise. 1298 */ 1299 static int 1300 cifs_lock_test(struct cifsFileInfo *cfile, __u64 offset, __u64 length, 1301 __u8 type, struct file_lock *flock) 1302 { 1303 int rc = 0; 1304 struct cifsLockInfo *conf_lock; 1305 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry)); 1306 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server; 1307 bool exist; 1308 1309 down_read(&cinode->lock_sem); 1310 1311 exist = cifs_find_lock_conflict(cfile, offset, length, type, 1312 flock->fl_flags, &conf_lock, 1313 CIFS_LOCK_OP); 1314 if (exist) { 1315 flock->fl_start = conf_lock->offset; 1316 flock->fl_end = conf_lock->offset + conf_lock->length - 1; 1317 flock->fl_pid = conf_lock->pid; 1318 if (conf_lock->type & server->vals->shared_lock_type) 1319 flock->fl_type = F_RDLCK; 1320 else 1321 flock->fl_type = F_WRLCK; 1322 } else if (!cinode->can_cache_brlcks) 1323 rc = 1; 1324 else 1325 flock->fl_type = F_UNLCK; 1326 1327 up_read(&cinode->lock_sem); 1328 return rc; 1329 } 1330 1331 static void 1332 cifs_lock_add(struct cifsFileInfo *cfile, struct cifsLockInfo *lock) 1333 { 1334 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry)); 1335 cifs_down_write(&cinode->lock_sem); 1336 list_add_tail(&lock->llist, &cfile->llist->locks); 1337 up_write(&cinode->lock_sem); 1338 } 1339 1340 /* 1341 * Set the byte-range lock (mandatory style). Returns: 1342 * 1) 0, if we set the lock and don't need to request to the server; 1343 * 2) 1, if no locks prevent us but we need to request to the server; 1344 * 3) -EACCES, if there is a lock that prevents us and wait is false. 1345 */ 1346 static int 1347 cifs_lock_add_if(struct cifsFileInfo *cfile, struct cifsLockInfo *lock, 1348 bool wait) 1349 { 1350 struct cifsLockInfo *conf_lock; 1351 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry)); 1352 bool exist; 1353 int rc = 0; 1354 1355 try_again: 1356 exist = false; 1357 cifs_down_write(&cinode->lock_sem); 1358 1359 exist = cifs_find_lock_conflict(cfile, lock->offset, lock->length, 1360 lock->type, lock->flags, &conf_lock, 1361 CIFS_LOCK_OP); 1362 if (!exist && cinode->can_cache_brlcks) { 1363 list_add_tail(&lock->llist, &cfile->llist->locks); 1364 up_write(&cinode->lock_sem); 1365 return rc; 1366 } 1367 1368 if (!exist) 1369 rc = 1; 1370 else if (!wait) 1371 rc = -EACCES; 1372 else { 1373 list_add_tail(&lock->blist, &conf_lock->blist); 1374 up_write(&cinode->lock_sem); 1375 rc = wait_event_interruptible(lock->block_q, 1376 (lock->blist.prev == &lock->blist) && 1377 (lock->blist.next == &lock->blist)); 1378 if (!rc) 1379 goto try_again; 1380 cifs_down_write(&cinode->lock_sem); 1381 list_del_init(&lock->blist); 1382 } 1383 1384 up_write(&cinode->lock_sem); 1385 return rc; 1386 } 1387 1388 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 1389 /* 1390 * Check if there is another lock that prevents us to set the lock (posix 1391 * style). If such a lock exists, update the flock structure with its 1392 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks 1393 * or leave it the same if we can't. Returns 0 if we don't need to request to 1394 * the server or 1 otherwise. 1395 */ 1396 static int 1397 cifs_posix_lock_test(struct file *file, struct file_lock *flock) 1398 { 1399 int rc = 0; 1400 struct cifsInodeInfo *cinode = CIFS_I(file_inode(file)); 1401 unsigned char saved_type = flock->fl_type; 1402 1403 if ((flock->fl_flags & FL_POSIX) == 0) 1404 return 1; 1405 1406 down_read(&cinode->lock_sem); 1407 posix_test_lock(file, flock); 1408 1409 if (flock->fl_type == F_UNLCK && !cinode->can_cache_brlcks) { 1410 flock->fl_type = saved_type; 1411 rc = 1; 1412 } 1413 1414 up_read(&cinode->lock_sem); 1415 return rc; 1416 } 1417 1418 /* 1419 * Set the byte-range lock (posix style). Returns: 1420 * 1) <0, if the error occurs while setting the lock; 1421 * 2) 0, if we set the lock and don't need to request to the server; 1422 * 3) FILE_LOCK_DEFERRED, if we will wait for some other file_lock; 1423 * 4) FILE_LOCK_DEFERRED + 1, if we need to request to the server. 1424 */ 1425 static int 1426 cifs_posix_lock_set(struct file *file, struct file_lock *flock) 1427 { 1428 struct cifsInodeInfo *cinode = CIFS_I(file_inode(file)); 1429 int rc = FILE_LOCK_DEFERRED + 1; 1430 1431 if ((flock->fl_flags & FL_POSIX) == 0) 1432 return rc; 1433 1434 cifs_down_write(&cinode->lock_sem); 1435 if (!cinode->can_cache_brlcks) { 1436 up_write(&cinode->lock_sem); 1437 return rc; 1438 } 1439 1440 rc = posix_lock_file(file, flock, NULL); 1441 up_write(&cinode->lock_sem); 1442 return rc; 1443 } 1444 1445 int 1446 cifs_push_mandatory_locks(struct cifsFileInfo *cfile) 1447 { 1448 unsigned int xid; 1449 int rc = 0, stored_rc; 1450 struct cifsLockInfo *li, *tmp; 1451 struct cifs_tcon *tcon; 1452 unsigned int num, max_num, max_buf; 1453 LOCKING_ANDX_RANGE *buf, *cur; 1454 static const int types[] = { 1455 LOCKING_ANDX_LARGE_FILES, 1456 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES 1457 }; 1458 int i; 1459 1460 xid = get_xid(); 1461 tcon = tlink_tcon(cfile->tlink); 1462 1463 /* 1464 * Accessing maxBuf is racy with cifs_reconnect - need to store value 1465 * and check it before using. 1466 */ 1467 max_buf = tcon->ses->server->maxBuf; 1468 if (max_buf < (sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE))) { 1469 free_xid(xid); 1470 return -EINVAL; 1471 } 1472 1473 BUILD_BUG_ON(sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE) > 1474 PAGE_SIZE); 1475 max_buf = min_t(unsigned int, max_buf - sizeof(struct smb_hdr), 1476 PAGE_SIZE); 1477 max_num = (max_buf - sizeof(struct smb_hdr)) / 1478 sizeof(LOCKING_ANDX_RANGE); 1479 buf = kcalloc(max_num, sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL); 1480 if (!buf) { 1481 free_xid(xid); 1482 return -ENOMEM; 1483 } 1484 1485 for (i = 0; i < 2; i++) { 1486 cur = buf; 1487 num = 0; 1488 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) { 1489 if (li->type != types[i]) 1490 continue; 1491 cur->Pid = cpu_to_le16(li->pid); 1492 cur->LengthLow = cpu_to_le32((u32)li->length); 1493 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32)); 1494 cur->OffsetLow = cpu_to_le32((u32)li->offset); 1495 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32)); 1496 if (++num == max_num) { 1497 stored_rc = cifs_lockv(xid, tcon, 1498 cfile->fid.netfid, 1499 (__u8)li->type, 0, num, 1500 buf); 1501 if (stored_rc) 1502 rc = stored_rc; 1503 cur = buf; 1504 num = 0; 1505 } else 1506 cur++; 1507 } 1508 1509 if (num) { 1510 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid, 1511 (__u8)types[i], 0, num, buf); 1512 if (stored_rc) 1513 rc = stored_rc; 1514 } 1515 } 1516 1517 kfree(buf); 1518 free_xid(xid); 1519 return rc; 1520 } 1521 1522 static __u32 1523 hash_lockowner(fl_owner_t owner) 1524 { 1525 return cifs_lock_secret ^ hash32_ptr((const void *)owner); 1526 } 1527 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 1528 1529 struct lock_to_push { 1530 struct list_head llist; 1531 __u64 offset; 1532 __u64 length; 1533 __u32 pid; 1534 __u16 netfid; 1535 __u8 type; 1536 }; 1537 1538 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 1539 static int 1540 cifs_push_posix_locks(struct cifsFileInfo *cfile) 1541 { 1542 struct inode *inode = d_inode(cfile->dentry); 1543 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink); 1544 struct file_lock *flock; 1545 struct file_lock_context *flctx = locks_inode_context(inode); 1546 unsigned int count = 0, i; 1547 int rc = 0, xid, type; 1548 struct list_head locks_to_send, *el; 1549 struct lock_to_push *lck, *tmp; 1550 __u64 length; 1551 1552 xid = get_xid(); 1553 1554 if (!flctx) 1555 goto out; 1556 1557 spin_lock(&flctx->flc_lock); 1558 list_for_each(el, &flctx->flc_posix) { 1559 count++; 1560 } 1561 spin_unlock(&flctx->flc_lock); 1562 1563 INIT_LIST_HEAD(&locks_to_send); 1564 1565 /* 1566 * Allocating count locks is enough because no FL_POSIX locks can be 1567 * added to the list while we are holding cinode->lock_sem that 1568 * protects locking operations of this inode. 1569 */ 1570 for (i = 0; i < count; i++) { 1571 lck = kmalloc(sizeof(struct lock_to_push), GFP_KERNEL); 1572 if (!lck) { 1573 rc = -ENOMEM; 1574 goto err_out; 1575 } 1576 list_add_tail(&lck->llist, &locks_to_send); 1577 } 1578 1579 el = locks_to_send.next; 1580 spin_lock(&flctx->flc_lock); 1581 list_for_each_entry(flock, &flctx->flc_posix, fl_list) { 1582 if (el == &locks_to_send) { 1583 /* 1584 * The list ended. We don't have enough allocated 1585 * structures - something is really wrong. 1586 */ 1587 cifs_dbg(VFS, "Can't push all brlocks!\n"); 1588 break; 1589 } 1590 length = cifs_flock_len(flock); 1591 if (flock->fl_type == F_RDLCK || flock->fl_type == F_SHLCK) 1592 type = CIFS_RDLCK; 1593 else 1594 type = CIFS_WRLCK; 1595 lck = list_entry(el, struct lock_to_push, llist); 1596 lck->pid = hash_lockowner(flock->fl_owner); 1597 lck->netfid = cfile->fid.netfid; 1598 lck->length = length; 1599 lck->type = type; 1600 lck->offset = flock->fl_start; 1601 } 1602 spin_unlock(&flctx->flc_lock); 1603 1604 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) { 1605 int stored_rc; 1606 1607 stored_rc = CIFSSMBPosixLock(xid, tcon, lck->netfid, lck->pid, 1608 lck->offset, lck->length, NULL, 1609 lck->type, 0); 1610 if (stored_rc) 1611 rc = stored_rc; 1612 list_del(&lck->llist); 1613 kfree(lck); 1614 } 1615 1616 out: 1617 free_xid(xid); 1618 return rc; 1619 err_out: 1620 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) { 1621 list_del(&lck->llist); 1622 kfree(lck); 1623 } 1624 goto out; 1625 } 1626 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 1627 1628 static int 1629 cifs_push_locks(struct cifsFileInfo *cfile) 1630 { 1631 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry)); 1632 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink); 1633 int rc = 0; 1634 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 1635 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb); 1636 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 1637 1638 /* we are going to update can_cache_brlcks here - need a write access */ 1639 cifs_down_write(&cinode->lock_sem); 1640 if (!cinode->can_cache_brlcks) { 1641 up_write(&cinode->lock_sem); 1642 return rc; 1643 } 1644 1645 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 1646 if (cap_unix(tcon->ses) && 1647 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) && 1648 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) 1649 rc = cifs_push_posix_locks(cfile); 1650 else 1651 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 1652 rc = tcon->ses->server->ops->push_mand_locks(cfile); 1653 1654 cinode->can_cache_brlcks = false; 1655 up_write(&cinode->lock_sem); 1656 return rc; 1657 } 1658 1659 static void 1660 cifs_read_flock(struct file_lock *flock, __u32 *type, int *lock, int *unlock, 1661 bool *wait_flag, struct TCP_Server_Info *server) 1662 { 1663 if (flock->fl_flags & FL_POSIX) 1664 cifs_dbg(FYI, "Posix\n"); 1665 if (flock->fl_flags & FL_FLOCK) 1666 cifs_dbg(FYI, "Flock\n"); 1667 if (flock->fl_flags & FL_SLEEP) { 1668 cifs_dbg(FYI, "Blocking lock\n"); 1669 *wait_flag = true; 1670 } 1671 if (flock->fl_flags & FL_ACCESS) 1672 cifs_dbg(FYI, "Process suspended by mandatory locking - not implemented yet\n"); 1673 if (flock->fl_flags & FL_LEASE) 1674 cifs_dbg(FYI, "Lease on file - not implemented yet\n"); 1675 if (flock->fl_flags & 1676 (~(FL_POSIX | FL_FLOCK | FL_SLEEP | 1677 FL_ACCESS | FL_LEASE | FL_CLOSE | FL_OFDLCK))) 1678 cifs_dbg(FYI, "Unknown lock flags 0x%x\n", flock->fl_flags); 1679 1680 *type = server->vals->large_lock_type; 1681 if (flock->fl_type == F_WRLCK) { 1682 cifs_dbg(FYI, "F_WRLCK\n"); 1683 *type |= server->vals->exclusive_lock_type; 1684 *lock = 1; 1685 } else if (flock->fl_type == F_UNLCK) { 1686 cifs_dbg(FYI, "F_UNLCK\n"); 1687 *type |= server->vals->unlock_lock_type; 1688 *unlock = 1; 1689 /* Check if unlock includes more than one lock range */ 1690 } else if (flock->fl_type == F_RDLCK) { 1691 cifs_dbg(FYI, "F_RDLCK\n"); 1692 *type |= server->vals->shared_lock_type; 1693 *lock = 1; 1694 } else if (flock->fl_type == F_EXLCK) { 1695 cifs_dbg(FYI, "F_EXLCK\n"); 1696 *type |= server->vals->exclusive_lock_type; 1697 *lock = 1; 1698 } else if (flock->fl_type == F_SHLCK) { 1699 cifs_dbg(FYI, "F_SHLCK\n"); 1700 *type |= server->vals->shared_lock_type; 1701 *lock = 1; 1702 } else 1703 cifs_dbg(FYI, "Unknown type of lock\n"); 1704 } 1705 1706 static int 1707 cifs_getlk(struct file *file, struct file_lock *flock, __u32 type, 1708 bool wait_flag, bool posix_lck, unsigned int xid) 1709 { 1710 int rc = 0; 1711 __u64 length = cifs_flock_len(flock); 1712 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data; 1713 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink); 1714 struct TCP_Server_Info *server = tcon->ses->server; 1715 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 1716 __u16 netfid = cfile->fid.netfid; 1717 1718 if (posix_lck) { 1719 int posix_lock_type; 1720 1721 rc = cifs_posix_lock_test(file, flock); 1722 if (!rc) 1723 return rc; 1724 1725 if (type & server->vals->shared_lock_type) 1726 posix_lock_type = CIFS_RDLCK; 1727 else 1728 posix_lock_type = CIFS_WRLCK; 1729 rc = CIFSSMBPosixLock(xid, tcon, netfid, 1730 hash_lockowner(flock->fl_owner), 1731 flock->fl_start, length, flock, 1732 posix_lock_type, wait_flag); 1733 return rc; 1734 } 1735 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 1736 1737 rc = cifs_lock_test(cfile, flock->fl_start, length, type, flock); 1738 if (!rc) 1739 return rc; 1740 1741 /* BB we could chain these into one lock request BB */ 1742 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length, type, 1743 1, 0, false); 1744 if (rc == 0) { 1745 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length, 1746 type, 0, 1, false); 1747 flock->fl_type = F_UNLCK; 1748 if (rc != 0) 1749 cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n", 1750 rc); 1751 return 0; 1752 } 1753 1754 if (type & server->vals->shared_lock_type) { 1755 flock->fl_type = F_WRLCK; 1756 return 0; 1757 } 1758 1759 type &= ~server->vals->exclusive_lock_type; 1760 1761 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length, 1762 type | server->vals->shared_lock_type, 1763 1, 0, false); 1764 if (rc == 0) { 1765 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length, 1766 type | server->vals->shared_lock_type, 0, 1, false); 1767 flock->fl_type = F_RDLCK; 1768 if (rc != 0) 1769 cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n", 1770 rc); 1771 } else 1772 flock->fl_type = F_WRLCK; 1773 1774 return 0; 1775 } 1776 1777 void 1778 cifs_move_llist(struct list_head *source, struct list_head *dest) 1779 { 1780 struct list_head *li, *tmp; 1781 list_for_each_safe(li, tmp, source) 1782 list_move(li, dest); 1783 } 1784 1785 void 1786 cifs_free_llist(struct list_head *llist) 1787 { 1788 struct cifsLockInfo *li, *tmp; 1789 list_for_each_entry_safe(li, tmp, llist, llist) { 1790 cifs_del_lock_waiters(li); 1791 list_del(&li->llist); 1792 kfree(li); 1793 } 1794 } 1795 1796 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 1797 int 1798 cifs_unlock_range(struct cifsFileInfo *cfile, struct file_lock *flock, 1799 unsigned int xid) 1800 { 1801 int rc = 0, stored_rc; 1802 static const int types[] = { 1803 LOCKING_ANDX_LARGE_FILES, 1804 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES 1805 }; 1806 unsigned int i; 1807 unsigned int max_num, num, max_buf; 1808 LOCKING_ANDX_RANGE *buf, *cur; 1809 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink); 1810 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry)); 1811 struct cifsLockInfo *li, *tmp; 1812 __u64 length = cifs_flock_len(flock); 1813 struct list_head tmp_llist; 1814 1815 INIT_LIST_HEAD(&tmp_llist); 1816 1817 /* 1818 * Accessing maxBuf is racy with cifs_reconnect - need to store value 1819 * and check it before using. 1820 */ 1821 max_buf = tcon->ses->server->maxBuf; 1822 if (max_buf < (sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE))) 1823 return -EINVAL; 1824 1825 BUILD_BUG_ON(sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE) > 1826 PAGE_SIZE); 1827 max_buf = min_t(unsigned int, max_buf - sizeof(struct smb_hdr), 1828 PAGE_SIZE); 1829 max_num = (max_buf - sizeof(struct smb_hdr)) / 1830 sizeof(LOCKING_ANDX_RANGE); 1831 buf = kcalloc(max_num, sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL); 1832 if (!buf) 1833 return -ENOMEM; 1834 1835 cifs_down_write(&cinode->lock_sem); 1836 for (i = 0; i < 2; i++) { 1837 cur = buf; 1838 num = 0; 1839 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) { 1840 if (flock->fl_start > li->offset || 1841 (flock->fl_start + length) < 1842 (li->offset + li->length)) 1843 continue; 1844 if (current->tgid != li->pid) 1845 continue; 1846 if (types[i] != li->type) 1847 continue; 1848 if (cinode->can_cache_brlcks) { 1849 /* 1850 * We can cache brlock requests - simply remove 1851 * a lock from the file's list. 1852 */ 1853 list_del(&li->llist); 1854 cifs_del_lock_waiters(li); 1855 kfree(li); 1856 continue; 1857 } 1858 cur->Pid = cpu_to_le16(li->pid); 1859 cur->LengthLow = cpu_to_le32((u32)li->length); 1860 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32)); 1861 cur->OffsetLow = cpu_to_le32((u32)li->offset); 1862 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32)); 1863 /* 1864 * We need to save a lock here to let us add it again to 1865 * the file's list if the unlock range request fails on 1866 * the server. 1867 */ 1868 list_move(&li->llist, &tmp_llist); 1869 if (++num == max_num) { 1870 stored_rc = cifs_lockv(xid, tcon, 1871 cfile->fid.netfid, 1872 li->type, num, 0, buf); 1873 if (stored_rc) { 1874 /* 1875 * We failed on the unlock range 1876 * request - add all locks from the tmp 1877 * list to the head of the file's list. 1878 */ 1879 cifs_move_llist(&tmp_llist, 1880 &cfile->llist->locks); 1881 rc = stored_rc; 1882 } else 1883 /* 1884 * The unlock range request succeed - 1885 * free the tmp list. 1886 */ 1887 cifs_free_llist(&tmp_llist); 1888 cur = buf; 1889 num = 0; 1890 } else 1891 cur++; 1892 } 1893 if (num) { 1894 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid, 1895 types[i], num, 0, buf); 1896 if (stored_rc) { 1897 cifs_move_llist(&tmp_llist, 1898 &cfile->llist->locks); 1899 rc = stored_rc; 1900 } else 1901 cifs_free_llist(&tmp_llist); 1902 } 1903 } 1904 1905 up_write(&cinode->lock_sem); 1906 kfree(buf); 1907 return rc; 1908 } 1909 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 1910 1911 static int 1912 cifs_setlk(struct file *file, struct file_lock *flock, __u32 type, 1913 bool wait_flag, bool posix_lck, int lock, int unlock, 1914 unsigned int xid) 1915 { 1916 int rc = 0; 1917 __u64 length = cifs_flock_len(flock); 1918 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data; 1919 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink); 1920 struct TCP_Server_Info *server = tcon->ses->server; 1921 struct inode *inode = d_inode(cfile->dentry); 1922 1923 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 1924 if (posix_lck) { 1925 int posix_lock_type; 1926 1927 rc = cifs_posix_lock_set(file, flock); 1928 if (rc <= FILE_LOCK_DEFERRED) 1929 return rc; 1930 1931 if (type & server->vals->shared_lock_type) 1932 posix_lock_type = CIFS_RDLCK; 1933 else 1934 posix_lock_type = CIFS_WRLCK; 1935 1936 if (unlock == 1) 1937 posix_lock_type = CIFS_UNLCK; 1938 1939 rc = CIFSSMBPosixLock(xid, tcon, cfile->fid.netfid, 1940 hash_lockowner(flock->fl_owner), 1941 flock->fl_start, length, 1942 NULL, posix_lock_type, wait_flag); 1943 goto out; 1944 } 1945 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 1946 if (lock) { 1947 struct cifsLockInfo *lock; 1948 1949 lock = cifs_lock_init(flock->fl_start, length, type, 1950 flock->fl_flags); 1951 if (!lock) 1952 return -ENOMEM; 1953 1954 rc = cifs_lock_add_if(cfile, lock, wait_flag); 1955 if (rc < 0) { 1956 kfree(lock); 1957 return rc; 1958 } 1959 if (!rc) 1960 goto out; 1961 1962 /* 1963 * Windows 7 server can delay breaking lease from read to None 1964 * if we set a byte-range lock on a file - break it explicitly 1965 * before sending the lock to the server to be sure the next 1966 * read won't conflict with non-overlapted locks due to 1967 * pagereading. 1968 */ 1969 if (!CIFS_CACHE_WRITE(CIFS_I(inode)) && 1970 CIFS_CACHE_READ(CIFS_I(inode))) { 1971 cifs_zap_mapping(inode); 1972 cifs_dbg(FYI, "Set no oplock for inode=%p due to mand locks\n", 1973 inode); 1974 CIFS_I(inode)->oplock = 0; 1975 } 1976 1977 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length, 1978 type, 1, 0, wait_flag); 1979 if (rc) { 1980 kfree(lock); 1981 return rc; 1982 } 1983 1984 cifs_lock_add(cfile, lock); 1985 } else if (unlock) 1986 rc = server->ops->mand_unlock_range(cfile, flock, xid); 1987 1988 out: 1989 if ((flock->fl_flags & FL_POSIX) || (flock->fl_flags & FL_FLOCK)) { 1990 /* 1991 * If this is a request to remove all locks because we 1992 * are closing the file, it doesn't matter if the 1993 * unlocking failed as both cifs.ko and the SMB server 1994 * remove the lock on file close 1995 */ 1996 if (rc) { 1997 cifs_dbg(VFS, "%s failed rc=%d\n", __func__, rc); 1998 if (!(flock->fl_flags & FL_CLOSE)) 1999 return rc; 2000 } 2001 rc = locks_lock_file_wait(file, flock); 2002 } 2003 return rc; 2004 } 2005 2006 int cifs_flock(struct file *file, int cmd, struct file_lock *fl) 2007 { 2008 int rc, xid; 2009 int lock = 0, unlock = 0; 2010 bool wait_flag = false; 2011 bool posix_lck = false; 2012 struct cifs_sb_info *cifs_sb; 2013 struct cifs_tcon *tcon; 2014 struct cifsFileInfo *cfile; 2015 __u32 type; 2016 2017 xid = get_xid(); 2018 2019 if (!(fl->fl_flags & FL_FLOCK)) { 2020 rc = -ENOLCK; 2021 free_xid(xid); 2022 return rc; 2023 } 2024 2025 cfile = (struct cifsFileInfo *)file->private_data; 2026 tcon = tlink_tcon(cfile->tlink); 2027 2028 cifs_read_flock(fl, &type, &lock, &unlock, &wait_flag, 2029 tcon->ses->server); 2030 cifs_sb = CIFS_FILE_SB(file); 2031 2032 if (cap_unix(tcon->ses) && 2033 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) && 2034 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) 2035 posix_lck = true; 2036 2037 if (!lock && !unlock) { 2038 /* 2039 * if no lock or unlock then nothing to do since we do not 2040 * know what it is 2041 */ 2042 rc = -EOPNOTSUPP; 2043 free_xid(xid); 2044 return rc; 2045 } 2046 2047 rc = cifs_setlk(file, fl, type, wait_flag, posix_lck, lock, unlock, 2048 xid); 2049 free_xid(xid); 2050 return rc; 2051 2052 2053 } 2054 2055 int cifs_lock(struct file *file, int cmd, struct file_lock *flock) 2056 { 2057 int rc, xid; 2058 int lock = 0, unlock = 0; 2059 bool wait_flag = false; 2060 bool posix_lck = false; 2061 struct cifs_sb_info *cifs_sb; 2062 struct cifs_tcon *tcon; 2063 struct cifsFileInfo *cfile; 2064 __u32 type; 2065 2066 rc = -EACCES; 2067 xid = get_xid(); 2068 2069 cifs_dbg(FYI, "%s: %pD2 cmd=0x%x type=0x%x flags=0x%x r=%lld:%lld\n", __func__, file, cmd, 2070 flock->fl_flags, flock->fl_type, (long long)flock->fl_start, 2071 (long long)flock->fl_end); 2072 2073 cfile = (struct cifsFileInfo *)file->private_data; 2074 tcon = tlink_tcon(cfile->tlink); 2075 2076 cifs_read_flock(flock, &type, &lock, &unlock, &wait_flag, 2077 tcon->ses->server); 2078 cifs_sb = CIFS_FILE_SB(file); 2079 set_bit(CIFS_INO_CLOSE_ON_LOCK, &CIFS_I(d_inode(cfile->dentry))->flags); 2080 2081 if (cap_unix(tcon->ses) && 2082 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) && 2083 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) 2084 posix_lck = true; 2085 /* 2086 * BB add code here to normalize offset and length to account for 2087 * negative length which we can not accept over the wire. 2088 */ 2089 if (IS_GETLK(cmd)) { 2090 rc = cifs_getlk(file, flock, type, wait_flag, posix_lck, xid); 2091 free_xid(xid); 2092 return rc; 2093 } 2094 2095 if (!lock && !unlock) { 2096 /* 2097 * if no lock or unlock then nothing to do since we do not 2098 * know what it is 2099 */ 2100 free_xid(xid); 2101 return -EOPNOTSUPP; 2102 } 2103 2104 rc = cifs_setlk(file, flock, type, wait_flag, posix_lck, lock, unlock, 2105 xid); 2106 free_xid(xid); 2107 return rc; 2108 } 2109 2110 /* 2111 * update the file size (if needed) after a write. Should be called with 2112 * the inode->i_lock held 2113 */ 2114 void 2115 cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset, 2116 unsigned int bytes_written) 2117 { 2118 loff_t end_of_write = offset + bytes_written; 2119 2120 if (end_of_write > cifsi->server_eof) 2121 cifsi->server_eof = end_of_write; 2122 } 2123 2124 static ssize_t 2125 cifs_write(struct cifsFileInfo *open_file, __u32 pid, const char *write_data, 2126 size_t write_size, loff_t *offset) 2127 { 2128 int rc = 0; 2129 unsigned int bytes_written = 0; 2130 unsigned int total_written; 2131 struct cifs_tcon *tcon; 2132 struct TCP_Server_Info *server; 2133 unsigned int xid; 2134 struct dentry *dentry = open_file->dentry; 2135 struct cifsInodeInfo *cifsi = CIFS_I(d_inode(dentry)); 2136 struct cifs_io_parms io_parms = {0}; 2137 2138 cifs_dbg(FYI, "write %zd bytes to offset %lld of %pd\n", 2139 write_size, *offset, dentry); 2140 2141 tcon = tlink_tcon(open_file->tlink); 2142 server = tcon->ses->server; 2143 2144 if (!server->ops->sync_write) 2145 return -ENOSYS; 2146 2147 xid = get_xid(); 2148 2149 for (total_written = 0; write_size > total_written; 2150 total_written += bytes_written) { 2151 rc = -EAGAIN; 2152 while (rc == -EAGAIN) { 2153 struct kvec iov[2]; 2154 unsigned int len; 2155 2156 if (open_file->invalidHandle) { 2157 /* we could deadlock if we called 2158 filemap_fdatawait from here so tell 2159 reopen_file not to flush data to 2160 server now */ 2161 rc = cifs_reopen_file(open_file, false); 2162 if (rc != 0) 2163 break; 2164 } 2165 2166 len = min(server->ops->wp_retry_size(d_inode(dentry)), 2167 (unsigned int)write_size - total_written); 2168 /* iov[0] is reserved for smb header */ 2169 iov[1].iov_base = (char *)write_data + total_written; 2170 iov[1].iov_len = len; 2171 io_parms.pid = pid; 2172 io_parms.tcon = tcon; 2173 io_parms.offset = *offset; 2174 io_parms.length = len; 2175 rc = server->ops->sync_write(xid, &open_file->fid, 2176 &io_parms, &bytes_written, iov, 1); 2177 } 2178 if (rc || (bytes_written == 0)) { 2179 if (total_written) 2180 break; 2181 else { 2182 free_xid(xid); 2183 return rc; 2184 } 2185 } else { 2186 spin_lock(&d_inode(dentry)->i_lock); 2187 cifs_update_eof(cifsi, *offset, bytes_written); 2188 spin_unlock(&d_inode(dentry)->i_lock); 2189 *offset += bytes_written; 2190 } 2191 } 2192 2193 cifs_stats_bytes_written(tcon, total_written); 2194 2195 if (total_written > 0) { 2196 spin_lock(&d_inode(dentry)->i_lock); 2197 if (*offset > d_inode(dentry)->i_size) { 2198 i_size_write(d_inode(dentry), *offset); 2199 d_inode(dentry)->i_blocks = (512 - 1 + *offset) >> 9; 2200 } 2201 spin_unlock(&d_inode(dentry)->i_lock); 2202 } 2203 mark_inode_dirty_sync(d_inode(dentry)); 2204 free_xid(xid); 2205 return total_written; 2206 } 2207 2208 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode, 2209 bool fsuid_only) 2210 { 2211 struct cifsFileInfo *open_file = NULL; 2212 struct cifs_sb_info *cifs_sb = CIFS_SB(cifs_inode->netfs.inode.i_sb); 2213 2214 /* only filter by fsuid on multiuser mounts */ 2215 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER)) 2216 fsuid_only = false; 2217 2218 spin_lock(&cifs_inode->open_file_lock); 2219 /* we could simply get the first_list_entry since write-only entries 2220 are always at the end of the list but since the first entry might 2221 have a close pending, we go through the whole list */ 2222 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) { 2223 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid())) 2224 continue; 2225 if (OPEN_FMODE(open_file->f_flags) & FMODE_READ) { 2226 if ((!open_file->invalidHandle)) { 2227 /* found a good file */ 2228 /* lock it so it will not be closed on us */ 2229 cifsFileInfo_get(open_file); 2230 spin_unlock(&cifs_inode->open_file_lock); 2231 return open_file; 2232 } /* else might as well continue, and look for 2233 another, or simply have the caller reopen it 2234 again rather than trying to fix this handle */ 2235 } else /* write only file */ 2236 break; /* write only files are last so must be done */ 2237 } 2238 spin_unlock(&cifs_inode->open_file_lock); 2239 return NULL; 2240 } 2241 2242 /* Return -EBADF if no handle is found and general rc otherwise */ 2243 int 2244 cifs_get_writable_file(struct cifsInodeInfo *cifs_inode, int flags, 2245 struct cifsFileInfo **ret_file) 2246 { 2247 struct cifsFileInfo *open_file, *inv_file = NULL; 2248 struct cifs_sb_info *cifs_sb; 2249 bool any_available = false; 2250 int rc = -EBADF; 2251 unsigned int refind = 0; 2252 bool fsuid_only = flags & FIND_WR_FSUID_ONLY; 2253 bool with_delete = flags & FIND_WR_WITH_DELETE; 2254 *ret_file = NULL; 2255 2256 /* 2257 * Having a null inode here (because mapping->host was set to zero by 2258 * the VFS or MM) should not happen but we had reports of on oops (due 2259 * to it being zero) during stress testcases so we need to check for it 2260 */ 2261 2262 if (cifs_inode == NULL) { 2263 cifs_dbg(VFS, "Null inode passed to cifs_writeable_file\n"); 2264 dump_stack(); 2265 return rc; 2266 } 2267 2268 cifs_sb = CIFS_SB(cifs_inode->netfs.inode.i_sb); 2269 2270 /* only filter by fsuid on multiuser mounts */ 2271 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER)) 2272 fsuid_only = false; 2273 2274 spin_lock(&cifs_inode->open_file_lock); 2275 refind_writable: 2276 if (refind > MAX_REOPEN_ATT) { 2277 spin_unlock(&cifs_inode->open_file_lock); 2278 return rc; 2279 } 2280 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) { 2281 if (!any_available && open_file->pid != current->tgid) 2282 continue; 2283 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid())) 2284 continue; 2285 if (with_delete && !(open_file->fid.access & DELETE)) 2286 continue; 2287 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) { 2288 if (!open_file->invalidHandle) { 2289 /* found a good writable file */ 2290 cifsFileInfo_get(open_file); 2291 spin_unlock(&cifs_inode->open_file_lock); 2292 *ret_file = open_file; 2293 return 0; 2294 } else { 2295 if (!inv_file) 2296 inv_file = open_file; 2297 } 2298 } 2299 } 2300 /* couldn't find useable FH with same pid, try any available */ 2301 if (!any_available) { 2302 any_available = true; 2303 goto refind_writable; 2304 } 2305 2306 if (inv_file) { 2307 any_available = false; 2308 cifsFileInfo_get(inv_file); 2309 } 2310 2311 spin_unlock(&cifs_inode->open_file_lock); 2312 2313 if (inv_file) { 2314 rc = cifs_reopen_file(inv_file, false); 2315 if (!rc) { 2316 *ret_file = inv_file; 2317 return 0; 2318 } 2319 2320 spin_lock(&cifs_inode->open_file_lock); 2321 list_move_tail(&inv_file->flist, &cifs_inode->openFileList); 2322 spin_unlock(&cifs_inode->open_file_lock); 2323 cifsFileInfo_put(inv_file); 2324 ++refind; 2325 inv_file = NULL; 2326 spin_lock(&cifs_inode->open_file_lock); 2327 goto refind_writable; 2328 } 2329 2330 return rc; 2331 } 2332 2333 struct cifsFileInfo * 2334 find_writable_file(struct cifsInodeInfo *cifs_inode, int flags) 2335 { 2336 struct cifsFileInfo *cfile; 2337 int rc; 2338 2339 rc = cifs_get_writable_file(cifs_inode, flags, &cfile); 2340 if (rc) 2341 cifs_dbg(FYI, "Couldn't find writable handle rc=%d\n", rc); 2342 2343 return cfile; 2344 } 2345 2346 int 2347 cifs_get_writable_path(struct cifs_tcon *tcon, const char *name, 2348 int flags, 2349 struct cifsFileInfo **ret_file) 2350 { 2351 struct cifsFileInfo *cfile; 2352 void *page = alloc_dentry_path(); 2353 2354 *ret_file = NULL; 2355 2356 spin_lock(&tcon->open_file_lock); 2357 list_for_each_entry(cfile, &tcon->openFileList, tlist) { 2358 struct cifsInodeInfo *cinode; 2359 const char *full_path = build_path_from_dentry(cfile->dentry, page); 2360 if (IS_ERR(full_path)) { 2361 spin_unlock(&tcon->open_file_lock); 2362 free_dentry_path(page); 2363 return PTR_ERR(full_path); 2364 } 2365 if (strcmp(full_path, name)) 2366 continue; 2367 2368 cinode = CIFS_I(d_inode(cfile->dentry)); 2369 spin_unlock(&tcon->open_file_lock); 2370 free_dentry_path(page); 2371 return cifs_get_writable_file(cinode, flags, ret_file); 2372 } 2373 2374 spin_unlock(&tcon->open_file_lock); 2375 free_dentry_path(page); 2376 return -ENOENT; 2377 } 2378 2379 int 2380 cifs_get_readable_path(struct cifs_tcon *tcon, const char *name, 2381 struct cifsFileInfo **ret_file) 2382 { 2383 struct cifsFileInfo *cfile; 2384 void *page = alloc_dentry_path(); 2385 2386 *ret_file = NULL; 2387 2388 spin_lock(&tcon->open_file_lock); 2389 list_for_each_entry(cfile, &tcon->openFileList, tlist) { 2390 struct cifsInodeInfo *cinode; 2391 const char *full_path = build_path_from_dentry(cfile->dentry, page); 2392 if (IS_ERR(full_path)) { 2393 spin_unlock(&tcon->open_file_lock); 2394 free_dentry_path(page); 2395 return PTR_ERR(full_path); 2396 } 2397 if (strcmp(full_path, name)) 2398 continue; 2399 2400 cinode = CIFS_I(d_inode(cfile->dentry)); 2401 spin_unlock(&tcon->open_file_lock); 2402 free_dentry_path(page); 2403 *ret_file = find_readable_file(cinode, 0); 2404 return *ret_file ? 0 : -ENOENT; 2405 } 2406 2407 spin_unlock(&tcon->open_file_lock); 2408 free_dentry_path(page); 2409 return -ENOENT; 2410 } 2411 2412 void 2413 cifs_writedata_release(struct kref *refcount) 2414 { 2415 struct cifs_writedata *wdata = container_of(refcount, 2416 struct cifs_writedata, refcount); 2417 #ifdef CONFIG_CIFS_SMB_DIRECT 2418 if (wdata->mr) { 2419 smbd_deregister_mr(wdata->mr); 2420 wdata->mr = NULL; 2421 } 2422 #endif 2423 2424 if (wdata->cfile) 2425 cifsFileInfo_put(wdata->cfile); 2426 2427 kfree(wdata); 2428 } 2429 2430 /* 2431 * Write failed with a retryable error. Resend the write request. It's also 2432 * possible that the page was redirtied so re-clean the page. 2433 */ 2434 static void 2435 cifs_writev_requeue(struct cifs_writedata *wdata) 2436 { 2437 int rc = 0; 2438 struct inode *inode = d_inode(wdata->cfile->dentry); 2439 struct TCP_Server_Info *server; 2440 unsigned int rest_len = wdata->bytes; 2441 loff_t fpos = wdata->offset; 2442 2443 server = tlink_tcon(wdata->cfile->tlink)->ses->server; 2444 do { 2445 struct cifs_writedata *wdata2; 2446 unsigned int wsize, cur_len; 2447 2448 wsize = server->ops->wp_retry_size(inode); 2449 if (wsize < rest_len) { 2450 if (wsize < PAGE_SIZE) { 2451 rc = -EOPNOTSUPP; 2452 break; 2453 } 2454 cur_len = min(round_down(wsize, PAGE_SIZE), rest_len); 2455 } else { 2456 cur_len = rest_len; 2457 } 2458 2459 wdata2 = cifs_writedata_alloc(cifs_writev_complete); 2460 if (!wdata2) { 2461 rc = -ENOMEM; 2462 break; 2463 } 2464 2465 wdata2->sync_mode = wdata->sync_mode; 2466 wdata2->offset = fpos; 2467 wdata2->bytes = cur_len; 2468 wdata2->iter = wdata->iter; 2469 2470 iov_iter_advance(&wdata2->iter, fpos - wdata->offset); 2471 iov_iter_truncate(&wdata2->iter, wdata2->bytes); 2472 2473 if (iov_iter_is_xarray(&wdata2->iter)) 2474 /* Check for pages having been redirtied and clean 2475 * them. We can do this by walking the xarray. If 2476 * it's not an xarray, then it's a DIO and we shouldn't 2477 * be mucking around with the page bits. 2478 */ 2479 cifs_undirty_folios(inode, fpos, cur_len); 2480 2481 rc = cifs_get_writable_file(CIFS_I(inode), FIND_WR_ANY, 2482 &wdata2->cfile); 2483 if (!wdata2->cfile) { 2484 cifs_dbg(VFS, "No writable handle to retry writepages rc=%d\n", 2485 rc); 2486 if (!is_retryable_error(rc)) 2487 rc = -EBADF; 2488 } else { 2489 wdata2->pid = wdata2->cfile->pid; 2490 rc = server->ops->async_writev(wdata2, 2491 cifs_writedata_release); 2492 } 2493 2494 kref_put(&wdata2->refcount, cifs_writedata_release); 2495 if (rc) { 2496 if (is_retryable_error(rc)) 2497 continue; 2498 fpos += cur_len; 2499 rest_len -= cur_len; 2500 break; 2501 } 2502 2503 fpos += cur_len; 2504 rest_len -= cur_len; 2505 } while (rest_len > 0); 2506 2507 /* Clean up remaining pages from the original wdata */ 2508 if (iov_iter_is_xarray(&wdata->iter)) 2509 cifs_pages_write_failed(inode, fpos, rest_len); 2510 2511 if (rc != 0 && !is_retryable_error(rc)) 2512 mapping_set_error(inode->i_mapping, rc); 2513 kref_put(&wdata->refcount, cifs_writedata_release); 2514 } 2515 2516 void 2517 cifs_writev_complete(struct work_struct *work) 2518 { 2519 struct cifs_writedata *wdata = container_of(work, 2520 struct cifs_writedata, work); 2521 struct inode *inode = d_inode(wdata->cfile->dentry); 2522 2523 if (wdata->result == 0) { 2524 spin_lock(&inode->i_lock); 2525 cifs_update_eof(CIFS_I(inode), wdata->offset, wdata->bytes); 2526 spin_unlock(&inode->i_lock); 2527 cifs_stats_bytes_written(tlink_tcon(wdata->cfile->tlink), 2528 wdata->bytes); 2529 } else if (wdata->sync_mode == WB_SYNC_ALL && wdata->result == -EAGAIN) 2530 return cifs_writev_requeue(wdata); 2531 2532 if (wdata->result == -EAGAIN) 2533 cifs_pages_write_redirty(inode, wdata->offset, wdata->bytes); 2534 else if (wdata->result < 0) 2535 cifs_pages_write_failed(inode, wdata->offset, wdata->bytes); 2536 else 2537 cifs_pages_written_back(inode, wdata->offset, wdata->bytes); 2538 2539 if (wdata->result != -EAGAIN) 2540 mapping_set_error(inode->i_mapping, wdata->result); 2541 kref_put(&wdata->refcount, cifs_writedata_release); 2542 } 2543 2544 struct cifs_writedata *cifs_writedata_alloc(work_func_t complete) 2545 { 2546 struct cifs_writedata *wdata; 2547 2548 wdata = kzalloc(sizeof(*wdata), GFP_NOFS); 2549 if (wdata != NULL) { 2550 kref_init(&wdata->refcount); 2551 INIT_LIST_HEAD(&wdata->list); 2552 init_completion(&wdata->done); 2553 INIT_WORK(&wdata->work, complete); 2554 } 2555 return wdata; 2556 } 2557 2558 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to) 2559 { 2560 struct address_space *mapping = page->mapping; 2561 loff_t offset = (loff_t)page->index << PAGE_SHIFT; 2562 char *write_data; 2563 int rc = -EFAULT; 2564 int bytes_written = 0; 2565 struct inode *inode; 2566 struct cifsFileInfo *open_file; 2567 2568 if (!mapping || !mapping->host) 2569 return -EFAULT; 2570 2571 inode = page->mapping->host; 2572 2573 offset += (loff_t)from; 2574 write_data = kmap(page); 2575 write_data += from; 2576 2577 if ((to > PAGE_SIZE) || (from > to)) { 2578 kunmap(page); 2579 return -EIO; 2580 } 2581 2582 /* racing with truncate? */ 2583 if (offset > mapping->host->i_size) { 2584 kunmap(page); 2585 return 0; /* don't care */ 2586 } 2587 2588 /* check to make sure that we are not extending the file */ 2589 if (mapping->host->i_size - offset < (loff_t)to) 2590 to = (unsigned)(mapping->host->i_size - offset); 2591 2592 rc = cifs_get_writable_file(CIFS_I(mapping->host), FIND_WR_ANY, 2593 &open_file); 2594 if (!rc) { 2595 bytes_written = cifs_write(open_file, open_file->pid, 2596 write_data, to - from, &offset); 2597 cifsFileInfo_put(open_file); 2598 /* Does mm or vfs already set times? */ 2599 inode->i_atime = inode->i_mtime = current_time(inode); 2600 if ((bytes_written > 0) && (offset)) 2601 rc = 0; 2602 else if (bytes_written < 0) 2603 rc = bytes_written; 2604 else 2605 rc = -EFAULT; 2606 } else { 2607 cifs_dbg(FYI, "No writable handle for write page rc=%d\n", rc); 2608 if (!is_retryable_error(rc)) 2609 rc = -EIO; 2610 } 2611 2612 kunmap(page); 2613 return rc; 2614 } 2615 2616 /* 2617 * Extend the region to be written back to include subsequent contiguously 2618 * dirty pages if possible, but don't sleep while doing so. 2619 */ 2620 static void cifs_extend_writeback(struct address_space *mapping, 2621 long *_count, 2622 loff_t start, 2623 int max_pages, 2624 size_t max_len, 2625 unsigned int *_len) 2626 { 2627 struct folio_batch batch; 2628 struct folio *folio; 2629 unsigned int psize, nr_pages; 2630 size_t len = *_len; 2631 pgoff_t index = (start + len) / PAGE_SIZE; 2632 bool stop = true; 2633 unsigned int i; 2634 XA_STATE(xas, &mapping->i_pages, index); 2635 2636 folio_batch_init(&batch); 2637 2638 do { 2639 /* Firstly, we gather up a batch of contiguous dirty pages 2640 * under the RCU read lock - but we can't clear the dirty flags 2641 * there if any of those pages are mapped. 2642 */ 2643 rcu_read_lock(); 2644 2645 xas_for_each(&xas, folio, ULONG_MAX) { 2646 stop = true; 2647 if (xas_retry(&xas, folio)) 2648 continue; 2649 if (xa_is_value(folio)) 2650 break; 2651 if (folio_index(folio) != index) 2652 break; 2653 if (!folio_try_get_rcu(folio)) { 2654 xas_reset(&xas); 2655 continue; 2656 } 2657 nr_pages = folio_nr_pages(folio); 2658 if (nr_pages > max_pages) 2659 break; 2660 2661 /* Has the page moved or been split? */ 2662 if (unlikely(folio != xas_reload(&xas))) { 2663 folio_put(folio); 2664 break; 2665 } 2666 2667 if (!folio_trylock(folio)) { 2668 folio_put(folio); 2669 break; 2670 } 2671 if (!folio_test_dirty(folio) || folio_test_writeback(folio)) { 2672 folio_unlock(folio); 2673 folio_put(folio); 2674 break; 2675 } 2676 2677 max_pages -= nr_pages; 2678 psize = folio_size(folio); 2679 len += psize; 2680 stop = false; 2681 if (max_pages <= 0 || len >= max_len || *_count <= 0) 2682 stop = true; 2683 2684 index += nr_pages; 2685 if (!folio_batch_add(&batch, folio)) 2686 break; 2687 if (stop) 2688 break; 2689 } 2690 2691 if (!stop) 2692 xas_pause(&xas); 2693 rcu_read_unlock(); 2694 2695 /* Now, if we obtained any pages, we can shift them to being 2696 * writable and mark them for caching. 2697 */ 2698 if (!folio_batch_count(&batch)) 2699 break; 2700 2701 for (i = 0; i < folio_batch_count(&batch); i++) { 2702 folio = batch.folios[i]; 2703 /* The folio should be locked, dirty and not undergoing 2704 * writeback from the loop above. 2705 */ 2706 if (!folio_clear_dirty_for_io(folio)) 2707 WARN_ON(1); 2708 if (folio_start_writeback(folio)) 2709 WARN_ON(1); 2710 2711 *_count -= folio_nr_pages(folio); 2712 folio_unlock(folio); 2713 } 2714 2715 folio_batch_release(&batch); 2716 cond_resched(); 2717 } while (!stop); 2718 2719 *_len = len; 2720 } 2721 2722 /* 2723 * Write back the locked page and any subsequent non-locked dirty pages. 2724 */ 2725 static ssize_t cifs_write_back_from_locked_folio(struct address_space *mapping, 2726 struct writeback_control *wbc, 2727 struct folio *folio, 2728 loff_t start, loff_t end) 2729 { 2730 struct inode *inode = mapping->host; 2731 struct TCP_Server_Info *server; 2732 struct cifs_writedata *wdata; 2733 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb); 2734 struct cifs_credits credits_on_stack; 2735 struct cifs_credits *credits = &credits_on_stack; 2736 struct cifsFileInfo *cfile = NULL; 2737 unsigned int xid, wsize, len; 2738 loff_t i_size = i_size_read(inode); 2739 size_t max_len; 2740 long count = wbc->nr_to_write; 2741 int rc; 2742 2743 /* The folio should be locked, dirty and not undergoing writeback. */ 2744 if (folio_start_writeback(folio)) 2745 WARN_ON(1); 2746 2747 count -= folio_nr_pages(folio); 2748 len = folio_size(folio); 2749 2750 xid = get_xid(); 2751 server = cifs_pick_channel(cifs_sb_master_tcon(cifs_sb)->ses); 2752 2753 rc = cifs_get_writable_file(CIFS_I(inode), FIND_WR_ANY, &cfile); 2754 if (rc) { 2755 cifs_dbg(VFS, "No writable handle in writepages rc=%d\n", rc); 2756 goto err_xid; 2757 } 2758 2759 rc = server->ops->wait_mtu_credits(server, cifs_sb->ctx->wsize, 2760 &wsize, credits); 2761 if (rc != 0) 2762 goto err_close; 2763 2764 wdata = cifs_writedata_alloc(cifs_writev_complete); 2765 if (!wdata) { 2766 rc = -ENOMEM; 2767 goto err_uncredit; 2768 } 2769 2770 wdata->sync_mode = wbc->sync_mode; 2771 wdata->offset = folio_pos(folio); 2772 wdata->pid = cfile->pid; 2773 wdata->credits = credits_on_stack; 2774 wdata->cfile = cfile; 2775 wdata->server = server; 2776 cfile = NULL; 2777 2778 /* Find all consecutive lockable dirty pages, stopping when we find a 2779 * page that is not immediately lockable, is not dirty or is missing, 2780 * or we reach the end of the range. 2781 */ 2782 if (start < i_size) { 2783 /* Trim the write to the EOF; the extra data is ignored. Also 2784 * put an upper limit on the size of a single storedata op. 2785 */ 2786 max_len = wsize; 2787 max_len = min_t(unsigned long long, max_len, end - start + 1); 2788 max_len = min_t(unsigned long long, max_len, i_size - start); 2789 2790 if (len < max_len) { 2791 int max_pages = INT_MAX; 2792 2793 #ifdef CONFIG_CIFS_SMB_DIRECT 2794 if (server->smbd_conn) 2795 max_pages = server->smbd_conn->max_frmr_depth; 2796 #endif 2797 max_pages -= folio_nr_pages(folio); 2798 2799 if (max_pages > 0) 2800 cifs_extend_writeback(mapping, &count, start, 2801 max_pages, max_len, &len); 2802 } 2803 len = min_t(loff_t, len, max_len); 2804 } 2805 2806 wdata->bytes = len; 2807 2808 /* We now have a contiguous set of dirty pages, each with writeback 2809 * set; the first page is still locked at this point, but all the rest 2810 * have been unlocked. 2811 */ 2812 folio_unlock(folio); 2813 2814 if (start < i_size) { 2815 iov_iter_xarray(&wdata->iter, ITER_SOURCE, &mapping->i_pages, 2816 start, len); 2817 2818 rc = adjust_credits(wdata->server, &wdata->credits, wdata->bytes); 2819 if (rc) 2820 goto err_wdata; 2821 2822 if (wdata->cfile->invalidHandle) 2823 rc = -EAGAIN; 2824 else 2825 rc = wdata->server->ops->async_writev(wdata, 2826 cifs_writedata_release); 2827 if (rc >= 0) { 2828 kref_put(&wdata->refcount, cifs_writedata_release); 2829 goto err_close; 2830 } 2831 } else { 2832 /* The dirty region was entirely beyond the EOF. */ 2833 cifs_pages_written_back(inode, start, len); 2834 rc = 0; 2835 } 2836 2837 err_wdata: 2838 kref_put(&wdata->refcount, cifs_writedata_release); 2839 err_uncredit: 2840 add_credits_and_wake_if(server, credits, 0); 2841 err_close: 2842 if (cfile) 2843 cifsFileInfo_put(cfile); 2844 err_xid: 2845 free_xid(xid); 2846 if (rc == 0) { 2847 wbc->nr_to_write = count; 2848 rc = len; 2849 } else if (is_retryable_error(rc)) { 2850 cifs_pages_write_redirty(inode, start, len); 2851 } else { 2852 cifs_pages_write_failed(inode, start, len); 2853 mapping_set_error(mapping, rc); 2854 } 2855 /* Indication to update ctime and mtime as close is deferred */ 2856 set_bit(CIFS_INO_MODIFIED_ATTR, &CIFS_I(inode)->flags); 2857 return rc; 2858 } 2859 2860 /* 2861 * write a region of pages back to the server 2862 */ 2863 static int cifs_writepages_region(struct address_space *mapping, 2864 struct writeback_control *wbc, 2865 loff_t start, loff_t end, loff_t *_next) 2866 { 2867 struct folio_batch fbatch; 2868 int skips = 0; 2869 2870 folio_batch_init(&fbatch); 2871 do { 2872 int nr; 2873 pgoff_t index = start / PAGE_SIZE; 2874 2875 nr = filemap_get_folios_tag(mapping, &index, end / PAGE_SIZE, 2876 PAGECACHE_TAG_DIRTY, &fbatch); 2877 if (!nr) 2878 break; 2879 2880 for (int i = 0; i < nr; i++) { 2881 ssize_t ret; 2882 struct folio *folio = fbatch.folios[i]; 2883 2884 redo_folio: 2885 start = folio_pos(folio); /* May regress with THPs */ 2886 2887 /* At this point we hold neither the i_pages lock nor the 2888 * page lock: the page may be truncated or invalidated 2889 * (changing page->mapping to NULL), or even swizzled 2890 * back from swapper_space to tmpfs file mapping 2891 */ 2892 if (wbc->sync_mode != WB_SYNC_NONE) { 2893 ret = folio_lock_killable(folio); 2894 if (ret < 0) 2895 goto write_error; 2896 } else { 2897 if (!folio_trylock(folio)) 2898 goto skip_write; 2899 } 2900 2901 if (folio_mapping(folio) != mapping || 2902 !folio_test_dirty(folio)) { 2903 start += folio_size(folio); 2904 folio_unlock(folio); 2905 continue; 2906 } 2907 2908 if (folio_test_writeback(folio) || 2909 folio_test_fscache(folio)) { 2910 folio_unlock(folio); 2911 if (wbc->sync_mode == WB_SYNC_NONE) 2912 goto skip_write; 2913 2914 folio_wait_writeback(folio); 2915 #ifdef CONFIG_CIFS_FSCACHE 2916 folio_wait_fscache(folio); 2917 #endif 2918 goto redo_folio; 2919 } 2920 2921 if (!folio_clear_dirty_for_io(folio)) 2922 /* We hold the page lock - it should've been dirty. */ 2923 WARN_ON(1); 2924 2925 ret = cifs_write_back_from_locked_folio(mapping, wbc, folio, start, end); 2926 if (ret < 0) 2927 goto write_error; 2928 2929 start += ret; 2930 continue; 2931 2932 write_error: 2933 folio_batch_release(&fbatch); 2934 *_next = start; 2935 return ret; 2936 2937 skip_write: 2938 /* 2939 * Too many skipped writes, or need to reschedule? 2940 * Treat it as a write error without an error code. 2941 */ 2942 if (skips >= 5 || need_resched()) { 2943 ret = 0; 2944 goto write_error; 2945 } 2946 2947 /* Otherwise, just skip that folio and go on to the next */ 2948 skips++; 2949 start += folio_size(folio); 2950 continue; 2951 } 2952 2953 folio_batch_release(&fbatch); 2954 cond_resched(); 2955 } while (wbc->nr_to_write > 0); 2956 2957 *_next = start; 2958 return 0; 2959 } 2960 2961 /* 2962 * Write some of the pending data back to the server 2963 */ 2964 static int cifs_writepages(struct address_space *mapping, 2965 struct writeback_control *wbc) 2966 { 2967 loff_t start, next; 2968 int ret; 2969 2970 /* We have to be careful as we can end up racing with setattr() 2971 * truncating the pagecache since the caller doesn't take a lock here 2972 * to prevent it. 2973 */ 2974 2975 if (wbc->range_cyclic) { 2976 start = mapping->writeback_index * PAGE_SIZE; 2977 ret = cifs_writepages_region(mapping, wbc, start, LLONG_MAX, &next); 2978 if (ret == 0) { 2979 mapping->writeback_index = next / PAGE_SIZE; 2980 if (start > 0 && wbc->nr_to_write > 0) { 2981 ret = cifs_writepages_region(mapping, wbc, 0, 2982 start, &next); 2983 if (ret == 0) 2984 mapping->writeback_index = 2985 next / PAGE_SIZE; 2986 } 2987 } 2988 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) { 2989 ret = cifs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next); 2990 if (wbc->nr_to_write > 0 && ret == 0) 2991 mapping->writeback_index = next / PAGE_SIZE; 2992 } else { 2993 ret = cifs_writepages_region(mapping, wbc, 2994 wbc->range_start, wbc->range_end, &next); 2995 } 2996 2997 return ret; 2998 } 2999 3000 static int 3001 cifs_writepage_locked(struct page *page, struct writeback_control *wbc) 3002 { 3003 int rc; 3004 unsigned int xid; 3005 3006 xid = get_xid(); 3007 /* BB add check for wbc flags */ 3008 get_page(page); 3009 if (!PageUptodate(page)) 3010 cifs_dbg(FYI, "ppw - page not up to date\n"); 3011 3012 /* 3013 * Set the "writeback" flag, and clear "dirty" in the radix tree. 3014 * 3015 * A writepage() implementation always needs to do either this, 3016 * or re-dirty the page with "redirty_page_for_writepage()" in 3017 * the case of a failure. 3018 * 3019 * Just unlocking the page will cause the radix tree tag-bits 3020 * to fail to update with the state of the page correctly. 3021 */ 3022 set_page_writeback(page); 3023 retry_write: 3024 rc = cifs_partialpagewrite(page, 0, PAGE_SIZE); 3025 if (is_retryable_error(rc)) { 3026 if (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN) 3027 goto retry_write; 3028 redirty_page_for_writepage(wbc, page); 3029 } else if (rc != 0) { 3030 SetPageError(page); 3031 mapping_set_error(page->mapping, rc); 3032 } else { 3033 SetPageUptodate(page); 3034 } 3035 end_page_writeback(page); 3036 put_page(page); 3037 free_xid(xid); 3038 return rc; 3039 } 3040 3041 static int cifs_write_end(struct file *file, struct address_space *mapping, 3042 loff_t pos, unsigned len, unsigned copied, 3043 struct page *page, void *fsdata) 3044 { 3045 int rc; 3046 struct inode *inode = mapping->host; 3047 struct cifsFileInfo *cfile = file->private_data; 3048 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb); 3049 struct folio *folio = page_folio(page); 3050 __u32 pid; 3051 3052 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD) 3053 pid = cfile->pid; 3054 else 3055 pid = current->tgid; 3056 3057 cifs_dbg(FYI, "write_end for page %p from pos %lld with %d bytes\n", 3058 page, pos, copied); 3059 3060 if (folio_test_checked(folio)) { 3061 if (copied == len) 3062 folio_mark_uptodate(folio); 3063 folio_clear_checked(folio); 3064 } else if (!folio_test_uptodate(folio) && copied == PAGE_SIZE) 3065 folio_mark_uptodate(folio); 3066 3067 if (!folio_test_uptodate(folio)) { 3068 char *page_data; 3069 unsigned offset = pos & (PAGE_SIZE - 1); 3070 unsigned int xid; 3071 3072 xid = get_xid(); 3073 /* this is probably better than directly calling 3074 partialpage_write since in this function the file handle is 3075 known which we might as well leverage */ 3076 /* BB check if anything else missing out of ppw 3077 such as updating last write time */ 3078 page_data = kmap(page); 3079 rc = cifs_write(cfile, pid, page_data + offset, copied, &pos); 3080 /* if (rc < 0) should we set writebehind rc? */ 3081 kunmap(page); 3082 3083 free_xid(xid); 3084 } else { 3085 rc = copied; 3086 pos += copied; 3087 set_page_dirty(page); 3088 } 3089 3090 if (rc > 0) { 3091 spin_lock(&inode->i_lock); 3092 if (pos > inode->i_size) { 3093 i_size_write(inode, pos); 3094 inode->i_blocks = (512 - 1 + pos) >> 9; 3095 } 3096 spin_unlock(&inode->i_lock); 3097 } 3098 3099 unlock_page(page); 3100 put_page(page); 3101 /* Indication to update ctime and mtime as close is deferred */ 3102 set_bit(CIFS_INO_MODIFIED_ATTR, &CIFS_I(inode)->flags); 3103 3104 return rc; 3105 } 3106 3107 int cifs_strict_fsync(struct file *file, loff_t start, loff_t end, 3108 int datasync) 3109 { 3110 unsigned int xid; 3111 int rc = 0; 3112 struct cifs_tcon *tcon; 3113 struct TCP_Server_Info *server; 3114 struct cifsFileInfo *smbfile = file->private_data; 3115 struct inode *inode = file_inode(file); 3116 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb); 3117 3118 rc = file_write_and_wait_range(file, start, end); 3119 if (rc) { 3120 trace_cifs_fsync_err(inode->i_ino, rc); 3121 return rc; 3122 } 3123 3124 xid = get_xid(); 3125 3126 cifs_dbg(FYI, "Sync file - name: %pD datasync: 0x%x\n", 3127 file, datasync); 3128 3129 if (!CIFS_CACHE_READ(CIFS_I(inode))) { 3130 rc = cifs_zap_mapping(inode); 3131 if (rc) { 3132 cifs_dbg(FYI, "rc: %d during invalidate phase\n", rc); 3133 rc = 0; /* don't care about it in fsync */ 3134 } 3135 } 3136 3137 tcon = tlink_tcon(smbfile->tlink); 3138 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) { 3139 server = tcon->ses->server; 3140 if (server->ops->flush == NULL) { 3141 rc = -ENOSYS; 3142 goto strict_fsync_exit; 3143 } 3144 3145 if ((OPEN_FMODE(smbfile->f_flags) & FMODE_WRITE) == 0) { 3146 smbfile = find_writable_file(CIFS_I(inode), FIND_WR_ANY); 3147 if (smbfile) { 3148 rc = server->ops->flush(xid, tcon, &smbfile->fid); 3149 cifsFileInfo_put(smbfile); 3150 } else 3151 cifs_dbg(FYI, "ignore fsync for file not open for write\n"); 3152 } else 3153 rc = server->ops->flush(xid, tcon, &smbfile->fid); 3154 } 3155 3156 strict_fsync_exit: 3157 free_xid(xid); 3158 return rc; 3159 } 3160 3161 int cifs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 3162 { 3163 unsigned int xid; 3164 int rc = 0; 3165 struct cifs_tcon *tcon; 3166 struct TCP_Server_Info *server; 3167 struct cifsFileInfo *smbfile = file->private_data; 3168 struct inode *inode = file_inode(file); 3169 struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(file); 3170 3171 rc = file_write_and_wait_range(file, start, end); 3172 if (rc) { 3173 trace_cifs_fsync_err(file_inode(file)->i_ino, rc); 3174 return rc; 3175 } 3176 3177 xid = get_xid(); 3178 3179 cifs_dbg(FYI, "Sync file - name: %pD datasync: 0x%x\n", 3180 file, datasync); 3181 3182 tcon = tlink_tcon(smbfile->tlink); 3183 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) { 3184 server = tcon->ses->server; 3185 if (server->ops->flush == NULL) { 3186 rc = -ENOSYS; 3187 goto fsync_exit; 3188 } 3189 3190 if ((OPEN_FMODE(smbfile->f_flags) & FMODE_WRITE) == 0) { 3191 smbfile = find_writable_file(CIFS_I(inode), FIND_WR_ANY); 3192 if (smbfile) { 3193 rc = server->ops->flush(xid, tcon, &smbfile->fid); 3194 cifsFileInfo_put(smbfile); 3195 } else 3196 cifs_dbg(FYI, "ignore fsync for file not open for write\n"); 3197 } else 3198 rc = server->ops->flush(xid, tcon, &smbfile->fid); 3199 } 3200 3201 fsync_exit: 3202 free_xid(xid); 3203 return rc; 3204 } 3205 3206 /* 3207 * As file closes, flush all cached write data for this inode checking 3208 * for write behind errors. 3209 */ 3210 int cifs_flush(struct file *file, fl_owner_t id) 3211 { 3212 struct inode *inode = file_inode(file); 3213 int rc = 0; 3214 3215 if (file->f_mode & FMODE_WRITE) 3216 rc = filemap_write_and_wait(inode->i_mapping); 3217 3218 cifs_dbg(FYI, "Flush inode %p file %p rc %d\n", inode, file, rc); 3219 if (rc) { 3220 /* get more nuanced writeback errors */ 3221 rc = filemap_check_wb_err(file->f_mapping, 0); 3222 trace_cifs_flush_err(inode->i_ino, rc); 3223 } 3224 return rc; 3225 } 3226 3227 static void 3228 cifs_uncached_writedata_release(struct kref *refcount) 3229 { 3230 struct cifs_writedata *wdata = container_of(refcount, 3231 struct cifs_writedata, refcount); 3232 3233 kref_put(&wdata->ctx->refcount, cifs_aio_ctx_release); 3234 cifs_writedata_release(refcount); 3235 } 3236 3237 static void collect_uncached_write_data(struct cifs_aio_ctx *ctx); 3238 3239 static void 3240 cifs_uncached_writev_complete(struct work_struct *work) 3241 { 3242 struct cifs_writedata *wdata = container_of(work, 3243 struct cifs_writedata, work); 3244 struct inode *inode = d_inode(wdata->cfile->dentry); 3245 struct cifsInodeInfo *cifsi = CIFS_I(inode); 3246 3247 spin_lock(&inode->i_lock); 3248 cifs_update_eof(cifsi, wdata->offset, wdata->bytes); 3249 if (cifsi->server_eof > inode->i_size) 3250 i_size_write(inode, cifsi->server_eof); 3251 spin_unlock(&inode->i_lock); 3252 3253 complete(&wdata->done); 3254 collect_uncached_write_data(wdata->ctx); 3255 /* the below call can possibly free the last ref to aio ctx */ 3256 kref_put(&wdata->refcount, cifs_uncached_writedata_release); 3257 } 3258 3259 static int 3260 cifs_resend_wdata(struct cifs_writedata *wdata, struct list_head *wdata_list, 3261 struct cifs_aio_ctx *ctx) 3262 { 3263 unsigned int wsize; 3264 struct cifs_credits credits; 3265 int rc; 3266 struct TCP_Server_Info *server = wdata->server; 3267 3268 do { 3269 if (wdata->cfile->invalidHandle) { 3270 rc = cifs_reopen_file(wdata->cfile, false); 3271 if (rc == -EAGAIN) 3272 continue; 3273 else if (rc) 3274 break; 3275 } 3276 3277 3278 /* 3279 * Wait for credits to resend this wdata. 3280 * Note: we are attempting to resend the whole wdata not in 3281 * segments 3282 */ 3283 do { 3284 rc = server->ops->wait_mtu_credits(server, wdata->bytes, 3285 &wsize, &credits); 3286 if (rc) 3287 goto fail; 3288 3289 if (wsize < wdata->bytes) { 3290 add_credits_and_wake_if(server, &credits, 0); 3291 msleep(1000); 3292 } 3293 } while (wsize < wdata->bytes); 3294 wdata->credits = credits; 3295 3296 rc = adjust_credits(server, &wdata->credits, wdata->bytes); 3297 3298 if (!rc) { 3299 if (wdata->cfile->invalidHandle) 3300 rc = -EAGAIN; 3301 else { 3302 #ifdef CONFIG_CIFS_SMB_DIRECT 3303 if (wdata->mr) { 3304 wdata->mr->need_invalidate = true; 3305 smbd_deregister_mr(wdata->mr); 3306 wdata->mr = NULL; 3307 } 3308 #endif 3309 rc = server->ops->async_writev(wdata, 3310 cifs_uncached_writedata_release); 3311 } 3312 } 3313 3314 /* If the write was successfully sent, we are done */ 3315 if (!rc) { 3316 list_add_tail(&wdata->list, wdata_list); 3317 return 0; 3318 } 3319 3320 /* Roll back credits and retry if needed */ 3321 add_credits_and_wake_if(server, &wdata->credits, 0); 3322 } while (rc == -EAGAIN); 3323 3324 fail: 3325 kref_put(&wdata->refcount, cifs_uncached_writedata_release); 3326 return rc; 3327 } 3328 3329 /* 3330 * Select span of a bvec iterator we're going to use. Limit it by both maximum 3331 * size and maximum number of segments. 3332 */ 3333 static size_t cifs_limit_bvec_subset(const struct iov_iter *iter, size_t max_size, 3334 size_t max_segs, unsigned int *_nsegs) 3335 { 3336 const struct bio_vec *bvecs = iter->bvec; 3337 unsigned int nbv = iter->nr_segs, ix = 0, nsegs = 0; 3338 size_t len, span = 0, n = iter->count; 3339 size_t skip = iter->iov_offset; 3340 3341 if (WARN_ON(!iov_iter_is_bvec(iter)) || n == 0) 3342 return 0; 3343 3344 while (n && ix < nbv && skip) { 3345 len = bvecs[ix].bv_len; 3346 if (skip < len) 3347 break; 3348 skip -= len; 3349 n -= len; 3350 ix++; 3351 } 3352 3353 while (n && ix < nbv) { 3354 len = min3(n, bvecs[ix].bv_len - skip, max_size); 3355 span += len; 3356 max_size -= len; 3357 nsegs++; 3358 ix++; 3359 if (max_size == 0 || nsegs >= max_segs) 3360 break; 3361 skip = 0; 3362 n -= len; 3363 } 3364 3365 *_nsegs = nsegs; 3366 return span; 3367 } 3368 3369 static int 3370 cifs_write_from_iter(loff_t fpos, size_t len, struct iov_iter *from, 3371 struct cifsFileInfo *open_file, 3372 struct cifs_sb_info *cifs_sb, struct list_head *wdata_list, 3373 struct cifs_aio_ctx *ctx) 3374 { 3375 int rc = 0; 3376 size_t cur_len, max_len; 3377 struct cifs_writedata *wdata; 3378 pid_t pid; 3379 struct TCP_Server_Info *server; 3380 unsigned int xid, max_segs = INT_MAX; 3381 3382 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD) 3383 pid = open_file->pid; 3384 else 3385 pid = current->tgid; 3386 3387 server = cifs_pick_channel(tlink_tcon(open_file->tlink)->ses); 3388 xid = get_xid(); 3389 3390 #ifdef CONFIG_CIFS_SMB_DIRECT 3391 if (server->smbd_conn) 3392 max_segs = server->smbd_conn->max_frmr_depth; 3393 #endif 3394 3395 do { 3396 struct cifs_credits credits_on_stack; 3397 struct cifs_credits *credits = &credits_on_stack; 3398 unsigned int wsize, nsegs = 0; 3399 3400 if (signal_pending(current)) { 3401 rc = -EINTR; 3402 break; 3403 } 3404 3405 if (open_file->invalidHandle) { 3406 rc = cifs_reopen_file(open_file, false); 3407 if (rc == -EAGAIN) 3408 continue; 3409 else if (rc) 3410 break; 3411 } 3412 3413 rc = server->ops->wait_mtu_credits(server, cifs_sb->ctx->wsize, 3414 &wsize, credits); 3415 if (rc) 3416 break; 3417 3418 max_len = min_t(const size_t, len, wsize); 3419 if (!max_len) { 3420 rc = -EAGAIN; 3421 add_credits_and_wake_if(server, credits, 0); 3422 break; 3423 } 3424 3425 cur_len = cifs_limit_bvec_subset(from, max_len, max_segs, &nsegs); 3426 cifs_dbg(FYI, "write_from_iter len=%zx/%zx nsegs=%u/%lu/%u\n", 3427 cur_len, max_len, nsegs, from->nr_segs, max_segs); 3428 if (cur_len == 0) { 3429 rc = -EIO; 3430 add_credits_and_wake_if(server, credits, 0); 3431 break; 3432 } 3433 3434 wdata = cifs_writedata_alloc(cifs_uncached_writev_complete); 3435 if (!wdata) { 3436 rc = -ENOMEM; 3437 add_credits_and_wake_if(server, credits, 0); 3438 break; 3439 } 3440 3441 wdata->sync_mode = WB_SYNC_ALL; 3442 wdata->offset = (__u64)fpos; 3443 wdata->cfile = cifsFileInfo_get(open_file); 3444 wdata->server = server; 3445 wdata->pid = pid; 3446 wdata->bytes = cur_len; 3447 wdata->credits = credits_on_stack; 3448 wdata->iter = *from; 3449 wdata->ctx = ctx; 3450 kref_get(&ctx->refcount); 3451 3452 iov_iter_truncate(&wdata->iter, cur_len); 3453 3454 rc = adjust_credits(server, &wdata->credits, wdata->bytes); 3455 3456 if (!rc) { 3457 if (wdata->cfile->invalidHandle) 3458 rc = -EAGAIN; 3459 else 3460 rc = server->ops->async_writev(wdata, 3461 cifs_uncached_writedata_release); 3462 } 3463 3464 if (rc) { 3465 add_credits_and_wake_if(server, &wdata->credits, 0); 3466 kref_put(&wdata->refcount, 3467 cifs_uncached_writedata_release); 3468 if (rc == -EAGAIN) 3469 continue; 3470 break; 3471 } 3472 3473 list_add_tail(&wdata->list, wdata_list); 3474 iov_iter_advance(from, cur_len); 3475 fpos += cur_len; 3476 len -= cur_len; 3477 } while (len > 0); 3478 3479 free_xid(xid); 3480 return rc; 3481 } 3482 3483 static void collect_uncached_write_data(struct cifs_aio_ctx *ctx) 3484 { 3485 struct cifs_writedata *wdata, *tmp; 3486 struct cifs_tcon *tcon; 3487 struct cifs_sb_info *cifs_sb; 3488 struct dentry *dentry = ctx->cfile->dentry; 3489 ssize_t rc; 3490 3491 tcon = tlink_tcon(ctx->cfile->tlink); 3492 cifs_sb = CIFS_SB(dentry->d_sb); 3493 3494 mutex_lock(&ctx->aio_mutex); 3495 3496 if (list_empty(&ctx->list)) { 3497 mutex_unlock(&ctx->aio_mutex); 3498 return; 3499 } 3500 3501 rc = ctx->rc; 3502 /* 3503 * Wait for and collect replies for any successful sends in order of 3504 * increasing offset. Once an error is hit, then return without waiting 3505 * for any more replies. 3506 */ 3507 restart_loop: 3508 list_for_each_entry_safe(wdata, tmp, &ctx->list, list) { 3509 if (!rc) { 3510 if (!try_wait_for_completion(&wdata->done)) { 3511 mutex_unlock(&ctx->aio_mutex); 3512 return; 3513 } 3514 3515 if (wdata->result) 3516 rc = wdata->result; 3517 else 3518 ctx->total_len += wdata->bytes; 3519 3520 /* resend call if it's a retryable error */ 3521 if (rc == -EAGAIN) { 3522 struct list_head tmp_list; 3523 struct iov_iter tmp_from = ctx->iter; 3524 3525 INIT_LIST_HEAD(&tmp_list); 3526 list_del_init(&wdata->list); 3527 3528 if (ctx->direct_io) 3529 rc = cifs_resend_wdata( 3530 wdata, &tmp_list, ctx); 3531 else { 3532 iov_iter_advance(&tmp_from, 3533 wdata->offset - ctx->pos); 3534 3535 rc = cifs_write_from_iter(wdata->offset, 3536 wdata->bytes, &tmp_from, 3537 ctx->cfile, cifs_sb, &tmp_list, 3538 ctx); 3539 3540 kref_put(&wdata->refcount, 3541 cifs_uncached_writedata_release); 3542 } 3543 3544 list_splice(&tmp_list, &ctx->list); 3545 goto restart_loop; 3546 } 3547 } 3548 list_del_init(&wdata->list); 3549 kref_put(&wdata->refcount, cifs_uncached_writedata_release); 3550 } 3551 3552 cifs_stats_bytes_written(tcon, ctx->total_len); 3553 set_bit(CIFS_INO_INVALID_MAPPING, &CIFS_I(dentry->d_inode)->flags); 3554 3555 ctx->rc = (rc == 0) ? ctx->total_len : rc; 3556 3557 mutex_unlock(&ctx->aio_mutex); 3558 3559 if (ctx->iocb && ctx->iocb->ki_complete) 3560 ctx->iocb->ki_complete(ctx->iocb, ctx->rc); 3561 else 3562 complete(&ctx->done); 3563 } 3564 3565 static ssize_t __cifs_writev( 3566 struct kiocb *iocb, struct iov_iter *from, bool direct) 3567 { 3568 struct file *file = iocb->ki_filp; 3569 ssize_t total_written = 0; 3570 struct cifsFileInfo *cfile; 3571 struct cifs_tcon *tcon; 3572 struct cifs_sb_info *cifs_sb; 3573 struct cifs_aio_ctx *ctx; 3574 int rc; 3575 3576 rc = generic_write_checks(iocb, from); 3577 if (rc <= 0) 3578 return rc; 3579 3580 cifs_sb = CIFS_FILE_SB(file); 3581 cfile = file->private_data; 3582 tcon = tlink_tcon(cfile->tlink); 3583 3584 if (!tcon->ses->server->ops->async_writev) 3585 return -ENOSYS; 3586 3587 ctx = cifs_aio_ctx_alloc(); 3588 if (!ctx) 3589 return -ENOMEM; 3590 3591 ctx->cfile = cifsFileInfo_get(cfile); 3592 3593 if (!is_sync_kiocb(iocb)) 3594 ctx->iocb = iocb; 3595 3596 ctx->pos = iocb->ki_pos; 3597 ctx->direct_io = direct; 3598 ctx->nr_pinned_pages = 0; 3599 3600 if (user_backed_iter(from)) { 3601 /* 3602 * Extract IOVEC/UBUF-type iterators to a BVEC-type iterator as 3603 * they contain references to the calling process's virtual 3604 * memory layout which won't be available in an async worker 3605 * thread. This also takes a pin on every folio involved. 3606 */ 3607 rc = netfs_extract_user_iter(from, iov_iter_count(from), 3608 &ctx->iter, 0); 3609 if (rc < 0) { 3610 kref_put(&ctx->refcount, cifs_aio_ctx_release); 3611 return rc; 3612 } 3613 3614 ctx->nr_pinned_pages = rc; 3615 ctx->bv = (void *)ctx->iter.bvec; 3616 ctx->bv_need_unpin = iov_iter_extract_will_pin(from); 3617 } else if ((iov_iter_is_bvec(from) || iov_iter_is_kvec(from)) && 3618 !is_sync_kiocb(iocb)) { 3619 /* 3620 * If the op is asynchronous, we need to copy the list attached 3621 * to a BVEC/KVEC-type iterator, but we assume that the storage 3622 * will be pinned by the caller; in any case, we may or may not 3623 * be able to pin the pages, so we don't try. 3624 */ 3625 ctx->bv = (void *)dup_iter(&ctx->iter, from, GFP_KERNEL); 3626 if (!ctx->bv) { 3627 kref_put(&ctx->refcount, cifs_aio_ctx_release); 3628 return -ENOMEM; 3629 } 3630 } else { 3631 /* 3632 * Otherwise, we just pass the iterator down as-is and rely on 3633 * the caller to make sure the pages referred to by the 3634 * iterator don't evaporate. 3635 */ 3636 ctx->iter = *from; 3637 } 3638 3639 ctx->len = iov_iter_count(&ctx->iter); 3640 3641 /* grab a lock here due to read response handlers can access ctx */ 3642 mutex_lock(&ctx->aio_mutex); 3643 3644 rc = cifs_write_from_iter(iocb->ki_pos, ctx->len, &ctx->iter, 3645 cfile, cifs_sb, &ctx->list, ctx); 3646 3647 /* 3648 * If at least one write was successfully sent, then discard any rc 3649 * value from the later writes. If the other write succeeds, then 3650 * we'll end up returning whatever was written. If it fails, then 3651 * we'll get a new rc value from that. 3652 */ 3653 if (!list_empty(&ctx->list)) 3654 rc = 0; 3655 3656 mutex_unlock(&ctx->aio_mutex); 3657 3658 if (rc) { 3659 kref_put(&ctx->refcount, cifs_aio_ctx_release); 3660 return rc; 3661 } 3662 3663 if (!is_sync_kiocb(iocb)) { 3664 kref_put(&ctx->refcount, cifs_aio_ctx_release); 3665 return -EIOCBQUEUED; 3666 } 3667 3668 rc = wait_for_completion_killable(&ctx->done); 3669 if (rc) { 3670 mutex_lock(&ctx->aio_mutex); 3671 ctx->rc = rc = -EINTR; 3672 total_written = ctx->total_len; 3673 mutex_unlock(&ctx->aio_mutex); 3674 } else { 3675 rc = ctx->rc; 3676 total_written = ctx->total_len; 3677 } 3678 3679 kref_put(&ctx->refcount, cifs_aio_ctx_release); 3680 3681 if (unlikely(!total_written)) 3682 return rc; 3683 3684 iocb->ki_pos += total_written; 3685 return total_written; 3686 } 3687 3688 ssize_t cifs_direct_writev(struct kiocb *iocb, struct iov_iter *from) 3689 { 3690 struct file *file = iocb->ki_filp; 3691 3692 cifs_revalidate_mapping(file->f_inode); 3693 return __cifs_writev(iocb, from, true); 3694 } 3695 3696 ssize_t cifs_user_writev(struct kiocb *iocb, struct iov_iter *from) 3697 { 3698 return __cifs_writev(iocb, from, false); 3699 } 3700 3701 static ssize_t 3702 cifs_writev(struct kiocb *iocb, struct iov_iter *from) 3703 { 3704 struct file *file = iocb->ki_filp; 3705 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data; 3706 struct inode *inode = file->f_mapping->host; 3707 struct cifsInodeInfo *cinode = CIFS_I(inode); 3708 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server; 3709 ssize_t rc; 3710 3711 inode_lock(inode); 3712 /* 3713 * We need to hold the sem to be sure nobody modifies lock list 3714 * with a brlock that prevents writing. 3715 */ 3716 down_read(&cinode->lock_sem); 3717 3718 rc = generic_write_checks(iocb, from); 3719 if (rc <= 0) 3720 goto out; 3721 3722 if (!cifs_find_lock_conflict(cfile, iocb->ki_pos, iov_iter_count(from), 3723 server->vals->exclusive_lock_type, 0, 3724 NULL, CIFS_WRITE_OP)) 3725 rc = __generic_file_write_iter(iocb, from); 3726 else 3727 rc = -EACCES; 3728 out: 3729 up_read(&cinode->lock_sem); 3730 inode_unlock(inode); 3731 3732 if (rc > 0) 3733 rc = generic_write_sync(iocb, rc); 3734 return rc; 3735 } 3736 3737 ssize_t 3738 cifs_strict_writev(struct kiocb *iocb, struct iov_iter *from) 3739 { 3740 struct inode *inode = file_inode(iocb->ki_filp); 3741 struct cifsInodeInfo *cinode = CIFS_I(inode); 3742 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb); 3743 struct cifsFileInfo *cfile = (struct cifsFileInfo *) 3744 iocb->ki_filp->private_data; 3745 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink); 3746 ssize_t written; 3747 3748 written = cifs_get_writer(cinode); 3749 if (written) 3750 return written; 3751 3752 if (CIFS_CACHE_WRITE(cinode)) { 3753 if (cap_unix(tcon->ses) && 3754 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) 3755 && ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) { 3756 written = generic_file_write_iter(iocb, from); 3757 goto out; 3758 } 3759 written = cifs_writev(iocb, from); 3760 goto out; 3761 } 3762 /* 3763 * For non-oplocked files in strict cache mode we need to write the data 3764 * to the server exactly from the pos to pos+len-1 rather than flush all 3765 * affected pages because it may cause a error with mandatory locks on 3766 * these pages but not on the region from pos to ppos+len-1. 3767 */ 3768 written = cifs_user_writev(iocb, from); 3769 if (CIFS_CACHE_READ(cinode)) { 3770 /* 3771 * We have read level caching and we have just sent a write 3772 * request to the server thus making data in the cache stale. 3773 * Zap the cache and set oplock/lease level to NONE to avoid 3774 * reading stale data from the cache. All subsequent read 3775 * operations will read new data from the server. 3776 */ 3777 cifs_zap_mapping(inode); 3778 cifs_dbg(FYI, "Set Oplock/Lease to NONE for inode=%p after write\n", 3779 inode); 3780 cinode->oplock = 0; 3781 } 3782 out: 3783 cifs_put_writer(cinode); 3784 return written; 3785 } 3786 3787 static struct cifs_readdata *cifs_readdata_alloc(work_func_t complete) 3788 { 3789 struct cifs_readdata *rdata; 3790 3791 rdata = kzalloc(sizeof(*rdata), GFP_KERNEL); 3792 if (rdata) { 3793 kref_init(&rdata->refcount); 3794 INIT_LIST_HEAD(&rdata->list); 3795 init_completion(&rdata->done); 3796 INIT_WORK(&rdata->work, complete); 3797 } 3798 3799 return rdata; 3800 } 3801 3802 void 3803 cifs_readdata_release(struct kref *refcount) 3804 { 3805 struct cifs_readdata *rdata = container_of(refcount, 3806 struct cifs_readdata, refcount); 3807 3808 if (rdata->ctx) 3809 kref_put(&rdata->ctx->refcount, cifs_aio_ctx_release); 3810 #ifdef CONFIG_CIFS_SMB_DIRECT 3811 if (rdata->mr) { 3812 smbd_deregister_mr(rdata->mr); 3813 rdata->mr = NULL; 3814 } 3815 #endif 3816 if (rdata->cfile) 3817 cifsFileInfo_put(rdata->cfile); 3818 3819 kfree(rdata); 3820 } 3821 3822 static void collect_uncached_read_data(struct cifs_aio_ctx *ctx); 3823 3824 static void 3825 cifs_uncached_readv_complete(struct work_struct *work) 3826 { 3827 struct cifs_readdata *rdata = container_of(work, 3828 struct cifs_readdata, work); 3829 3830 complete(&rdata->done); 3831 collect_uncached_read_data(rdata->ctx); 3832 /* the below call can possibly free the last ref to aio ctx */ 3833 kref_put(&rdata->refcount, cifs_readdata_release); 3834 } 3835 3836 static int cifs_resend_rdata(struct cifs_readdata *rdata, 3837 struct list_head *rdata_list, 3838 struct cifs_aio_ctx *ctx) 3839 { 3840 unsigned int rsize; 3841 struct cifs_credits credits; 3842 int rc; 3843 struct TCP_Server_Info *server; 3844 3845 /* XXX: should we pick a new channel here? */ 3846 server = rdata->server; 3847 3848 do { 3849 if (rdata->cfile->invalidHandle) { 3850 rc = cifs_reopen_file(rdata->cfile, true); 3851 if (rc == -EAGAIN) 3852 continue; 3853 else if (rc) 3854 break; 3855 } 3856 3857 /* 3858 * Wait for credits to resend this rdata. 3859 * Note: we are attempting to resend the whole rdata not in 3860 * segments 3861 */ 3862 do { 3863 rc = server->ops->wait_mtu_credits(server, rdata->bytes, 3864 &rsize, &credits); 3865 3866 if (rc) 3867 goto fail; 3868 3869 if (rsize < rdata->bytes) { 3870 add_credits_and_wake_if(server, &credits, 0); 3871 msleep(1000); 3872 } 3873 } while (rsize < rdata->bytes); 3874 rdata->credits = credits; 3875 3876 rc = adjust_credits(server, &rdata->credits, rdata->bytes); 3877 if (!rc) { 3878 if (rdata->cfile->invalidHandle) 3879 rc = -EAGAIN; 3880 else { 3881 #ifdef CONFIG_CIFS_SMB_DIRECT 3882 if (rdata->mr) { 3883 rdata->mr->need_invalidate = true; 3884 smbd_deregister_mr(rdata->mr); 3885 rdata->mr = NULL; 3886 } 3887 #endif 3888 rc = server->ops->async_readv(rdata); 3889 } 3890 } 3891 3892 /* If the read was successfully sent, we are done */ 3893 if (!rc) { 3894 /* Add to aio pending list */ 3895 list_add_tail(&rdata->list, rdata_list); 3896 return 0; 3897 } 3898 3899 /* Roll back credits and retry if needed */ 3900 add_credits_and_wake_if(server, &rdata->credits, 0); 3901 } while (rc == -EAGAIN); 3902 3903 fail: 3904 kref_put(&rdata->refcount, cifs_readdata_release); 3905 return rc; 3906 } 3907 3908 static int 3909 cifs_send_async_read(loff_t fpos, size_t len, struct cifsFileInfo *open_file, 3910 struct cifs_sb_info *cifs_sb, struct list_head *rdata_list, 3911 struct cifs_aio_ctx *ctx) 3912 { 3913 struct cifs_readdata *rdata; 3914 unsigned int rsize, nsegs, max_segs = INT_MAX; 3915 struct cifs_credits credits_on_stack; 3916 struct cifs_credits *credits = &credits_on_stack; 3917 size_t cur_len, max_len; 3918 int rc; 3919 pid_t pid; 3920 struct TCP_Server_Info *server; 3921 3922 server = cifs_pick_channel(tlink_tcon(open_file->tlink)->ses); 3923 3924 #ifdef CONFIG_CIFS_SMB_DIRECT 3925 if (server->smbd_conn) 3926 max_segs = server->smbd_conn->max_frmr_depth; 3927 #endif 3928 3929 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD) 3930 pid = open_file->pid; 3931 else 3932 pid = current->tgid; 3933 3934 do { 3935 if (open_file->invalidHandle) { 3936 rc = cifs_reopen_file(open_file, true); 3937 if (rc == -EAGAIN) 3938 continue; 3939 else if (rc) 3940 break; 3941 } 3942 3943 if (cifs_sb->ctx->rsize == 0) 3944 cifs_sb->ctx->rsize = 3945 server->ops->negotiate_rsize(tlink_tcon(open_file->tlink), 3946 cifs_sb->ctx); 3947 3948 rc = server->ops->wait_mtu_credits(server, cifs_sb->ctx->rsize, 3949 &rsize, credits); 3950 if (rc) 3951 break; 3952 3953 max_len = min_t(size_t, len, rsize); 3954 3955 cur_len = cifs_limit_bvec_subset(&ctx->iter, max_len, 3956 max_segs, &nsegs); 3957 cifs_dbg(FYI, "read-to-iter len=%zx/%zx nsegs=%u/%lu/%u\n", 3958 cur_len, max_len, nsegs, ctx->iter.nr_segs, max_segs); 3959 if (cur_len == 0) { 3960 rc = -EIO; 3961 add_credits_and_wake_if(server, credits, 0); 3962 break; 3963 } 3964 3965 rdata = cifs_readdata_alloc(cifs_uncached_readv_complete); 3966 if (!rdata) { 3967 add_credits_and_wake_if(server, credits, 0); 3968 rc = -ENOMEM; 3969 break; 3970 } 3971 3972 rdata->server = server; 3973 rdata->cfile = cifsFileInfo_get(open_file); 3974 rdata->offset = fpos; 3975 rdata->bytes = cur_len; 3976 rdata->pid = pid; 3977 rdata->credits = credits_on_stack; 3978 rdata->ctx = ctx; 3979 kref_get(&ctx->refcount); 3980 3981 rdata->iter = ctx->iter; 3982 iov_iter_truncate(&rdata->iter, cur_len); 3983 3984 rc = adjust_credits(server, &rdata->credits, rdata->bytes); 3985 3986 if (!rc) { 3987 if (rdata->cfile->invalidHandle) 3988 rc = -EAGAIN; 3989 else 3990 rc = server->ops->async_readv(rdata); 3991 } 3992 3993 if (rc) { 3994 add_credits_and_wake_if(server, &rdata->credits, 0); 3995 kref_put(&rdata->refcount, cifs_readdata_release); 3996 if (rc == -EAGAIN) 3997 continue; 3998 break; 3999 } 4000 4001 list_add_tail(&rdata->list, rdata_list); 4002 iov_iter_advance(&ctx->iter, cur_len); 4003 fpos += cur_len; 4004 len -= cur_len; 4005 } while (len > 0); 4006 4007 return rc; 4008 } 4009 4010 static void 4011 collect_uncached_read_data(struct cifs_aio_ctx *ctx) 4012 { 4013 struct cifs_readdata *rdata, *tmp; 4014 struct cifs_sb_info *cifs_sb; 4015 int rc; 4016 4017 cifs_sb = CIFS_SB(ctx->cfile->dentry->d_sb); 4018 4019 mutex_lock(&ctx->aio_mutex); 4020 4021 if (list_empty(&ctx->list)) { 4022 mutex_unlock(&ctx->aio_mutex); 4023 return; 4024 } 4025 4026 rc = ctx->rc; 4027 /* the loop below should proceed in the order of increasing offsets */ 4028 again: 4029 list_for_each_entry_safe(rdata, tmp, &ctx->list, list) { 4030 if (!rc) { 4031 if (!try_wait_for_completion(&rdata->done)) { 4032 mutex_unlock(&ctx->aio_mutex); 4033 return; 4034 } 4035 4036 if (rdata->result == -EAGAIN) { 4037 /* resend call if it's a retryable error */ 4038 struct list_head tmp_list; 4039 unsigned int got_bytes = rdata->got_bytes; 4040 4041 list_del_init(&rdata->list); 4042 INIT_LIST_HEAD(&tmp_list); 4043 4044 if (ctx->direct_io) { 4045 /* 4046 * Re-use rdata as this is a 4047 * direct I/O 4048 */ 4049 rc = cifs_resend_rdata( 4050 rdata, 4051 &tmp_list, ctx); 4052 } else { 4053 rc = cifs_send_async_read( 4054 rdata->offset + got_bytes, 4055 rdata->bytes - got_bytes, 4056 rdata->cfile, cifs_sb, 4057 &tmp_list, ctx); 4058 4059 kref_put(&rdata->refcount, 4060 cifs_readdata_release); 4061 } 4062 4063 list_splice(&tmp_list, &ctx->list); 4064 4065 goto again; 4066 } else if (rdata->result) 4067 rc = rdata->result; 4068 4069 /* if there was a short read -- discard anything left */ 4070 if (rdata->got_bytes && rdata->got_bytes < rdata->bytes) 4071 rc = -ENODATA; 4072 4073 ctx->total_len += rdata->got_bytes; 4074 } 4075 list_del_init(&rdata->list); 4076 kref_put(&rdata->refcount, cifs_readdata_release); 4077 } 4078 4079 /* mask nodata case */ 4080 if (rc == -ENODATA) 4081 rc = 0; 4082 4083 ctx->rc = (rc == 0) ? (ssize_t)ctx->total_len : rc; 4084 4085 mutex_unlock(&ctx->aio_mutex); 4086 4087 if (ctx->iocb && ctx->iocb->ki_complete) 4088 ctx->iocb->ki_complete(ctx->iocb, ctx->rc); 4089 else 4090 complete(&ctx->done); 4091 } 4092 4093 static ssize_t __cifs_readv( 4094 struct kiocb *iocb, struct iov_iter *to, bool direct) 4095 { 4096 size_t len; 4097 struct file *file = iocb->ki_filp; 4098 struct cifs_sb_info *cifs_sb; 4099 struct cifsFileInfo *cfile; 4100 struct cifs_tcon *tcon; 4101 ssize_t rc, total_read = 0; 4102 loff_t offset = iocb->ki_pos; 4103 struct cifs_aio_ctx *ctx; 4104 4105 len = iov_iter_count(to); 4106 if (!len) 4107 return 0; 4108 4109 cifs_sb = CIFS_FILE_SB(file); 4110 cfile = file->private_data; 4111 tcon = tlink_tcon(cfile->tlink); 4112 4113 if (!tcon->ses->server->ops->async_readv) 4114 return -ENOSYS; 4115 4116 if ((file->f_flags & O_ACCMODE) == O_WRONLY) 4117 cifs_dbg(FYI, "attempting read on write only file instance\n"); 4118 4119 ctx = cifs_aio_ctx_alloc(); 4120 if (!ctx) 4121 return -ENOMEM; 4122 4123 ctx->pos = offset; 4124 ctx->direct_io = direct; 4125 ctx->len = len; 4126 ctx->cfile = cifsFileInfo_get(cfile); 4127 ctx->nr_pinned_pages = 0; 4128 4129 if (!is_sync_kiocb(iocb)) 4130 ctx->iocb = iocb; 4131 4132 if (user_backed_iter(to)) { 4133 /* 4134 * Extract IOVEC/UBUF-type iterators to a BVEC-type iterator as 4135 * they contain references to the calling process's virtual 4136 * memory layout which won't be available in an async worker 4137 * thread. This also takes a pin on every folio involved. 4138 */ 4139 rc = netfs_extract_user_iter(to, iov_iter_count(to), 4140 &ctx->iter, 0); 4141 if (rc < 0) { 4142 kref_put(&ctx->refcount, cifs_aio_ctx_release); 4143 return rc; 4144 } 4145 4146 ctx->nr_pinned_pages = rc; 4147 ctx->bv = (void *)ctx->iter.bvec; 4148 ctx->bv_need_unpin = iov_iter_extract_will_pin(to); 4149 ctx->should_dirty = true; 4150 } else if ((iov_iter_is_bvec(to) || iov_iter_is_kvec(to)) && 4151 !is_sync_kiocb(iocb)) { 4152 /* 4153 * If the op is asynchronous, we need to copy the list attached 4154 * to a BVEC/KVEC-type iterator, but we assume that the storage 4155 * will be retained by the caller; in any case, we may or may 4156 * not be able to pin the pages, so we don't try. 4157 */ 4158 ctx->bv = (void *)dup_iter(&ctx->iter, to, GFP_KERNEL); 4159 if (!ctx->bv) { 4160 kref_put(&ctx->refcount, cifs_aio_ctx_release); 4161 return -ENOMEM; 4162 } 4163 } else { 4164 /* 4165 * Otherwise, we just pass the iterator down as-is and rely on 4166 * the caller to make sure the pages referred to by the 4167 * iterator don't evaporate. 4168 */ 4169 ctx->iter = *to; 4170 } 4171 4172 if (direct) { 4173 rc = filemap_write_and_wait_range(file->f_inode->i_mapping, 4174 offset, offset + len - 1); 4175 if (rc) { 4176 kref_put(&ctx->refcount, cifs_aio_ctx_release); 4177 return -EAGAIN; 4178 } 4179 } 4180 4181 /* grab a lock here due to read response handlers can access ctx */ 4182 mutex_lock(&ctx->aio_mutex); 4183 4184 rc = cifs_send_async_read(offset, len, cfile, cifs_sb, &ctx->list, ctx); 4185 4186 /* if at least one read request send succeeded, then reset rc */ 4187 if (!list_empty(&ctx->list)) 4188 rc = 0; 4189 4190 mutex_unlock(&ctx->aio_mutex); 4191 4192 if (rc) { 4193 kref_put(&ctx->refcount, cifs_aio_ctx_release); 4194 return rc; 4195 } 4196 4197 if (!is_sync_kiocb(iocb)) { 4198 kref_put(&ctx->refcount, cifs_aio_ctx_release); 4199 return -EIOCBQUEUED; 4200 } 4201 4202 rc = wait_for_completion_killable(&ctx->done); 4203 if (rc) { 4204 mutex_lock(&ctx->aio_mutex); 4205 ctx->rc = rc = -EINTR; 4206 total_read = ctx->total_len; 4207 mutex_unlock(&ctx->aio_mutex); 4208 } else { 4209 rc = ctx->rc; 4210 total_read = ctx->total_len; 4211 } 4212 4213 kref_put(&ctx->refcount, cifs_aio_ctx_release); 4214 4215 if (total_read) { 4216 iocb->ki_pos += total_read; 4217 return total_read; 4218 } 4219 return rc; 4220 } 4221 4222 ssize_t cifs_direct_readv(struct kiocb *iocb, struct iov_iter *to) 4223 { 4224 return __cifs_readv(iocb, to, true); 4225 } 4226 4227 ssize_t cifs_user_readv(struct kiocb *iocb, struct iov_iter *to) 4228 { 4229 return __cifs_readv(iocb, to, false); 4230 } 4231 4232 ssize_t 4233 cifs_strict_readv(struct kiocb *iocb, struct iov_iter *to) 4234 { 4235 struct inode *inode = file_inode(iocb->ki_filp); 4236 struct cifsInodeInfo *cinode = CIFS_I(inode); 4237 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb); 4238 struct cifsFileInfo *cfile = (struct cifsFileInfo *) 4239 iocb->ki_filp->private_data; 4240 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink); 4241 int rc = -EACCES; 4242 4243 /* 4244 * In strict cache mode we need to read from the server all the time 4245 * if we don't have level II oplock because the server can delay mtime 4246 * change - so we can't make a decision about inode invalidating. 4247 * And we can also fail with pagereading if there are mandatory locks 4248 * on pages affected by this read but not on the region from pos to 4249 * pos+len-1. 4250 */ 4251 if (!CIFS_CACHE_READ(cinode)) 4252 return cifs_user_readv(iocb, to); 4253 4254 if (cap_unix(tcon->ses) && 4255 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) && 4256 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) 4257 return generic_file_read_iter(iocb, to); 4258 4259 /* 4260 * We need to hold the sem to be sure nobody modifies lock list 4261 * with a brlock that prevents reading. 4262 */ 4263 down_read(&cinode->lock_sem); 4264 if (!cifs_find_lock_conflict(cfile, iocb->ki_pos, iov_iter_count(to), 4265 tcon->ses->server->vals->shared_lock_type, 4266 0, NULL, CIFS_READ_OP)) 4267 rc = generic_file_read_iter(iocb, to); 4268 up_read(&cinode->lock_sem); 4269 return rc; 4270 } 4271 4272 static ssize_t 4273 cifs_read(struct file *file, char *read_data, size_t read_size, loff_t *offset) 4274 { 4275 int rc = -EACCES; 4276 unsigned int bytes_read = 0; 4277 unsigned int total_read; 4278 unsigned int current_read_size; 4279 unsigned int rsize; 4280 struct cifs_sb_info *cifs_sb; 4281 struct cifs_tcon *tcon; 4282 struct TCP_Server_Info *server; 4283 unsigned int xid; 4284 char *cur_offset; 4285 struct cifsFileInfo *open_file; 4286 struct cifs_io_parms io_parms = {0}; 4287 int buf_type = CIFS_NO_BUFFER; 4288 __u32 pid; 4289 4290 xid = get_xid(); 4291 cifs_sb = CIFS_FILE_SB(file); 4292 4293 /* FIXME: set up handlers for larger reads and/or convert to async */ 4294 rsize = min_t(unsigned int, cifs_sb->ctx->rsize, CIFSMaxBufSize); 4295 4296 if (file->private_data == NULL) { 4297 rc = -EBADF; 4298 free_xid(xid); 4299 return rc; 4300 } 4301 open_file = file->private_data; 4302 tcon = tlink_tcon(open_file->tlink); 4303 server = cifs_pick_channel(tcon->ses); 4304 4305 if (!server->ops->sync_read) { 4306 free_xid(xid); 4307 return -ENOSYS; 4308 } 4309 4310 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD) 4311 pid = open_file->pid; 4312 else 4313 pid = current->tgid; 4314 4315 if ((file->f_flags & O_ACCMODE) == O_WRONLY) 4316 cifs_dbg(FYI, "attempting read on write only file instance\n"); 4317 4318 for (total_read = 0, cur_offset = read_data; read_size > total_read; 4319 total_read += bytes_read, cur_offset += bytes_read) { 4320 do { 4321 current_read_size = min_t(uint, read_size - total_read, 4322 rsize); 4323 /* 4324 * For windows me and 9x we do not want to request more 4325 * than it negotiated since it will refuse the read 4326 * then. 4327 */ 4328 if (!(tcon->ses->capabilities & 4329 tcon->ses->server->vals->cap_large_files)) { 4330 current_read_size = min_t(uint, 4331 current_read_size, CIFSMaxBufSize); 4332 } 4333 if (open_file->invalidHandle) { 4334 rc = cifs_reopen_file(open_file, true); 4335 if (rc != 0) 4336 break; 4337 } 4338 io_parms.pid = pid; 4339 io_parms.tcon = tcon; 4340 io_parms.offset = *offset; 4341 io_parms.length = current_read_size; 4342 io_parms.server = server; 4343 rc = server->ops->sync_read(xid, &open_file->fid, &io_parms, 4344 &bytes_read, &cur_offset, 4345 &buf_type); 4346 } while (rc == -EAGAIN); 4347 4348 if (rc || (bytes_read == 0)) { 4349 if (total_read) { 4350 break; 4351 } else { 4352 free_xid(xid); 4353 return rc; 4354 } 4355 } else { 4356 cifs_stats_bytes_read(tcon, total_read); 4357 *offset += bytes_read; 4358 } 4359 } 4360 free_xid(xid); 4361 return total_read; 4362 } 4363 4364 /* 4365 * If the page is mmap'ed into a process' page tables, then we need to make 4366 * sure that it doesn't change while being written back. 4367 */ 4368 static vm_fault_t cifs_page_mkwrite(struct vm_fault *vmf) 4369 { 4370 struct folio *folio = page_folio(vmf->page); 4371 4372 /* Wait for the folio to be written to the cache before we allow it to 4373 * be modified. We then assume the entire folio will need writing back. 4374 */ 4375 #ifdef CONFIG_CIFS_FSCACHE 4376 if (folio_test_fscache(folio) && 4377 folio_wait_fscache_killable(folio) < 0) 4378 return VM_FAULT_RETRY; 4379 #endif 4380 4381 folio_wait_writeback(folio); 4382 4383 if (folio_lock_killable(folio) < 0) 4384 return VM_FAULT_RETRY; 4385 return VM_FAULT_LOCKED; 4386 } 4387 4388 static const struct vm_operations_struct cifs_file_vm_ops = { 4389 .fault = filemap_fault, 4390 .map_pages = filemap_map_pages, 4391 .page_mkwrite = cifs_page_mkwrite, 4392 }; 4393 4394 int cifs_file_strict_mmap(struct file *file, struct vm_area_struct *vma) 4395 { 4396 int xid, rc = 0; 4397 struct inode *inode = file_inode(file); 4398 4399 xid = get_xid(); 4400 4401 if (!CIFS_CACHE_READ(CIFS_I(inode))) 4402 rc = cifs_zap_mapping(inode); 4403 if (!rc) 4404 rc = generic_file_mmap(file, vma); 4405 if (!rc) 4406 vma->vm_ops = &cifs_file_vm_ops; 4407 4408 free_xid(xid); 4409 return rc; 4410 } 4411 4412 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma) 4413 { 4414 int rc, xid; 4415 4416 xid = get_xid(); 4417 4418 rc = cifs_revalidate_file(file); 4419 if (rc) 4420 cifs_dbg(FYI, "Validation prior to mmap failed, error=%d\n", 4421 rc); 4422 if (!rc) 4423 rc = generic_file_mmap(file, vma); 4424 if (!rc) 4425 vma->vm_ops = &cifs_file_vm_ops; 4426 4427 free_xid(xid); 4428 return rc; 4429 } 4430 4431 /* 4432 * Unlock a bunch of folios in the pagecache. 4433 */ 4434 static void cifs_unlock_folios(struct address_space *mapping, pgoff_t first, pgoff_t last) 4435 { 4436 struct folio *folio; 4437 XA_STATE(xas, &mapping->i_pages, first); 4438 4439 rcu_read_lock(); 4440 xas_for_each(&xas, folio, last) { 4441 folio_unlock(folio); 4442 } 4443 rcu_read_unlock(); 4444 } 4445 4446 static void cifs_readahead_complete(struct work_struct *work) 4447 { 4448 struct cifs_readdata *rdata = container_of(work, 4449 struct cifs_readdata, work); 4450 struct folio *folio; 4451 pgoff_t last; 4452 bool good = rdata->result == 0 || (rdata->result == -EAGAIN && rdata->got_bytes); 4453 4454 XA_STATE(xas, &rdata->mapping->i_pages, rdata->offset / PAGE_SIZE); 4455 4456 if (good) 4457 cifs_readahead_to_fscache(rdata->mapping->host, 4458 rdata->offset, rdata->bytes); 4459 4460 if (iov_iter_count(&rdata->iter) > 0) 4461 iov_iter_zero(iov_iter_count(&rdata->iter), &rdata->iter); 4462 4463 last = (rdata->offset + rdata->bytes - 1) / PAGE_SIZE; 4464 4465 rcu_read_lock(); 4466 xas_for_each(&xas, folio, last) { 4467 if (good) { 4468 flush_dcache_folio(folio); 4469 folio_mark_uptodate(folio); 4470 } 4471 folio_unlock(folio); 4472 } 4473 rcu_read_unlock(); 4474 4475 kref_put(&rdata->refcount, cifs_readdata_release); 4476 } 4477 4478 static void cifs_readahead(struct readahead_control *ractl) 4479 { 4480 struct cifsFileInfo *open_file = ractl->file->private_data; 4481 struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(ractl->file); 4482 struct TCP_Server_Info *server; 4483 unsigned int xid, nr_pages, cache_nr_pages = 0; 4484 unsigned int ra_pages; 4485 pgoff_t next_cached = ULONG_MAX, ra_index; 4486 bool caching = fscache_cookie_enabled(cifs_inode_cookie(ractl->mapping->host)) && 4487 cifs_inode_cookie(ractl->mapping->host)->cache_priv; 4488 bool check_cache = caching; 4489 pid_t pid; 4490 int rc = 0; 4491 4492 /* Note that readahead_count() lags behind our dequeuing of pages from 4493 * the ractl, wo we have to keep track for ourselves. 4494 */ 4495 ra_pages = readahead_count(ractl); 4496 ra_index = readahead_index(ractl); 4497 4498 xid = get_xid(); 4499 4500 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD) 4501 pid = open_file->pid; 4502 else 4503 pid = current->tgid; 4504 4505 server = cifs_pick_channel(tlink_tcon(open_file->tlink)->ses); 4506 4507 cifs_dbg(FYI, "%s: file=%p mapping=%p num_pages=%u\n", 4508 __func__, ractl->file, ractl->mapping, ra_pages); 4509 4510 /* 4511 * Chop the readahead request up into rsize-sized read requests. 4512 */ 4513 while ((nr_pages = ra_pages)) { 4514 unsigned int i, rsize; 4515 struct cifs_readdata *rdata; 4516 struct cifs_credits credits_on_stack; 4517 struct cifs_credits *credits = &credits_on_stack; 4518 struct folio *folio; 4519 pgoff_t fsize; 4520 4521 /* 4522 * Find out if we have anything cached in the range of 4523 * interest, and if so, where the next chunk of cached data is. 4524 */ 4525 if (caching) { 4526 if (check_cache) { 4527 rc = cifs_fscache_query_occupancy( 4528 ractl->mapping->host, ra_index, nr_pages, 4529 &next_cached, &cache_nr_pages); 4530 if (rc < 0) 4531 caching = false; 4532 check_cache = false; 4533 } 4534 4535 if (ra_index == next_cached) { 4536 /* 4537 * TODO: Send a whole batch of pages to be read 4538 * by the cache. 4539 */ 4540 folio = readahead_folio(ractl); 4541 fsize = folio_nr_pages(folio); 4542 ra_pages -= fsize; 4543 ra_index += fsize; 4544 if (cifs_readpage_from_fscache(ractl->mapping->host, 4545 &folio->page) < 0) { 4546 /* 4547 * TODO: Deal with cache read failure 4548 * here, but for the moment, delegate 4549 * that to readpage. 4550 */ 4551 caching = false; 4552 } 4553 folio_unlock(folio); 4554 next_cached += fsize; 4555 cache_nr_pages -= fsize; 4556 if (cache_nr_pages == 0) 4557 check_cache = true; 4558 continue; 4559 } 4560 } 4561 4562 if (open_file->invalidHandle) { 4563 rc = cifs_reopen_file(open_file, true); 4564 if (rc) { 4565 if (rc == -EAGAIN) 4566 continue; 4567 break; 4568 } 4569 } 4570 4571 if (cifs_sb->ctx->rsize == 0) 4572 cifs_sb->ctx->rsize = 4573 server->ops->negotiate_rsize(tlink_tcon(open_file->tlink), 4574 cifs_sb->ctx); 4575 4576 rc = server->ops->wait_mtu_credits(server, cifs_sb->ctx->rsize, 4577 &rsize, credits); 4578 if (rc) 4579 break; 4580 nr_pages = min_t(size_t, rsize / PAGE_SIZE, ra_pages); 4581 if (next_cached != ULONG_MAX) 4582 nr_pages = min_t(size_t, nr_pages, next_cached - ra_index); 4583 4584 /* 4585 * Give up immediately if rsize is too small to read an entire 4586 * page. The VFS will fall back to readpage. We should never 4587 * reach this point however since we set ra_pages to 0 when the 4588 * rsize is smaller than a cache page. 4589 */ 4590 if (unlikely(!nr_pages)) { 4591 add_credits_and_wake_if(server, credits, 0); 4592 break; 4593 } 4594 4595 rdata = cifs_readdata_alloc(cifs_readahead_complete); 4596 if (!rdata) { 4597 /* best to give up if we're out of mem */ 4598 add_credits_and_wake_if(server, credits, 0); 4599 break; 4600 } 4601 4602 rdata->offset = ra_index * PAGE_SIZE; 4603 rdata->bytes = nr_pages * PAGE_SIZE; 4604 rdata->cfile = cifsFileInfo_get(open_file); 4605 rdata->server = server; 4606 rdata->mapping = ractl->mapping; 4607 rdata->pid = pid; 4608 rdata->credits = credits_on_stack; 4609 4610 for (i = 0; i < nr_pages; i++) { 4611 if (!readahead_folio(ractl)) 4612 WARN_ON(1); 4613 } 4614 ra_pages -= nr_pages; 4615 ra_index += nr_pages; 4616 4617 iov_iter_xarray(&rdata->iter, ITER_DEST, &rdata->mapping->i_pages, 4618 rdata->offset, rdata->bytes); 4619 4620 rc = adjust_credits(server, &rdata->credits, rdata->bytes); 4621 if (!rc) { 4622 if (rdata->cfile->invalidHandle) 4623 rc = -EAGAIN; 4624 else 4625 rc = server->ops->async_readv(rdata); 4626 } 4627 4628 if (rc) { 4629 add_credits_and_wake_if(server, &rdata->credits, 0); 4630 cifs_unlock_folios(rdata->mapping, 4631 rdata->offset / PAGE_SIZE, 4632 (rdata->offset + rdata->bytes - 1) / PAGE_SIZE); 4633 /* Fallback to the readpage in error/reconnect cases */ 4634 kref_put(&rdata->refcount, cifs_readdata_release); 4635 break; 4636 } 4637 4638 kref_put(&rdata->refcount, cifs_readdata_release); 4639 } 4640 4641 free_xid(xid); 4642 } 4643 4644 /* 4645 * cifs_readpage_worker must be called with the page pinned 4646 */ 4647 static int cifs_readpage_worker(struct file *file, struct page *page, 4648 loff_t *poffset) 4649 { 4650 char *read_data; 4651 int rc; 4652 4653 /* Is the page cached? */ 4654 rc = cifs_readpage_from_fscache(file_inode(file), page); 4655 if (rc == 0) 4656 goto read_complete; 4657 4658 read_data = kmap(page); 4659 /* for reads over a certain size could initiate async read ahead */ 4660 4661 rc = cifs_read(file, read_data, PAGE_SIZE, poffset); 4662 4663 if (rc < 0) 4664 goto io_error; 4665 else 4666 cifs_dbg(FYI, "Bytes read %d\n", rc); 4667 4668 /* we do not want atime to be less than mtime, it broke some apps */ 4669 file_inode(file)->i_atime = current_time(file_inode(file)); 4670 if (timespec64_compare(&(file_inode(file)->i_atime), &(file_inode(file)->i_mtime))) 4671 file_inode(file)->i_atime = file_inode(file)->i_mtime; 4672 else 4673 file_inode(file)->i_atime = current_time(file_inode(file)); 4674 4675 if (PAGE_SIZE > rc) 4676 memset(read_data + rc, 0, PAGE_SIZE - rc); 4677 4678 flush_dcache_page(page); 4679 SetPageUptodate(page); 4680 rc = 0; 4681 4682 io_error: 4683 kunmap(page); 4684 4685 read_complete: 4686 unlock_page(page); 4687 return rc; 4688 } 4689 4690 static int cifs_read_folio(struct file *file, struct folio *folio) 4691 { 4692 struct page *page = &folio->page; 4693 loff_t offset = page_file_offset(page); 4694 int rc = -EACCES; 4695 unsigned int xid; 4696 4697 xid = get_xid(); 4698 4699 if (file->private_data == NULL) { 4700 rc = -EBADF; 4701 free_xid(xid); 4702 return rc; 4703 } 4704 4705 cifs_dbg(FYI, "read_folio %p at offset %d 0x%x\n", 4706 page, (int)offset, (int)offset); 4707 4708 rc = cifs_readpage_worker(file, page, &offset); 4709 4710 free_xid(xid); 4711 return rc; 4712 } 4713 4714 static int is_inode_writable(struct cifsInodeInfo *cifs_inode) 4715 { 4716 struct cifsFileInfo *open_file; 4717 4718 spin_lock(&cifs_inode->open_file_lock); 4719 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) { 4720 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) { 4721 spin_unlock(&cifs_inode->open_file_lock); 4722 return 1; 4723 } 4724 } 4725 spin_unlock(&cifs_inode->open_file_lock); 4726 return 0; 4727 } 4728 4729 /* We do not want to update the file size from server for inodes 4730 open for write - to avoid races with writepage extending 4731 the file - in the future we could consider allowing 4732 refreshing the inode only on increases in the file size 4733 but this is tricky to do without racing with writebehind 4734 page caching in the current Linux kernel design */ 4735 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file) 4736 { 4737 if (!cifsInode) 4738 return true; 4739 4740 if (is_inode_writable(cifsInode)) { 4741 /* This inode is open for write at least once */ 4742 struct cifs_sb_info *cifs_sb; 4743 4744 cifs_sb = CIFS_SB(cifsInode->netfs.inode.i_sb); 4745 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) { 4746 /* since no page cache to corrupt on directio 4747 we can change size safely */ 4748 return true; 4749 } 4750 4751 if (i_size_read(&cifsInode->netfs.inode) < end_of_file) 4752 return true; 4753 4754 return false; 4755 } else 4756 return true; 4757 } 4758 4759 static int cifs_write_begin(struct file *file, struct address_space *mapping, 4760 loff_t pos, unsigned len, 4761 struct page **pagep, void **fsdata) 4762 { 4763 int oncethru = 0; 4764 pgoff_t index = pos >> PAGE_SHIFT; 4765 loff_t offset = pos & (PAGE_SIZE - 1); 4766 loff_t page_start = pos & PAGE_MASK; 4767 loff_t i_size; 4768 struct page *page; 4769 int rc = 0; 4770 4771 cifs_dbg(FYI, "write_begin from %lld len %d\n", (long long)pos, len); 4772 4773 start: 4774 page = grab_cache_page_write_begin(mapping, index); 4775 if (!page) { 4776 rc = -ENOMEM; 4777 goto out; 4778 } 4779 4780 if (PageUptodate(page)) 4781 goto out; 4782 4783 /* 4784 * If we write a full page it will be up to date, no need to read from 4785 * the server. If the write is short, we'll end up doing a sync write 4786 * instead. 4787 */ 4788 if (len == PAGE_SIZE) 4789 goto out; 4790 4791 /* 4792 * optimize away the read when we have an oplock, and we're not 4793 * expecting to use any of the data we'd be reading in. That 4794 * is, when the page lies beyond the EOF, or straddles the EOF 4795 * and the write will cover all of the existing data. 4796 */ 4797 if (CIFS_CACHE_READ(CIFS_I(mapping->host))) { 4798 i_size = i_size_read(mapping->host); 4799 if (page_start >= i_size || 4800 (offset == 0 && (pos + len) >= i_size)) { 4801 zero_user_segments(page, 0, offset, 4802 offset + len, 4803 PAGE_SIZE); 4804 /* 4805 * PageChecked means that the parts of the page 4806 * to which we're not writing are considered up 4807 * to date. Once the data is copied to the 4808 * page, it can be set uptodate. 4809 */ 4810 SetPageChecked(page); 4811 goto out; 4812 } 4813 } 4814 4815 if ((file->f_flags & O_ACCMODE) != O_WRONLY && !oncethru) { 4816 /* 4817 * might as well read a page, it is fast enough. If we get 4818 * an error, we don't need to return it. cifs_write_end will 4819 * do a sync write instead since PG_uptodate isn't set. 4820 */ 4821 cifs_readpage_worker(file, page, &page_start); 4822 put_page(page); 4823 oncethru = 1; 4824 goto start; 4825 } else { 4826 /* we could try using another file handle if there is one - 4827 but how would we lock it to prevent close of that handle 4828 racing with this read? In any case 4829 this will be written out by write_end so is fine */ 4830 } 4831 out: 4832 *pagep = page; 4833 return rc; 4834 } 4835 4836 static bool cifs_release_folio(struct folio *folio, gfp_t gfp) 4837 { 4838 if (folio_test_private(folio)) 4839 return 0; 4840 if (folio_test_fscache(folio)) { 4841 if (current_is_kswapd() || !(gfp & __GFP_FS)) 4842 return false; 4843 folio_wait_fscache(folio); 4844 } 4845 fscache_note_page_release(cifs_inode_cookie(folio->mapping->host)); 4846 return true; 4847 } 4848 4849 static void cifs_invalidate_folio(struct folio *folio, size_t offset, 4850 size_t length) 4851 { 4852 folio_wait_fscache(folio); 4853 } 4854 4855 static int cifs_launder_folio(struct folio *folio) 4856 { 4857 int rc = 0; 4858 loff_t range_start = folio_pos(folio); 4859 loff_t range_end = range_start + folio_size(folio); 4860 struct writeback_control wbc = { 4861 .sync_mode = WB_SYNC_ALL, 4862 .nr_to_write = 0, 4863 .range_start = range_start, 4864 .range_end = range_end, 4865 }; 4866 4867 cifs_dbg(FYI, "Launder page: %lu\n", folio->index); 4868 4869 if (folio_clear_dirty_for_io(folio)) 4870 rc = cifs_writepage_locked(&folio->page, &wbc); 4871 4872 folio_wait_fscache(folio); 4873 return rc; 4874 } 4875 4876 void cifs_oplock_break(struct work_struct *work) 4877 { 4878 struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo, 4879 oplock_break); 4880 struct inode *inode = d_inode(cfile->dentry); 4881 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb); 4882 struct cifsInodeInfo *cinode = CIFS_I(inode); 4883 struct cifs_tcon *tcon; 4884 struct TCP_Server_Info *server; 4885 struct tcon_link *tlink; 4886 int rc = 0; 4887 bool purge_cache = false, oplock_break_cancelled; 4888 __u64 persistent_fid, volatile_fid; 4889 __u16 net_fid; 4890 4891 wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS, 4892 TASK_UNINTERRUPTIBLE); 4893 4894 tlink = cifs_sb_tlink(cifs_sb); 4895 if (IS_ERR(tlink)) 4896 goto out; 4897 tcon = tlink_tcon(tlink); 4898 server = tcon->ses->server; 4899 4900 server->ops->downgrade_oplock(server, cinode, cfile->oplock_level, 4901 cfile->oplock_epoch, &purge_cache); 4902 4903 if (!CIFS_CACHE_WRITE(cinode) && CIFS_CACHE_READ(cinode) && 4904 cifs_has_mand_locks(cinode)) { 4905 cifs_dbg(FYI, "Reset oplock to None for inode=%p due to mand locks\n", 4906 inode); 4907 cinode->oplock = 0; 4908 } 4909 4910 if (inode && S_ISREG(inode->i_mode)) { 4911 if (CIFS_CACHE_READ(cinode)) 4912 break_lease(inode, O_RDONLY); 4913 else 4914 break_lease(inode, O_WRONLY); 4915 rc = filemap_fdatawrite(inode->i_mapping); 4916 if (!CIFS_CACHE_READ(cinode) || purge_cache) { 4917 rc = filemap_fdatawait(inode->i_mapping); 4918 mapping_set_error(inode->i_mapping, rc); 4919 cifs_zap_mapping(inode); 4920 } 4921 cifs_dbg(FYI, "Oplock flush inode %p rc %d\n", inode, rc); 4922 if (CIFS_CACHE_WRITE(cinode)) 4923 goto oplock_break_ack; 4924 } 4925 4926 rc = cifs_push_locks(cfile); 4927 if (rc) 4928 cifs_dbg(VFS, "Push locks rc = %d\n", rc); 4929 4930 oplock_break_ack: 4931 /* 4932 * When oplock break is received and there are no active 4933 * file handles but cached, then schedule deferred close immediately. 4934 * So, new open will not use cached handle. 4935 */ 4936 4937 if (!CIFS_CACHE_HANDLE(cinode) && !list_empty(&cinode->deferred_closes)) 4938 cifs_close_deferred_file(cinode); 4939 4940 persistent_fid = cfile->fid.persistent_fid; 4941 volatile_fid = cfile->fid.volatile_fid; 4942 net_fid = cfile->fid.netfid; 4943 oplock_break_cancelled = cfile->oplock_break_cancelled; 4944 4945 _cifsFileInfo_put(cfile, false /* do not wait for ourself */, false); 4946 /* 4947 * MS-SMB2 3.2.5.19.1 and 3.2.5.19.2 (and MS-CIFS 3.2.5.42) do not require 4948 * an acknowledgment to be sent when the file has already been closed. 4949 */ 4950 spin_lock(&cinode->open_file_lock); 4951 /* check list empty since can race with kill_sb calling tree disconnect */ 4952 if (!oplock_break_cancelled && !list_empty(&cinode->openFileList)) { 4953 spin_unlock(&cinode->open_file_lock); 4954 rc = server->ops->oplock_response(tcon, persistent_fid, 4955 volatile_fid, net_fid, cinode); 4956 cifs_dbg(FYI, "Oplock release rc = %d\n", rc); 4957 } else 4958 spin_unlock(&cinode->open_file_lock); 4959 4960 cifs_put_tlink(tlink); 4961 out: 4962 cifs_done_oplock_break(cinode); 4963 } 4964 4965 /* 4966 * The presence of cifs_direct_io() in the address space ops vector 4967 * allowes open() O_DIRECT flags which would have failed otherwise. 4968 * 4969 * In the non-cached mode (mount with cache=none), we shunt off direct read and write requests 4970 * so this method should never be called. 4971 * 4972 * Direct IO is not yet supported in the cached mode. 4973 */ 4974 static ssize_t 4975 cifs_direct_io(struct kiocb *iocb, struct iov_iter *iter) 4976 { 4977 /* 4978 * FIXME 4979 * Eventually need to support direct IO for non forcedirectio mounts 4980 */ 4981 return -EINVAL; 4982 } 4983 4984 static int cifs_swap_activate(struct swap_info_struct *sis, 4985 struct file *swap_file, sector_t *span) 4986 { 4987 struct cifsFileInfo *cfile = swap_file->private_data; 4988 struct inode *inode = swap_file->f_mapping->host; 4989 unsigned long blocks; 4990 long long isize; 4991 4992 cifs_dbg(FYI, "swap activate\n"); 4993 4994 if (!swap_file->f_mapping->a_ops->swap_rw) 4995 /* Cannot support swap */ 4996 return -EINVAL; 4997 4998 spin_lock(&inode->i_lock); 4999 blocks = inode->i_blocks; 5000 isize = inode->i_size; 5001 spin_unlock(&inode->i_lock); 5002 if (blocks*512 < isize) { 5003 pr_warn("swap activate: swapfile has holes\n"); 5004 return -EINVAL; 5005 } 5006 *span = sis->pages; 5007 5008 pr_warn_once("Swap support over SMB3 is experimental\n"); 5009 5010 /* 5011 * TODO: consider adding ACL (or documenting how) to prevent other 5012 * users (on this or other systems) from reading it 5013 */ 5014 5015 5016 /* TODO: add sk_set_memalloc(inet) or similar */ 5017 5018 if (cfile) 5019 cfile->swapfile = true; 5020 /* 5021 * TODO: Since file already open, we can't open with DENY_ALL here 5022 * but we could add call to grab a byte range lock to prevent others 5023 * from reading or writing the file 5024 */ 5025 5026 sis->flags |= SWP_FS_OPS; 5027 return add_swap_extent(sis, 0, sis->max, 0); 5028 } 5029 5030 static void cifs_swap_deactivate(struct file *file) 5031 { 5032 struct cifsFileInfo *cfile = file->private_data; 5033 5034 cifs_dbg(FYI, "swap deactivate\n"); 5035 5036 /* TODO: undo sk_set_memalloc(inet) will eventually be needed */ 5037 5038 if (cfile) 5039 cfile->swapfile = false; 5040 5041 /* do we need to unpin (or unlock) the file */ 5042 } 5043 5044 /* 5045 * Mark a page as having been made dirty and thus needing writeback. We also 5046 * need to pin the cache object to write back to. 5047 */ 5048 #ifdef CONFIG_CIFS_FSCACHE 5049 static bool cifs_dirty_folio(struct address_space *mapping, struct folio *folio) 5050 { 5051 return fscache_dirty_folio(mapping, folio, 5052 cifs_inode_cookie(mapping->host)); 5053 } 5054 #else 5055 #define cifs_dirty_folio filemap_dirty_folio 5056 #endif 5057 5058 const struct address_space_operations cifs_addr_ops = { 5059 .read_folio = cifs_read_folio, 5060 .readahead = cifs_readahead, 5061 .writepages = cifs_writepages, 5062 .write_begin = cifs_write_begin, 5063 .write_end = cifs_write_end, 5064 .dirty_folio = cifs_dirty_folio, 5065 .release_folio = cifs_release_folio, 5066 .direct_IO = cifs_direct_io, 5067 .invalidate_folio = cifs_invalidate_folio, 5068 .launder_folio = cifs_launder_folio, 5069 .migrate_folio = filemap_migrate_folio, 5070 /* 5071 * TODO: investigate and if useful we could add an is_dirty_writeback 5072 * helper if needed 5073 */ 5074 .swap_activate = cifs_swap_activate, 5075 .swap_deactivate = cifs_swap_deactivate, 5076 }; 5077 5078 /* 5079 * cifs_readahead requires the server to support a buffer large enough to 5080 * contain the header plus one complete page of data. Otherwise, we need 5081 * to leave cifs_readahead out of the address space operations. 5082 */ 5083 const struct address_space_operations cifs_addr_ops_smallbuf = { 5084 .read_folio = cifs_read_folio, 5085 .writepages = cifs_writepages, 5086 .write_begin = cifs_write_begin, 5087 .write_end = cifs_write_end, 5088 .dirty_folio = cifs_dirty_folio, 5089 .release_folio = cifs_release_folio, 5090 .invalidate_folio = cifs_invalidate_folio, 5091 .launder_folio = cifs_launder_folio, 5092 .migrate_folio = filemap_migrate_folio, 5093 }; 5094