xref: /openbmc/linux/fs/smb/client/dfs_cache.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * DFS referral cache routines
4  *
5  * Copyright (c) 2018-2019 Paulo Alcantara <palcantara@suse.de>
6  */
7 
8 #include <linux/jhash.h>
9 #include <linux/ktime.h>
10 #include <linux/slab.h>
11 #include <linux/proc_fs.h>
12 #include <linux/nls.h>
13 #include <linux/workqueue.h>
14 #include <linux/uuid.h>
15 #include "cifsglob.h"
16 #include "smb2pdu.h"
17 #include "smb2proto.h"
18 #include "cifsproto.h"
19 #include "cifs_debug.h"
20 #include "cifs_unicode.h"
21 #include "smb2glob.h"
22 #include "dns_resolve.h"
23 #include "dfs.h"
24 
25 #include "dfs_cache.h"
26 
27 #define CACHE_HTABLE_SIZE	32
28 #define CACHE_MAX_ENTRIES	64
29 #define CACHE_MIN_TTL		120 /* 2 minutes */
30 #define CACHE_DEFAULT_TTL	300 /* 5 minutes */
31 
32 #define IS_DFS_INTERLINK(v) (((v) & DFSREF_REFERRAL_SERVER) && !((v) & DFSREF_STORAGE_SERVER))
33 
34 struct cache_dfs_tgt {
35 	char *name;
36 	int path_consumed;
37 	struct list_head list;
38 };
39 
40 struct cache_entry {
41 	struct hlist_node hlist;
42 	const char *path;
43 	int hdr_flags; /* RESP_GET_DFS_REFERRAL.ReferralHeaderFlags */
44 	int ttl; /* DFS_REREFERRAL_V3.TimeToLive */
45 	int srvtype; /* DFS_REREFERRAL_V3.ServerType */
46 	int ref_flags; /* DFS_REREFERRAL_V3.ReferralEntryFlags */
47 	struct timespec64 etime;
48 	int path_consumed; /* RESP_GET_DFS_REFERRAL.PathConsumed */
49 	int numtgts;
50 	struct list_head tlist;
51 	struct cache_dfs_tgt *tgthint;
52 };
53 
54 static struct kmem_cache *cache_slab __read_mostly;
55 struct workqueue_struct *dfscache_wq;
56 
57 atomic_t dfs_cache_ttl;
58 
59 static struct nls_table *cache_cp;
60 
61 /*
62  * Number of entries in the cache
63  */
64 static atomic_t cache_count;
65 
66 static struct hlist_head cache_htable[CACHE_HTABLE_SIZE];
67 static DECLARE_RWSEM(htable_rw_lock);
68 
69 /**
70  * dfs_cache_canonical_path - get a canonical DFS path
71  *
72  * @path: DFS path
73  * @cp: codepage
74  * @remap: mapping type
75  *
76  * Return canonical path if success, otherwise error.
77  */
78 char *dfs_cache_canonical_path(const char *path, const struct nls_table *cp, int remap)
79 {
80 	char *tmp;
81 	int plen = 0;
82 	char *npath;
83 
84 	if (!path || strlen(path) < 3 || (*path != '\\' && *path != '/'))
85 		return ERR_PTR(-EINVAL);
86 
87 	if (unlikely(strcmp(cp->charset, cache_cp->charset))) {
88 		tmp = (char *)cifs_strndup_to_utf16(path, strlen(path), &plen, cp, remap);
89 		if (!tmp) {
90 			cifs_dbg(VFS, "%s: failed to convert path to utf16\n", __func__);
91 			return ERR_PTR(-EINVAL);
92 		}
93 
94 		npath = cifs_strndup_from_utf16(tmp, plen, true, cache_cp);
95 		kfree(tmp);
96 
97 		if (!npath) {
98 			cifs_dbg(VFS, "%s: failed to convert path from utf16\n", __func__);
99 			return ERR_PTR(-EINVAL);
100 		}
101 	} else {
102 		npath = kstrdup(path, GFP_KERNEL);
103 		if (!npath)
104 			return ERR_PTR(-ENOMEM);
105 	}
106 	convert_delimiter(npath, '\\');
107 	return npath;
108 }
109 
110 static inline bool cache_entry_expired(const struct cache_entry *ce)
111 {
112 	struct timespec64 ts;
113 
114 	ktime_get_coarse_real_ts64(&ts);
115 	return timespec64_compare(&ts, &ce->etime) >= 0;
116 }
117 
118 static inline void free_tgts(struct cache_entry *ce)
119 {
120 	struct cache_dfs_tgt *t, *n;
121 
122 	list_for_each_entry_safe(t, n, &ce->tlist, list) {
123 		list_del(&t->list);
124 		kfree(t->name);
125 		kfree(t);
126 	}
127 }
128 
129 static inline void flush_cache_ent(struct cache_entry *ce)
130 {
131 	hlist_del_init(&ce->hlist);
132 	kfree(ce->path);
133 	free_tgts(ce);
134 	atomic_dec(&cache_count);
135 	kmem_cache_free(cache_slab, ce);
136 }
137 
138 static void flush_cache_ents(void)
139 {
140 	int i;
141 
142 	for (i = 0; i < CACHE_HTABLE_SIZE; i++) {
143 		struct hlist_head *l = &cache_htable[i];
144 		struct hlist_node *n;
145 		struct cache_entry *ce;
146 
147 		hlist_for_each_entry_safe(ce, n, l, hlist) {
148 			if (!hlist_unhashed(&ce->hlist))
149 				flush_cache_ent(ce);
150 		}
151 	}
152 }
153 
154 /*
155  * dfs cache /proc file
156  */
157 static int dfscache_proc_show(struct seq_file *m, void *v)
158 {
159 	int i;
160 	struct cache_entry *ce;
161 	struct cache_dfs_tgt *t;
162 
163 	seq_puts(m, "DFS cache\n---------\n");
164 
165 	down_read(&htable_rw_lock);
166 	for (i = 0; i < CACHE_HTABLE_SIZE; i++) {
167 		struct hlist_head *l = &cache_htable[i];
168 
169 		hlist_for_each_entry(ce, l, hlist) {
170 			if (hlist_unhashed(&ce->hlist))
171 				continue;
172 
173 			seq_printf(m,
174 				   "cache entry: path=%s,type=%s,ttl=%d,etime=%ld,hdr_flags=0x%x,ref_flags=0x%x,interlink=%s,path_consumed=%d,expired=%s\n",
175 				   ce->path, ce->srvtype == DFS_TYPE_ROOT ? "root" : "link",
176 				   ce->ttl, ce->etime.tv_nsec, ce->hdr_flags, ce->ref_flags,
177 				   IS_DFS_INTERLINK(ce->hdr_flags) ? "yes" : "no",
178 				   ce->path_consumed, cache_entry_expired(ce) ? "yes" : "no");
179 
180 			list_for_each_entry(t, &ce->tlist, list) {
181 				seq_printf(m, "  %s%s\n",
182 					   t->name,
183 					   READ_ONCE(ce->tgthint) == t ? " (target hint)" : "");
184 			}
185 		}
186 	}
187 	up_read(&htable_rw_lock);
188 
189 	return 0;
190 }
191 
192 static ssize_t dfscache_proc_write(struct file *file, const char __user *buffer,
193 				   size_t count, loff_t *ppos)
194 {
195 	char c;
196 	int rc;
197 
198 	rc = get_user(c, buffer);
199 	if (rc)
200 		return rc;
201 
202 	if (c != '0')
203 		return -EINVAL;
204 
205 	cifs_dbg(FYI, "clearing dfs cache\n");
206 
207 	down_write(&htable_rw_lock);
208 	flush_cache_ents();
209 	up_write(&htable_rw_lock);
210 
211 	return count;
212 }
213 
214 static int dfscache_proc_open(struct inode *inode, struct file *file)
215 {
216 	return single_open(file, dfscache_proc_show, NULL);
217 }
218 
219 const struct proc_ops dfscache_proc_ops = {
220 	.proc_open	= dfscache_proc_open,
221 	.proc_read	= seq_read,
222 	.proc_lseek	= seq_lseek,
223 	.proc_release	= single_release,
224 	.proc_write	= dfscache_proc_write,
225 };
226 
227 #ifdef CONFIG_CIFS_DEBUG2
228 static inline void dump_tgts(const struct cache_entry *ce)
229 {
230 	struct cache_dfs_tgt *t;
231 
232 	cifs_dbg(FYI, "target list:\n");
233 	list_for_each_entry(t, &ce->tlist, list) {
234 		cifs_dbg(FYI, "  %s%s\n", t->name,
235 			 READ_ONCE(ce->tgthint) == t ? " (target hint)" : "");
236 	}
237 }
238 
239 static inline void dump_ce(const struct cache_entry *ce)
240 {
241 	cifs_dbg(FYI, "cache entry: path=%s,type=%s,ttl=%d,etime=%ld,hdr_flags=0x%x,ref_flags=0x%x,interlink=%s,path_consumed=%d,expired=%s\n",
242 		 ce->path,
243 		 ce->srvtype == DFS_TYPE_ROOT ? "root" : "link", ce->ttl,
244 		 ce->etime.tv_nsec,
245 		 ce->hdr_flags, ce->ref_flags,
246 		 IS_DFS_INTERLINK(ce->hdr_flags) ? "yes" : "no",
247 		 ce->path_consumed,
248 		 cache_entry_expired(ce) ? "yes" : "no");
249 	dump_tgts(ce);
250 }
251 
252 static inline void dump_refs(const struct dfs_info3_param *refs, int numrefs)
253 {
254 	int i;
255 
256 	cifs_dbg(FYI, "DFS referrals returned by the server:\n");
257 	for (i = 0; i < numrefs; i++) {
258 		const struct dfs_info3_param *ref = &refs[i];
259 
260 		cifs_dbg(FYI,
261 			 "\n"
262 			 "flags:         0x%x\n"
263 			 "path_consumed: %d\n"
264 			 "server_type:   0x%x\n"
265 			 "ref_flag:      0x%x\n"
266 			 "path_name:     %s\n"
267 			 "node_name:     %s\n"
268 			 "ttl:           %d (%dm)\n",
269 			 ref->flags, ref->path_consumed, ref->server_type,
270 			 ref->ref_flag, ref->path_name, ref->node_name,
271 			 ref->ttl, ref->ttl / 60);
272 	}
273 }
274 #else
275 #define dump_tgts(e)
276 #define dump_ce(e)
277 #define dump_refs(r, n)
278 #endif
279 
280 /**
281  * dfs_cache_init - Initialize DFS referral cache.
282  *
283  * Return zero if initialized successfully, otherwise non-zero.
284  */
285 int dfs_cache_init(void)
286 {
287 	int rc;
288 	int i;
289 
290 	dfscache_wq = alloc_workqueue("cifs-dfscache",
291 				      WQ_UNBOUND|WQ_FREEZABLE|WQ_MEM_RECLAIM,
292 				      0);
293 	if (!dfscache_wq)
294 		return -ENOMEM;
295 
296 	cache_slab = kmem_cache_create("cifs_dfs_cache",
297 				       sizeof(struct cache_entry), 0,
298 				       SLAB_HWCACHE_ALIGN, NULL);
299 	if (!cache_slab) {
300 		rc = -ENOMEM;
301 		goto out_destroy_wq;
302 	}
303 
304 	for (i = 0; i < CACHE_HTABLE_SIZE; i++)
305 		INIT_HLIST_HEAD(&cache_htable[i]);
306 
307 	atomic_set(&cache_count, 0);
308 	atomic_set(&dfs_cache_ttl, CACHE_DEFAULT_TTL);
309 	cache_cp = load_nls("utf8");
310 	if (!cache_cp)
311 		cache_cp = load_nls_default();
312 
313 	cifs_dbg(FYI, "%s: initialized DFS referral cache\n", __func__);
314 	return 0;
315 
316 out_destroy_wq:
317 	destroy_workqueue(dfscache_wq);
318 	return rc;
319 }
320 
321 static int cache_entry_hash(const void *data, int size, unsigned int *hash)
322 {
323 	int i, clen;
324 	const unsigned char *s = data;
325 	wchar_t c;
326 	unsigned int h = 0;
327 
328 	for (i = 0; i < size; i += clen) {
329 		clen = cache_cp->char2uni(&s[i], size - i, &c);
330 		if (unlikely(clen < 0)) {
331 			cifs_dbg(VFS, "%s: can't convert char\n", __func__);
332 			return clen;
333 		}
334 		c = cifs_toupper(c);
335 		h = jhash(&c, sizeof(c), h);
336 	}
337 	*hash = h % CACHE_HTABLE_SIZE;
338 	return 0;
339 }
340 
341 /* Return target hint of a DFS cache entry */
342 static inline char *get_tgt_name(const struct cache_entry *ce)
343 {
344 	struct cache_dfs_tgt *t = READ_ONCE(ce->tgthint);
345 
346 	return t ? t->name : ERR_PTR(-ENOENT);
347 }
348 
349 /* Return expire time out of a new entry's TTL */
350 static inline struct timespec64 get_expire_time(int ttl)
351 {
352 	struct timespec64 ts = {
353 		.tv_sec = ttl,
354 		.tv_nsec = 0,
355 	};
356 	struct timespec64 now;
357 
358 	ktime_get_coarse_real_ts64(&now);
359 	return timespec64_add(now, ts);
360 }
361 
362 /* Allocate a new DFS target */
363 static struct cache_dfs_tgt *alloc_target(const char *name, int path_consumed)
364 {
365 	struct cache_dfs_tgt *t;
366 
367 	t = kmalloc(sizeof(*t), GFP_ATOMIC);
368 	if (!t)
369 		return ERR_PTR(-ENOMEM);
370 	t->name = kstrdup(name, GFP_ATOMIC);
371 	if (!t->name) {
372 		kfree(t);
373 		return ERR_PTR(-ENOMEM);
374 	}
375 	t->path_consumed = path_consumed;
376 	INIT_LIST_HEAD(&t->list);
377 	return t;
378 }
379 
380 /*
381  * Copy DFS referral information to a cache entry and conditionally update
382  * target hint.
383  */
384 static int copy_ref_data(const struct dfs_info3_param *refs, int numrefs,
385 			 struct cache_entry *ce, const char *tgthint)
386 {
387 	struct cache_dfs_tgt *target;
388 	int i;
389 
390 	ce->ttl = max_t(int, refs[0].ttl, CACHE_MIN_TTL);
391 	ce->etime = get_expire_time(ce->ttl);
392 	ce->srvtype = refs[0].server_type;
393 	ce->hdr_flags = refs[0].flags;
394 	ce->ref_flags = refs[0].ref_flag;
395 	ce->path_consumed = refs[0].path_consumed;
396 
397 	for (i = 0; i < numrefs; i++) {
398 		struct cache_dfs_tgt *t;
399 
400 		t = alloc_target(refs[i].node_name, refs[i].path_consumed);
401 		if (IS_ERR(t)) {
402 			free_tgts(ce);
403 			return PTR_ERR(t);
404 		}
405 		if (tgthint && !strcasecmp(t->name, tgthint)) {
406 			list_add(&t->list, &ce->tlist);
407 			tgthint = NULL;
408 		} else {
409 			list_add_tail(&t->list, &ce->tlist);
410 		}
411 		ce->numtgts++;
412 	}
413 
414 	target = list_first_entry_or_null(&ce->tlist, struct cache_dfs_tgt,
415 					  list);
416 	WRITE_ONCE(ce->tgthint, target);
417 
418 	return 0;
419 }
420 
421 /* Allocate a new cache entry */
422 static struct cache_entry *alloc_cache_entry(struct dfs_info3_param *refs, int numrefs)
423 {
424 	struct cache_entry *ce;
425 	int rc;
426 
427 	ce = kmem_cache_zalloc(cache_slab, GFP_KERNEL);
428 	if (!ce)
429 		return ERR_PTR(-ENOMEM);
430 
431 	ce->path = refs[0].path_name;
432 	refs[0].path_name = NULL;
433 
434 	INIT_HLIST_NODE(&ce->hlist);
435 	INIT_LIST_HEAD(&ce->tlist);
436 
437 	rc = copy_ref_data(refs, numrefs, ce, NULL);
438 	if (rc) {
439 		kfree(ce->path);
440 		kmem_cache_free(cache_slab, ce);
441 		ce = ERR_PTR(rc);
442 	}
443 	return ce;
444 }
445 
446 static void remove_oldest_entry_locked(void)
447 {
448 	int i;
449 	struct cache_entry *ce;
450 	struct cache_entry *to_del = NULL;
451 
452 	WARN_ON(!rwsem_is_locked(&htable_rw_lock));
453 
454 	for (i = 0; i < CACHE_HTABLE_SIZE; i++) {
455 		struct hlist_head *l = &cache_htable[i];
456 
457 		hlist_for_each_entry(ce, l, hlist) {
458 			if (hlist_unhashed(&ce->hlist))
459 				continue;
460 			if (!to_del || timespec64_compare(&ce->etime,
461 							  &to_del->etime) < 0)
462 				to_del = ce;
463 		}
464 	}
465 
466 	if (!to_del) {
467 		cifs_dbg(FYI, "%s: no entry to remove\n", __func__);
468 		return;
469 	}
470 
471 	cifs_dbg(FYI, "%s: removing entry\n", __func__);
472 	dump_ce(to_del);
473 	flush_cache_ent(to_del);
474 }
475 
476 /* Add a new DFS cache entry */
477 static struct cache_entry *add_cache_entry_locked(struct dfs_info3_param *refs,
478 						  int numrefs)
479 {
480 	int rc;
481 	struct cache_entry *ce;
482 	unsigned int hash;
483 	int ttl;
484 
485 	WARN_ON(!rwsem_is_locked(&htable_rw_lock));
486 
487 	if (atomic_read(&cache_count) >= CACHE_MAX_ENTRIES) {
488 		cifs_dbg(FYI, "%s: reached max cache size (%d)\n", __func__, CACHE_MAX_ENTRIES);
489 		remove_oldest_entry_locked();
490 	}
491 
492 	rc = cache_entry_hash(refs[0].path_name, strlen(refs[0].path_name), &hash);
493 	if (rc)
494 		return ERR_PTR(rc);
495 
496 	ce = alloc_cache_entry(refs, numrefs);
497 	if (IS_ERR(ce))
498 		return ce;
499 
500 	ttl = min_t(int, atomic_read(&dfs_cache_ttl), ce->ttl);
501 	atomic_set(&dfs_cache_ttl, ttl);
502 
503 	hlist_add_head(&ce->hlist, &cache_htable[hash]);
504 	dump_ce(ce);
505 
506 	atomic_inc(&cache_count);
507 
508 	return ce;
509 }
510 
511 /* Check if two DFS paths are equal.  @s1 and @s2 are expected to be in @cache_cp's charset */
512 static bool dfs_path_equal(const char *s1, int len1, const char *s2, int len2)
513 {
514 	int i, l1, l2;
515 	wchar_t c1, c2;
516 
517 	if (len1 != len2)
518 		return false;
519 
520 	for (i = 0; i < len1; i += l1) {
521 		l1 = cache_cp->char2uni(&s1[i], len1 - i, &c1);
522 		l2 = cache_cp->char2uni(&s2[i], len2 - i, &c2);
523 		if (unlikely(l1 < 0 && l2 < 0)) {
524 			if (s1[i] != s2[i])
525 				return false;
526 			l1 = 1;
527 			continue;
528 		}
529 		if (l1 != l2)
530 			return false;
531 		if (cifs_toupper(c1) != cifs_toupper(c2))
532 			return false;
533 	}
534 	return true;
535 }
536 
537 static struct cache_entry *__lookup_cache_entry(const char *path, unsigned int hash, int len)
538 {
539 	struct cache_entry *ce;
540 
541 	hlist_for_each_entry(ce, &cache_htable[hash], hlist) {
542 		if (dfs_path_equal(ce->path, strlen(ce->path), path, len)) {
543 			dump_ce(ce);
544 			return ce;
545 		}
546 	}
547 	return ERR_PTR(-ENOENT);
548 }
549 
550 /*
551  * Find a DFS cache entry in hash table and optionally check prefix path against normalized @path.
552  *
553  * Use whole path components in the match.  Must be called with htable_rw_lock held.
554  *
555  * Return cached entry if successful.
556  * Return ERR_PTR(-ENOENT) if the entry is not found.
557  * Return error ptr otherwise.
558  */
559 static struct cache_entry *lookup_cache_entry(const char *path)
560 {
561 	struct cache_entry *ce;
562 	int cnt = 0;
563 	const char *s = path, *e;
564 	char sep = *s;
565 	unsigned int hash;
566 	int rc;
567 
568 	while ((s = strchr(s, sep)) && ++cnt < 3)
569 		s++;
570 
571 	if (cnt < 3) {
572 		rc = cache_entry_hash(path, strlen(path), &hash);
573 		if (rc)
574 			return ERR_PTR(rc);
575 		return __lookup_cache_entry(path, hash, strlen(path));
576 	}
577 	/*
578 	 * Handle paths that have more than two path components and are a complete prefix of the DFS
579 	 * referral request path (@path).
580 	 *
581 	 * See MS-DFSC 3.2.5.5 "Receiving a Root Referral Request or Link Referral Request".
582 	 */
583 	e = path + strlen(path) - 1;
584 	while (e > s) {
585 		int len;
586 
587 		/* skip separators */
588 		while (e > s && *e == sep)
589 			e--;
590 		if (e == s)
591 			break;
592 
593 		len = e + 1 - path;
594 		rc = cache_entry_hash(path, len, &hash);
595 		if (rc)
596 			return ERR_PTR(rc);
597 		ce = __lookup_cache_entry(path, hash, len);
598 		if (!IS_ERR(ce))
599 			return ce;
600 
601 		/* backward until separator */
602 		while (e > s && *e != sep)
603 			e--;
604 	}
605 	return ERR_PTR(-ENOENT);
606 }
607 
608 /**
609  * dfs_cache_destroy - destroy DFS referral cache
610  */
611 void dfs_cache_destroy(void)
612 {
613 	unload_nls(cache_cp);
614 	flush_cache_ents();
615 	kmem_cache_destroy(cache_slab);
616 	destroy_workqueue(dfscache_wq);
617 
618 	cifs_dbg(FYI, "%s: destroyed DFS referral cache\n", __func__);
619 }
620 
621 /* Update a cache entry with the new referral in @refs */
622 static int update_cache_entry_locked(struct cache_entry *ce, const struct dfs_info3_param *refs,
623 				     int numrefs)
624 {
625 	struct cache_dfs_tgt *target;
626 	char *th = NULL;
627 	int rc;
628 
629 	WARN_ON(!rwsem_is_locked(&htable_rw_lock));
630 
631 	target = READ_ONCE(ce->tgthint);
632 	if (target) {
633 		th = kstrdup(target->name, GFP_ATOMIC);
634 		if (!th)
635 			return -ENOMEM;
636 	}
637 
638 	free_tgts(ce);
639 	ce->numtgts = 0;
640 
641 	rc = copy_ref_data(refs, numrefs, ce, th);
642 
643 	kfree(th);
644 
645 	return rc;
646 }
647 
648 static int get_dfs_referral(const unsigned int xid, struct cifs_ses *ses, const char *path,
649 			    struct dfs_info3_param **refs, int *numrefs)
650 {
651 	int rc;
652 	int i;
653 
654 	*refs = NULL;
655 	*numrefs = 0;
656 
657 	if (!ses || !ses->server || !ses->server->ops->get_dfs_refer)
658 		return -EOPNOTSUPP;
659 	if (unlikely(!cache_cp))
660 		return -EINVAL;
661 
662 	cifs_dbg(FYI, "%s: ipc=%s referral=%s\n", __func__, ses->tcon_ipc->tree_name, path);
663 	rc =  ses->server->ops->get_dfs_refer(xid, ses, path, refs, numrefs, cache_cp,
664 					      NO_MAP_UNI_RSVD);
665 	if (!rc) {
666 		struct dfs_info3_param *ref = *refs;
667 
668 		for (i = 0; i < *numrefs; i++)
669 			convert_delimiter(ref[i].path_name, '\\');
670 	}
671 	return rc;
672 }
673 
674 /*
675  * Find, create or update a DFS cache entry.
676  *
677  * If the entry wasn't found, it will create a new one. Or if it was found but
678  * expired, then it will update the entry accordingly.
679  *
680  * For interlinks, cifs_mount() and expand_dfs_referral() are supposed to
681  * handle them properly.
682  *
683  * On success, return entry with acquired lock for reading, otherwise error ptr.
684  */
685 static struct cache_entry *cache_refresh_path(const unsigned int xid,
686 					      struct cifs_ses *ses,
687 					      const char *path,
688 					      bool force_refresh)
689 {
690 	struct dfs_info3_param *refs = NULL;
691 	struct cache_entry *ce;
692 	int numrefs = 0;
693 	int rc;
694 
695 	cifs_dbg(FYI, "%s: search path: %s\n", __func__, path);
696 
697 	down_read(&htable_rw_lock);
698 
699 	ce = lookup_cache_entry(path);
700 	if (!IS_ERR(ce)) {
701 		if (!force_refresh && !cache_entry_expired(ce))
702 			return ce;
703 	} else if (PTR_ERR(ce) != -ENOENT) {
704 		up_read(&htable_rw_lock);
705 		return ce;
706 	}
707 
708 	/*
709 	 * Unlock shared access as we don't want to hold any locks while getting
710 	 * a new referral.  The @ses used for performing the I/O could be
711 	 * reconnecting and it acquires @htable_rw_lock to look up the dfs cache
712 	 * in order to failover -- if necessary.
713 	 */
714 	up_read(&htable_rw_lock);
715 
716 	/*
717 	 * Either the entry was not found, or it is expired, or it is a forced
718 	 * refresh.
719 	 * Request a new DFS referral in order to create or update a cache entry.
720 	 */
721 	rc = get_dfs_referral(xid, ses, path, &refs, &numrefs);
722 	if (rc) {
723 		ce = ERR_PTR(rc);
724 		goto out;
725 	}
726 
727 	dump_refs(refs, numrefs);
728 
729 	down_write(&htable_rw_lock);
730 	/* Re-check as another task might have it added or refreshed already */
731 	ce = lookup_cache_entry(path);
732 	if (!IS_ERR(ce)) {
733 		if (force_refresh || cache_entry_expired(ce)) {
734 			rc = update_cache_entry_locked(ce, refs, numrefs);
735 			if (rc)
736 				ce = ERR_PTR(rc);
737 		}
738 	} else if (PTR_ERR(ce) == -ENOENT) {
739 		ce = add_cache_entry_locked(refs, numrefs);
740 	}
741 
742 	if (IS_ERR(ce)) {
743 		up_write(&htable_rw_lock);
744 		goto out;
745 	}
746 
747 	downgrade_write(&htable_rw_lock);
748 out:
749 	free_dfs_info_array(refs, numrefs);
750 	return ce;
751 }
752 
753 /*
754  * Set up a DFS referral from a given cache entry.
755  *
756  * Must be called with htable_rw_lock held.
757  */
758 static int setup_referral(const char *path, struct cache_entry *ce,
759 			  struct dfs_info3_param *ref, const char *target)
760 {
761 	int rc;
762 
763 	cifs_dbg(FYI, "%s: set up new ref\n", __func__);
764 
765 	memset(ref, 0, sizeof(*ref));
766 
767 	ref->path_name = kstrdup(path, GFP_ATOMIC);
768 	if (!ref->path_name)
769 		return -ENOMEM;
770 
771 	ref->node_name = kstrdup(target, GFP_ATOMIC);
772 	if (!ref->node_name) {
773 		rc = -ENOMEM;
774 		goto err_free_path;
775 	}
776 
777 	ref->path_consumed = ce->path_consumed;
778 	ref->ttl = ce->ttl;
779 	ref->server_type = ce->srvtype;
780 	ref->ref_flag = ce->ref_flags;
781 	ref->flags = ce->hdr_flags;
782 
783 	return 0;
784 
785 err_free_path:
786 	kfree(ref->path_name);
787 	ref->path_name = NULL;
788 	return rc;
789 }
790 
791 /* Return target list of a DFS cache entry */
792 static int get_targets(struct cache_entry *ce, struct dfs_cache_tgt_list *tl)
793 {
794 	int rc;
795 	struct list_head *head = &tl->tl_list;
796 	struct cache_dfs_tgt *t;
797 	struct dfs_cache_tgt_iterator *it, *nit;
798 
799 	memset(tl, 0, sizeof(*tl));
800 	INIT_LIST_HEAD(head);
801 
802 	list_for_each_entry(t, &ce->tlist, list) {
803 		it = kzalloc(sizeof(*it), GFP_ATOMIC);
804 		if (!it) {
805 			rc = -ENOMEM;
806 			goto err_free_it;
807 		}
808 
809 		it->it_name = kstrdup(t->name, GFP_ATOMIC);
810 		if (!it->it_name) {
811 			kfree(it);
812 			rc = -ENOMEM;
813 			goto err_free_it;
814 		}
815 		it->it_path_consumed = t->path_consumed;
816 
817 		if (READ_ONCE(ce->tgthint) == t)
818 			list_add(&it->it_list, head);
819 		else
820 			list_add_tail(&it->it_list, head);
821 	}
822 
823 	tl->tl_numtgts = ce->numtgts;
824 
825 	return 0;
826 
827 err_free_it:
828 	list_for_each_entry_safe(it, nit, head, it_list) {
829 		list_del(&it->it_list);
830 		kfree(it->it_name);
831 		kfree(it);
832 	}
833 	return rc;
834 }
835 
836 /**
837  * dfs_cache_find - find a DFS cache entry
838  *
839  * If it doesn't find the cache entry, then it will get a DFS referral
840  * for @path and create a new entry.
841  *
842  * In case the cache entry exists but expired, it will get a DFS referral
843  * for @path and then update the respective cache entry.
844  *
845  * These parameters are passed down to the get_dfs_refer() call if it
846  * needs to be issued:
847  * @xid: syscall xid
848  * @ses: smb session to issue the request on
849  * @cp: codepage
850  * @remap: path character remapping type
851  * @path: path to lookup in DFS referral cache.
852  *
853  * @ref: when non-NULL, store single DFS referral result in it.
854  * @tgt_list: when non-NULL, store complete DFS target list in it.
855  *
856  * Return zero if the target was found, otherwise non-zero.
857  */
858 int dfs_cache_find(const unsigned int xid, struct cifs_ses *ses, const struct nls_table *cp,
859 		   int remap, const char *path, struct dfs_info3_param *ref,
860 		   struct dfs_cache_tgt_list *tgt_list)
861 {
862 	int rc;
863 	const char *npath;
864 	struct cache_entry *ce;
865 
866 	npath = dfs_cache_canonical_path(path, cp, remap);
867 	if (IS_ERR(npath))
868 		return PTR_ERR(npath);
869 
870 	ce = cache_refresh_path(xid, ses, npath, false);
871 	if (IS_ERR(ce)) {
872 		rc = PTR_ERR(ce);
873 		goto out_free_path;
874 	}
875 
876 	if (ref)
877 		rc = setup_referral(path, ce, ref, get_tgt_name(ce));
878 	else
879 		rc = 0;
880 	if (!rc && tgt_list)
881 		rc = get_targets(ce, tgt_list);
882 
883 	up_read(&htable_rw_lock);
884 
885 out_free_path:
886 	kfree(npath);
887 	return rc;
888 }
889 
890 /**
891  * dfs_cache_noreq_find - find a DFS cache entry without sending any requests to
892  * the currently connected server.
893  *
894  * NOTE: This function will neither update a cache entry in case it was
895  * expired, nor create a new cache entry if @path hasn't been found. It heavily
896  * relies on an existing cache entry.
897  *
898  * @path: canonical DFS path to lookup in the DFS referral cache.
899  * @ref: when non-NULL, store single DFS referral result in it.
900  * @tgt_list: when non-NULL, store complete DFS target list in it.
901  *
902  * Return 0 if successful.
903  * Return -ENOENT if the entry was not found.
904  * Return non-zero for other errors.
905  */
906 int dfs_cache_noreq_find(const char *path, struct dfs_info3_param *ref,
907 			 struct dfs_cache_tgt_list *tgt_list)
908 {
909 	int rc;
910 	struct cache_entry *ce;
911 
912 	cifs_dbg(FYI, "%s: path: %s\n", __func__, path);
913 
914 	down_read(&htable_rw_lock);
915 
916 	ce = lookup_cache_entry(path);
917 	if (IS_ERR(ce)) {
918 		rc = PTR_ERR(ce);
919 		goto out_unlock;
920 	}
921 
922 	if (ref)
923 		rc = setup_referral(path, ce, ref, get_tgt_name(ce));
924 	else
925 		rc = 0;
926 	if (!rc && tgt_list)
927 		rc = get_targets(ce, tgt_list);
928 
929 out_unlock:
930 	up_read(&htable_rw_lock);
931 	return rc;
932 }
933 
934 /**
935  * dfs_cache_noreq_update_tgthint - update target hint of a DFS cache entry
936  * without sending any requests to the currently connected server.
937  *
938  * NOTE: This function will neither update a cache entry in case it was
939  * expired, nor create a new cache entry if @path hasn't been found. It heavily
940  * relies on an existing cache entry.
941  *
942  * @path: canonical DFS path to lookup in DFS referral cache.
943  * @it: target iterator which contains the target hint to update the cache
944  * entry with.
945  *
946  * Return zero if the target hint was updated successfully, otherwise non-zero.
947  */
948 void dfs_cache_noreq_update_tgthint(const char *path, const struct dfs_cache_tgt_iterator *it)
949 {
950 	struct cache_dfs_tgt *t;
951 	struct cache_entry *ce;
952 
953 	if (!path || !it)
954 		return;
955 
956 	cifs_dbg(FYI, "%s: path: %s\n", __func__, path);
957 
958 	down_read(&htable_rw_lock);
959 
960 	ce = lookup_cache_entry(path);
961 	if (IS_ERR(ce))
962 		goto out_unlock;
963 
964 	t = READ_ONCE(ce->tgthint);
965 
966 	if (unlikely(!strcasecmp(it->it_name, t->name)))
967 		goto out_unlock;
968 
969 	list_for_each_entry(t, &ce->tlist, list) {
970 		if (!strcasecmp(t->name, it->it_name)) {
971 			WRITE_ONCE(ce->tgthint, t);
972 			cifs_dbg(FYI, "%s: new target hint: %s\n", __func__,
973 				 it->it_name);
974 			break;
975 		}
976 	}
977 
978 out_unlock:
979 	up_read(&htable_rw_lock);
980 }
981 
982 /**
983  * dfs_cache_get_tgt_referral - returns a DFS referral (@ref) from a given
984  * target iterator (@it).
985  *
986  * @path: canonical DFS path to lookup in DFS referral cache.
987  * @it: DFS target iterator.
988  * @ref: DFS referral pointer to set up the gathered information.
989  *
990  * Return zero if the DFS referral was set up correctly, otherwise non-zero.
991  */
992 int dfs_cache_get_tgt_referral(const char *path, const struct dfs_cache_tgt_iterator *it,
993 			       struct dfs_info3_param *ref)
994 {
995 	int rc;
996 	struct cache_entry *ce;
997 
998 	if (!it || !ref)
999 		return -EINVAL;
1000 
1001 	cifs_dbg(FYI, "%s: path: %s\n", __func__, path);
1002 
1003 	down_read(&htable_rw_lock);
1004 
1005 	ce = lookup_cache_entry(path);
1006 	if (IS_ERR(ce)) {
1007 		rc = PTR_ERR(ce);
1008 		goto out_unlock;
1009 	}
1010 
1011 	cifs_dbg(FYI, "%s: target name: %s\n", __func__, it->it_name);
1012 
1013 	rc = setup_referral(path, ce, ref, it->it_name);
1014 
1015 out_unlock:
1016 	up_read(&htable_rw_lock);
1017 	return rc;
1018 }
1019 
1020 /* Extract share from DFS target and return a pointer to prefix path or NULL */
1021 static const char *parse_target_share(const char *target, char **share)
1022 {
1023 	const char *s, *seps = "/\\";
1024 	size_t len;
1025 
1026 	s = strpbrk(target + 1, seps);
1027 	if (!s)
1028 		return ERR_PTR(-EINVAL);
1029 
1030 	len = strcspn(s + 1, seps);
1031 	if (!len)
1032 		return ERR_PTR(-EINVAL);
1033 	s += len;
1034 
1035 	len = s - target + 1;
1036 	*share = kstrndup(target, len, GFP_KERNEL);
1037 	if (!*share)
1038 		return ERR_PTR(-ENOMEM);
1039 
1040 	s = target + len;
1041 	return s + strspn(s, seps);
1042 }
1043 
1044 /**
1045  * dfs_cache_get_tgt_share - parse a DFS target
1046  *
1047  * @path: DFS full path
1048  * @it: DFS target iterator.
1049  * @share: tree name.
1050  * @prefix: prefix path.
1051  *
1052  * Return zero if target was parsed correctly, otherwise non-zero.
1053  */
1054 int dfs_cache_get_tgt_share(char *path, const struct dfs_cache_tgt_iterator *it, char **share,
1055 			    char **prefix)
1056 {
1057 	char sep;
1058 	char *target_share;
1059 	char *ppath = NULL;
1060 	const char *target_ppath, *dfsref_ppath;
1061 	size_t target_pplen, dfsref_pplen;
1062 	size_t len, c;
1063 
1064 	if (!it || !path || !share || !prefix || strlen(path) < it->it_path_consumed)
1065 		return -EINVAL;
1066 
1067 	sep = it->it_name[0];
1068 	if (sep != '\\' && sep != '/')
1069 		return -EINVAL;
1070 
1071 	target_ppath = parse_target_share(it->it_name, &target_share);
1072 	if (IS_ERR(target_ppath))
1073 		return PTR_ERR(target_ppath);
1074 
1075 	/* point to prefix in DFS referral path */
1076 	dfsref_ppath = path + it->it_path_consumed;
1077 	dfsref_ppath += strspn(dfsref_ppath, "/\\");
1078 
1079 	target_pplen = strlen(target_ppath);
1080 	dfsref_pplen = strlen(dfsref_ppath);
1081 
1082 	/* merge prefix paths from DFS referral path and target node */
1083 	if (target_pplen || dfsref_pplen) {
1084 		len = target_pplen + dfsref_pplen + 2;
1085 		ppath = kzalloc(len, GFP_KERNEL);
1086 		if (!ppath) {
1087 			kfree(target_share);
1088 			return -ENOMEM;
1089 		}
1090 		c = strscpy(ppath, target_ppath, len);
1091 		if (c && dfsref_pplen)
1092 			ppath[c] = sep;
1093 		strlcat(ppath, dfsref_ppath, len);
1094 	}
1095 	*share = target_share;
1096 	*prefix = ppath;
1097 	return 0;
1098 }
1099 
1100 static bool target_share_equal(struct TCP_Server_Info *server, const char *s1, const char *s2)
1101 {
1102 	char unc[sizeof("\\\\") + SERVER_NAME_LENGTH] = {0};
1103 	const char *host;
1104 	size_t hostlen;
1105 	struct sockaddr_storage ss;
1106 	bool match;
1107 	int rc;
1108 
1109 	if (strcasecmp(s1, s2))
1110 		return false;
1111 
1112 	/*
1113 	 * Resolve share's hostname and check if server address matches.  Otherwise just ignore it
1114 	 * as we could not have upcall to resolve hostname or failed to convert ip address.
1115 	 */
1116 	extract_unc_hostname(s1, &host, &hostlen);
1117 	scnprintf(unc, sizeof(unc), "\\\\%.*s", (int)hostlen, host);
1118 
1119 	rc = dns_resolve_server_name_to_ip(unc, (struct sockaddr *)&ss, NULL);
1120 	if (rc < 0) {
1121 		cifs_dbg(FYI, "%s: could not resolve %.*s. assuming server address matches.\n",
1122 			 __func__, (int)hostlen, host);
1123 		return true;
1124 	}
1125 
1126 	cifs_server_lock(server);
1127 	match = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1128 	cifs_server_unlock(server);
1129 
1130 	return match;
1131 }
1132 
1133 /*
1134  * Mark dfs tcon for reconnecting when the currently connected tcon does not match any of the new
1135  * target shares in @refs.
1136  */
1137 static void mark_for_reconnect_if_needed(struct TCP_Server_Info *server,
1138 					 const char *path,
1139 					 struct dfs_cache_tgt_list *old_tl,
1140 					 struct dfs_cache_tgt_list *new_tl)
1141 {
1142 	struct dfs_cache_tgt_iterator *oit, *nit;
1143 
1144 	for (oit = dfs_cache_get_tgt_iterator(old_tl); oit;
1145 	     oit = dfs_cache_get_next_tgt(old_tl, oit)) {
1146 		for (nit = dfs_cache_get_tgt_iterator(new_tl); nit;
1147 		     nit = dfs_cache_get_next_tgt(new_tl, nit)) {
1148 			if (target_share_equal(server,
1149 					       dfs_cache_get_tgt_name(oit),
1150 					       dfs_cache_get_tgt_name(nit))) {
1151 				dfs_cache_noreq_update_tgthint(path, nit);
1152 				return;
1153 			}
1154 		}
1155 	}
1156 
1157 	cifs_dbg(FYI, "%s: no cached or matched targets. mark dfs share for reconnect.\n", __func__);
1158 	cifs_signal_cifsd_for_reconnect(server, true);
1159 }
1160 
1161 static bool is_ses_good(struct cifs_ses *ses)
1162 {
1163 	struct TCP_Server_Info *server = ses->server;
1164 	struct cifs_tcon *tcon = ses->tcon_ipc;
1165 	bool ret;
1166 
1167 	spin_lock(&ses->ses_lock);
1168 	spin_lock(&ses->chan_lock);
1169 	ret = !cifs_chan_needs_reconnect(ses, server) &&
1170 		ses->ses_status == SES_GOOD &&
1171 		!tcon->need_reconnect;
1172 	spin_unlock(&ses->chan_lock);
1173 	spin_unlock(&ses->ses_lock);
1174 	return ret;
1175 }
1176 
1177 /* Refresh dfs referral of tcon and mark it for reconnect if needed */
1178 static int __refresh_tcon(const char *path, struct cifs_ses *ses, bool force_refresh)
1179 {
1180 	struct dfs_cache_tgt_list old_tl = DFS_CACHE_TGT_LIST_INIT(old_tl);
1181 	struct dfs_cache_tgt_list new_tl = DFS_CACHE_TGT_LIST_INIT(new_tl);
1182 	struct TCP_Server_Info *server = ses->server;
1183 	bool needs_refresh = false;
1184 	struct cache_entry *ce;
1185 	unsigned int xid;
1186 	int rc = 0;
1187 
1188 	xid = get_xid();
1189 
1190 	down_read(&htable_rw_lock);
1191 	ce = lookup_cache_entry(path);
1192 	needs_refresh = force_refresh || IS_ERR(ce) || cache_entry_expired(ce);
1193 	if (!IS_ERR(ce)) {
1194 		rc = get_targets(ce, &old_tl);
1195 		cifs_dbg(FYI, "%s: get_targets: %d\n", __func__, rc);
1196 	}
1197 	up_read(&htable_rw_lock);
1198 
1199 	if (!needs_refresh) {
1200 		rc = 0;
1201 		goto out;
1202 	}
1203 
1204 	ses = CIFS_DFS_ROOT_SES(ses);
1205 	if (!is_ses_good(ses)) {
1206 		cifs_dbg(FYI, "%s: skip cache refresh due to disconnected ipc\n",
1207 			 __func__);
1208 		goto out;
1209 	}
1210 
1211 	ce = cache_refresh_path(xid, ses, path, true);
1212 	if (!IS_ERR(ce)) {
1213 		rc = get_targets(ce, &new_tl);
1214 		up_read(&htable_rw_lock);
1215 		cifs_dbg(FYI, "%s: get_targets: %d\n", __func__, rc);
1216 		mark_for_reconnect_if_needed(server, path, &old_tl, &new_tl);
1217 	}
1218 
1219 out:
1220 	free_xid(xid);
1221 	dfs_cache_free_tgts(&old_tl);
1222 	dfs_cache_free_tgts(&new_tl);
1223 	return rc;
1224 }
1225 
1226 static int refresh_tcon(struct cifs_tcon *tcon, bool force_refresh)
1227 {
1228 	struct TCP_Server_Info *server = tcon->ses->server;
1229 	struct cifs_ses *ses = tcon->ses;
1230 
1231 	mutex_lock(&server->refpath_lock);
1232 	if (server->leaf_fullpath)
1233 		__refresh_tcon(server->leaf_fullpath + 1, ses, force_refresh);
1234 	mutex_unlock(&server->refpath_lock);
1235 	return 0;
1236 }
1237 
1238 /**
1239  * dfs_cache_remount_fs - remount a DFS share
1240  *
1241  * Reconfigure dfs mount by forcing a new DFS referral and if the currently cached targets do not
1242  * match any of the new targets, mark it for reconnect.
1243  *
1244  * @cifs_sb: cifs superblock.
1245  *
1246  * Return zero if remounted, otherwise non-zero.
1247  */
1248 int dfs_cache_remount_fs(struct cifs_sb_info *cifs_sb)
1249 {
1250 	struct cifs_tcon *tcon;
1251 	struct TCP_Server_Info *server;
1252 
1253 	if (!cifs_sb || !cifs_sb->master_tlink)
1254 		return -EINVAL;
1255 
1256 	tcon = cifs_sb_master_tcon(cifs_sb);
1257 	server = tcon->ses->server;
1258 
1259 	if (!server->origin_fullpath) {
1260 		cifs_dbg(FYI, "%s: not a dfs mount\n", __func__);
1261 		return 0;
1262 	}
1263 	/*
1264 	 * After reconnecting to a different server, unique ids won't match anymore, so we disable
1265 	 * serverino. This prevents dentry revalidation to think the dentry are stale (ESTALE).
1266 	 */
1267 	cifs_autodisable_serverino(cifs_sb);
1268 	/*
1269 	 * Force the use of prefix path to support failover on DFS paths that resolve to targets
1270 	 * that have different prefix paths.
1271 	 */
1272 	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1273 
1274 	return refresh_tcon(tcon, true);
1275 }
1276 
1277 /* Refresh all DFS referrals related to DFS tcon */
1278 void dfs_cache_refresh(struct work_struct *work)
1279 {
1280 	struct TCP_Server_Info *server;
1281 	struct dfs_root_ses *rses;
1282 	struct cifs_tcon *tcon;
1283 	struct cifs_ses *ses;
1284 
1285 	tcon = container_of(work, struct cifs_tcon, dfs_cache_work.work);
1286 	ses = tcon->ses;
1287 	server = ses->server;
1288 
1289 	mutex_lock(&server->refpath_lock);
1290 	if (server->leaf_fullpath)
1291 		__refresh_tcon(server->leaf_fullpath + 1, ses, false);
1292 	mutex_unlock(&server->refpath_lock);
1293 
1294 	list_for_each_entry(rses, &tcon->dfs_ses_list, list) {
1295 		ses = rses->ses;
1296 		server = ses->server;
1297 		mutex_lock(&server->refpath_lock);
1298 		if (server->leaf_fullpath)
1299 			__refresh_tcon(server->leaf_fullpath + 1, ses, false);
1300 		mutex_unlock(&server->refpath_lock);
1301 	}
1302 
1303 	queue_delayed_work(dfscache_wq, &tcon->dfs_cache_work,
1304 			   atomic_read(&dfs_cache_ttl) * HZ);
1305 }
1306