1 // SPDX-License-Identifier: LGPL-2.1 2 /* 3 * 4 * vfs operations that deal with files 5 * 6 * Copyright (C) International Business Machines Corp., 2002,2010 7 * Author(s): Steve French (sfrench@us.ibm.com) 8 * Jeremy Allison (jra@samba.org) 9 * 10 */ 11 #include <linux/fs.h> 12 #include <linux/filelock.h> 13 #include <linux/backing-dev.h> 14 #include <linux/stat.h> 15 #include <linux/fcntl.h> 16 #include <linux/pagemap.h> 17 #include <linux/pagevec.h> 18 #include <linux/writeback.h> 19 #include <linux/task_io_accounting_ops.h> 20 #include <linux/delay.h> 21 #include <linux/mount.h> 22 #include <linux/slab.h> 23 #include <linux/swap.h> 24 #include <linux/mm.h> 25 #include <asm/div64.h> 26 #include "cifsfs.h" 27 #include "cifspdu.h" 28 #include "cifsglob.h" 29 #include "cifsproto.h" 30 #include "smb2proto.h" 31 #include "cifs_unicode.h" 32 #include "cifs_debug.h" 33 #include "cifs_fs_sb.h" 34 #include "fscache.h" 35 #include "smbdirect.h" 36 #include "fs_context.h" 37 #include "cifs_ioctl.h" 38 #include "cached_dir.h" 39 40 /* 41 * Remove the dirty flags from a span of pages. 42 */ 43 static void cifs_undirty_folios(struct inode *inode, loff_t start, unsigned int len) 44 { 45 struct address_space *mapping = inode->i_mapping; 46 struct folio *folio; 47 pgoff_t end; 48 49 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE); 50 51 rcu_read_lock(); 52 53 end = (start + len - 1) / PAGE_SIZE; 54 xas_for_each_marked(&xas, folio, end, PAGECACHE_TAG_DIRTY) { 55 if (xas_retry(&xas, folio)) 56 continue; 57 xas_pause(&xas); 58 rcu_read_unlock(); 59 folio_lock(folio); 60 folio_clear_dirty_for_io(folio); 61 folio_unlock(folio); 62 rcu_read_lock(); 63 } 64 65 rcu_read_unlock(); 66 } 67 68 /* 69 * Completion of write to server. 70 */ 71 void cifs_pages_written_back(struct inode *inode, loff_t start, unsigned int len) 72 { 73 struct address_space *mapping = inode->i_mapping; 74 struct folio *folio; 75 pgoff_t end; 76 77 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE); 78 79 if (!len) 80 return; 81 82 rcu_read_lock(); 83 84 end = (start + len - 1) / PAGE_SIZE; 85 xas_for_each(&xas, folio, end) { 86 if (xas_retry(&xas, folio)) 87 continue; 88 if (!folio_test_writeback(folio)) { 89 WARN_ONCE(1, "bad %x @%llx page %lx %lx\n", 90 len, start, folio_index(folio), end); 91 continue; 92 } 93 94 folio_detach_private(folio); 95 folio_end_writeback(folio); 96 } 97 98 rcu_read_unlock(); 99 } 100 101 /* 102 * Failure of write to server. 103 */ 104 void cifs_pages_write_failed(struct inode *inode, loff_t start, unsigned int len) 105 { 106 struct address_space *mapping = inode->i_mapping; 107 struct folio *folio; 108 pgoff_t end; 109 110 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE); 111 112 if (!len) 113 return; 114 115 rcu_read_lock(); 116 117 end = (start + len - 1) / PAGE_SIZE; 118 xas_for_each(&xas, folio, end) { 119 if (xas_retry(&xas, folio)) 120 continue; 121 if (!folio_test_writeback(folio)) { 122 WARN_ONCE(1, "bad %x @%llx page %lx %lx\n", 123 len, start, folio_index(folio), end); 124 continue; 125 } 126 127 folio_set_error(folio); 128 folio_end_writeback(folio); 129 } 130 131 rcu_read_unlock(); 132 } 133 134 /* 135 * Redirty pages after a temporary failure. 136 */ 137 void cifs_pages_write_redirty(struct inode *inode, loff_t start, unsigned int len) 138 { 139 struct address_space *mapping = inode->i_mapping; 140 struct folio *folio; 141 pgoff_t end; 142 143 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE); 144 145 if (!len) 146 return; 147 148 rcu_read_lock(); 149 150 end = (start + len - 1) / PAGE_SIZE; 151 xas_for_each(&xas, folio, end) { 152 if (!folio_test_writeback(folio)) { 153 WARN_ONCE(1, "bad %x @%llx page %lx %lx\n", 154 len, start, folio_index(folio), end); 155 continue; 156 } 157 158 filemap_dirty_folio(folio->mapping, folio); 159 folio_end_writeback(folio); 160 } 161 162 rcu_read_unlock(); 163 } 164 165 /* 166 * Mark as invalid, all open files on tree connections since they 167 * were closed when session to server was lost. 168 */ 169 void 170 cifs_mark_open_files_invalid(struct cifs_tcon *tcon) 171 { 172 struct cifsFileInfo *open_file = NULL; 173 struct list_head *tmp; 174 struct list_head *tmp1; 175 176 /* only send once per connect */ 177 spin_lock(&tcon->tc_lock); 178 if (tcon->status != TID_NEED_RECON) { 179 spin_unlock(&tcon->tc_lock); 180 return; 181 } 182 tcon->status = TID_IN_FILES_INVALIDATE; 183 spin_unlock(&tcon->tc_lock); 184 185 /* list all files open on tree connection and mark them invalid */ 186 spin_lock(&tcon->open_file_lock); 187 list_for_each_safe(tmp, tmp1, &tcon->openFileList) { 188 open_file = list_entry(tmp, struct cifsFileInfo, tlist); 189 open_file->invalidHandle = true; 190 open_file->oplock_break_cancelled = true; 191 } 192 spin_unlock(&tcon->open_file_lock); 193 194 invalidate_all_cached_dirs(tcon); 195 spin_lock(&tcon->tc_lock); 196 if (tcon->status == TID_IN_FILES_INVALIDATE) 197 tcon->status = TID_NEED_TCON; 198 spin_unlock(&tcon->tc_lock); 199 200 /* 201 * BB Add call to invalidate_inodes(sb) for all superblocks mounted 202 * to this tcon. 203 */ 204 } 205 206 static inline int cifs_convert_flags(unsigned int flags) 207 { 208 if ((flags & O_ACCMODE) == O_RDONLY) 209 return GENERIC_READ; 210 else if ((flags & O_ACCMODE) == O_WRONLY) 211 return GENERIC_WRITE; 212 else if ((flags & O_ACCMODE) == O_RDWR) { 213 /* GENERIC_ALL is too much permission to request 214 can cause unnecessary access denied on create */ 215 /* return GENERIC_ALL; */ 216 return (GENERIC_READ | GENERIC_WRITE); 217 } 218 219 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES | 220 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA | 221 FILE_READ_DATA); 222 } 223 224 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 225 static u32 cifs_posix_convert_flags(unsigned int flags) 226 { 227 u32 posix_flags = 0; 228 229 if ((flags & O_ACCMODE) == O_RDONLY) 230 posix_flags = SMB_O_RDONLY; 231 else if ((flags & O_ACCMODE) == O_WRONLY) 232 posix_flags = SMB_O_WRONLY; 233 else if ((flags & O_ACCMODE) == O_RDWR) 234 posix_flags = SMB_O_RDWR; 235 236 if (flags & O_CREAT) { 237 posix_flags |= SMB_O_CREAT; 238 if (flags & O_EXCL) 239 posix_flags |= SMB_O_EXCL; 240 } else if (flags & O_EXCL) 241 cifs_dbg(FYI, "Application %s pid %d has incorrectly set O_EXCL flag but not O_CREAT on file open. Ignoring O_EXCL\n", 242 current->comm, current->tgid); 243 244 if (flags & O_TRUNC) 245 posix_flags |= SMB_O_TRUNC; 246 /* be safe and imply O_SYNC for O_DSYNC */ 247 if (flags & O_DSYNC) 248 posix_flags |= SMB_O_SYNC; 249 if (flags & O_DIRECTORY) 250 posix_flags |= SMB_O_DIRECTORY; 251 if (flags & O_NOFOLLOW) 252 posix_flags |= SMB_O_NOFOLLOW; 253 if (flags & O_DIRECT) 254 posix_flags |= SMB_O_DIRECT; 255 256 return posix_flags; 257 } 258 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 259 260 static inline int cifs_get_disposition(unsigned int flags) 261 { 262 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL)) 263 return FILE_CREATE; 264 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC)) 265 return FILE_OVERWRITE_IF; 266 else if ((flags & O_CREAT) == O_CREAT) 267 return FILE_OPEN_IF; 268 else if ((flags & O_TRUNC) == O_TRUNC) 269 return FILE_OVERWRITE; 270 else 271 return FILE_OPEN; 272 } 273 274 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 275 int cifs_posix_open(const char *full_path, struct inode **pinode, 276 struct super_block *sb, int mode, unsigned int f_flags, 277 __u32 *poplock, __u16 *pnetfid, unsigned int xid) 278 { 279 int rc; 280 FILE_UNIX_BASIC_INFO *presp_data; 281 __u32 posix_flags = 0; 282 struct cifs_sb_info *cifs_sb = CIFS_SB(sb); 283 struct cifs_fattr fattr; 284 struct tcon_link *tlink; 285 struct cifs_tcon *tcon; 286 287 cifs_dbg(FYI, "posix open %s\n", full_path); 288 289 presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL); 290 if (presp_data == NULL) 291 return -ENOMEM; 292 293 tlink = cifs_sb_tlink(cifs_sb); 294 if (IS_ERR(tlink)) { 295 rc = PTR_ERR(tlink); 296 goto posix_open_ret; 297 } 298 299 tcon = tlink_tcon(tlink); 300 mode &= ~current_umask(); 301 302 posix_flags = cifs_posix_convert_flags(f_flags); 303 rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data, 304 poplock, full_path, cifs_sb->local_nls, 305 cifs_remap(cifs_sb)); 306 cifs_put_tlink(tlink); 307 308 if (rc) 309 goto posix_open_ret; 310 311 if (presp_data->Type == cpu_to_le32(-1)) 312 goto posix_open_ret; /* open ok, caller does qpathinfo */ 313 314 if (!pinode) 315 goto posix_open_ret; /* caller does not need info */ 316 317 cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb); 318 319 /* get new inode and set it up */ 320 if (*pinode == NULL) { 321 cifs_fill_uniqueid(sb, &fattr); 322 *pinode = cifs_iget(sb, &fattr); 323 if (!*pinode) { 324 rc = -ENOMEM; 325 goto posix_open_ret; 326 } 327 } else { 328 cifs_revalidate_mapping(*pinode); 329 rc = cifs_fattr_to_inode(*pinode, &fattr); 330 } 331 332 posix_open_ret: 333 kfree(presp_data); 334 return rc; 335 } 336 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 337 338 static int cifs_nt_open(const char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb, 339 struct cifs_tcon *tcon, unsigned int f_flags, __u32 *oplock, 340 struct cifs_fid *fid, unsigned int xid, struct cifs_open_info_data *buf) 341 { 342 int rc; 343 int desired_access; 344 int disposition; 345 int create_options = CREATE_NOT_DIR; 346 struct TCP_Server_Info *server = tcon->ses->server; 347 struct cifs_open_parms oparms; 348 349 if (!server->ops->open) 350 return -ENOSYS; 351 352 desired_access = cifs_convert_flags(f_flags); 353 354 /********************************************************************* 355 * open flag mapping table: 356 * 357 * POSIX Flag CIFS Disposition 358 * ---------- ---------------- 359 * O_CREAT FILE_OPEN_IF 360 * O_CREAT | O_EXCL FILE_CREATE 361 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF 362 * O_TRUNC FILE_OVERWRITE 363 * none of the above FILE_OPEN 364 * 365 * Note that there is not a direct match between disposition 366 * FILE_SUPERSEDE (ie create whether or not file exists although 367 * O_CREAT | O_TRUNC is similar but truncates the existing 368 * file rather than creating a new file as FILE_SUPERSEDE does 369 * (which uses the attributes / metadata passed in on open call) 370 *? 371 *? O_SYNC is a reasonable match to CIFS writethrough flag 372 *? and the read write flags match reasonably. O_LARGEFILE 373 *? is irrelevant because largefile support is always used 374 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY, 375 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation 376 *********************************************************************/ 377 378 disposition = cifs_get_disposition(f_flags); 379 380 /* BB pass O_SYNC flag through on file attributes .. BB */ 381 382 /* O_SYNC also has bit for O_DSYNC so following check picks up either */ 383 if (f_flags & O_SYNC) 384 create_options |= CREATE_WRITE_THROUGH; 385 386 if (f_flags & O_DIRECT) 387 create_options |= CREATE_NO_BUFFER; 388 389 oparms = (struct cifs_open_parms) { 390 .tcon = tcon, 391 .cifs_sb = cifs_sb, 392 .desired_access = desired_access, 393 .create_options = cifs_create_options(cifs_sb, create_options), 394 .disposition = disposition, 395 .path = full_path, 396 .fid = fid, 397 }; 398 399 rc = server->ops->open(xid, &oparms, oplock, buf); 400 if (rc) 401 return rc; 402 403 /* TODO: Add support for calling posix query info but with passing in fid */ 404 if (tcon->unix_ext) 405 rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb, 406 xid); 407 else 408 rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb, 409 xid, fid); 410 411 if (rc) { 412 server->ops->close(xid, tcon, fid); 413 if (rc == -ESTALE) 414 rc = -EOPENSTALE; 415 } 416 417 return rc; 418 } 419 420 static bool 421 cifs_has_mand_locks(struct cifsInodeInfo *cinode) 422 { 423 struct cifs_fid_locks *cur; 424 bool has_locks = false; 425 426 down_read(&cinode->lock_sem); 427 list_for_each_entry(cur, &cinode->llist, llist) { 428 if (!list_empty(&cur->locks)) { 429 has_locks = true; 430 break; 431 } 432 } 433 up_read(&cinode->lock_sem); 434 return has_locks; 435 } 436 437 void 438 cifs_down_write(struct rw_semaphore *sem) 439 { 440 while (!down_write_trylock(sem)) 441 msleep(10); 442 } 443 444 static void cifsFileInfo_put_work(struct work_struct *work); 445 446 struct cifsFileInfo *cifs_new_fileinfo(struct cifs_fid *fid, struct file *file, 447 struct tcon_link *tlink, __u32 oplock, 448 const char *symlink_target) 449 { 450 struct dentry *dentry = file_dentry(file); 451 struct inode *inode = d_inode(dentry); 452 struct cifsInodeInfo *cinode = CIFS_I(inode); 453 struct cifsFileInfo *cfile; 454 struct cifs_fid_locks *fdlocks; 455 struct cifs_tcon *tcon = tlink_tcon(tlink); 456 struct TCP_Server_Info *server = tcon->ses->server; 457 458 cfile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL); 459 if (cfile == NULL) 460 return cfile; 461 462 fdlocks = kzalloc(sizeof(struct cifs_fid_locks), GFP_KERNEL); 463 if (!fdlocks) { 464 kfree(cfile); 465 return NULL; 466 } 467 468 if (symlink_target) { 469 cfile->symlink_target = kstrdup(symlink_target, GFP_KERNEL); 470 if (!cfile->symlink_target) { 471 kfree(fdlocks); 472 kfree(cfile); 473 return NULL; 474 } 475 } 476 477 INIT_LIST_HEAD(&fdlocks->locks); 478 fdlocks->cfile = cfile; 479 cfile->llist = fdlocks; 480 481 cfile->count = 1; 482 cfile->pid = current->tgid; 483 cfile->uid = current_fsuid(); 484 cfile->dentry = dget(dentry); 485 cfile->f_flags = file->f_flags; 486 cfile->invalidHandle = false; 487 cfile->deferred_close_scheduled = false; 488 cfile->tlink = cifs_get_tlink(tlink); 489 INIT_WORK(&cfile->oplock_break, cifs_oplock_break); 490 INIT_WORK(&cfile->put, cifsFileInfo_put_work); 491 INIT_DELAYED_WORK(&cfile->deferred, smb2_deferred_work_close); 492 mutex_init(&cfile->fh_mutex); 493 spin_lock_init(&cfile->file_info_lock); 494 495 cifs_sb_active(inode->i_sb); 496 497 /* 498 * If the server returned a read oplock and we have mandatory brlocks, 499 * set oplock level to None. 500 */ 501 if (server->ops->is_read_op(oplock) && cifs_has_mand_locks(cinode)) { 502 cifs_dbg(FYI, "Reset oplock val from read to None due to mand locks\n"); 503 oplock = 0; 504 } 505 506 cifs_down_write(&cinode->lock_sem); 507 list_add(&fdlocks->llist, &cinode->llist); 508 up_write(&cinode->lock_sem); 509 510 spin_lock(&tcon->open_file_lock); 511 if (fid->pending_open->oplock != CIFS_OPLOCK_NO_CHANGE && oplock) 512 oplock = fid->pending_open->oplock; 513 list_del(&fid->pending_open->olist); 514 515 fid->purge_cache = false; 516 server->ops->set_fid(cfile, fid, oplock); 517 518 list_add(&cfile->tlist, &tcon->openFileList); 519 atomic_inc(&tcon->num_local_opens); 520 521 /* if readable file instance put first in list*/ 522 spin_lock(&cinode->open_file_lock); 523 if (file->f_mode & FMODE_READ) 524 list_add(&cfile->flist, &cinode->openFileList); 525 else 526 list_add_tail(&cfile->flist, &cinode->openFileList); 527 spin_unlock(&cinode->open_file_lock); 528 spin_unlock(&tcon->open_file_lock); 529 530 if (fid->purge_cache) 531 cifs_zap_mapping(inode); 532 533 file->private_data = cfile; 534 return cfile; 535 } 536 537 struct cifsFileInfo * 538 cifsFileInfo_get(struct cifsFileInfo *cifs_file) 539 { 540 spin_lock(&cifs_file->file_info_lock); 541 cifsFileInfo_get_locked(cifs_file); 542 spin_unlock(&cifs_file->file_info_lock); 543 return cifs_file; 544 } 545 546 static void cifsFileInfo_put_final(struct cifsFileInfo *cifs_file) 547 { 548 struct inode *inode = d_inode(cifs_file->dentry); 549 struct cifsInodeInfo *cifsi = CIFS_I(inode); 550 struct cifsLockInfo *li, *tmp; 551 struct super_block *sb = inode->i_sb; 552 553 /* 554 * Delete any outstanding lock records. We'll lose them when the file 555 * is closed anyway. 556 */ 557 cifs_down_write(&cifsi->lock_sem); 558 list_for_each_entry_safe(li, tmp, &cifs_file->llist->locks, llist) { 559 list_del(&li->llist); 560 cifs_del_lock_waiters(li); 561 kfree(li); 562 } 563 list_del(&cifs_file->llist->llist); 564 kfree(cifs_file->llist); 565 up_write(&cifsi->lock_sem); 566 567 cifs_put_tlink(cifs_file->tlink); 568 dput(cifs_file->dentry); 569 cifs_sb_deactive(sb); 570 kfree(cifs_file->symlink_target); 571 kfree(cifs_file); 572 } 573 574 static void cifsFileInfo_put_work(struct work_struct *work) 575 { 576 struct cifsFileInfo *cifs_file = container_of(work, 577 struct cifsFileInfo, put); 578 579 cifsFileInfo_put_final(cifs_file); 580 } 581 582 /** 583 * cifsFileInfo_put - release a reference of file priv data 584 * 585 * Always potentially wait for oplock handler. See _cifsFileInfo_put(). 586 * 587 * @cifs_file: cifs/smb3 specific info (eg refcounts) for an open file 588 */ 589 void cifsFileInfo_put(struct cifsFileInfo *cifs_file) 590 { 591 _cifsFileInfo_put(cifs_file, true, true); 592 } 593 594 /** 595 * _cifsFileInfo_put - release a reference of file priv data 596 * 597 * This may involve closing the filehandle @cifs_file out on the 598 * server. Must be called without holding tcon->open_file_lock, 599 * cinode->open_file_lock and cifs_file->file_info_lock. 600 * 601 * If @wait_for_oplock_handler is true and we are releasing the last 602 * reference, wait for any running oplock break handler of the file 603 * and cancel any pending one. 604 * 605 * @cifs_file: cifs/smb3 specific info (eg refcounts) for an open file 606 * @wait_oplock_handler: must be false if called from oplock_break_handler 607 * @offload: not offloaded on close and oplock breaks 608 * 609 */ 610 void _cifsFileInfo_put(struct cifsFileInfo *cifs_file, 611 bool wait_oplock_handler, bool offload) 612 { 613 struct inode *inode = d_inode(cifs_file->dentry); 614 struct cifs_tcon *tcon = tlink_tcon(cifs_file->tlink); 615 struct TCP_Server_Info *server = tcon->ses->server; 616 struct cifsInodeInfo *cifsi = CIFS_I(inode); 617 struct super_block *sb = inode->i_sb; 618 struct cifs_sb_info *cifs_sb = CIFS_SB(sb); 619 struct cifs_fid fid = {}; 620 struct cifs_pending_open open; 621 bool oplock_break_cancelled; 622 623 spin_lock(&tcon->open_file_lock); 624 spin_lock(&cifsi->open_file_lock); 625 spin_lock(&cifs_file->file_info_lock); 626 if (--cifs_file->count > 0) { 627 spin_unlock(&cifs_file->file_info_lock); 628 spin_unlock(&cifsi->open_file_lock); 629 spin_unlock(&tcon->open_file_lock); 630 return; 631 } 632 spin_unlock(&cifs_file->file_info_lock); 633 634 if (server->ops->get_lease_key) 635 server->ops->get_lease_key(inode, &fid); 636 637 /* store open in pending opens to make sure we don't miss lease break */ 638 cifs_add_pending_open_locked(&fid, cifs_file->tlink, &open); 639 640 /* remove it from the lists */ 641 list_del(&cifs_file->flist); 642 list_del(&cifs_file->tlist); 643 atomic_dec(&tcon->num_local_opens); 644 645 if (list_empty(&cifsi->openFileList)) { 646 cifs_dbg(FYI, "closing last open instance for inode %p\n", 647 d_inode(cifs_file->dentry)); 648 /* 649 * In strict cache mode we need invalidate mapping on the last 650 * close because it may cause a error when we open this file 651 * again and get at least level II oplock. 652 */ 653 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO) 654 set_bit(CIFS_INO_INVALID_MAPPING, &cifsi->flags); 655 cifs_set_oplock_level(cifsi, 0); 656 } 657 658 spin_unlock(&cifsi->open_file_lock); 659 spin_unlock(&tcon->open_file_lock); 660 661 oplock_break_cancelled = wait_oplock_handler ? 662 cancel_work_sync(&cifs_file->oplock_break) : false; 663 664 if (!tcon->need_reconnect && !cifs_file->invalidHandle) { 665 struct TCP_Server_Info *server = tcon->ses->server; 666 unsigned int xid; 667 668 xid = get_xid(); 669 if (server->ops->close_getattr) 670 server->ops->close_getattr(xid, tcon, cifs_file); 671 else if (server->ops->close) 672 server->ops->close(xid, tcon, &cifs_file->fid); 673 _free_xid(xid); 674 } 675 676 if (oplock_break_cancelled) 677 cifs_done_oplock_break(cifsi); 678 679 cifs_del_pending_open(&open); 680 681 if (offload) 682 queue_work(fileinfo_put_wq, &cifs_file->put); 683 else 684 cifsFileInfo_put_final(cifs_file); 685 } 686 687 int cifs_open(struct inode *inode, struct file *file) 688 689 { 690 int rc = -EACCES; 691 unsigned int xid; 692 __u32 oplock; 693 struct cifs_sb_info *cifs_sb; 694 struct TCP_Server_Info *server; 695 struct cifs_tcon *tcon; 696 struct tcon_link *tlink; 697 struct cifsFileInfo *cfile = NULL; 698 void *page; 699 const char *full_path; 700 bool posix_open_ok = false; 701 struct cifs_fid fid = {}; 702 struct cifs_pending_open open; 703 struct cifs_open_info_data data = {}; 704 705 xid = get_xid(); 706 707 cifs_sb = CIFS_SB(inode->i_sb); 708 if (unlikely(cifs_forced_shutdown(cifs_sb))) { 709 free_xid(xid); 710 return -EIO; 711 } 712 713 tlink = cifs_sb_tlink(cifs_sb); 714 if (IS_ERR(tlink)) { 715 free_xid(xid); 716 return PTR_ERR(tlink); 717 } 718 tcon = tlink_tcon(tlink); 719 server = tcon->ses->server; 720 721 page = alloc_dentry_path(); 722 full_path = build_path_from_dentry(file_dentry(file), page); 723 if (IS_ERR(full_path)) { 724 rc = PTR_ERR(full_path); 725 goto out; 726 } 727 728 cifs_dbg(FYI, "inode = 0x%p file flags are 0x%x for %s\n", 729 inode, file->f_flags, full_path); 730 731 if (file->f_flags & O_DIRECT && 732 cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO) { 733 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_BRL) 734 file->f_op = &cifs_file_direct_nobrl_ops; 735 else 736 file->f_op = &cifs_file_direct_ops; 737 } 738 739 /* Get the cached handle as SMB2 close is deferred */ 740 rc = cifs_get_readable_path(tcon, full_path, &cfile); 741 if (rc == 0) { 742 if (file->f_flags == cfile->f_flags) { 743 file->private_data = cfile; 744 spin_lock(&CIFS_I(inode)->deferred_lock); 745 cifs_del_deferred_close(cfile); 746 spin_unlock(&CIFS_I(inode)->deferred_lock); 747 goto use_cache; 748 } else { 749 _cifsFileInfo_put(cfile, true, false); 750 } 751 } 752 753 if (server->oplocks) 754 oplock = REQ_OPLOCK; 755 else 756 oplock = 0; 757 758 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 759 if (!tcon->broken_posix_open && tcon->unix_ext && 760 cap_unix(tcon->ses) && (CIFS_UNIX_POSIX_PATH_OPS_CAP & 761 le64_to_cpu(tcon->fsUnixInfo.Capability))) { 762 /* can not refresh inode info since size could be stale */ 763 rc = cifs_posix_open(full_path, &inode, inode->i_sb, 764 cifs_sb->ctx->file_mode /* ignored */, 765 file->f_flags, &oplock, &fid.netfid, xid); 766 if (rc == 0) { 767 cifs_dbg(FYI, "posix open succeeded\n"); 768 posix_open_ok = true; 769 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) { 770 if (tcon->ses->serverNOS) 771 cifs_dbg(VFS, "server %s of type %s returned unexpected error on SMB posix open, disabling posix open support. Check if server update available.\n", 772 tcon->ses->ip_addr, 773 tcon->ses->serverNOS); 774 tcon->broken_posix_open = true; 775 } else if ((rc != -EIO) && (rc != -EREMOTE) && 776 (rc != -EOPNOTSUPP)) /* path not found or net err */ 777 goto out; 778 /* 779 * Else fallthrough to retry open the old way on network i/o 780 * or DFS errors. 781 */ 782 } 783 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 784 785 if (server->ops->get_lease_key) 786 server->ops->get_lease_key(inode, &fid); 787 788 cifs_add_pending_open(&fid, tlink, &open); 789 790 if (!posix_open_ok) { 791 if (server->ops->get_lease_key) 792 server->ops->get_lease_key(inode, &fid); 793 794 rc = cifs_nt_open(full_path, inode, cifs_sb, tcon, file->f_flags, &oplock, &fid, 795 xid, &data); 796 if (rc) { 797 cifs_del_pending_open(&open); 798 goto out; 799 } 800 } 801 802 cfile = cifs_new_fileinfo(&fid, file, tlink, oplock, data.symlink_target); 803 if (cfile == NULL) { 804 if (server->ops->close) 805 server->ops->close(xid, tcon, &fid); 806 cifs_del_pending_open(&open); 807 rc = -ENOMEM; 808 goto out; 809 } 810 811 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 812 if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) { 813 /* 814 * Time to set mode which we can not set earlier due to 815 * problems creating new read-only files. 816 */ 817 struct cifs_unix_set_info_args args = { 818 .mode = inode->i_mode, 819 .uid = INVALID_UID, /* no change */ 820 .gid = INVALID_GID, /* no change */ 821 .ctime = NO_CHANGE_64, 822 .atime = NO_CHANGE_64, 823 .mtime = NO_CHANGE_64, 824 .device = 0, 825 }; 826 CIFSSMBUnixSetFileInfo(xid, tcon, &args, fid.netfid, 827 cfile->pid); 828 } 829 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 830 831 use_cache: 832 fscache_use_cookie(cifs_inode_cookie(file_inode(file)), 833 file->f_mode & FMODE_WRITE); 834 if (file->f_flags & O_DIRECT && 835 (!((file->f_flags & O_ACCMODE) != O_RDONLY) || 836 file->f_flags & O_APPEND)) 837 cifs_invalidate_cache(file_inode(file), 838 FSCACHE_INVAL_DIO_WRITE); 839 840 out: 841 free_dentry_path(page); 842 free_xid(xid); 843 cifs_put_tlink(tlink); 844 cifs_free_open_info(&data); 845 return rc; 846 } 847 848 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 849 static int cifs_push_posix_locks(struct cifsFileInfo *cfile); 850 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 851 852 /* 853 * Try to reacquire byte range locks that were released when session 854 * to server was lost. 855 */ 856 static int 857 cifs_relock_file(struct cifsFileInfo *cfile) 858 { 859 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry)); 860 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink); 861 int rc = 0; 862 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 863 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb); 864 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 865 866 down_read_nested(&cinode->lock_sem, SINGLE_DEPTH_NESTING); 867 if (cinode->can_cache_brlcks) { 868 /* can cache locks - no need to relock */ 869 up_read(&cinode->lock_sem); 870 return rc; 871 } 872 873 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 874 if (cap_unix(tcon->ses) && 875 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) && 876 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) 877 rc = cifs_push_posix_locks(cfile); 878 else 879 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 880 rc = tcon->ses->server->ops->push_mand_locks(cfile); 881 882 up_read(&cinode->lock_sem); 883 return rc; 884 } 885 886 static int 887 cifs_reopen_file(struct cifsFileInfo *cfile, bool can_flush) 888 { 889 int rc = -EACCES; 890 unsigned int xid; 891 __u32 oplock; 892 struct cifs_sb_info *cifs_sb; 893 struct cifs_tcon *tcon; 894 struct TCP_Server_Info *server; 895 struct cifsInodeInfo *cinode; 896 struct inode *inode; 897 void *page; 898 const char *full_path; 899 int desired_access; 900 int disposition = FILE_OPEN; 901 int create_options = CREATE_NOT_DIR; 902 struct cifs_open_parms oparms; 903 904 xid = get_xid(); 905 mutex_lock(&cfile->fh_mutex); 906 if (!cfile->invalidHandle) { 907 mutex_unlock(&cfile->fh_mutex); 908 free_xid(xid); 909 return 0; 910 } 911 912 inode = d_inode(cfile->dentry); 913 cifs_sb = CIFS_SB(inode->i_sb); 914 tcon = tlink_tcon(cfile->tlink); 915 server = tcon->ses->server; 916 917 /* 918 * Can not grab rename sem here because various ops, including those 919 * that already have the rename sem can end up causing writepage to get 920 * called and if the server was down that means we end up here, and we 921 * can never tell if the caller already has the rename_sem. 922 */ 923 page = alloc_dentry_path(); 924 full_path = build_path_from_dentry(cfile->dentry, page); 925 if (IS_ERR(full_path)) { 926 mutex_unlock(&cfile->fh_mutex); 927 free_dentry_path(page); 928 free_xid(xid); 929 return PTR_ERR(full_path); 930 } 931 932 cifs_dbg(FYI, "inode = 0x%p file flags 0x%x for %s\n", 933 inode, cfile->f_flags, full_path); 934 935 if (tcon->ses->server->oplocks) 936 oplock = REQ_OPLOCK; 937 else 938 oplock = 0; 939 940 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 941 if (tcon->unix_ext && cap_unix(tcon->ses) && 942 (CIFS_UNIX_POSIX_PATH_OPS_CAP & 943 le64_to_cpu(tcon->fsUnixInfo.Capability))) { 944 /* 945 * O_CREAT, O_EXCL and O_TRUNC already had their effect on the 946 * original open. Must mask them off for a reopen. 947 */ 948 unsigned int oflags = cfile->f_flags & 949 ~(O_CREAT | O_EXCL | O_TRUNC); 950 951 rc = cifs_posix_open(full_path, NULL, inode->i_sb, 952 cifs_sb->ctx->file_mode /* ignored */, 953 oflags, &oplock, &cfile->fid.netfid, xid); 954 if (rc == 0) { 955 cifs_dbg(FYI, "posix reopen succeeded\n"); 956 oparms.reconnect = true; 957 goto reopen_success; 958 } 959 /* 960 * fallthrough to retry open the old way on errors, especially 961 * in the reconnect path it is important to retry hard 962 */ 963 } 964 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 965 966 desired_access = cifs_convert_flags(cfile->f_flags); 967 968 /* O_SYNC also has bit for O_DSYNC so following check picks up either */ 969 if (cfile->f_flags & O_SYNC) 970 create_options |= CREATE_WRITE_THROUGH; 971 972 if (cfile->f_flags & O_DIRECT) 973 create_options |= CREATE_NO_BUFFER; 974 975 if (server->ops->get_lease_key) 976 server->ops->get_lease_key(inode, &cfile->fid); 977 978 oparms = (struct cifs_open_parms) { 979 .tcon = tcon, 980 .cifs_sb = cifs_sb, 981 .desired_access = desired_access, 982 .create_options = cifs_create_options(cifs_sb, create_options), 983 .disposition = disposition, 984 .path = full_path, 985 .fid = &cfile->fid, 986 .reconnect = true, 987 }; 988 989 /* 990 * Can not refresh inode by passing in file_info buf to be returned by 991 * ops->open and then calling get_inode_info with returned buf since 992 * file might have write behind data that needs to be flushed and server 993 * version of file size can be stale. If we knew for sure that inode was 994 * not dirty locally we could do this. 995 */ 996 rc = server->ops->open(xid, &oparms, &oplock, NULL); 997 if (rc == -ENOENT && oparms.reconnect == false) { 998 /* durable handle timeout is expired - open the file again */ 999 rc = server->ops->open(xid, &oparms, &oplock, NULL); 1000 /* indicate that we need to relock the file */ 1001 oparms.reconnect = true; 1002 } 1003 1004 if (rc) { 1005 mutex_unlock(&cfile->fh_mutex); 1006 cifs_dbg(FYI, "cifs_reopen returned 0x%x\n", rc); 1007 cifs_dbg(FYI, "oplock: %d\n", oplock); 1008 goto reopen_error_exit; 1009 } 1010 1011 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 1012 reopen_success: 1013 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 1014 cfile->invalidHandle = false; 1015 mutex_unlock(&cfile->fh_mutex); 1016 cinode = CIFS_I(inode); 1017 1018 if (can_flush) { 1019 rc = filemap_write_and_wait(inode->i_mapping); 1020 if (!is_interrupt_error(rc)) 1021 mapping_set_error(inode->i_mapping, rc); 1022 1023 if (tcon->posix_extensions) 1024 rc = smb311_posix_get_inode_info(&inode, full_path, inode->i_sb, xid); 1025 else if (tcon->unix_ext) 1026 rc = cifs_get_inode_info_unix(&inode, full_path, 1027 inode->i_sb, xid); 1028 else 1029 rc = cifs_get_inode_info(&inode, full_path, NULL, 1030 inode->i_sb, xid, NULL); 1031 } 1032 /* 1033 * Else we are writing out data to server already and could deadlock if 1034 * we tried to flush data, and since we do not know if we have data that 1035 * would invalidate the current end of file on the server we can not go 1036 * to the server to get the new inode info. 1037 */ 1038 1039 /* 1040 * If the server returned a read oplock and we have mandatory brlocks, 1041 * set oplock level to None. 1042 */ 1043 if (server->ops->is_read_op(oplock) && cifs_has_mand_locks(cinode)) { 1044 cifs_dbg(FYI, "Reset oplock val from read to None due to mand locks\n"); 1045 oplock = 0; 1046 } 1047 1048 server->ops->set_fid(cfile, &cfile->fid, oplock); 1049 if (oparms.reconnect) 1050 cifs_relock_file(cfile); 1051 1052 reopen_error_exit: 1053 free_dentry_path(page); 1054 free_xid(xid); 1055 return rc; 1056 } 1057 1058 void smb2_deferred_work_close(struct work_struct *work) 1059 { 1060 struct cifsFileInfo *cfile = container_of(work, 1061 struct cifsFileInfo, deferred.work); 1062 1063 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 1064 cifs_del_deferred_close(cfile); 1065 cfile->deferred_close_scheduled = false; 1066 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 1067 _cifsFileInfo_put(cfile, true, false); 1068 } 1069 1070 int cifs_close(struct inode *inode, struct file *file) 1071 { 1072 struct cifsFileInfo *cfile; 1073 struct cifsInodeInfo *cinode = CIFS_I(inode); 1074 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb); 1075 struct cifs_deferred_close *dclose; 1076 1077 cifs_fscache_unuse_inode_cookie(inode, file->f_mode & FMODE_WRITE); 1078 1079 if (file->private_data != NULL) { 1080 cfile = file->private_data; 1081 file->private_data = NULL; 1082 dclose = kmalloc(sizeof(struct cifs_deferred_close), GFP_KERNEL); 1083 if ((cifs_sb->ctx->closetimeo && cinode->oplock == CIFS_CACHE_RHW_FLG) 1084 && cinode->lease_granted && 1085 !test_bit(CIFS_INO_CLOSE_ON_LOCK, &cinode->flags) && 1086 dclose) { 1087 if (test_and_clear_bit(CIFS_INO_MODIFIED_ATTR, &cinode->flags)) { 1088 inode_set_mtime_to_ts(inode, 1089 inode_set_ctime_current(inode)); 1090 } 1091 spin_lock(&cinode->deferred_lock); 1092 cifs_add_deferred_close(cfile, dclose); 1093 if (cfile->deferred_close_scheduled && 1094 delayed_work_pending(&cfile->deferred)) { 1095 /* 1096 * If there is no pending work, mod_delayed_work queues new work. 1097 * So, Increase the ref count to avoid use-after-free. 1098 */ 1099 if (!mod_delayed_work(deferredclose_wq, 1100 &cfile->deferred, cifs_sb->ctx->closetimeo)) 1101 cifsFileInfo_get(cfile); 1102 } else { 1103 /* Deferred close for files */ 1104 queue_delayed_work(deferredclose_wq, 1105 &cfile->deferred, cifs_sb->ctx->closetimeo); 1106 cfile->deferred_close_scheduled = true; 1107 spin_unlock(&cinode->deferred_lock); 1108 return 0; 1109 } 1110 spin_unlock(&cinode->deferred_lock); 1111 _cifsFileInfo_put(cfile, true, false); 1112 } else { 1113 _cifsFileInfo_put(cfile, true, false); 1114 kfree(dclose); 1115 } 1116 } 1117 1118 /* return code from the ->release op is always ignored */ 1119 return 0; 1120 } 1121 1122 void 1123 cifs_reopen_persistent_handles(struct cifs_tcon *tcon) 1124 { 1125 struct cifsFileInfo *open_file, *tmp; 1126 struct list_head tmp_list; 1127 1128 if (!tcon->use_persistent || !tcon->need_reopen_files) 1129 return; 1130 1131 tcon->need_reopen_files = false; 1132 1133 cifs_dbg(FYI, "Reopen persistent handles\n"); 1134 INIT_LIST_HEAD(&tmp_list); 1135 1136 /* list all files open on tree connection, reopen resilient handles */ 1137 spin_lock(&tcon->open_file_lock); 1138 list_for_each_entry(open_file, &tcon->openFileList, tlist) { 1139 if (!open_file->invalidHandle) 1140 continue; 1141 cifsFileInfo_get(open_file); 1142 list_add_tail(&open_file->rlist, &tmp_list); 1143 } 1144 spin_unlock(&tcon->open_file_lock); 1145 1146 list_for_each_entry_safe(open_file, tmp, &tmp_list, rlist) { 1147 if (cifs_reopen_file(open_file, false /* do not flush */)) 1148 tcon->need_reopen_files = true; 1149 list_del_init(&open_file->rlist); 1150 cifsFileInfo_put(open_file); 1151 } 1152 } 1153 1154 int cifs_closedir(struct inode *inode, struct file *file) 1155 { 1156 int rc = 0; 1157 unsigned int xid; 1158 struct cifsFileInfo *cfile = file->private_data; 1159 struct cifs_tcon *tcon; 1160 struct TCP_Server_Info *server; 1161 char *buf; 1162 1163 cifs_dbg(FYI, "Closedir inode = 0x%p\n", inode); 1164 1165 if (cfile == NULL) 1166 return rc; 1167 1168 xid = get_xid(); 1169 tcon = tlink_tcon(cfile->tlink); 1170 server = tcon->ses->server; 1171 1172 cifs_dbg(FYI, "Freeing private data in close dir\n"); 1173 spin_lock(&cfile->file_info_lock); 1174 if (server->ops->dir_needs_close(cfile)) { 1175 cfile->invalidHandle = true; 1176 spin_unlock(&cfile->file_info_lock); 1177 if (server->ops->close_dir) 1178 rc = server->ops->close_dir(xid, tcon, &cfile->fid); 1179 else 1180 rc = -ENOSYS; 1181 cifs_dbg(FYI, "Closing uncompleted readdir with rc %d\n", rc); 1182 /* not much we can do if it fails anyway, ignore rc */ 1183 rc = 0; 1184 } else 1185 spin_unlock(&cfile->file_info_lock); 1186 1187 buf = cfile->srch_inf.ntwrk_buf_start; 1188 if (buf) { 1189 cifs_dbg(FYI, "closedir free smb buf in srch struct\n"); 1190 cfile->srch_inf.ntwrk_buf_start = NULL; 1191 if (cfile->srch_inf.smallBuf) 1192 cifs_small_buf_release(buf); 1193 else 1194 cifs_buf_release(buf); 1195 } 1196 1197 cifs_put_tlink(cfile->tlink); 1198 kfree(file->private_data); 1199 file->private_data = NULL; 1200 /* BB can we lock the filestruct while this is going on? */ 1201 free_xid(xid); 1202 return rc; 1203 } 1204 1205 static struct cifsLockInfo * 1206 cifs_lock_init(__u64 offset, __u64 length, __u8 type, __u16 flags) 1207 { 1208 struct cifsLockInfo *lock = 1209 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL); 1210 if (!lock) 1211 return lock; 1212 lock->offset = offset; 1213 lock->length = length; 1214 lock->type = type; 1215 lock->pid = current->tgid; 1216 lock->flags = flags; 1217 INIT_LIST_HEAD(&lock->blist); 1218 init_waitqueue_head(&lock->block_q); 1219 return lock; 1220 } 1221 1222 void 1223 cifs_del_lock_waiters(struct cifsLockInfo *lock) 1224 { 1225 struct cifsLockInfo *li, *tmp; 1226 list_for_each_entry_safe(li, tmp, &lock->blist, blist) { 1227 list_del_init(&li->blist); 1228 wake_up(&li->block_q); 1229 } 1230 } 1231 1232 #define CIFS_LOCK_OP 0 1233 #define CIFS_READ_OP 1 1234 #define CIFS_WRITE_OP 2 1235 1236 /* @rw_check : 0 - no op, 1 - read, 2 - write */ 1237 static bool 1238 cifs_find_fid_lock_conflict(struct cifs_fid_locks *fdlocks, __u64 offset, 1239 __u64 length, __u8 type, __u16 flags, 1240 struct cifsFileInfo *cfile, 1241 struct cifsLockInfo **conf_lock, int rw_check) 1242 { 1243 struct cifsLockInfo *li; 1244 struct cifsFileInfo *cur_cfile = fdlocks->cfile; 1245 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server; 1246 1247 list_for_each_entry(li, &fdlocks->locks, llist) { 1248 if (offset + length <= li->offset || 1249 offset >= li->offset + li->length) 1250 continue; 1251 if (rw_check != CIFS_LOCK_OP && current->tgid == li->pid && 1252 server->ops->compare_fids(cfile, cur_cfile)) { 1253 /* shared lock prevents write op through the same fid */ 1254 if (!(li->type & server->vals->shared_lock_type) || 1255 rw_check != CIFS_WRITE_OP) 1256 continue; 1257 } 1258 if ((type & server->vals->shared_lock_type) && 1259 ((server->ops->compare_fids(cfile, cur_cfile) && 1260 current->tgid == li->pid) || type == li->type)) 1261 continue; 1262 if (rw_check == CIFS_LOCK_OP && 1263 (flags & FL_OFDLCK) && (li->flags & FL_OFDLCK) && 1264 server->ops->compare_fids(cfile, cur_cfile)) 1265 continue; 1266 if (conf_lock) 1267 *conf_lock = li; 1268 return true; 1269 } 1270 return false; 1271 } 1272 1273 bool 1274 cifs_find_lock_conflict(struct cifsFileInfo *cfile, __u64 offset, __u64 length, 1275 __u8 type, __u16 flags, 1276 struct cifsLockInfo **conf_lock, int rw_check) 1277 { 1278 bool rc = false; 1279 struct cifs_fid_locks *cur; 1280 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry)); 1281 1282 list_for_each_entry(cur, &cinode->llist, llist) { 1283 rc = cifs_find_fid_lock_conflict(cur, offset, length, type, 1284 flags, cfile, conf_lock, 1285 rw_check); 1286 if (rc) 1287 break; 1288 } 1289 1290 return rc; 1291 } 1292 1293 /* 1294 * Check if there is another lock that prevents us to set the lock (mandatory 1295 * style). If such a lock exists, update the flock structure with its 1296 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks 1297 * or leave it the same if we can't. Returns 0 if we don't need to request to 1298 * the server or 1 otherwise. 1299 */ 1300 static int 1301 cifs_lock_test(struct cifsFileInfo *cfile, __u64 offset, __u64 length, 1302 __u8 type, struct file_lock *flock) 1303 { 1304 int rc = 0; 1305 struct cifsLockInfo *conf_lock; 1306 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry)); 1307 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server; 1308 bool exist; 1309 1310 down_read(&cinode->lock_sem); 1311 1312 exist = cifs_find_lock_conflict(cfile, offset, length, type, 1313 flock->fl_flags, &conf_lock, 1314 CIFS_LOCK_OP); 1315 if (exist) { 1316 flock->fl_start = conf_lock->offset; 1317 flock->fl_end = conf_lock->offset + conf_lock->length - 1; 1318 flock->fl_pid = conf_lock->pid; 1319 if (conf_lock->type & server->vals->shared_lock_type) 1320 flock->fl_type = F_RDLCK; 1321 else 1322 flock->fl_type = F_WRLCK; 1323 } else if (!cinode->can_cache_brlcks) 1324 rc = 1; 1325 else 1326 flock->fl_type = F_UNLCK; 1327 1328 up_read(&cinode->lock_sem); 1329 return rc; 1330 } 1331 1332 static void 1333 cifs_lock_add(struct cifsFileInfo *cfile, struct cifsLockInfo *lock) 1334 { 1335 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry)); 1336 cifs_down_write(&cinode->lock_sem); 1337 list_add_tail(&lock->llist, &cfile->llist->locks); 1338 up_write(&cinode->lock_sem); 1339 } 1340 1341 /* 1342 * Set the byte-range lock (mandatory style). Returns: 1343 * 1) 0, if we set the lock and don't need to request to the server; 1344 * 2) 1, if no locks prevent us but we need to request to the server; 1345 * 3) -EACCES, if there is a lock that prevents us and wait is false. 1346 */ 1347 static int 1348 cifs_lock_add_if(struct cifsFileInfo *cfile, struct cifsLockInfo *lock, 1349 bool wait) 1350 { 1351 struct cifsLockInfo *conf_lock; 1352 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry)); 1353 bool exist; 1354 int rc = 0; 1355 1356 try_again: 1357 exist = false; 1358 cifs_down_write(&cinode->lock_sem); 1359 1360 exist = cifs_find_lock_conflict(cfile, lock->offset, lock->length, 1361 lock->type, lock->flags, &conf_lock, 1362 CIFS_LOCK_OP); 1363 if (!exist && cinode->can_cache_brlcks) { 1364 list_add_tail(&lock->llist, &cfile->llist->locks); 1365 up_write(&cinode->lock_sem); 1366 return rc; 1367 } 1368 1369 if (!exist) 1370 rc = 1; 1371 else if (!wait) 1372 rc = -EACCES; 1373 else { 1374 list_add_tail(&lock->blist, &conf_lock->blist); 1375 up_write(&cinode->lock_sem); 1376 rc = wait_event_interruptible(lock->block_q, 1377 (lock->blist.prev == &lock->blist) && 1378 (lock->blist.next == &lock->blist)); 1379 if (!rc) 1380 goto try_again; 1381 cifs_down_write(&cinode->lock_sem); 1382 list_del_init(&lock->blist); 1383 } 1384 1385 up_write(&cinode->lock_sem); 1386 return rc; 1387 } 1388 1389 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 1390 /* 1391 * Check if there is another lock that prevents us to set the lock (posix 1392 * style). If such a lock exists, update the flock structure with its 1393 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks 1394 * or leave it the same if we can't. Returns 0 if we don't need to request to 1395 * the server or 1 otherwise. 1396 */ 1397 static int 1398 cifs_posix_lock_test(struct file *file, struct file_lock *flock) 1399 { 1400 int rc = 0; 1401 struct cifsInodeInfo *cinode = CIFS_I(file_inode(file)); 1402 unsigned char saved_type = flock->fl_type; 1403 1404 if ((flock->fl_flags & FL_POSIX) == 0) 1405 return 1; 1406 1407 down_read(&cinode->lock_sem); 1408 posix_test_lock(file, flock); 1409 1410 if (flock->fl_type == F_UNLCK && !cinode->can_cache_brlcks) { 1411 flock->fl_type = saved_type; 1412 rc = 1; 1413 } 1414 1415 up_read(&cinode->lock_sem); 1416 return rc; 1417 } 1418 1419 /* 1420 * Set the byte-range lock (posix style). Returns: 1421 * 1) <0, if the error occurs while setting the lock; 1422 * 2) 0, if we set the lock and don't need to request to the server; 1423 * 3) FILE_LOCK_DEFERRED, if we will wait for some other file_lock; 1424 * 4) FILE_LOCK_DEFERRED + 1, if we need to request to the server. 1425 */ 1426 static int 1427 cifs_posix_lock_set(struct file *file, struct file_lock *flock) 1428 { 1429 struct cifsInodeInfo *cinode = CIFS_I(file_inode(file)); 1430 int rc = FILE_LOCK_DEFERRED + 1; 1431 1432 if ((flock->fl_flags & FL_POSIX) == 0) 1433 return rc; 1434 1435 cifs_down_write(&cinode->lock_sem); 1436 if (!cinode->can_cache_brlcks) { 1437 up_write(&cinode->lock_sem); 1438 return rc; 1439 } 1440 1441 rc = posix_lock_file(file, flock, NULL); 1442 up_write(&cinode->lock_sem); 1443 return rc; 1444 } 1445 1446 int 1447 cifs_push_mandatory_locks(struct cifsFileInfo *cfile) 1448 { 1449 unsigned int xid; 1450 int rc = 0, stored_rc; 1451 struct cifsLockInfo *li, *tmp; 1452 struct cifs_tcon *tcon; 1453 unsigned int num, max_num, max_buf; 1454 LOCKING_ANDX_RANGE *buf, *cur; 1455 static const int types[] = { 1456 LOCKING_ANDX_LARGE_FILES, 1457 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES 1458 }; 1459 int i; 1460 1461 xid = get_xid(); 1462 tcon = tlink_tcon(cfile->tlink); 1463 1464 /* 1465 * Accessing maxBuf is racy with cifs_reconnect - need to store value 1466 * and check it before using. 1467 */ 1468 max_buf = tcon->ses->server->maxBuf; 1469 if (max_buf < (sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE))) { 1470 free_xid(xid); 1471 return -EINVAL; 1472 } 1473 1474 BUILD_BUG_ON(sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE) > 1475 PAGE_SIZE); 1476 max_buf = min_t(unsigned int, max_buf - sizeof(struct smb_hdr), 1477 PAGE_SIZE); 1478 max_num = (max_buf - sizeof(struct smb_hdr)) / 1479 sizeof(LOCKING_ANDX_RANGE); 1480 buf = kcalloc(max_num, sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL); 1481 if (!buf) { 1482 free_xid(xid); 1483 return -ENOMEM; 1484 } 1485 1486 for (i = 0; i < 2; i++) { 1487 cur = buf; 1488 num = 0; 1489 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) { 1490 if (li->type != types[i]) 1491 continue; 1492 cur->Pid = cpu_to_le16(li->pid); 1493 cur->LengthLow = cpu_to_le32((u32)li->length); 1494 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32)); 1495 cur->OffsetLow = cpu_to_le32((u32)li->offset); 1496 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32)); 1497 if (++num == max_num) { 1498 stored_rc = cifs_lockv(xid, tcon, 1499 cfile->fid.netfid, 1500 (__u8)li->type, 0, num, 1501 buf); 1502 if (stored_rc) 1503 rc = stored_rc; 1504 cur = buf; 1505 num = 0; 1506 } else 1507 cur++; 1508 } 1509 1510 if (num) { 1511 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid, 1512 (__u8)types[i], 0, num, buf); 1513 if (stored_rc) 1514 rc = stored_rc; 1515 } 1516 } 1517 1518 kfree(buf); 1519 free_xid(xid); 1520 return rc; 1521 } 1522 1523 static __u32 1524 hash_lockowner(fl_owner_t owner) 1525 { 1526 return cifs_lock_secret ^ hash32_ptr((const void *)owner); 1527 } 1528 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 1529 1530 struct lock_to_push { 1531 struct list_head llist; 1532 __u64 offset; 1533 __u64 length; 1534 __u32 pid; 1535 __u16 netfid; 1536 __u8 type; 1537 }; 1538 1539 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 1540 static int 1541 cifs_push_posix_locks(struct cifsFileInfo *cfile) 1542 { 1543 struct inode *inode = d_inode(cfile->dentry); 1544 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink); 1545 struct file_lock *flock; 1546 struct file_lock_context *flctx = locks_inode_context(inode); 1547 unsigned int count = 0, i; 1548 int rc = 0, xid, type; 1549 struct list_head locks_to_send, *el; 1550 struct lock_to_push *lck, *tmp; 1551 __u64 length; 1552 1553 xid = get_xid(); 1554 1555 if (!flctx) 1556 goto out; 1557 1558 spin_lock(&flctx->flc_lock); 1559 list_for_each(el, &flctx->flc_posix) { 1560 count++; 1561 } 1562 spin_unlock(&flctx->flc_lock); 1563 1564 INIT_LIST_HEAD(&locks_to_send); 1565 1566 /* 1567 * Allocating count locks is enough because no FL_POSIX locks can be 1568 * added to the list while we are holding cinode->lock_sem that 1569 * protects locking operations of this inode. 1570 */ 1571 for (i = 0; i < count; i++) { 1572 lck = kmalloc(sizeof(struct lock_to_push), GFP_KERNEL); 1573 if (!lck) { 1574 rc = -ENOMEM; 1575 goto err_out; 1576 } 1577 list_add_tail(&lck->llist, &locks_to_send); 1578 } 1579 1580 el = locks_to_send.next; 1581 spin_lock(&flctx->flc_lock); 1582 list_for_each_entry(flock, &flctx->flc_posix, fl_list) { 1583 if (el == &locks_to_send) { 1584 /* 1585 * The list ended. We don't have enough allocated 1586 * structures - something is really wrong. 1587 */ 1588 cifs_dbg(VFS, "Can't push all brlocks!\n"); 1589 break; 1590 } 1591 length = cifs_flock_len(flock); 1592 if (flock->fl_type == F_RDLCK || flock->fl_type == F_SHLCK) 1593 type = CIFS_RDLCK; 1594 else 1595 type = CIFS_WRLCK; 1596 lck = list_entry(el, struct lock_to_push, llist); 1597 lck->pid = hash_lockowner(flock->fl_owner); 1598 lck->netfid = cfile->fid.netfid; 1599 lck->length = length; 1600 lck->type = type; 1601 lck->offset = flock->fl_start; 1602 } 1603 spin_unlock(&flctx->flc_lock); 1604 1605 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) { 1606 int stored_rc; 1607 1608 stored_rc = CIFSSMBPosixLock(xid, tcon, lck->netfid, lck->pid, 1609 lck->offset, lck->length, NULL, 1610 lck->type, 0); 1611 if (stored_rc) 1612 rc = stored_rc; 1613 list_del(&lck->llist); 1614 kfree(lck); 1615 } 1616 1617 out: 1618 free_xid(xid); 1619 return rc; 1620 err_out: 1621 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) { 1622 list_del(&lck->llist); 1623 kfree(lck); 1624 } 1625 goto out; 1626 } 1627 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 1628 1629 static int 1630 cifs_push_locks(struct cifsFileInfo *cfile) 1631 { 1632 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry)); 1633 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink); 1634 int rc = 0; 1635 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 1636 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb); 1637 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 1638 1639 /* we are going to update can_cache_brlcks here - need a write access */ 1640 cifs_down_write(&cinode->lock_sem); 1641 if (!cinode->can_cache_brlcks) { 1642 up_write(&cinode->lock_sem); 1643 return rc; 1644 } 1645 1646 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 1647 if (cap_unix(tcon->ses) && 1648 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) && 1649 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) 1650 rc = cifs_push_posix_locks(cfile); 1651 else 1652 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 1653 rc = tcon->ses->server->ops->push_mand_locks(cfile); 1654 1655 cinode->can_cache_brlcks = false; 1656 up_write(&cinode->lock_sem); 1657 return rc; 1658 } 1659 1660 static void 1661 cifs_read_flock(struct file_lock *flock, __u32 *type, int *lock, int *unlock, 1662 bool *wait_flag, struct TCP_Server_Info *server) 1663 { 1664 if (flock->fl_flags & FL_POSIX) 1665 cifs_dbg(FYI, "Posix\n"); 1666 if (flock->fl_flags & FL_FLOCK) 1667 cifs_dbg(FYI, "Flock\n"); 1668 if (flock->fl_flags & FL_SLEEP) { 1669 cifs_dbg(FYI, "Blocking lock\n"); 1670 *wait_flag = true; 1671 } 1672 if (flock->fl_flags & FL_ACCESS) 1673 cifs_dbg(FYI, "Process suspended by mandatory locking - not implemented yet\n"); 1674 if (flock->fl_flags & FL_LEASE) 1675 cifs_dbg(FYI, "Lease on file - not implemented yet\n"); 1676 if (flock->fl_flags & 1677 (~(FL_POSIX | FL_FLOCK | FL_SLEEP | 1678 FL_ACCESS | FL_LEASE | FL_CLOSE | FL_OFDLCK))) 1679 cifs_dbg(FYI, "Unknown lock flags 0x%x\n", flock->fl_flags); 1680 1681 *type = server->vals->large_lock_type; 1682 if (flock->fl_type == F_WRLCK) { 1683 cifs_dbg(FYI, "F_WRLCK\n"); 1684 *type |= server->vals->exclusive_lock_type; 1685 *lock = 1; 1686 } else if (flock->fl_type == F_UNLCK) { 1687 cifs_dbg(FYI, "F_UNLCK\n"); 1688 *type |= server->vals->unlock_lock_type; 1689 *unlock = 1; 1690 /* Check if unlock includes more than one lock range */ 1691 } else if (flock->fl_type == F_RDLCK) { 1692 cifs_dbg(FYI, "F_RDLCK\n"); 1693 *type |= server->vals->shared_lock_type; 1694 *lock = 1; 1695 } else if (flock->fl_type == F_EXLCK) { 1696 cifs_dbg(FYI, "F_EXLCK\n"); 1697 *type |= server->vals->exclusive_lock_type; 1698 *lock = 1; 1699 } else if (flock->fl_type == F_SHLCK) { 1700 cifs_dbg(FYI, "F_SHLCK\n"); 1701 *type |= server->vals->shared_lock_type; 1702 *lock = 1; 1703 } else 1704 cifs_dbg(FYI, "Unknown type of lock\n"); 1705 } 1706 1707 static int 1708 cifs_getlk(struct file *file, struct file_lock *flock, __u32 type, 1709 bool wait_flag, bool posix_lck, unsigned int xid) 1710 { 1711 int rc = 0; 1712 __u64 length = cifs_flock_len(flock); 1713 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data; 1714 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink); 1715 struct TCP_Server_Info *server = tcon->ses->server; 1716 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 1717 __u16 netfid = cfile->fid.netfid; 1718 1719 if (posix_lck) { 1720 int posix_lock_type; 1721 1722 rc = cifs_posix_lock_test(file, flock); 1723 if (!rc) 1724 return rc; 1725 1726 if (type & server->vals->shared_lock_type) 1727 posix_lock_type = CIFS_RDLCK; 1728 else 1729 posix_lock_type = CIFS_WRLCK; 1730 rc = CIFSSMBPosixLock(xid, tcon, netfid, 1731 hash_lockowner(flock->fl_owner), 1732 flock->fl_start, length, flock, 1733 posix_lock_type, wait_flag); 1734 return rc; 1735 } 1736 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 1737 1738 rc = cifs_lock_test(cfile, flock->fl_start, length, type, flock); 1739 if (!rc) 1740 return rc; 1741 1742 /* BB we could chain these into one lock request BB */ 1743 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length, type, 1744 1, 0, false); 1745 if (rc == 0) { 1746 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length, 1747 type, 0, 1, false); 1748 flock->fl_type = F_UNLCK; 1749 if (rc != 0) 1750 cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n", 1751 rc); 1752 return 0; 1753 } 1754 1755 if (type & server->vals->shared_lock_type) { 1756 flock->fl_type = F_WRLCK; 1757 return 0; 1758 } 1759 1760 type &= ~server->vals->exclusive_lock_type; 1761 1762 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length, 1763 type | server->vals->shared_lock_type, 1764 1, 0, false); 1765 if (rc == 0) { 1766 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length, 1767 type | server->vals->shared_lock_type, 0, 1, false); 1768 flock->fl_type = F_RDLCK; 1769 if (rc != 0) 1770 cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n", 1771 rc); 1772 } else 1773 flock->fl_type = F_WRLCK; 1774 1775 return 0; 1776 } 1777 1778 void 1779 cifs_move_llist(struct list_head *source, struct list_head *dest) 1780 { 1781 struct list_head *li, *tmp; 1782 list_for_each_safe(li, tmp, source) 1783 list_move(li, dest); 1784 } 1785 1786 void 1787 cifs_free_llist(struct list_head *llist) 1788 { 1789 struct cifsLockInfo *li, *tmp; 1790 list_for_each_entry_safe(li, tmp, llist, llist) { 1791 cifs_del_lock_waiters(li); 1792 list_del(&li->llist); 1793 kfree(li); 1794 } 1795 } 1796 1797 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 1798 int 1799 cifs_unlock_range(struct cifsFileInfo *cfile, struct file_lock *flock, 1800 unsigned int xid) 1801 { 1802 int rc = 0, stored_rc; 1803 static const int types[] = { 1804 LOCKING_ANDX_LARGE_FILES, 1805 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES 1806 }; 1807 unsigned int i; 1808 unsigned int max_num, num, max_buf; 1809 LOCKING_ANDX_RANGE *buf, *cur; 1810 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink); 1811 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry)); 1812 struct cifsLockInfo *li, *tmp; 1813 __u64 length = cifs_flock_len(flock); 1814 struct list_head tmp_llist; 1815 1816 INIT_LIST_HEAD(&tmp_llist); 1817 1818 /* 1819 * Accessing maxBuf is racy with cifs_reconnect - need to store value 1820 * and check it before using. 1821 */ 1822 max_buf = tcon->ses->server->maxBuf; 1823 if (max_buf < (sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE))) 1824 return -EINVAL; 1825 1826 BUILD_BUG_ON(sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE) > 1827 PAGE_SIZE); 1828 max_buf = min_t(unsigned int, max_buf - sizeof(struct smb_hdr), 1829 PAGE_SIZE); 1830 max_num = (max_buf - sizeof(struct smb_hdr)) / 1831 sizeof(LOCKING_ANDX_RANGE); 1832 buf = kcalloc(max_num, sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL); 1833 if (!buf) 1834 return -ENOMEM; 1835 1836 cifs_down_write(&cinode->lock_sem); 1837 for (i = 0; i < 2; i++) { 1838 cur = buf; 1839 num = 0; 1840 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) { 1841 if (flock->fl_start > li->offset || 1842 (flock->fl_start + length) < 1843 (li->offset + li->length)) 1844 continue; 1845 if (current->tgid != li->pid) 1846 continue; 1847 if (types[i] != li->type) 1848 continue; 1849 if (cinode->can_cache_brlcks) { 1850 /* 1851 * We can cache brlock requests - simply remove 1852 * a lock from the file's list. 1853 */ 1854 list_del(&li->llist); 1855 cifs_del_lock_waiters(li); 1856 kfree(li); 1857 continue; 1858 } 1859 cur->Pid = cpu_to_le16(li->pid); 1860 cur->LengthLow = cpu_to_le32((u32)li->length); 1861 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32)); 1862 cur->OffsetLow = cpu_to_le32((u32)li->offset); 1863 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32)); 1864 /* 1865 * We need to save a lock here to let us add it again to 1866 * the file's list if the unlock range request fails on 1867 * the server. 1868 */ 1869 list_move(&li->llist, &tmp_llist); 1870 if (++num == max_num) { 1871 stored_rc = cifs_lockv(xid, tcon, 1872 cfile->fid.netfid, 1873 li->type, num, 0, buf); 1874 if (stored_rc) { 1875 /* 1876 * We failed on the unlock range 1877 * request - add all locks from the tmp 1878 * list to the head of the file's list. 1879 */ 1880 cifs_move_llist(&tmp_llist, 1881 &cfile->llist->locks); 1882 rc = stored_rc; 1883 } else 1884 /* 1885 * The unlock range request succeed - 1886 * free the tmp list. 1887 */ 1888 cifs_free_llist(&tmp_llist); 1889 cur = buf; 1890 num = 0; 1891 } else 1892 cur++; 1893 } 1894 if (num) { 1895 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid, 1896 types[i], num, 0, buf); 1897 if (stored_rc) { 1898 cifs_move_llist(&tmp_llist, 1899 &cfile->llist->locks); 1900 rc = stored_rc; 1901 } else 1902 cifs_free_llist(&tmp_llist); 1903 } 1904 } 1905 1906 up_write(&cinode->lock_sem); 1907 kfree(buf); 1908 return rc; 1909 } 1910 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 1911 1912 static int 1913 cifs_setlk(struct file *file, struct file_lock *flock, __u32 type, 1914 bool wait_flag, bool posix_lck, int lock, int unlock, 1915 unsigned int xid) 1916 { 1917 int rc = 0; 1918 __u64 length = cifs_flock_len(flock); 1919 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data; 1920 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink); 1921 struct TCP_Server_Info *server = tcon->ses->server; 1922 struct inode *inode = d_inode(cfile->dentry); 1923 1924 #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY 1925 if (posix_lck) { 1926 int posix_lock_type; 1927 1928 rc = cifs_posix_lock_set(file, flock); 1929 if (rc <= FILE_LOCK_DEFERRED) 1930 return rc; 1931 1932 if (type & server->vals->shared_lock_type) 1933 posix_lock_type = CIFS_RDLCK; 1934 else 1935 posix_lock_type = CIFS_WRLCK; 1936 1937 if (unlock == 1) 1938 posix_lock_type = CIFS_UNLCK; 1939 1940 rc = CIFSSMBPosixLock(xid, tcon, cfile->fid.netfid, 1941 hash_lockowner(flock->fl_owner), 1942 flock->fl_start, length, 1943 NULL, posix_lock_type, wait_flag); 1944 goto out; 1945 } 1946 #endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */ 1947 if (lock) { 1948 struct cifsLockInfo *lock; 1949 1950 lock = cifs_lock_init(flock->fl_start, length, type, 1951 flock->fl_flags); 1952 if (!lock) 1953 return -ENOMEM; 1954 1955 rc = cifs_lock_add_if(cfile, lock, wait_flag); 1956 if (rc < 0) { 1957 kfree(lock); 1958 return rc; 1959 } 1960 if (!rc) 1961 goto out; 1962 1963 /* 1964 * Windows 7 server can delay breaking lease from read to None 1965 * if we set a byte-range lock on a file - break it explicitly 1966 * before sending the lock to the server to be sure the next 1967 * read won't conflict with non-overlapted locks due to 1968 * pagereading. 1969 */ 1970 if (!CIFS_CACHE_WRITE(CIFS_I(inode)) && 1971 CIFS_CACHE_READ(CIFS_I(inode))) { 1972 cifs_zap_mapping(inode); 1973 cifs_dbg(FYI, "Set no oplock for inode=%p due to mand locks\n", 1974 inode); 1975 CIFS_I(inode)->oplock = 0; 1976 } 1977 1978 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length, 1979 type, 1, 0, wait_flag); 1980 if (rc) { 1981 kfree(lock); 1982 return rc; 1983 } 1984 1985 cifs_lock_add(cfile, lock); 1986 } else if (unlock) 1987 rc = server->ops->mand_unlock_range(cfile, flock, xid); 1988 1989 out: 1990 if ((flock->fl_flags & FL_POSIX) || (flock->fl_flags & FL_FLOCK)) { 1991 /* 1992 * If this is a request to remove all locks because we 1993 * are closing the file, it doesn't matter if the 1994 * unlocking failed as both cifs.ko and the SMB server 1995 * remove the lock on file close 1996 */ 1997 if (rc) { 1998 cifs_dbg(VFS, "%s failed rc=%d\n", __func__, rc); 1999 if (!(flock->fl_flags & FL_CLOSE)) 2000 return rc; 2001 } 2002 rc = locks_lock_file_wait(file, flock); 2003 } 2004 return rc; 2005 } 2006 2007 int cifs_flock(struct file *file, int cmd, struct file_lock *fl) 2008 { 2009 int rc, xid; 2010 int lock = 0, unlock = 0; 2011 bool wait_flag = false; 2012 bool posix_lck = false; 2013 struct cifs_sb_info *cifs_sb; 2014 struct cifs_tcon *tcon; 2015 struct cifsFileInfo *cfile; 2016 __u32 type; 2017 2018 xid = get_xid(); 2019 2020 if (!(fl->fl_flags & FL_FLOCK)) { 2021 rc = -ENOLCK; 2022 free_xid(xid); 2023 return rc; 2024 } 2025 2026 cfile = (struct cifsFileInfo *)file->private_data; 2027 tcon = tlink_tcon(cfile->tlink); 2028 2029 cifs_read_flock(fl, &type, &lock, &unlock, &wait_flag, 2030 tcon->ses->server); 2031 cifs_sb = CIFS_FILE_SB(file); 2032 2033 if (cap_unix(tcon->ses) && 2034 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) && 2035 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) 2036 posix_lck = true; 2037 2038 if (!lock && !unlock) { 2039 /* 2040 * if no lock or unlock then nothing to do since we do not 2041 * know what it is 2042 */ 2043 rc = -EOPNOTSUPP; 2044 free_xid(xid); 2045 return rc; 2046 } 2047 2048 rc = cifs_setlk(file, fl, type, wait_flag, posix_lck, lock, unlock, 2049 xid); 2050 free_xid(xid); 2051 return rc; 2052 2053 2054 } 2055 2056 int cifs_lock(struct file *file, int cmd, struct file_lock *flock) 2057 { 2058 int rc, xid; 2059 int lock = 0, unlock = 0; 2060 bool wait_flag = false; 2061 bool posix_lck = false; 2062 struct cifs_sb_info *cifs_sb; 2063 struct cifs_tcon *tcon; 2064 struct cifsFileInfo *cfile; 2065 __u32 type; 2066 2067 rc = -EACCES; 2068 xid = get_xid(); 2069 2070 cifs_dbg(FYI, "%s: %pD2 cmd=0x%x type=0x%x flags=0x%x r=%lld:%lld\n", __func__, file, cmd, 2071 flock->fl_flags, flock->fl_type, (long long)flock->fl_start, 2072 (long long)flock->fl_end); 2073 2074 cfile = (struct cifsFileInfo *)file->private_data; 2075 tcon = tlink_tcon(cfile->tlink); 2076 2077 cifs_read_flock(flock, &type, &lock, &unlock, &wait_flag, 2078 tcon->ses->server); 2079 cifs_sb = CIFS_FILE_SB(file); 2080 set_bit(CIFS_INO_CLOSE_ON_LOCK, &CIFS_I(d_inode(cfile->dentry))->flags); 2081 2082 if (cap_unix(tcon->ses) && 2083 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) && 2084 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) 2085 posix_lck = true; 2086 /* 2087 * BB add code here to normalize offset and length to account for 2088 * negative length which we can not accept over the wire. 2089 */ 2090 if (IS_GETLK(cmd)) { 2091 rc = cifs_getlk(file, flock, type, wait_flag, posix_lck, xid); 2092 free_xid(xid); 2093 return rc; 2094 } 2095 2096 if (!lock && !unlock) { 2097 /* 2098 * if no lock or unlock then nothing to do since we do not 2099 * know what it is 2100 */ 2101 free_xid(xid); 2102 return -EOPNOTSUPP; 2103 } 2104 2105 rc = cifs_setlk(file, flock, type, wait_flag, posix_lck, lock, unlock, 2106 xid); 2107 free_xid(xid); 2108 return rc; 2109 } 2110 2111 /* 2112 * update the file size (if needed) after a write. Should be called with 2113 * the inode->i_lock held 2114 */ 2115 void 2116 cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset, 2117 unsigned int bytes_written) 2118 { 2119 loff_t end_of_write = offset + bytes_written; 2120 2121 if (end_of_write > cifsi->server_eof) 2122 cifsi->server_eof = end_of_write; 2123 } 2124 2125 static ssize_t 2126 cifs_write(struct cifsFileInfo *open_file, __u32 pid, const char *write_data, 2127 size_t write_size, loff_t *offset) 2128 { 2129 int rc = 0; 2130 unsigned int bytes_written = 0; 2131 unsigned int total_written; 2132 struct cifs_tcon *tcon; 2133 struct TCP_Server_Info *server; 2134 unsigned int xid; 2135 struct dentry *dentry = open_file->dentry; 2136 struct cifsInodeInfo *cifsi = CIFS_I(d_inode(dentry)); 2137 struct cifs_io_parms io_parms = {0}; 2138 2139 cifs_dbg(FYI, "write %zd bytes to offset %lld of %pd\n", 2140 write_size, *offset, dentry); 2141 2142 tcon = tlink_tcon(open_file->tlink); 2143 server = tcon->ses->server; 2144 2145 if (!server->ops->sync_write) 2146 return -ENOSYS; 2147 2148 xid = get_xid(); 2149 2150 for (total_written = 0; write_size > total_written; 2151 total_written += bytes_written) { 2152 rc = -EAGAIN; 2153 while (rc == -EAGAIN) { 2154 struct kvec iov[2]; 2155 unsigned int len; 2156 2157 if (open_file->invalidHandle) { 2158 /* we could deadlock if we called 2159 filemap_fdatawait from here so tell 2160 reopen_file not to flush data to 2161 server now */ 2162 rc = cifs_reopen_file(open_file, false); 2163 if (rc != 0) 2164 break; 2165 } 2166 2167 len = min(server->ops->wp_retry_size(d_inode(dentry)), 2168 (unsigned int)write_size - total_written); 2169 /* iov[0] is reserved for smb header */ 2170 iov[1].iov_base = (char *)write_data + total_written; 2171 iov[1].iov_len = len; 2172 io_parms.pid = pid; 2173 io_parms.tcon = tcon; 2174 io_parms.offset = *offset; 2175 io_parms.length = len; 2176 rc = server->ops->sync_write(xid, &open_file->fid, 2177 &io_parms, &bytes_written, iov, 1); 2178 } 2179 if (rc || (bytes_written == 0)) { 2180 if (total_written) 2181 break; 2182 else { 2183 free_xid(xid); 2184 return rc; 2185 } 2186 } else { 2187 spin_lock(&d_inode(dentry)->i_lock); 2188 cifs_update_eof(cifsi, *offset, bytes_written); 2189 spin_unlock(&d_inode(dentry)->i_lock); 2190 *offset += bytes_written; 2191 } 2192 } 2193 2194 cifs_stats_bytes_written(tcon, total_written); 2195 2196 if (total_written > 0) { 2197 spin_lock(&d_inode(dentry)->i_lock); 2198 if (*offset > d_inode(dentry)->i_size) { 2199 i_size_write(d_inode(dentry), *offset); 2200 d_inode(dentry)->i_blocks = (512 - 1 + *offset) >> 9; 2201 } 2202 spin_unlock(&d_inode(dentry)->i_lock); 2203 } 2204 mark_inode_dirty_sync(d_inode(dentry)); 2205 free_xid(xid); 2206 return total_written; 2207 } 2208 2209 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode, 2210 bool fsuid_only) 2211 { 2212 struct cifsFileInfo *open_file = NULL; 2213 struct cifs_sb_info *cifs_sb = CIFS_SB(cifs_inode->netfs.inode.i_sb); 2214 2215 /* only filter by fsuid on multiuser mounts */ 2216 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER)) 2217 fsuid_only = false; 2218 2219 spin_lock(&cifs_inode->open_file_lock); 2220 /* we could simply get the first_list_entry since write-only entries 2221 are always at the end of the list but since the first entry might 2222 have a close pending, we go through the whole list */ 2223 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) { 2224 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid())) 2225 continue; 2226 if (OPEN_FMODE(open_file->f_flags) & FMODE_READ) { 2227 if ((!open_file->invalidHandle)) { 2228 /* found a good file */ 2229 /* lock it so it will not be closed on us */ 2230 cifsFileInfo_get(open_file); 2231 spin_unlock(&cifs_inode->open_file_lock); 2232 return open_file; 2233 } /* else might as well continue, and look for 2234 another, or simply have the caller reopen it 2235 again rather than trying to fix this handle */ 2236 } else /* write only file */ 2237 break; /* write only files are last so must be done */ 2238 } 2239 spin_unlock(&cifs_inode->open_file_lock); 2240 return NULL; 2241 } 2242 2243 /* Return -EBADF if no handle is found and general rc otherwise */ 2244 int 2245 cifs_get_writable_file(struct cifsInodeInfo *cifs_inode, int flags, 2246 struct cifsFileInfo **ret_file) 2247 { 2248 struct cifsFileInfo *open_file, *inv_file = NULL; 2249 struct cifs_sb_info *cifs_sb; 2250 bool any_available = false; 2251 int rc = -EBADF; 2252 unsigned int refind = 0; 2253 bool fsuid_only = flags & FIND_WR_FSUID_ONLY; 2254 bool with_delete = flags & FIND_WR_WITH_DELETE; 2255 *ret_file = NULL; 2256 2257 /* 2258 * Having a null inode here (because mapping->host was set to zero by 2259 * the VFS or MM) should not happen but we had reports of on oops (due 2260 * to it being zero) during stress testcases so we need to check for it 2261 */ 2262 2263 if (cifs_inode == NULL) { 2264 cifs_dbg(VFS, "Null inode passed to cifs_writeable_file\n"); 2265 dump_stack(); 2266 return rc; 2267 } 2268 2269 cifs_sb = CIFS_SB(cifs_inode->netfs.inode.i_sb); 2270 2271 /* only filter by fsuid on multiuser mounts */ 2272 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER)) 2273 fsuid_only = false; 2274 2275 spin_lock(&cifs_inode->open_file_lock); 2276 refind_writable: 2277 if (refind > MAX_REOPEN_ATT) { 2278 spin_unlock(&cifs_inode->open_file_lock); 2279 return rc; 2280 } 2281 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) { 2282 if (!any_available && open_file->pid != current->tgid) 2283 continue; 2284 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid())) 2285 continue; 2286 if (with_delete && !(open_file->fid.access & DELETE)) 2287 continue; 2288 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) { 2289 if (!open_file->invalidHandle) { 2290 /* found a good writable file */ 2291 cifsFileInfo_get(open_file); 2292 spin_unlock(&cifs_inode->open_file_lock); 2293 *ret_file = open_file; 2294 return 0; 2295 } else { 2296 if (!inv_file) 2297 inv_file = open_file; 2298 } 2299 } 2300 } 2301 /* couldn't find useable FH with same pid, try any available */ 2302 if (!any_available) { 2303 any_available = true; 2304 goto refind_writable; 2305 } 2306 2307 if (inv_file) { 2308 any_available = false; 2309 cifsFileInfo_get(inv_file); 2310 } 2311 2312 spin_unlock(&cifs_inode->open_file_lock); 2313 2314 if (inv_file) { 2315 rc = cifs_reopen_file(inv_file, false); 2316 if (!rc) { 2317 *ret_file = inv_file; 2318 return 0; 2319 } 2320 2321 spin_lock(&cifs_inode->open_file_lock); 2322 list_move_tail(&inv_file->flist, &cifs_inode->openFileList); 2323 spin_unlock(&cifs_inode->open_file_lock); 2324 cifsFileInfo_put(inv_file); 2325 ++refind; 2326 inv_file = NULL; 2327 spin_lock(&cifs_inode->open_file_lock); 2328 goto refind_writable; 2329 } 2330 2331 return rc; 2332 } 2333 2334 struct cifsFileInfo * 2335 find_writable_file(struct cifsInodeInfo *cifs_inode, int flags) 2336 { 2337 struct cifsFileInfo *cfile; 2338 int rc; 2339 2340 rc = cifs_get_writable_file(cifs_inode, flags, &cfile); 2341 if (rc) 2342 cifs_dbg(FYI, "Couldn't find writable handle rc=%d\n", rc); 2343 2344 return cfile; 2345 } 2346 2347 int 2348 cifs_get_writable_path(struct cifs_tcon *tcon, const char *name, 2349 int flags, 2350 struct cifsFileInfo **ret_file) 2351 { 2352 struct cifsFileInfo *cfile; 2353 void *page = alloc_dentry_path(); 2354 2355 *ret_file = NULL; 2356 2357 spin_lock(&tcon->open_file_lock); 2358 list_for_each_entry(cfile, &tcon->openFileList, tlist) { 2359 struct cifsInodeInfo *cinode; 2360 const char *full_path = build_path_from_dentry(cfile->dentry, page); 2361 if (IS_ERR(full_path)) { 2362 spin_unlock(&tcon->open_file_lock); 2363 free_dentry_path(page); 2364 return PTR_ERR(full_path); 2365 } 2366 if (strcmp(full_path, name)) 2367 continue; 2368 2369 cinode = CIFS_I(d_inode(cfile->dentry)); 2370 spin_unlock(&tcon->open_file_lock); 2371 free_dentry_path(page); 2372 return cifs_get_writable_file(cinode, flags, ret_file); 2373 } 2374 2375 spin_unlock(&tcon->open_file_lock); 2376 free_dentry_path(page); 2377 return -ENOENT; 2378 } 2379 2380 int 2381 cifs_get_readable_path(struct cifs_tcon *tcon, const char *name, 2382 struct cifsFileInfo **ret_file) 2383 { 2384 struct cifsFileInfo *cfile; 2385 void *page = alloc_dentry_path(); 2386 2387 *ret_file = NULL; 2388 2389 spin_lock(&tcon->open_file_lock); 2390 list_for_each_entry(cfile, &tcon->openFileList, tlist) { 2391 struct cifsInodeInfo *cinode; 2392 const char *full_path = build_path_from_dentry(cfile->dentry, page); 2393 if (IS_ERR(full_path)) { 2394 spin_unlock(&tcon->open_file_lock); 2395 free_dentry_path(page); 2396 return PTR_ERR(full_path); 2397 } 2398 if (strcmp(full_path, name)) 2399 continue; 2400 2401 cinode = CIFS_I(d_inode(cfile->dentry)); 2402 spin_unlock(&tcon->open_file_lock); 2403 free_dentry_path(page); 2404 *ret_file = find_readable_file(cinode, 0); 2405 return *ret_file ? 0 : -ENOENT; 2406 } 2407 2408 spin_unlock(&tcon->open_file_lock); 2409 free_dentry_path(page); 2410 return -ENOENT; 2411 } 2412 2413 void 2414 cifs_writedata_release(struct kref *refcount) 2415 { 2416 struct cifs_writedata *wdata = container_of(refcount, 2417 struct cifs_writedata, refcount); 2418 #ifdef CONFIG_CIFS_SMB_DIRECT 2419 if (wdata->mr) { 2420 smbd_deregister_mr(wdata->mr); 2421 wdata->mr = NULL; 2422 } 2423 #endif 2424 2425 if (wdata->cfile) 2426 cifsFileInfo_put(wdata->cfile); 2427 2428 kfree(wdata); 2429 } 2430 2431 /* 2432 * Write failed with a retryable error. Resend the write request. It's also 2433 * possible that the page was redirtied so re-clean the page. 2434 */ 2435 static void 2436 cifs_writev_requeue(struct cifs_writedata *wdata) 2437 { 2438 int rc = 0; 2439 struct inode *inode = d_inode(wdata->cfile->dentry); 2440 struct TCP_Server_Info *server; 2441 unsigned int rest_len = wdata->bytes; 2442 loff_t fpos = wdata->offset; 2443 2444 server = tlink_tcon(wdata->cfile->tlink)->ses->server; 2445 do { 2446 struct cifs_writedata *wdata2; 2447 unsigned int wsize, cur_len; 2448 2449 wsize = server->ops->wp_retry_size(inode); 2450 if (wsize < rest_len) { 2451 if (wsize < PAGE_SIZE) { 2452 rc = -EOPNOTSUPP; 2453 break; 2454 } 2455 cur_len = min(round_down(wsize, PAGE_SIZE), rest_len); 2456 } else { 2457 cur_len = rest_len; 2458 } 2459 2460 wdata2 = cifs_writedata_alloc(cifs_writev_complete); 2461 if (!wdata2) { 2462 rc = -ENOMEM; 2463 break; 2464 } 2465 2466 wdata2->sync_mode = wdata->sync_mode; 2467 wdata2->offset = fpos; 2468 wdata2->bytes = cur_len; 2469 wdata2->iter = wdata->iter; 2470 2471 iov_iter_advance(&wdata2->iter, fpos - wdata->offset); 2472 iov_iter_truncate(&wdata2->iter, wdata2->bytes); 2473 2474 if (iov_iter_is_xarray(&wdata2->iter)) 2475 /* Check for pages having been redirtied and clean 2476 * them. We can do this by walking the xarray. If 2477 * it's not an xarray, then it's a DIO and we shouldn't 2478 * be mucking around with the page bits. 2479 */ 2480 cifs_undirty_folios(inode, fpos, cur_len); 2481 2482 rc = cifs_get_writable_file(CIFS_I(inode), FIND_WR_ANY, 2483 &wdata2->cfile); 2484 if (!wdata2->cfile) { 2485 cifs_dbg(VFS, "No writable handle to retry writepages rc=%d\n", 2486 rc); 2487 if (!is_retryable_error(rc)) 2488 rc = -EBADF; 2489 } else { 2490 wdata2->pid = wdata2->cfile->pid; 2491 rc = server->ops->async_writev(wdata2, 2492 cifs_writedata_release); 2493 } 2494 2495 kref_put(&wdata2->refcount, cifs_writedata_release); 2496 if (rc) { 2497 if (is_retryable_error(rc)) 2498 continue; 2499 fpos += cur_len; 2500 rest_len -= cur_len; 2501 break; 2502 } 2503 2504 fpos += cur_len; 2505 rest_len -= cur_len; 2506 } while (rest_len > 0); 2507 2508 /* Clean up remaining pages from the original wdata */ 2509 if (iov_iter_is_xarray(&wdata->iter)) 2510 cifs_pages_write_failed(inode, fpos, rest_len); 2511 2512 if (rc != 0 && !is_retryable_error(rc)) 2513 mapping_set_error(inode->i_mapping, rc); 2514 kref_put(&wdata->refcount, cifs_writedata_release); 2515 } 2516 2517 void 2518 cifs_writev_complete(struct work_struct *work) 2519 { 2520 struct cifs_writedata *wdata = container_of(work, 2521 struct cifs_writedata, work); 2522 struct inode *inode = d_inode(wdata->cfile->dentry); 2523 2524 if (wdata->result == 0) { 2525 spin_lock(&inode->i_lock); 2526 cifs_update_eof(CIFS_I(inode), wdata->offset, wdata->bytes); 2527 spin_unlock(&inode->i_lock); 2528 cifs_stats_bytes_written(tlink_tcon(wdata->cfile->tlink), 2529 wdata->bytes); 2530 } else if (wdata->sync_mode == WB_SYNC_ALL && wdata->result == -EAGAIN) 2531 return cifs_writev_requeue(wdata); 2532 2533 if (wdata->result == -EAGAIN) 2534 cifs_pages_write_redirty(inode, wdata->offset, wdata->bytes); 2535 else if (wdata->result < 0) 2536 cifs_pages_write_failed(inode, wdata->offset, wdata->bytes); 2537 else 2538 cifs_pages_written_back(inode, wdata->offset, wdata->bytes); 2539 2540 if (wdata->result != -EAGAIN) 2541 mapping_set_error(inode->i_mapping, wdata->result); 2542 kref_put(&wdata->refcount, cifs_writedata_release); 2543 } 2544 2545 struct cifs_writedata *cifs_writedata_alloc(work_func_t complete) 2546 { 2547 struct cifs_writedata *wdata; 2548 2549 wdata = kzalloc(sizeof(*wdata), GFP_NOFS); 2550 if (wdata != NULL) { 2551 kref_init(&wdata->refcount); 2552 INIT_LIST_HEAD(&wdata->list); 2553 init_completion(&wdata->done); 2554 INIT_WORK(&wdata->work, complete); 2555 } 2556 return wdata; 2557 } 2558 2559 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to) 2560 { 2561 struct address_space *mapping = page->mapping; 2562 loff_t offset = (loff_t)page->index << PAGE_SHIFT; 2563 char *write_data; 2564 int rc = -EFAULT; 2565 int bytes_written = 0; 2566 struct inode *inode; 2567 struct cifsFileInfo *open_file; 2568 2569 if (!mapping || !mapping->host) 2570 return -EFAULT; 2571 2572 inode = page->mapping->host; 2573 2574 offset += (loff_t)from; 2575 write_data = kmap(page); 2576 write_data += from; 2577 2578 if ((to > PAGE_SIZE) || (from > to)) { 2579 kunmap(page); 2580 return -EIO; 2581 } 2582 2583 /* racing with truncate? */ 2584 if (offset > mapping->host->i_size) { 2585 kunmap(page); 2586 return 0; /* don't care */ 2587 } 2588 2589 /* check to make sure that we are not extending the file */ 2590 if (mapping->host->i_size - offset < (loff_t)to) 2591 to = (unsigned)(mapping->host->i_size - offset); 2592 2593 rc = cifs_get_writable_file(CIFS_I(mapping->host), FIND_WR_ANY, 2594 &open_file); 2595 if (!rc) { 2596 bytes_written = cifs_write(open_file, open_file->pid, 2597 write_data, to - from, &offset); 2598 cifsFileInfo_put(open_file); 2599 /* Does mm or vfs already set times? */ 2600 simple_inode_init_ts(inode); 2601 if ((bytes_written > 0) && (offset)) 2602 rc = 0; 2603 else if (bytes_written < 0) 2604 rc = bytes_written; 2605 else 2606 rc = -EFAULT; 2607 } else { 2608 cifs_dbg(FYI, "No writable handle for write page rc=%d\n", rc); 2609 if (!is_retryable_error(rc)) 2610 rc = -EIO; 2611 } 2612 2613 kunmap(page); 2614 return rc; 2615 } 2616 2617 /* 2618 * Extend the region to be written back to include subsequent contiguously 2619 * dirty pages if possible, but don't sleep while doing so. 2620 */ 2621 static void cifs_extend_writeback(struct address_space *mapping, 2622 long *_count, 2623 loff_t start, 2624 int max_pages, 2625 size_t max_len, 2626 unsigned int *_len) 2627 { 2628 struct folio_batch batch; 2629 struct folio *folio; 2630 unsigned int psize, nr_pages; 2631 size_t len = *_len; 2632 pgoff_t index = (start + len) / PAGE_SIZE; 2633 bool stop = true; 2634 unsigned int i; 2635 XA_STATE(xas, &mapping->i_pages, index); 2636 2637 folio_batch_init(&batch); 2638 2639 do { 2640 /* Firstly, we gather up a batch of contiguous dirty pages 2641 * under the RCU read lock - but we can't clear the dirty flags 2642 * there if any of those pages are mapped. 2643 */ 2644 rcu_read_lock(); 2645 2646 xas_for_each(&xas, folio, ULONG_MAX) { 2647 stop = true; 2648 if (xas_retry(&xas, folio)) 2649 continue; 2650 if (xa_is_value(folio)) 2651 break; 2652 if (folio_index(folio) != index) 2653 break; 2654 if (!folio_try_get_rcu(folio)) { 2655 xas_reset(&xas); 2656 continue; 2657 } 2658 nr_pages = folio_nr_pages(folio); 2659 if (nr_pages > max_pages) 2660 break; 2661 2662 /* Has the page moved or been split? */ 2663 if (unlikely(folio != xas_reload(&xas))) { 2664 folio_put(folio); 2665 break; 2666 } 2667 2668 if (!folio_trylock(folio)) { 2669 folio_put(folio); 2670 break; 2671 } 2672 if (!folio_test_dirty(folio) || folio_test_writeback(folio)) { 2673 folio_unlock(folio); 2674 folio_put(folio); 2675 break; 2676 } 2677 2678 max_pages -= nr_pages; 2679 psize = folio_size(folio); 2680 len += psize; 2681 stop = false; 2682 if (max_pages <= 0 || len >= max_len || *_count <= 0) 2683 stop = true; 2684 2685 index += nr_pages; 2686 if (!folio_batch_add(&batch, folio)) 2687 break; 2688 if (stop) 2689 break; 2690 } 2691 2692 if (!stop) 2693 xas_pause(&xas); 2694 rcu_read_unlock(); 2695 2696 /* Now, if we obtained any pages, we can shift them to being 2697 * writable and mark them for caching. 2698 */ 2699 if (!folio_batch_count(&batch)) 2700 break; 2701 2702 for (i = 0; i < folio_batch_count(&batch); i++) { 2703 folio = batch.folios[i]; 2704 /* The folio should be locked, dirty and not undergoing 2705 * writeback from the loop above. 2706 */ 2707 if (!folio_clear_dirty_for_io(folio)) 2708 WARN_ON(1); 2709 if (folio_start_writeback(folio)) 2710 WARN_ON(1); 2711 2712 *_count -= folio_nr_pages(folio); 2713 folio_unlock(folio); 2714 } 2715 2716 folio_batch_release(&batch); 2717 cond_resched(); 2718 } while (!stop); 2719 2720 *_len = len; 2721 } 2722 2723 /* 2724 * Write back the locked page and any subsequent non-locked dirty pages. 2725 */ 2726 static ssize_t cifs_write_back_from_locked_folio(struct address_space *mapping, 2727 struct writeback_control *wbc, 2728 struct folio *folio, 2729 loff_t start, loff_t end) 2730 { 2731 struct inode *inode = mapping->host; 2732 struct TCP_Server_Info *server; 2733 struct cifs_writedata *wdata; 2734 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb); 2735 struct cifs_credits credits_on_stack; 2736 struct cifs_credits *credits = &credits_on_stack; 2737 struct cifsFileInfo *cfile = NULL; 2738 unsigned int xid, wsize, len; 2739 loff_t i_size = i_size_read(inode); 2740 size_t max_len; 2741 long count = wbc->nr_to_write; 2742 int rc; 2743 2744 /* The folio should be locked, dirty and not undergoing writeback. */ 2745 if (folio_start_writeback(folio)) 2746 WARN_ON(1); 2747 2748 count -= folio_nr_pages(folio); 2749 len = folio_size(folio); 2750 2751 xid = get_xid(); 2752 server = cifs_pick_channel(cifs_sb_master_tcon(cifs_sb)->ses); 2753 2754 rc = cifs_get_writable_file(CIFS_I(inode), FIND_WR_ANY, &cfile); 2755 if (rc) { 2756 cifs_dbg(VFS, "No writable handle in writepages rc=%d\n", rc); 2757 goto err_xid; 2758 } 2759 2760 rc = server->ops->wait_mtu_credits(server, cifs_sb->ctx->wsize, 2761 &wsize, credits); 2762 if (rc != 0) 2763 goto err_close; 2764 2765 wdata = cifs_writedata_alloc(cifs_writev_complete); 2766 if (!wdata) { 2767 rc = -ENOMEM; 2768 goto err_uncredit; 2769 } 2770 2771 wdata->sync_mode = wbc->sync_mode; 2772 wdata->offset = folio_pos(folio); 2773 wdata->pid = cfile->pid; 2774 wdata->credits = credits_on_stack; 2775 wdata->cfile = cfile; 2776 wdata->server = server; 2777 cfile = NULL; 2778 2779 /* Find all consecutive lockable dirty pages, stopping when we find a 2780 * page that is not immediately lockable, is not dirty or is missing, 2781 * or we reach the end of the range. 2782 */ 2783 if (start < i_size) { 2784 /* Trim the write to the EOF; the extra data is ignored. Also 2785 * put an upper limit on the size of a single storedata op. 2786 */ 2787 max_len = wsize; 2788 max_len = min_t(unsigned long long, max_len, end - start + 1); 2789 max_len = min_t(unsigned long long, max_len, i_size - start); 2790 2791 if (len < max_len) { 2792 int max_pages = INT_MAX; 2793 2794 #ifdef CONFIG_CIFS_SMB_DIRECT 2795 if (server->smbd_conn) 2796 max_pages = server->smbd_conn->max_frmr_depth; 2797 #endif 2798 max_pages -= folio_nr_pages(folio); 2799 2800 if (max_pages > 0) 2801 cifs_extend_writeback(mapping, &count, start, 2802 max_pages, max_len, &len); 2803 } 2804 len = min_t(loff_t, len, max_len); 2805 } 2806 2807 wdata->bytes = len; 2808 2809 /* We now have a contiguous set of dirty pages, each with writeback 2810 * set; the first page is still locked at this point, but all the rest 2811 * have been unlocked. 2812 */ 2813 folio_unlock(folio); 2814 2815 if (start < i_size) { 2816 iov_iter_xarray(&wdata->iter, ITER_SOURCE, &mapping->i_pages, 2817 start, len); 2818 2819 rc = adjust_credits(wdata->server, &wdata->credits, wdata->bytes); 2820 if (rc) 2821 goto err_wdata; 2822 2823 if (wdata->cfile->invalidHandle) 2824 rc = -EAGAIN; 2825 else 2826 rc = wdata->server->ops->async_writev(wdata, 2827 cifs_writedata_release); 2828 if (rc >= 0) { 2829 kref_put(&wdata->refcount, cifs_writedata_release); 2830 goto err_close; 2831 } 2832 } else { 2833 /* The dirty region was entirely beyond the EOF. */ 2834 cifs_pages_written_back(inode, start, len); 2835 rc = 0; 2836 } 2837 2838 err_wdata: 2839 kref_put(&wdata->refcount, cifs_writedata_release); 2840 err_uncredit: 2841 add_credits_and_wake_if(server, credits, 0); 2842 err_close: 2843 if (cfile) 2844 cifsFileInfo_put(cfile); 2845 err_xid: 2846 free_xid(xid); 2847 if (rc == 0) { 2848 wbc->nr_to_write = count; 2849 rc = len; 2850 } else if (is_retryable_error(rc)) { 2851 cifs_pages_write_redirty(inode, start, len); 2852 } else { 2853 cifs_pages_write_failed(inode, start, len); 2854 mapping_set_error(mapping, rc); 2855 } 2856 /* Indication to update ctime and mtime as close is deferred */ 2857 set_bit(CIFS_INO_MODIFIED_ATTR, &CIFS_I(inode)->flags); 2858 return rc; 2859 } 2860 2861 /* 2862 * write a region of pages back to the server 2863 */ 2864 static int cifs_writepages_region(struct address_space *mapping, 2865 struct writeback_control *wbc, 2866 loff_t start, loff_t end, loff_t *_next) 2867 { 2868 struct folio_batch fbatch; 2869 int skips = 0; 2870 2871 folio_batch_init(&fbatch); 2872 do { 2873 int nr; 2874 pgoff_t index = start / PAGE_SIZE; 2875 2876 nr = filemap_get_folios_tag(mapping, &index, end / PAGE_SIZE, 2877 PAGECACHE_TAG_DIRTY, &fbatch); 2878 if (!nr) 2879 break; 2880 2881 for (int i = 0; i < nr; i++) { 2882 ssize_t ret; 2883 struct folio *folio = fbatch.folios[i]; 2884 2885 redo_folio: 2886 start = folio_pos(folio); /* May regress with THPs */ 2887 2888 /* At this point we hold neither the i_pages lock nor the 2889 * page lock: the page may be truncated or invalidated 2890 * (changing page->mapping to NULL), or even swizzled 2891 * back from swapper_space to tmpfs file mapping 2892 */ 2893 if (wbc->sync_mode != WB_SYNC_NONE) { 2894 ret = folio_lock_killable(folio); 2895 if (ret < 0) 2896 goto write_error; 2897 } else { 2898 if (!folio_trylock(folio)) 2899 goto skip_write; 2900 } 2901 2902 if (folio_mapping(folio) != mapping || 2903 !folio_test_dirty(folio)) { 2904 start += folio_size(folio); 2905 folio_unlock(folio); 2906 continue; 2907 } 2908 2909 if (folio_test_writeback(folio) || 2910 folio_test_fscache(folio)) { 2911 folio_unlock(folio); 2912 if (wbc->sync_mode == WB_SYNC_NONE) 2913 goto skip_write; 2914 2915 folio_wait_writeback(folio); 2916 #ifdef CONFIG_CIFS_FSCACHE 2917 folio_wait_fscache(folio); 2918 #endif 2919 goto redo_folio; 2920 } 2921 2922 if (!folio_clear_dirty_for_io(folio)) 2923 /* We hold the page lock - it should've been dirty. */ 2924 WARN_ON(1); 2925 2926 ret = cifs_write_back_from_locked_folio(mapping, wbc, folio, start, end); 2927 if (ret < 0) 2928 goto write_error; 2929 2930 start += ret; 2931 continue; 2932 2933 write_error: 2934 folio_batch_release(&fbatch); 2935 *_next = start; 2936 return ret; 2937 2938 skip_write: 2939 /* 2940 * Too many skipped writes, or need to reschedule? 2941 * Treat it as a write error without an error code. 2942 */ 2943 if (skips >= 5 || need_resched()) { 2944 ret = 0; 2945 goto write_error; 2946 } 2947 2948 /* Otherwise, just skip that folio and go on to the next */ 2949 skips++; 2950 start += folio_size(folio); 2951 continue; 2952 } 2953 2954 folio_batch_release(&fbatch); 2955 cond_resched(); 2956 } while (wbc->nr_to_write > 0); 2957 2958 *_next = start; 2959 return 0; 2960 } 2961 2962 /* 2963 * Write some of the pending data back to the server 2964 */ 2965 static int cifs_writepages(struct address_space *mapping, 2966 struct writeback_control *wbc) 2967 { 2968 loff_t start, next; 2969 int ret; 2970 2971 /* We have to be careful as we can end up racing with setattr() 2972 * truncating the pagecache since the caller doesn't take a lock here 2973 * to prevent it. 2974 */ 2975 2976 if (wbc->range_cyclic) { 2977 start = mapping->writeback_index * PAGE_SIZE; 2978 ret = cifs_writepages_region(mapping, wbc, start, LLONG_MAX, &next); 2979 if (ret == 0) { 2980 mapping->writeback_index = next / PAGE_SIZE; 2981 if (start > 0 && wbc->nr_to_write > 0) { 2982 ret = cifs_writepages_region(mapping, wbc, 0, 2983 start, &next); 2984 if (ret == 0) 2985 mapping->writeback_index = 2986 next / PAGE_SIZE; 2987 } 2988 } 2989 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) { 2990 ret = cifs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next); 2991 if (wbc->nr_to_write > 0 && ret == 0) 2992 mapping->writeback_index = next / PAGE_SIZE; 2993 } else { 2994 ret = cifs_writepages_region(mapping, wbc, 2995 wbc->range_start, wbc->range_end, &next); 2996 } 2997 2998 return ret; 2999 } 3000 3001 static int 3002 cifs_writepage_locked(struct page *page, struct writeback_control *wbc) 3003 { 3004 int rc; 3005 unsigned int xid; 3006 3007 xid = get_xid(); 3008 /* BB add check for wbc flags */ 3009 get_page(page); 3010 if (!PageUptodate(page)) 3011 cifs_dbg(FYI, "ppw - page not up to date\n"); 3012 3013 /* 3014 * Set the "writeback" flag, and clear "dirty" in the radix tree. 3015 * 3016 * A writepage() implementation always needs to do either this, 3017 * or re-dirty the page with "redirty_page_for_writepage()" in 3018 * the case of a failure. 3019 * 3020 * Just unlocking the page will cause the radix tree tag-bits 3021 * to fail to update with the state of the page correctly. 3022 */ 3023 set_page_writeback(page); 3024 retry_write: 3025 rc = cifs_partialpagewrite(page, 0, PAGE_SIZE); 3026 if (is_retryable_error(rc)) { 3027 if (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN) 3028 goto retry_write; 3029 redirty_page_for_writepage(wbc, page); 3030 } else if (rc != 0) { 3031 SetPageError(page); 3032 mapping_set_error(page->mapping, rc); 3033 } else { 3034 SetPageUptodate(page); 3035 } 3036 end_page_writeback(page); 3037 put_page(page); 3038 free_xid(xid); 3039 return rc; 3040 } 3041 3042 static int cifs_write_end(struct file *file, struct address_space *mapping, 3043 loff_t pos, unsigned len, unsigned copied, 3044 struct page *page, void *fsdata) 3045 { 3046 int rc; 3047 struct inode *inode = mapping->host; 3048 struct cifsFileInfo *cfile = file->private_data; 3049 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb); 3050 struct folio *folio = page_folio(page); 3051 __u32 pid; 3052 3053 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD) 3054 pid = cfile->pid; 3055 else 3056 pid = current->tgid; 3057 3058 cifs_dbg(FYI, "write_end for page %p from pos %lld with %d bytes\n", 3059 page, pos, copied); 3060 3061 if (folio_test_checked(folio)) { 3062 if (copied == len) 3063 folio_mark_uptodate(folio); 3064 folio_clear_checked(folio); 3065 } else if (!folio_test_uptodate(folio) && copied == PAGE_SIZE) 3066 folio_mark_uptodate(folio); 3067 3068 if (!folio_test_uptodate(folio)) { 3069 char *page_data; 3070 unsigned offset = pos & (PAGE_SIZE - 1); 3071 unsigned int xid; 3072 3073 xid = get_xid(); 3074 /* this is probably better than directly calling 3075 partialpage_write since in this function the file handle is 3076 known which we might as well leverage */ 3077 /* BB check if anything else missing out of ppw 3078 such as updating last write time */ 3079 page_data = kmap(page); 3080 rc = cifs_write(cfile, pid, page_data + offset, copied, &pos); 3081 /* if (rc < 0) should we set writebehind rc? */ 3082 kunmap(page); 3083 3084 free_xid(xid); 3085 } else { 3086 rc = copied; 3087 pos += copied; 3088 set_page_dirty(page); 3089 } 3090 3091 if (rc > 0) { 3092 spin_lock(&inode->i_lock); 3093 if (pos > inode->i_size) { 3094 i_size_write(inode, pos); 3095 inode->i_blocks = (512 - 1 + pos) >> 9; 3096 } 3097 spin_unlock(&inode->i_lock); 3098 } 3099 3100 unlock_page(page); 3101 put_page(page); 3102 /* Indication to update ctime and mtime as close is deferred */ 3103 set_bit(CIFS_INO_MODIFIED_ATTR, &CIFS_I(inode)->flags); 3104 3105 return rc; 3106 } 3107 3108 int cifs_strict_fsync(struct file *file, loff_t start, loff_t end, 3109 int datasync) 3110 { 3111 unsigned int xid; 3112 int rc = 0; 3113 struct cifs_tcon *tcon; 3114 struct TCP_Server_Info *server; 3115 struct cifsFileInfo *smbfile = file->private_data; 3116 struct inode *inode = file_inode(file); 3117 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb); 3118 3119 rc = file_write_and_wait_range(file, start, end); 3120 if (rc) { 3121 trace_cifs_fsync_err(inode->i_ino, rc); 3122 return rc; 3123 } 3124 3125 xid = get_xid(); 3126 3127 cifs_dbg(FYI, "Sync file - name: %pD datasync: 0x%x\n", 3128 file, datasync); 3129 3130 if (!CIFS_CACHE_READ(CIFS_I(inode))) { 3131 rc = cifs_zap_mapping(inode); 3132 if (rc) { 3133 cifs_dbg(FYI, "rc: %d during invalidate phase\n", rc); 3134 rc = 0; /* don't care about it in fsync */ 3135 } 3136 } 3137 3138 tcon = tlink_tcon(smbfile->tlink); 3139 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) { 3140 server = tcon->ses->server; 3141 if (server->ops->flush == NULL) { 3142 rc = -ENOSYS; 3143 goto strict_fsync_exit; 3144 } 3145 3146 if ((OPEN_FMODE(smbfile->f_flags) & FMODE_WRITE) == 0) { 3147 smbfile = find_writable_file(CIFS_I(inode), FIND_WR_ANY); 3148 if (smbfile) { 3149 rc = server->ops->flush(xid, tcon, &smbfile->fid); 3150 cifsFileInfo_put(smbfile); 3151 } else 3152 cifs_dbg(FYI, "ignore fsync for file not open for write\n"); 3153 } else 3154 rc = server->ops->flush(xid, tcon, &smbfile->fid); 3155 } 3156 3157 strict_fsync_exit: 3158 free_xid(xid); 3159 return rc; 3160 } 3161 3162 int cifs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 3163 { 3164 unsigned int xid; 3165 int rc = 0; 3166 struct cifs_tcon *tcon; 3167 struct TCP_Server_Info *server; 3168 struct cifsFileInfo *smbfile = file->private_data; 3169 struct inode *inode = file_inode(file); 3170 struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(file); 3171 3172 rc = file_write_and_wait_range(file, start, end); 3173 if (rc) { 3174 trace_cifs_fsync_err(file_inode(file)->i_ino, rc); 3175 return rc; 3176 } 3177 3178 xid = get_xid(); 3179 3180 cifs_dbg(FYI, "Sync file - name: %pD datasync: 0x%x\n", 3181 file, datasync); 3182 3183 tcon = tlink_tcon(smbfile->tlink); 3184 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) { 3185 server = tcon->ses->server; 3186 if (server->ops->flush == NULL) { 3187 rc = -ENOSYS; 3188 goto fsync_exit; 3189 } 3190 3191 if ((OPEN_FMODE(smbfile->f_flags) & FMODE_WRITE) == 0) { 3192 smbfile = find_writable_file(CIFS_I(inode), FIND_WR_ANY); 3193 if (smbfile) { 3194 rc = server->ops->flush(xid, tcon, &smbfile->fid); 3195 cifsFileInfo_put(smbfile); 3196 } else 3197 cifs_dbg(FYI, "ignore fsync for file not open for write\n"); 3198 } else 3199 rc = server->ops->flush(xid, tcon, &smbfile->fid); 3200 } 3201 3202 fsync_exit: 3203 free_xid(xid); 3204 return rc; 3205 } 3206 3207 /* 3208 * As file closes, flush all cached write data for this inode checking 3209 * for write behind errors. 3210 */ 3211 int cifs_flush(struct file *file, fl_owner_t id) 3212 { 3213 struct inode *inode = file_inode(file); 3214 int rc = 0; 3215 3216 if (file->f_mode & FMODE_WRITE) 3217 rc = filemap_write_and_wait(inode->i_mapping); 3218 3219 cifs_dbg(FYI, "Flush inode %p file %p rc %d\n", inode, file, rc); 3220 if (rc) { 3221 /* get more nuanced writeback errors */ 3222 rc = filemap_check_wb_err(file->f_mapping, 0); 3223 trace_cifs_flush_err(inode->i_ino, rc); 3224 } 3225 return rc; 3226 } 3227 3228 static void 3229 cifs_uncached_writedata_release(struct kref *refcount) 3230 { 3231 struct cifs_writedata *wdata = container_of(refcount, 3232 struct cifs_writedata, refcount); 3233 3234 kref_put(&wdata->ctx->refcount, cifs_aio_ctx_release); 3235 cifs_writedata_release(refcount); 3236 } 3237 3238 static void collect_uncached_write_data(struct cifs_aio_ctx *ctx); 3239 3240 static void 3241 cifs_uncached_writev_complete(struct work_struct *work) 3242 { 3243 struct cifs_writedata *wdata = container_of(work, 3244 struct cifs_writedata, work); 3245 struct inode *inode = d_inode(wdata->cfile->dentry); 3246 struct cifsInodeInfo *cifsi = CIFS_I(inode); 3247 3248 spin_lock(&inode->i_lock); 3249 cifs_update_eof(cifsi, wdata->offset, wdata->bytes); 3250 if (cifsi->server_eof > inode->i_size) 3251 i_size_write(inode, cifsi->server_eof); 3252 spin_unlock(&inode->i_lock); 3253 3254 complete(&wdata->done); 3255 collect_uncached_write_data(wdata->ctx); 3256 /* the below call can possibly free the last ref to aio ctx */ 3257 kref_put(&wdata->refcount, cifs_uncached_writedata_release); 3258 } 3259 3260 static int 3261 cifs_resend_wdata(struct cifs_writedata *wdata, struct list_head *wdata_list, 3262 struct cifs_aio_ctx *ctx) 3263 { 3264 unsigned int wsize; 3265 struct cifs_credits credits; 3266 int rc; 3267 struct TCP_Server_Info *server = wdata->server; 3268 3269 do { 3270 if (wdata->cfile->invalidHandle) { 3271 rc = cifs_reopen_file(wdata->cfile, false); 3272 if (rc == -EAGAIN) 3273 continue; 3274 else if (rc) 3275 break; 3276 } 3277 3278 3279 /* 3280 * Wait for credits to resend this wdata. 3281 * Note: we are attempting to resend the whole wdata not in 3282 * segments 3283 */ 3284 do { 3285 rc = server->ops->wait_mtu_credits(server, wdata->bytes, 3286 &wsize, &credits); 3287 if (rc) 3288 goto fail; 3289 3290 if (wsize < wdata->bytes) { 3291 add_credits_and_wake_if(server, &credits, 0); 3292 msleep(1000); 3293 } 3294 } while (wsize < wdata->bytes); 3295 wdata->credits = credits; 3296 3297 rc = adjust_credits(server, &wdata->credits, wdata->bytes); 3298 3299 if (!rc) { 3300 if (wdata->cfile->invalidHandle) 3301 rc = -EAGAIN; 3302 else { 3303 #ifdef CONFIG_CIFS_SMB_DIRECT 3304 if (wdata->mr) { 3305 wdata->mr->need_invalidate = true; 3306 smbd_deregister_mr(wdata->mr); 3307 wdata->mr = NULL; 3308 } 3309 #endif 3310 rc = server->ops->async_writev(wdata, 3311 cifs_uncached_writedata_release); 3312 } 3313 } 3314 3315 /* If the write was successfully sent, we are done */ 3316 if (!rc) { 3317 list_add_tail(&wdata->list, wdata_list); 3318 return 0; 3319 } 3320 3321 /* Roll back credits and retry if needed */ 3322 add_credits_and_wake_if(server, &wdata->credits, 0); 3323 } while (rc == -EAGAIN); 3324 3325 fail: 3326 kref_put(&wdata->refcount, cifs_uncached_writedata_release); 3327 return rc; 3328 } 3329 3330 /* 3331 * Select span of a bvec iterator we're going to use. Limit it by both maximum 3332 * size and maximum number of segments. 3333 */ 3334 static size_t cifs_limit_bvec_subset(const struct iov_iter *iter, size_t max_size, 3335 size_t max_segs, unsigned int *_nsegs) 3336 { 3337 const struct bio_vec *bvecs = iter->bvec; 3338 unsigned int nbv = iter->nr_segs, ix = 0, nsegs = 0; 3339 size_t len, span = 0, n = iter->count; 3340 size_t skip = iter->iov_offset; 3341 3342 if (WARN_ON(!iov_iter_is_bvec(iter)) || n == 0) 3343 return 0; 3344 3345 while (n && ix < nbv && skip) { 3346 len = bvecs[ix].bv_len; 3347 if (skip < len) 3348 break; 3349 skip -= len; 3350 n -= len; 3351 ix++; 3352 } 3353 3354 while (n && ix < nbv) { 3355 len = min3(n, bvecs[ix].bv_len - skip, max_size); 3356 span += len; 3357 max_size -= len; 3358 nsegs++; 3359 ix++; 3360 if (max_size == 0 || nsegs >= max_segs) 3361 break; 3362 skip = 0; 3363 n -= len; 3364 } 3365 3366 *_nsegs = nsegs; 3367 return span; 3368 } 3369 3370 static int 3371 cifs_write_from_iter(loff_t fpos, size_t len, struct iov_iter *from, 3372 struct cifsFileInfo *open_file, 3373 struct cifs_sb_info *cifs_sb, struct list_head *wdata_list, 3374 struct cifs_aio_ctx *ctx) 3375 { 3376 int rc = 0; 3377 size_t cur_len, max_len; 3378 struct cifs_writedata *wdata; 3379 pid_t pid; 3380 struct TCP_Server_Info *server; 3381 unsigned int xid, max_segs = INT_MAX; 3382 3383 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD) 3384 pid = open_file->pid; 3385 else 3386 pid = current->tgid; 3387 3388 server = cifs_pick_channel(tlink_tcon(open_file->tlink)->ses); 3389 xid = get_xid(); 3390 3391 #ifdef CONFIG_CIFS_SMB_DIRECT 3392 if (server->smbd_conn) 3393 max_segs = server->smbd_conn->max_frmr_depth; 3394 #endif 3395 3396 do { 3397 struct cifs_credits credits_on_stack; 3398 struct cifs_credits *credits = &credits_on_stack; 3399 unsigned int wsize, nsegs = 0; 3400 3401 if (signal_pending(current)) { 3402 rc = -EINTR; 3403 break; 3404 } 3405 3406 if (open_file->invalidHandle) { 3407 rc = cifs_reopen_file(open_file, false); 3408 if (rc == -EAGAIN) 3409 continue; 3410 else if (rc) 3411 break; 3412 } 3413 3414 rc = server->ops->wait_mtu_credits(server, cifs_sb->ctx->wsize, 3415 &wsize, credits); 3416 if (rc) 3417 break; 3418 3419 max_len = min_t(const size_t, len, wsize); 3420 if (!max_len) { 3421 rc = -EAGAIN; 3422 add_credits_and_wake_if(server, credits, 0); 3423 break; 3424 } 3425 3426 cur_len = cifs_limit_bvec_subset(from, max_len, max_segs, &nsegs); 3427 cifs_dbg(FYI, "write_from_iter len=%zx/%zx nsegs=%u/%lu/%u\n", 3428 cur_len, max_len, nsegs, from->nr_segs, max_segs); 3429 if (cur_len == 0) { 3430 rc = -EIO; 3431 add_credits_and_wake_if(server, credits, 0); 3432 break; 3433 } 3434 3435 wdata = cifs_writedata_alloc(cifs_uncached_writev_complete); 3436 if (!wdata) { 3437 rc = -ENOMEM; 3438 add_credits_and_wake_if(server, credits, 0); 3439 break; 3440 } 3441 3442 wdata->sync_mode = WB_SYNC_ALL; 3443 wdata->offset = (__u64)fpos; 3444 wdata->cfile = cifsFileInfo_get(open_file); 3445 wdata->server = server; 3446 wdata->pid = pid; 3447 wdata->bytes = cur_len; 3448 wdata->credits = credits_on_stack; 3449 wdata->iter = *from; 3450 wdata->ctx = ctx; 3451 kref_get(&ctx->refcount); 3452 3453 iov_iter_truncate(&wdata->iter, cur_len); 3454 3455 rc = adjust_credits(server, &wdata->credits, wdata->bytes); 3456 3457 if (!rc) { 3458 if (wdata->cfile->invalidHandle) 3459 rc = -EAGAIN; 3460 else 3461 rc = server->ops->async_writev(wdata, 3462 cifs_uncached_writedata_release); 3463 } 3464 3465 if (rc) { 3466 add_credits_and_wake_if(server, &wdata->credits, 0); 3467 kref_put(&wdata->refcount, 3468 cifs_uncached_writedata_release); 3469 if (rc == -EAGAIN) 3470 continue; 3471 break; 3472 } 3473 3474 list_add_tail(&wdata->list, wdata_list); 3475 iov_iter_advance(from, cur_len); 3476 fpos += cur_len; 3477 len -= cur_len; 3478 } while (len > 0); 3479 3480 free_xid(xid); 3481 return rc; 3482 } 3483 3484 static void collect_uncached_write_data(struct cifs_aio_ctx *ctx) 3485 { 3486 struct cifs_writedata *wdata, *tmp; 3487 struct cifs_tcon *tcon; 3488 struct cifs_sb_info *cifs_sb; 3489 struct dentry *dentry = ctx->cfile->dentry; 3490 ssize_t rc; 3491 3492 tcon = tlink_tcon(ctx->cfile->tlink); 3493 cifs_sb = CIFS_SB(dentry->d_sb); 3494 3495 mutex_lock(&ctx->aio_mutex); 3496 3497 if (list_empty(&ctx->list)) { 3498 mutex_unlock(&ctx->aio_mutex); 3499 return; 3500 } 3501 3502 rc = ctx->rc; 3503 /* 3504 * Wait for and collect replies for any successful sends in order of 3505 * increasing offset. Once an error is hit, then return without waiting 3506 * for any more replies. 3507 */ 3508 restart_loop: 3509 list_for_each_entry_safe(wdata, tmp, &ctx->list, list) { 3510 if (!rc) { 3511 if (!try_wait_for_completion(&wdata->done)) { 3512 mutex_unlock(&ctx->aio_mutex); 3513 return; 3514 } 3515 3516 if (wdata->result) 3517 rc = wdata->result; 3518 else 3519 ctx->total_len += wdata->bytes; 3520 3521 /* resend call if it's a retryable error */ 3522 if (rc == -EAGAIN) { 3523 struct list_head tmp_list; 3524 struct iov_iter tmp_from = ctx->iter; 3525 3526 INIT_LIST_HEAD(&tmp_list); 3527 list_del_init(&wdata->list); 3528 3529 if (ctx->direct_io) 3530 rc = cifs_resend_wdata( 3531 wdata, &tmp_list, ctx); 3532 else { 3533 iov_iter_advance(&tmp_from, 3534 wdata->offset - ctx->pos); 3535 3536 rc = cifs_write_from_iter(wdata->offset, 3537 wdata->bytes, &tmp_from, 3538 ctx->cfile, cifs_sb, &tmp_list, 3539 ctx); 3540 3541 kref_put(&wdata->refcount, 3542 cifs_uncached_writedata_release); 3543 } 3544 3545 list_splice(&tmp_list, &ctx->list); 3546 goto restart_loop; 3547 } 3548 } 3549 list_del_init(&wdata->list); 3550 kref_put(&wdata->refcount, cifs_uncached_writedata_release); 3551 } 3552 3553 cifs_stats_bytes_written(tcon, ctx->total_len); 3554 set_bit(CIFS_INO_INVALID_MAPPING, &CIFS_I(dentry->d_inode)->flags); 3555 3556 ctx->rc = (rc == 0) ? ctx->total_len : rc; 3557 3558 mutex_unlock(&ctx->aio_mutex); 3559 3560 if (ctx->iocb && ctx->iocb->ki_complete) 3561 ctx->iocb->ki_complete(ctx->iocb, ctx->rc); 3562 else 3563 complete(&ctx->done); 3564 } 3565 3566 static ssize_t __cifs_writev( 3567 struct kiocb *iocb, struct iov_iter *from, bool direct) 3568 { 3569 struct file *file = iocb->ki_filp; 3570 ssize_t total_written = 0; 3571 struct cifsFileInfo *cfile; 3572 struct cifs_tcon *tcon; 3573 struct cifs_sb_info *cifs_sb; 3574 struct cifs_aio_ctx *ctx; 3575 int rc; 3576 3577 rc = generic_write_checks(iocb, from); 3578 if (rc <= 0) 3579 return rc; 3580 3581 cifs_sb = CIFS_FILE_SB(file); 3582 cfile = file->private_data; 3583 tcon = tlink_tcon(cfile->tlink); 3584 3585 if (!tcon->ses->server->ops->async_writev) 3586 return -ENOSYS; 3587 3588 ctx = cifs_aio_ctx_alloc(); 3589 if (!ctx) 3590 return -ENOMEM; 3591 3592 ctx->cfile = cifsFileInfo_get(cfile); 3593 3594 if (!is_sync_kiocb(iocb)) 3595 ctx->iocb = iocb; 3596 3597 ctx->pos = iocb->ki_pos; 3598 ctx->direct_io = direct; 3599 ctx->nr_pinned_pages = 0; 3600 3601 if (user_backed_iter(from)) { 3602 /* 3603 * Extract IOVEC/UBUF-type iterators to a BVEC-type iterator as 3604 * they contain references to the calling process's virtual 3605 * memory layout which won't be available in an async worker 3606 * thread. This also takes a pin on every folio involved. 3607 */ 3608 rc = netfs_extract_user_iter(from, iov_iter_count(from), 3609 &ctx->iter, 0); 3610 if (rc < 0) { 3611 kref_put(&ctx->refcount, cifs_aio_ctx_release); 3612 return rc; 3613 } 3614 3615 ctx->nr_pinned_pages = rc; 3616 ctx->bv = (void *)ctx->iter.bvec; 3617 ctx->bv_need_unpin = iov_iter_extract_will_pin(from); 3618 } else if ((iov_iter_is_bvec(from) || iov_iter_is_kvec(from)) && 3619 !is_sync_kiocb(iocb)) { 3620 /* 3621 * If the op is asynchronous, we need to copy the list attached 3622 * to a BVEC/KVEC-type iterator, but we assume that the storage 3623 * will be pinned by the caller; in any case, we may or may not 3624 * be able to pin the pages, so we don't try. 3625 */ 3626 ctx->bv = (void *)dup_iter(&ctx->iter, from, GFP_KERNEL); 3627 if (!ctx->bv) { 3628 kref_put(&ctx->refcount, cifs_aio_ctx_release); 3629 return -ENOMEM; 3630 } 3631 } else { 3632 /* 3633 * Otherwise, we just pass the iterator down as-is and rely on 3634 * the caller to make sure the pages referred to by the 3635 * iterator don't evaporate. 3636 */ 3637 ctx->iter = *from; 3638 } 3639 3640 ctx->len = iov_iter_count(&ctx->iter); 3641 3642 /* grab a lock here due to read response handlers can access ctx */ 3643 mutex_lock(&ctx->aio_mutex); 3644 3645 rc = cifs_write_from_iter(iocb->ki_pos, ctx->len, &ctx->iter, 3646 cfile, cifs_sb, &ctx->list, ctx); 3647 3648 /* 3649 * If at least one write was successfully sent, then discard any rc 3650 * value from the later writes. If the other write succeeds, then 3651 * we'll end up returning whatever was written. If it fails, then 3652 * we'll get a new rc value from that. 3653 */ 3654 if (!list_empty(&ctx->list)) 3655 rc = 0; 3656 3657 mutex_unlock(&ctx->aio_mutex); 3658 3659 if (rc) { 3660 kref_put(&ctx->refcount, cifs_aio_ctx_release); 3661 return rc; 3662 } 3663 3664 if (!is_sync_kiocb(iocb)) { 3665 kref_put(&ctx->refcount, cifs_aio_ctx_release); 3666 return -EIOCBQUEUED; 3667 } 3668 3669 rc = wait_for_completion_killable(&ctx->done); 3670 if (rc) { 3671 mutex_lock(&ctx->aio_mutex); 3672 ctx->rc = rc = -EINTR; 3673 total_written = ctx->total_len; 3674 mutex_unlock(&ctx->aio_mutex); 3675 } else { 3676 rc = ctx->rc; 3677 total_written = ctx->total_len; 3678 } 3679 3680 kref_put(&ctx->refcount, cifs_aio_ctx_release); 3681 3682 if (unlikely(!total_written)) 3683 return rc; 3684 3685 iocb->ki_pos += total_written; 3686 return total_written; 3687 } 3688 3689 ssize_t cifs_direct_writev(struct kiocb *iocb, struct iov_iter *from) 3690 { 3691 struct file *file = iocb->ki_filp; 3692 3693 cifs_revalidate_mapping(file->f_inode); 3694 return __cifs_writev(iocb, from, true); 3695 } 3696 3697 ssize_t cifs_user_writev(struct kiocb *iocb, struct iov_iter *from) 3698 { 3699 return __cifs_writev(iocb, from, false); 3700 } 3701 3702 static ssize_t 3703 cifs_writev(struct kiocb *iocb, struct iov_iter *from) 3704 { 3705 struct file *file = iocb->ki_filp; 3706 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data; 3707 struct inode *inode = file->f_mapping->host; 3708 struct cifsInodeInfo *cinode = CIFS_I(inode); 3709 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server; 3710 ssize_t rc; 3711 3712 inode_lock(inode); 3713 /* 3714 * We need to hold the sem to be sure nobody modifies lock list 3715 * with a brlock that prevents writing. 3716 */ 3717 down_read(&cinode->lock_sem); 3718 3719 rc = generic_write_checks(iocb, from); 3720 if (rc <= 0) 3721 goto out; 3722 3723 if (!cifs_find_lock_conflict(cfile, iocb->ki_pos, iov_iter_count(from), 3724 server->vals->exclusive_lock_type, 0, 3725 NULL, CIFS_WRITE_OP)) 3726 rc = __generic_file_write_iter(iocb, from); 3727 else 3728 rc = -EACCES; 3729 out: 3730 up_read(&cinode->lock_sem); 3731 inode_unlock(inode); 3732 3733 if (rc > 0) 3734 rc = generic_write_sync(iocb, rc); 3735 return rc; 3736 } 3737 3738 ssize_t 3739 cifs_strict_writev(struct kiocb *iocb, struct iov_iter *from) 3740 { 3741 struct inode *inode = file_inode(iocb->ki_filp); 3742 struct cifsInodeInfo *cinode = CIFS_I(inode); 3743 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb); 3744 struct cifsFileInfo *cfile = (struct cifsFileInfo *) 3745 iocb->ki_filp->private_data; 3746 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink); 3747 ssize_t written; 3748 3749 written = cifs_get_writer(cinode); 3750 if (written) 3751 return written; 3752 3753 if (CIFS_CACHE_WRITE(cinode)) { 3754 if (cap_unix(tcon->ses) && 3755 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) 3756 && ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) { 3757 written = generic_file_write_iter(iocb, from); 3758 goto out; 3759 } 3760 written = cifs_writev(iocb, from); 3761 goto out; 3762 } 3763 /* 3764 * For non-oplocked files in strict cache mode we need to write the data 3765 * to the server exactly from the pos to pos+len-1 rather than flush all 3766 * affected pages because it may cause a error with mandatory locks on 3767 * these pages but not on the region from pos to ppos+len-1. 3768 */ 3769 written = cifs_user_writev(iocb, from); 3770 if (CIFS_CACHE_READ(cinode)) { 3771 /* 3772 * We have read level caching and we have just sent a write 3773 * request to the server thus making data in the cache stale. 3774 * Zap the cache and set oplock/lease level to NONE to avoid 3775 * reading stale data from the cache. All subsequent read 3776 * operations will read new data from the server. 3777 */ 3778 cifs_zap_mapping(inode); 3779 cifs_dbg(FYI, "Set Oplock/Lease to NONE for inode=%p after write\n", 3780 inode); 3781 cinode->oplock = 0; 3782 } 3783 out: 3784 cifs_put_writer(cinode); 3785 return written; 3786 } 3787 3788 static struct cifs_readdata *cifs_readdata_alloc(work_func_t complete) 3789 { 3790 struct cifs_readdata *rdata; 3791 3792 rdata = kzalloc(sizeof(*rdata), GFP_KERNEL); 3793 if (rdata) { 3794 kref_init(&rdata->refcount); 3795 INIT_LIST_HEAD(&rdata->list); 3796 init_completion(&rdata->done); 3797 INIT_WORK(&rdata->work, complete); 3798 } 3799 3800 return rdata; 3801 } 3802 3803 void 3804 cifs_readdata_release(struct kref *refcount) 3805 { 3806 struct cifs_readdata *rdata = container_of(refcount, 3807 struct cifs_readdata, refcount); 3808 3809 if (rdata->ctx) 3810 kref_put(&rdata->ctx->refcount, cifs_aio_ctx_release); 3811 #ifdef CONFIG_CIFS_SMB_DIRECT 3812 if (rdata->mr) { 3813 smbd_deregister_mr(rdata->mr); 3814 rdata->mr = NULL; 3815 } 3816 #endif 3817 if (rdata->cfile) 3818 cifsFileInfo_put(rdata->cfile); 3819 3820 kfree(rdata); 3821 } 3822 3823 static void collect_uncached_read_data(struct cifs_aio_ctx *ctx); 3824 3825 static void 3826 cifs_uncached_readv_complete(struct work_struct *work) 3827 { 3828 struct cifs_readdata *rdata = container_of(work, 3829 struct cifs_readdata, work); 3830 3831 complete(&rdata->done); 3832 collect_uncached_read_data(rdata->ctx); 3833 /* the below call can possibly free the last ref to aio ctx */ 3834 kref_put(&rdata->refcount, cifs_readdata_release); 3835 } 3836 3837 static int cifs_resend_rdata(struct cifs_readdata *rdata, 3838 struct list_head *rdata_list, 3839 struct cifs_aio_ctx *ctx) 3840 { 3841 unsigned int rsize; 3842 struct cifs_credits credits; 3843 int rc; 3844 struct TCP_Server_Info *server; 3845 3846 /* XXX: should we pick a new channel here? */ 3847 server = rdata->server; 3848 3849 do { 3850 if (rdata->cfile->invalidHandle) { 3851 rc = cifs_reopen_file(rdata->cfile, true); 3852 if (rc == -EAGAIN) 3853 continue; 3854 else if (rc) 3855 break; 3856 } 3857 3858 /* 3859 * Wait for credits to resend this rdata. 3860 * Note: we are attempting to resend the whole rdata not in 3861 * segments 3862 */ 3863 do { 3864 rc = server->ops->wait_mtu_credits(server, rdata->bytes, 3865 &rsize, &credits); 3866 3867 if (rc) 3868 goto fail; 3869 3870 if (rsize < rdata->bytes) { 3871 add_credits_and_wake_if(server, &credits, 0); 3872 msleep(1000); 3873 } 3874 } while (rsize < rdata->bytes); 3875 rdata->credits = credits; 3876 3877 rc = adjust_credits(server, &rdata->credits, rdata->bytes); 3878 if (!rc) { 3879 if (rdata->cfile->invalidHandle) 3880 rc = -EAGAIN; 3881 else { 3882 #ifdef CONFIG_CIFS_SMB_DIRECT 3883 if (rdata->mr) { 3884 rdata->mr->need_invalidate = true; 3885 smbd_deregister_mr(rdata->mr); 3886 rdata->mr = NULL; 3887 } 3888 #endif 3889 rc = server->ops->async_readv(rdata); 3890 } 3891 } 3892 3893 /* If the read was successfully sent, we are done */ 3894 if (!rc) { 3895 /* Add to aio pending list */ 3896 list_add_tail(&rdata->list, rdata_list); 3897 return 0; 3898 } 3899 3900 /* Roll back credits and retry if needed */ 3901 add_credits_and_wake_if(server, &rdata->credits, 0); 3902 } while (rc == -EAGAIN); 3903 3904 fail: 3905 kref_put(&rdata->refcount, cifs_readdata_release); 3906 return rc; 3907 } 3908 3909 static int 3910 cifs_send_async_read(loff_t fpos, size_t len, struct cifsFileInfo *open_file, 3911 struct cifs_sb_info *cifs_sb, struct list_head *rdata_list, 3912 struct cifs_aio_ctx *ctx) 3913 { 3914 struct cifs_readdata *rdata; 3915 unsigned int rsize, nsegs, max_segs = INT_MAX; 3916 struct cifs_credits credits_on_stack; 3917 struct cifs_credits *credits = &credits_on_stack; 3918 size_t cur_len, max_len; 3919 int rc; 3920 pid_t pid; 3921 struct TCP_Server_Info *server; 3922 3923 server = cifs_pick_channel(tlink_tcon(open_file->tlink)->ses); 3924 3925 #ifdef CONFIG_CIFS_SMB_DIRECT 3926 if (server->smbd_conn) 3927 max_segs = server->smbd_conn->max_frmr_depth; 3928 #endif 3929 3930 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD) 3931 pid = open_file->pid; 3932 else 3933 pid = current->tgid; 3934 3935 do { 3936 if (open_file->invalidHandle) { 3937 rc = cifs_reopen_file(open_file, true); 3938 if (rc == -EAGAIN) 3939 continue; 3940 else if (rc) 3941 break; 3942 } 3943 3944 if (cifs_sb->ctx->rsize == 0) 3945 cifs_sb->ctx->rsize = 3946 server->ops->negotiate_rsize(tlink_tcon(open_file->tlink), 3947 cifs_sb->ctx); 3948 3949 rc = server->ops->wait_mtu_credits(server, cifs_sb->ctx->rsize, 3950 &rsize, credits); 3951 if (rc) 3952 break; 3953 3954 max_len = min_t(size_t, len, rsize); 3955 3956 cur_len = cifs_limit_bvec_subset(&ctx->iter, max_len, 3957 max_segs, &nsegs); 3958 cifs_dbg(FYI, "read-to-iter len=%zx/%zx nsegs=%u/%lu/%u\n", 3959 cur_len, max_len, nsegs, ctx->iter.nr_segs, max_segs); 3960 if (cur_len == 0) { 3961 rc = -EIO; 3962 add_credits_and_wake_if(server, credits, 0); 3963 break; 3964 } 3965 3966 rdata = cifs_readdata_alloc(cifs_uncached_readv_complete); 3967 if (!rdata) { 3968 add_credits_and_wake_if(server, credits, 0); 3969 rc = -ENOMEM; 3970 break; 3971 } 3972 3973 rdata->server = server; 3974 rdata->cfile = cifsFileInfo_get(open_file); 3975 rdata->offset = fpos; 3976 rdata->bytes = cur_len; 3977 rdata->pid = pid; 3978 rdata->credits = credits_on_stack; 3979 rdata->ctx = ctx; 3980 kref_get(&ctx->refcount); 3981 3982 rdata->iter = ctx->iter; 3983 iov_iter_truncate(&rdata->iter, cur_len); 3984 3985 rc = adjust_credits(server, &rdata->credits, rdata->bytes); 3986 3987 if (!rc) { 3988 if (rdata->cfile->invalidHandle) 3989 rc = -EAGAIN; 3990 else 3991 rc = server->ops->async_readv(rdata); 3992 } 3993 3994 if (rc) { 3995 add_credits_and_wake_if(server, &rdata->credits, 0); 3996 kref_put(&rdata->refcount, cifs_readdata_release); 3997 if (rc == -EAGAIN) 3998 continue; 3999 break; 4000 } 4001 4002 list_add_tail(&rdata->list, rdata_list); 4003 iov_iter_advance(&ctx->iter, cur_len); 4004 fpos += cur_len; 4005 len -= cur_len; 4006 } while (len > 0); 4007 4008 return rc; 4009 } 4010 4011 static void 4012 collect_uncached_read_data(struct cifs_aio_ctx *ctx) 4013 { 4014 struct cifs_readdata *rdata, *tmp; 4015 struct cifs_sb_info *cifs_sb; 4016 int rc; 4017 4018 cifs_sb = CIFS_SB(ctx->cfile->dentry->d_sb); 4019 4020 mutex_lock(&ctx->aio_mutex); 4021 4022 if (list_empty(&ctx->list)) { 4023 mutex_unlock(&ctx->aio_mutex); 4024 return; 4025 } 4026 4027 rc = ctx->rc; 4028 /* the loop below should proceed in the order of increasing offsets */ 4029 again: 4030 list_for_each_entry_safe(rdata, tmp, &ctx->list, list) { 4031 if (!rc) { 4032 if (!try_wait_for_completion(&rdata->done)) { 4033 mutex_unlock(&ctx->aio_mutex); 4034 return; 4035 } 4036 4037 if (rdata->result == -EAGAIN) { 4038 /* resend call if it's a retryable error */ 4039 struct list_head tmp_list; 4040 unsigned int got_bytes = rdata->got_bytes; 4041 4042 list_del_init(&rdata->list); 4043 INIT_LIST_HEAD(&tmp_list); 4044 4045 if (ctx->direct_io) { 4046 /* 4047 * Re-use rdata as this is a 4048 * direct I/O 4049 */ 4050 rc = cifs_resend_rdata( 4051 rdata, 4052 &tmp_list, ctx); 4053 } else { 4054 rc = cifs_send_async_read( 4055 rdata->offset + got_bytes, 4056 rdata->bytes - got_bytes, 4057 rdata->cfile, cifs_sb, 4058 &tmp_list, ctx); 4059 4060 kref_put(&rdata->refcount, 4061 cifs_readdata_release); 4062 } 4063 4064 list_splice(&tmp_list, &ctx->list); 4065 4066 goto again; 4067 } else if (rdata->result) 4068 rc = rdata->result; 4069 4070 /* if there was a short read -- discard anything left */ 4071 if (rdata->got_bytes && rdata->got_bytes < rdata->bytes) 4072 rc = -ENODATA; 4073 4074 ctx->total_len += rdata->got_bytes; 4075 } 4076 list_del_init(&rdata->list); 4077 kref_put(&rdata->refcount, cifs_readdata_release); 4078 } 4079 4080 /* mask nodata case */ 4081 if (rc == -ENODATA) 4082 rc = 0; 4083 4084 ctx->rc = (rc == 0) ? (ssize_t)ctx->total_len : rc; 4085 4086 mutex_unlock(&ctx->aio_mutex); 4087 4088 if (ctx->iocb && ctx->iocb->ki_complete) 4089 ctx->iocb->ki_complete(ctx->iocb, ctx->rc); 4090 else 4091 complete(&ctx->done); 4092 } 4093 4094 static ssize_t __cifs_readv( 4095 struct kiocb *iocb, struct iov_iter *to, bool direct) 4096 { 4097 size_t len; 4098 struct file *file = iocb->ki_filp; 4099 struct cifs_sb_info *cifs_sb; 4100 struct cifsFileInfo *cfile; 4101 struct cifs_tcon *tcon; 4102 ssize_t rc, total_read = 0; 4103 loff_t offset = iocb->ki_pos; 4104 struct cifs_aio_ctx *ctx; 4105 4106 len = iov_iter_count(to); 4107 if (!len) 4108 return 0; 4109 4110 cifs_sb = CIFS_FILE_SB(file); 4111 cfile = file->private_data; 4112 tcon = tlink_tcon(cfile->tlink); 4113 4114 if (!tcon->ses->server->ops->async_readv) 4115 return -ENOSYS; 4116 4117 if ((file->f_flags & O_ACCMODE) == O_WRONLY) 4118 cifs_dbg(FYI, "attempting read on write only file instance\n"); 4119 4120 ctx = cifs_aio_ctx_alloc(); 4121 if (!ctx) 4122 return -ENOMEM; 4123 4124 ctx->pos = offset; 4125 ctx->direct_io = direct; 4126 ctx->len = len; 4127 ctx->cfile = cifsFileInfo_get(cfile); 4128 ctx->nr_pinned_pages = 0; 4129 4130 if (!is_sync_kiocb(iocb)) 4131 ctx->iocb = iocb; 4132 4133 if (user_backed_iter(to)) { 4134 /* 4135 * Extract IOVEC/UBUF-type iterators to a BVEC-type iterator as 4136 * they contain references to the calling process's virtual 4137 * memory layout which won't be available in an async worker 4138 * thread. This also takes a pin on every folio involved. 4139 */ 4140 rc = netfs_extract_user_iter(to, iov_iter_count(to), 4141 &ctx->iter, 0); 4142 if (rc < 0) { 4143 kref_put(&ctx->refcount, cifs_aio_ctx_release); 4144 return rc; 4145 } 4146 4147 ctx->nr_pinned_pages = rc; 4148 ctx->bv = (void *)ctx->iter.bvec; 4149 ctx->bv_need_unpin = iov_iter_extract_will_pin(to); 4150 ctx->should_dirty = true; 4151 } else if ((iov_iter_is_bvec(to) || iov_iter_is_kvec(to)) && 4152 !is_sync_kiocb(iocb)) { 4153 /* 4154 * If the op is asynchronous, we need to copy the list attached 4155 * to a BVEC/KVEC-type iterator, but we assume that the storage 4156 * will be retained by the caller; in any case, we may or may 4157 * not be able to pin the pages, so we don't try. 4158 */ 4159 ctx->bv = (void *)dup_iter(&ctx->iter, to, GFP_KERNEL); 4160 if (!ctx->bv) { 4161 kref_put(&ctx->refcount, cifs_aio_ctx_release); 4162 return -ENOMEM; 4163 } 4164 } else { 4165 /* 4166 * Otherwise, we just pass the iterator down as-is and rely on 4167 * the caller to make sure the pages referred to by the 4168 * iterator don't evaporate. 4169 */ 4170 ctx->iter = *to; 4171 } 4172 4173 if (direct) { 4174 rc = filemap_write_and_wait_range(file->f_inode->i_mapping, 4175 offset, offset + len - 1); 4176 if (rc) { 4177 kref_put(&ctx->refcount, cifs_aio_ctx_release); 4178 return -EAGAIN; 4179 } 4180 } 4181 4182 /* grab a lock here due to read response handlers can access ctx */ 4183 mutex_lock(&ctx->aio_mutex); 4184 4185 rc = cifs_send_async_read(offset, len, cfile, cifs_sb, &ctx->list, ctx); 4186 4187 /* if at least one read request send succeeded, then reset rc */ 4188 if (!list_empty(&ctx->list)) 4189 rc = 0; 4190 4191 mutex_unlock(&ctx->aio_mutex); 4192 4193 if (rc) { 4194 kref_put(&ctx->refcount, cifs_aio_ctx_release); 4195 return rc; 4196 } 4197 4198 if (!is_sync_kiocb(iocb)) { 4199 kref_put(&ctx->refcount, cifs_aio_ctx_release); 4200 return -EIOCBQUEUED; 4201 } 4202 4203 rc = wait_for_completion_killable(&ctx->done); 4204 if (rc) { 4205 mutex_lock(&ctx->aio_mutex); 4206 ctx->rc = rc = -EINTR; 4207 total_read = ctx->total_len; 4208 mutex_unlock(&ctx->aio_mutex); 4209 } else { 4210 rc = ctx->rc; 4211 total_read = ctx->total_len; 4212 } 4213 4214 kref_put(&ctx->refcount, cifs_aio_ctx_release); 4215 4216 if (total_read) { 4217 iocb->ki_pos += total_read; 4218 return total_read; 4219 } 4220 return rc; 4221 } 4222 4223 ssize_t cifs_direct_readv(struct kiocb *iocb, struct iov_iter *to) 4224 { 4225 return __cifs_readv(iocb, to, true); 4226 } 4227 4228 ssize_t cifs_user_readv(struct kiocb *iocb, struct iov_iter *to) 4229 { 4230 return __cifs_readv(iocb, to, false); 4231 } 4232 4233 ssize_t 4234 cifs_strict_readv(struct kiocb *iocb, struct iov_iter *to) 4235 { 4236 struct inode *inode = file_inode(iocb->ki_filp); 4237 struct cifsInodeInfo *cinode = CIFS_I(inode); 4238 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb); 4239 struct cifsFileInfo *cfile = (struct cifsFileInfo *) 4240 iocb->ki_filp->private_data; 4241 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink); 4242 int rc = -EACCES; 4243 4244 /* 4245 * In strict cache mode we need to read from the server all the time 4246 * if we don't have level II oplock because the server can delay mtime 4247 * change - so we can't make a decision about inode invalidating. 4248 * And we can also fail with pagereading if there are mandatory locks 4249 * on pages affected by this read but not on the region from pos to 4250 * pos+len-1. 4251 */ 4252 if (!CIFS_CACHE_READ(cinode)) 4253 return cifs_user_readv(iocb, to); 4254 4255 if (cap_unix(tcon->ses) && 4256 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) && 4257 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) 4258 return generic_file_read_iter(iocb, to); 4259 4260 /* 4261 * We need to hold the sem to be sure nobody modifies lock list 4262 * with a brlock that prevents reading. 4263 */ 4264 down_read(&cinode->lock_sem); 4265 if (!cifs_find_lock_conflict(cfile, iocb->ki_pos, iov_iter_count(to), 4266 tcon->ses->server->vals->shared_lock_type, 4267 0, NULL, CIFS_READ_OP)) 4268 rc = generic_file_read_iter(iocb, to); 4269 up_read(&cinode->lock_sem); 4270 return rc; 4271 } 4272 4273 static ssize_t 4274 cifs_read(struct file *file, char *read_data, size_t read_size, loff_t *offset) 4275 { 4276 int rc = -EACCES; 4277 unsigned int bytes_read = 0; 4278 unsigned int total_read; 4279 unsigned int current_read_size; 4280 unsigned int rsize; 4281 struct cifs_sb_info *cifs_sb; 4282 struct cifs_tcon *tcon; 4283 struct TCP_Server_Info *server; 4284 unsigned int xid; 4285 char *cur_offset; 4286 struct cifsFileInfo *open_file; 4287 struct cifs_io_parms io_parms = {0}; 4288 int buf_type = CIFS_NO_BUFFER; 4289 __u32 pid; 4290 4291 xid = get_xid(); 4292 cifs_sb = CIFS_FILE_SB(file); 4293 4294 /* FIXME: set up handlers for larger reads and/or convert to async */ 4295 rsize = min_t(unsigned int, cifs_sb->ctx->rsize, CIFSMaxBufSize); 4296 4297 if (file->private_data == NULL) { 4298 rc = -EBADF; 4299 free_xid(xid); 4300 return rc; 4301 } 4302 open_file = file->private_data; 4303 tcon = tlink_tcon(open_file->tlink); 4304 server = cifs_pick_channel(tcon->ses); 4305 4306 if (!server->ops->sync_read) { 4307 free_xid(xid); 4308 return -ENOSYS; 4309 } 4310 4311 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD) 4312 pid = open_file->pid; 4313 else 4314 pid = current->tgid; 4315 4316 if ((file->f_flags & O_ACCMODE) == O_WRONLY) 4317 cifs_dbg(FYI, "attempting read on write only file instance\n"); 4318 4319 for (total_read = 0, cur_offset = read_data; read_size > total_read; 4320 total_read += bytes_read, cur_offset += bytes_read) { 4321 do { 4322 current_read_size = min_t(uint, read_size - total_read, 4323 rsize); 4324 /* 4325 * For windows me and 9x we do not want to request more 4326 * than it negotiated since it will refuse the read 4327 * then. 4328 */ 4329 if (!(tcon->ses->capabilities & 4330 tcon->ses->server->vals->cap_large_files)) { 4331 current_read_size = min_t(uint, 4332 current_read_size, CIFSMaxBufSize); 4333 } 4334 if (open_file->invalidHandle) { 4335 rc = cifs_reopen_file(open_file, true); 4336 if (rc != 0) 4337 break; 4338 } 4339 io_parms.pid = pid; 4340 io_parms.tcon = tcon; 4341 io_parms.offset = *offset; 4342 io_parms.length = current_read_size; 4343 io_parms.server = server; 4344 rc = server->ops->sync_read(xid, &open_file->fid, &io_parms, 4345 &bytes_read, &cur_offset, 4346 &buf_type); 4347 } while (rc == -EAGAIN); 4348 4349 if (rc || (bytes_read == 0)) { 4350 if (total_read) { 4351 break; 4352 } else { 4353 free_xid(xid); 4354 return rc; 4355 } 4356 } else { 4357 cifs_stats_bytes_read(tcon, total_read); 4358 *offset += bytes_read; 4359 } 4360 } 4361 free_xid(xid); 4362 return total_read; 4363 } 4364 4365 /* 4366 * If the page is mmap'ed into a process' page tables, then we need to make 4367 * sure that it doesn't change while being written back. 4368 */ 4369 static vm_fault_t cifs_page_mkwrite(struct vm_fault *vmf) 4370 { 4371 struct folio *folio = page_folio(vmf->page); 4372 4373 /* Wait for the folio to be written to the cache before we allow it to 4374 * be modified. We then assume the entire folio will need writing back. 4375 */ 4376 #ifdef CONFIG_CIFS_FSCACHE 4377 if (folio_test_fscache(folio) && 4378 folio_wait_fscache_killable(folio) < 0) 4379 return VM_FAULT_RETRY; 4380 #endif 4381 4382 folio_wait_writeback(folio); 4383 4384 if (folio_lock_killable(folio) < 0) 4385 return VM_FAULT_RETRY; 4386 return VM_FAULT_LOCKED; 4387 } 4388 4389 static const struct vm_operations_struct cifs_file_vm_ops = { 4390 .fault = filemap_fault, 4391 .map_pages = filemap_map_pages, 4392 .page_mkwrite = cifs_page_mkwrite, 4393 }; 4394 4395 int cifs_file_strict_mmap(struct file *file, struct vm_area_struct *vma) 4396 { 4397 int xid, rc = 0; 4398 struct inode *inode = file_inode(file); 4399 4400 xid = get_xid(); 4401 4402 if (!CIFS_CACHE_READ(CIFS_I(inode))) 4403 rc = cifs_zap_mapping(inode); 4404 if (!rc) 4405 rc = generic_file_mmap(file, vma); 4406 if (!rc) 4407 vma->vm_ops = &cifs_file_vm_ops; 4408 4409 free_xid(xid); 4410 return rc; 4411 } 4412 4413 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma) 4414 { 4415 int rc, xid; 4416 4417 xid = get_xid(); 4418 4419 rc = cifs_revalidate_file(file); 4420 if (rc) 4421 cifs_dbg(FYI, "Validation prior to mmap failed, error=%d\n", 4422 rc); 4423 if (!rc) 4424 rc = generic_file_mmap(file, vma); 4425 if (!rc) 4426 vma->vm_ops = &cifs_file_vm_ops; 4427 4428 free_xid(xid); 4429 return rc; 4430 } 4431 4432 /* 4433 * Unlock a bunch of folios in the pagecache. 4434 */ 4435 static void cifs_unlock_folios(struct address_space *mapping, pgoff_t first, pgoff_t last) 4436 { 4437 struct folio *folio; 4438 XA_STATE(xas, &mapping->i_pages, first); 4439 4440 rcu_read_lock(); 4441 xas_for_each(&xas, folio, last) { 4442 folio_unlock(folio); 4443 } 4444 rcu_read_unlock(); 4445 } 4446 4447 static void cifs_readahead_complete(struct work_struct *work) 4448 { 4449 struct cifs_readdata *rdata = container_of(work, 4450 struct cifs_readdata, work); 4451 struct folio *folio; 4452 pgoff_t last; 4453 bool good = rdata->result == 0 || (rdata->result == -EAGAIN && rdata->got_bytes); 4454 4455 XA_STATE(xas, &rdata->mapping->i_pages, rdata->offset / PAGE_SIZE); 4456 4457 if (good) 4458 cifs_readahead_to_fscache(rdata->mapping->host, 4459 rdata->offset, rdata->bytes); 4460 4461 if (iov_iter_count(&rdata->iter) > 0) 4462 iov_iter_zero(iov_iter_count(&rdata->iter), &rdata->iter); 4463 4464 last = (rdata->offset + rdata->bytes - 1) / PAGE_SIZE; 4465 4466 rcu_read_lock(); 4467 xas_for_each(&xas, folio, last) { 4468 if (good) { 4469 flush_dcache_folio(folio); 4470 folio_mark_uptodate(folio); 4471 } 4472 folio_unlock(folio); 4473 } 4474 rcu_read_unlock(); 4475 4476 kref_put(&rdata->refcount, cifs_readdata_release); 4477 } 4478 4479 static void cifs_readahead(struct readahead_control *ractl) 4480 { 4481 struct cifsFileInfo *open_file = ractl->file->private_data; 4482 struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(ractl->file); 4483 struct TCP_Server_Info *server; 4484 unsigned int xid, nr_pages, cache_nr_pages = 0; 4485 unsigned int ra_pages; 4486 pgoff_t next_cached = ULONG_MAX, ra_index; 4487 bool caching = fscache_cookie_enabled(cifs_inode_cookie(ractl->mapping->host)) && 4488 cifs_inode_cookie(ractl->mapping->host)->cache_priv; 4489 bool check_cache = caching; 4490 pid_t pid; 4491 int rc = 0; 4492 4493 /* Note that readahead_count() lags behind our dequeuing of pages from 4494 * the ractl, wo we have to keep track for ourselves. 4495 */ 4496 ra_pages = readahead_count(ractl); 4497 ra_index = readahead_index(ractl); 4498 4499 xid = get_xid(); 4500 4501 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD) 4502 pid = open_file->pid; 4503 else 4504 pid = current->tgid; 4505 4506 server = cifs_pick_channel(tlink_tcon(open_file->tlink)->ses); 4507 4508 cifs_dbg(FYI, "%s: file=%p mapping=%p num_pages=%u\n", 4509 __func__, ractl->file, ractl->mapping, ra_pages); 4510 4511 /* 4512 * Chop the readahead request up into rsize-sized read requests. 4513 */ 4514 while ((nr_pages = ra_pages)) { 4515 unsigned int i, rsize; 4516 struct cifs_readdata *rdata; 4517 struct cifs_credits credits_on_stack; 4518 struct cifs_credits *credits = &credits_on_stack; 4519 struct folio *folio; 4520 pgoff_t fsize; 4521 4522 /* 4523 * Find out if we have anything cached in the range of 4524 * interest, and if so, where the next chunk of cached data is. 4525 */ 4526 if (caching) { 4527 if (check_cache) { 4528 rc = cifs_fscache_query_occupancy( 4529 ractl->mapping->host, ra_index, nr_pages, 4530 &next_cached, &cache_nr_pages); 4531 if (rc < 0) 4532 caching = false; 4533 check_cache = false; 4534 } 4535 4536 if (ra_index == next_cached) { 4537 /* 4538 * TODO: Send a whole batch of pages to be read 4539 * by the cache. 4540 */ 4541 folio = readahead_folio(ractl); 4542 fsize = folio_nr_pages(folio); 4543 ra_pages -= fsize; 4544 ra_index += fsize; 4545 if (cifs_readpage_from_fscache(ractl->mapping->host, 4546 &folio->page) < 0) { 4547 /* 4548 * TODO: Deal with cache read failure 4549 * here, but for the moment, delegate 4550 * that to readpage. 4551 */ 4552 caching = false; 4553 } 4554 folio_unlock(folio); 4555 next_cached += fsize; 4556 cache_nr_pages -= fsize; 4557 if (cache_nr_pages == 0) 4558 check_cache = true; 4559 continue; 4560 } 4561 } 4562 4563 if (open_file->invalidHandle) { 4564 rc = cifs_reopen_file(open_file, true); 4565 if (rc) { 4566 if (rc == -EAGAIN) 4567 continue; 4568 break; 4569 } 4570 } 4571 4572 if (cifs_sb->ctx->rsize == 0) 4573 cifs_sb->ctx->rsize = 4574 server->ops->negotiate_rsize(tlink_tcon(open_file->tlink), 4575 cifs_sb->ctx); 4576 4577 rc = server->ops->wait_mtu_credits(server, cifs_sb->ctx->rsize, 4578 &rsize, credits); 4579 if (rc) 4580 break; 4581 nr_pages = min_t(size_t, rsize / PAGE_SIZE, ra_pages); 4582 if (next_cached != ULONG_MAX) 4583 nr_pages = min_t(size_t, nr_pages, next_cached - ra_index); 4584 4585 /* 4586 * Give up immediately if rsize is too small to read an entire 4587 * page. The VFS will fall back to readpage. We should never 4588 * reach this point however since we set ra_pages to 0 when the 4589 * rsize is smaller than a cache page. 4590 */ 4591 if (unlikely(!nr_pages)) { 4592 add_credits_and_wake_if(server, credits, 0); 4593 break; 4594 } 4595 4596 rdata = cifs_readdata_alloc(cifs_readahead_complete); 4597 if (!rdata) { 4598 /* best to give up if we're out of mem */ 4599 add_credits_and_wake_if(server, credits, 0); 4600 break; 4601 } 4602 4603 rdata->offset = ra_index * PAGE_SIZE; 4604 rdata->bytes = nr_pages * PAGE_SIZE; 4605 rdata->cfile = cifsFileInfo_get(open_file); 4606 rdata->server = server; 4607 rdata->mapping = ractl->mapping; 4608 rdata->pid = pid; 4609 rdata->credits = credits_on_stack; 4610 4611 for (i = 0; i < nr_pages; i++) { 4612 if (!readahead_folio(ractl)) 4613 WARN_ON(1); 4614 } 4615 ra_pages -= nr_pages; 4616 ra_index += nr_pages; 4617 4618 iov_iter_xarray(&rdata->iter, ITER_DEST, &rdata->mapping->i_pages, 4619 rdata->offset, rdata->bytes); 4620 4621 rc = adjust_credits(server, &rdata->credits, rdata->bytes); 4622 if (!rc) { 4623 if (rdata->cfile->invalidHandle) 4624 rc = -EAGAIN; 4625 else 4626 rc = server->ops->async_readv(rdata); 4627 } 4628 4629 if (rc) { 4630 add_credits_and_wake_if(server, &rdata->credits, 0); 4631 cifs_unlock_folios(rdata->mapping, 4632 rdata->offset / PAGE_SIZE, 4633 (rdata->offset + rdata->bytes - 1) / PAGE_SIZE); 4634 /* Fallback to the readpage in error/reconnect cases */ 4635 kref_put(&rdata->refcount, cifs_readdata_release); 4636 break; 4637 } 4638 4639 kref_put(&rdata->refcount, cifs_readdata_release); 4640 } 4641 4642 free_xid(xid); 4643 } 4644 4645 /* 4646 * cifs_readpage_worker must be called with the page pinned 4647 */ 4648 static int cifs_readpage_worker(struct file *file, struct page *page, 4649 loff_t *poffset) 4650 { 4651 struct inode *inode = file_inode(file); 4652 struct timespec64 atime, mtime; 4653 char *read_data; 4654 int rc; 4655 4656 /* Is the page cached? */ 4657 rc = cifs_readpage_from_fscache(inode, page); 4658 if (rc == 0) 4659 goto read_complete; 4660 4661 read_data = kmap(page); 4662 /* for reads over a certain size could initiate async read ahead */ 4663 4664 rc = cifs_read(file, read_data, PAGE_SIZE, poffset); 4665 4666 if (rc < 0) 4667 goto io_error; 4668 else 4669 cifs_dbg(FYI, "Bytes read %d\n", rc); 4670 4671 /* we do not want atime to be less than mtime, it broke some apps */ 4672 atime = inode_set_atime_to_ts(inode, current_time(inode)); 4673 mtime = inode_get_mtime(inode); 4674 if (timespec64_compare(&atime, &mtime) < 0) 4675 inode_set_atime_to_ts(inode, inode_get_mtime(inode)); 4676 4677 if (PAGE_SIZE > rc) 4678 memset(read_data + rc, 0, PAGE_SIZE - rc); 4679 4680 flush_dcache_page(page); 4681 SetPageUptodate(page); 4682 rc = 0; 4683 4684 io_error: 4685 kunmap(page); 4686 4687 read_complete: 4688 unlock_page(page); 4689 return rc; 4690 } 4691 4692 static int cifs_read_folio(struct file *file, struct folio *folio) 4693 { 4694 struct page *page = &folio->page; 4695 loff_t offset = page_file_offset(page); 4696 int rc = -EACCES; 4697 unsigned int xid; 4698 4699 xid = get_xid(); 4700 4701 if (file->private_data == NULL) { 4702 rc = -EBADF; 4703 free_xid(xid); 4704 return rc; 4705 } 4706 4707 cifs_dbg(FYI, "read_folio %p at offset %d 0x%x\n", 4708 page, (int)offset, (int)offset); 4709 4710 rc = cifs_readpage_worker(file, page, &offset); 4711 4712 free_xid(xid); 4713 return rc; 4714 } 4715 4716 static int is_inode_writable(struct cifsInodeInfo *cifs_inode) 4717 { 4718 struct cifsFileInfo *open_file; 4719 4720 spin_lock(&cifs_inode->open_file_lock); 4721 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) { 4722 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) { 4723 spin_unlock(&cifs_inode->open_file_lock); 4724 return 1; 4725 } 4726 } 4727 spin_unlock(&cifs_inode->open_file_lock); 4728 return 0; 4729 } 4730 4731 /* We do not want to update the file size from server for inodes 4732 open for write - to avoid races with writepage extending 4733 the file - in the future we could consider allowing 4734 refreshing the inode only on increases in the file size 4735 but this is tricky to do without racing with writebehind 4736 page caching in the current Linux kernel design */ 4737 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file) 4738 { 4739 if (!cifsInode) 4740 return true; 4741 4742 if (is_inode_writable(cifsInode)) { 4743 /* This inode is open for write at least once */ 4744 struct cifs_sb_info *cifs_sb; 4745 4746 cifs_sb = CIFS_SB(cifsInode->netfs.inode.i_sb); 4747 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) { 4748 /* since no page cache to corrupt on directio 4749 we can change size safely */ 4750 return true; 4751 } 4752 4753 if (i_size_read(&cifsInode->netfs.inode) < end_of_file) 4754 return true; 4755 4756 return false; 4757 } else 4758 return true; 4759 } 4760 4761 static int cifs_write_begin(struct file *file, struct address_space *mapping, 4762 loff_t pos, unsigned len, 4763 struct page **pagep, void **fsdata) 4764 { 4765 int oncethru = 0; 4766 pgoff_t index = pos >> PAGE_SHIFT; 4767 loff_t offset = pos & (PAGE_SIZE - 1); 4768 loff_t page_start = pos & PAGE_MASK; 4769 loff_t i_size; 4770 struct page *page; 4771 int rc = 0; 4772 4773 cifs_dbg(FYI, "write_begin from %lld len %d\n", (long long)pos, len); 4774 4775 start: 4776 page = grab_cache_page_write_begin(mapping, index); 4777 if (!page) { 4778 rc = -ENOMEM; 4779 goto out; 4780 } 4781 4782 if (PageUptodate(page)) 4783 goto out; 4784 4785 /* 4786 * If we write a full page it will be up to date, no need to read from 4787 * the server. If the write is short, we'll end up doing a sync write 4788 * instead. 4789 */ 4790 if (len == PAGE_SIZE) 4791 goto out; 4792 4793 /* 4794 * optimize away the read when we have an oplock, and we're not 4795 * expecting to use any of the data we'd be reading in. That 4796 * is, when the page lies beyond the EOF, or straddles the EOF 4797 * and the write will cover all of the existing data. 4798 */ 4799 if (CIFS_CACHE_READ(CIFS_I(mapping->host))) { 4800 i_size = i_size_read(mapping->host); 4801 if (page_start >= i_size || 4802 (offset == 0 && (pos + len) >= i_size)) { 4803 zero_user_segments(page, 0, offset, 4804 offset + len, 4805 PAGE_SIZE); 4806 /* 4807 * PageChecked means that the parts of the page 4808 * to which we're not writing are considered up 4809 * to date. Once the data is copied to the 4810 * page, it can be set uptodate. 4811 */ 4812 SetPageChecked(page); 4813 goto out; 4814 } 4815 } 4816 4817 if ((file->f_flags & O_ACCMODE) != O_WRONLY && !oncethru) { 4818 /* 4819 * might as well read a page, it is fast enough. If we get 4820 * an error, we don't need to return it. cifs_write_end will 4821 * do a sync write instead since PG_uptodate isn't set. 4822 */ 4823 cifs_readpage_worker(file, page, &page_start); 4824 put_page(page); 4825 oncethru = 1; 4826 goto start; 4827 } else { 4828 /* we could try using another file handle if there is one - 4829 but how would we lock it to prevent close of that handle 4830 racing with this read? In any case 4831 this will be written out by write_end so is fine */ 4832 } 4833 out: 4834 *pagep = page; 4835 return rc; 4836 } 4837 4838 static bool cifs_release_folio(struct folio *folio, gfp_t gfp) 4839 { 4840 if (folio_test_private(folio)) 4841 return 0; 4842 if (folio_test_fscache(folio)) { 4843 if (current_is_kswapd() || !(gfp & __GFP_FS)) 4844 return false; 4845 folio_wait_fscache(folio); 4846 } 4847 fscache_note_page_release(cifs_inode_cookie(folio->mapping->host)); 4848 return true; 4849 } 4850 4851 static void cifs_invalidate_folio(struct folio *folio, size_t offset, 4852 size_t length) 4853 { 4854 folio_wait_fscache(folio); 4855 } 4856 4857 static int cifs_launder_folio(struct folio *folio) 4858 { 4859 int rc = 0; 4860 loff_t range_start = folio_pos(folio); 4861 loff_t range_end = range_start + folio_size(folio); 4862 struct writeback_control wbc = { 4863 .sync_mode = WB_SYNC_ALL, 4864 .nr_to_write = 0, 4865 .range_start = range_start, 4866 .range_end = range_end, 4867 }; 4868 4869 cifs_dbg(FYI, "Launder page: %lu\n", folio->index); 4870 4871 if (folio_clear_dirty_for_io(folio)) 4872 rc = cifs_writepage_locked(&folio->page, &wbc); 4873 4874 folio_wait_fscache(folio); 4875 return rc; 4876 } 4877 4878 void cifs_oplock_break(struct work_struct *work) 4879 { 4880 struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo, 4881 oplock_break); 4882 struct inode *inode = d_inode(cfile->dentry); 4883 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb); 4884 struct cifsInodeInfo *cinode = CIFS_I(inode); 4885 struct cifs_tcon *tcon; 4886 struct TCP_Server_Info *server; 4887 struct tcon_link *tlink; 4888 int rc = 0; 4889 bool purge_cache = false, oplock_break_cancelled; 4890 __u64 persistent_fid, volatile_fid; 4891 __u16 net_fid; 4892 4893 wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS, 4894 TASK_UNINTERRUPTIBLE); 4895 4896 tlink = cifs_sb_tlink(cifs_sb); 4897 if (IS_ERR(tlink)) 4898 goto out; 4899 tcon = tlink_tcon(tlink); 4900 server = tcon->ses->server; 4901 4902 server->ops->downgrade_oplock(server, cinode, cfile->oplock_level, 4903 cfile->oplock_epoch, &purge_cache); 4904 4905 if (!CIFS_CACHE_WRITE(cinode) && CIFS_CACHE_READ(cinode) && 4906 cifs_has_mand_locks(cinode)) { 4907 cifs_dbg(FYI, "Reset oplock to None for inode=%p due to mand locks\n", 4908 inode); 4909 cinode->oplock = 0; 4910 } 4911 4912 if (inode && S_ISREG(inode->i_mode)) { 4913 if (CIFS_CACHE_READ(cinode)) 4914 break_lease(inode, O_RDONLY); 4915 else 4916 break_lease(inode, O_WRONLY); 4917 rc = filemap_fdatawrite(inode->i_mapping); 4918 if (!CIFS_CACHE_READ(cinode) || purge_cache) { 4919 rc = filemap_fdatawait(inode->i_mapping); 4920 mapping_set_error(inode->i_mapping, rc); 4921 cifs_zap_mapping(inode); 4922 } 4923 cifs_dbg(FYI, "Oplock flush inode %p rc %d\n", inode, rc); 4924 if (CIFS_CACHE_WRITE(cinode)) 4925 goto oplock_break_ack; 4926 } 4927 4928 rc = cifs_push_locks(cfile); 4929 if (rc) 4930 cifs_dbg(VFS, "Push locks rc = %d\n", rc); 4931 4932 oplock_break_ack: 4933 /* 4934 * When oplock break is received and there are no active 4935 * file handles but cached, then schedule deferred close immediately. 4936 * So, new open will not use cached handle. 4937 */ 4938 4939 if (!CIFS_CACHE_HANDLE(cinode) && !list_empty(&cinode->deferred_closes)) 4940 cifs_close_deferred_file(cinode); 4941 4942 persistent_fid = cfile->fid.persistent_fid; 4943 volatile_fid = cfile->fid.volatile_fid; 4944 net_fid = cfile->fid.netfid; 4945 oplock_break_cancelled = cfile->oplock_break_cancelled; 4946 4947 _cifsFileInfo_put(cfile, false /* do not wait for ourself */, false); 4948 /* 4949 * MS-SMB2 3.2.5.19.1 and 3.2.5.19.2 (and MS-CIFS 3.2.5.42) do not require 4950 * an acknowledgment to be sent when the file has already been closed. 4951 */ 4952 spin_lock(&cinode->open_file_lock); 4953 /* check list empty since can race with kill_sb calling tree disconnect */ 4954 if (!oplock_break_cancelled && !list_empty(&cinode->openFileList)) { 4955 spin_unlock(&cinode->open_file_lock); 4956 rc = server->ops->oplock_response(tcon, persistent_fid, 4957 volatile_fid, net_fid, cinode); 4958 cifs_dbg(FYI, "Oplock release rc = %d\n", rc); 4959 } else 4960 spin_unlock(&cinode->open_file_lock); 4961 4962 cifs_put_tlink(tlink); 4963 out: 4964 cifs_done_oplock_break(cinode); 4965 } 4966 4967 /* 4968 * The presence of cifs_direct_io() in the address space ops vector 4969 * allowes open() O_DIRECT flags which would have failed otherwise. 4970 * 4971 * In the non-cached mode (mount with cache=none), we shunt off direct read and write requests 4972 * so this method should never be called. 4973 * 4974 * Direct IO is not yet supported in the cached mode. 4975 */ 4976 static ssize_t 4977 cifs_direct_io(struct kiocb *iocb, struct iov_iter *iter) 4978 { 4979 /* 4980 * FIXME 4981 * Eventually need to support direct IO for non forcedirectio mounts 4982 */ 4983 return -EINVAL; 4984 } 4985 4986 static int cifs_swap_activate(struct swap_info_struct *sis, 4987 struct file *swap_file, sector_t *span) 4988 { 4989 struct cifsFileInfo *cfile = swap_file->private_data; 4990 struct inode *inode = swap_file->f_mapping->host; 4991 unsigned long blocks; 4992 long long isize; 4993 4994 cifs_dbg(FYI, "swap activate\n"); 4995 4996 if (!swap_file->f_mapping->a_ops->swap_rw) 4997 /* Cannot support swap */ 4998 return -EINVAL; 4999 5000 spin_lock(&inode->i_lock); 5001 blocks = inode->i_blocks; 5002 isize = inode->i_size; 5003 spin_unlock(&inode->i_lock); 5004 if (blocks*512 < isize) { 5005 pr_warn("swap activate: swapfile has holes\n"); 5006 return -EINVAL; 5007 } 5008 *span = sis->pages; 5009 5010 pr_warn_once("Swap support over SMB3 is experimental\n"); 5011 5012 /* 5013 * TODO: consider adding ACL (or documenting how) to prevent other 5014 * users (on this or other systems) from reading it 5015 */ 5016 5017 5018 /* TODO: add sk_set_memalloc(inet) or similar */ 5019 5020 if (cfile) 5021 cfile->swapfile = true; 5022 /* 5023 * TODO: Since file already open, we can't open with DENY_ALL here 5024 * but we could add call to grab a byte range lock to prevent others 5025 * from reading or writing the file 5026 */ 5027 5028 sis->flags |= SWP_FS_OPS; 5029 return add_swap_extent(sis, 0, sis->max, 0); 5030 } 5031 5032 static void cifs_swap_deactivate(struct file *file) 5033 { 5034 struct cifsFileInfo *cfile = file->private_data; 5035 5036 cifs_dbg(FYI, "swap deactivate\n"); 5037 5038 /* TODO: undo sk_set_memalloc(inet) will eventually be needed */ 5039 5040 if (cfile) 5041 cfile->swapfile = false; 5042 5043 /* do we need to unpin (or unlock) the file */ 5044 } 5045 5046 /* 5047 * Mark a page as having been made dirty and thus needing writeback. We also 5048 * need to pin the cache object to write back to. 5049 */ 5050 #ifdef CONFIG_CIFS_FSCACHE 5051 static bool cifs_dirty_folio(struct address_space *mapping, struct folio *folio) 5052 { 5053 return fscache_dirty_folio(mapping, folio, 5054 cifs_inode_cookie(mapping->host)); 5055 } 5056 #else 5057 #define cifs_dirty_folio filemap_dirty_folio 5058 #endif 5059 5060 const struct address_space_operations cifs_addr_ops = { 5061 .read_folio = cifs_read_folio, 5062 .readahead = cifs_readahead, 5063 .writepages = cifs_writepages, 5064 .write_begin = cifs_write_begin, 5065 .write_end = cifs_write_end, 5066 .dirty_folio = cifs_dirty_folio, 5067 .release_folio = cifs_release_folio, 5068 .direct_IO = cifs_direct_io, 5069 .invalidate_folio = cifs_invalidate_folio, 5070 .launder_folio = cifs_launder_folio, 5071 .migrate_folio = filemap_migrate_folio, 5072 /* 5073 * TODO: investigate and if useful we could add an is_dirty_writeback 5074 * helper if needed 5075 */ 5076 .swap_activate = cifs_swap_activate, 5077 .swap_deactivate = cifs_swap_deactivate, 5078 }; 5079 5080 /* 5081 * cifs_readahead requires the server to support a buffer large enough to 5082 * contain the header plus one complete page of data. Otherwise, we need 5083 * to leave cifs_readahead out of the address space operations. 5084 */ 5085 const struct address_space_operations cifs_addr_ops_smallbuf = { 5086 .read_folio = cifs_read_folio, 5087 .writepages = cifs_writepages, 5088 .write_begin = cifs_write_begin, 5089 .write_end = cifs_write_end, 5090 .dirty_folio = cifs_dirty_folio, 5091 .release_folio = cifs_release_folio, 5092 .invalidate_folio = cifs_invalidate_folio, 5093 .launder_folio = cifs_launder_folio, 5094 .migrate_folio = filemap_migrate_folio, 5095 }; 5096