1 /* 2 * This file contains the procedures for the handling of select and poll 3 * 4 * Created for Linux based loosely upon Mathius Lattner's minix 5 * patches by Peter MacDonald. Heavily edited by Linus. 6 * 7 * 4 February 1994 8 * COFF/ELF binary emulation. If the process has the STICKY_TIMEOUTS 9 * flag set in its personality we do *not* modify the given timeout 10 * parameter to reflect time remaining. 11 * 12 * 24 January 2000 13 * Changed sys_poll()/do_poll() to use PAGE_SIZE chunk-based allocation 14 * of fds to overcome nfds < 16390 descriptors limit (Tigran Aivazian). 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/sched.h> 19 #include <linux/syscalls.h> 20 #include <linux/export.h> 21 #include <linux/slab.h> 22 #include <linux/poll.h> 23 #include <linux/personality.h> /* for STICKY_TIMEOUTS */ 24 #include <linux/file.h> 25 #include <linux/fdtable.h> 26 #include <linux/fs.h> 27 #include <linux/rcupdate.h> 28 #include <linux/hrtimer.h> 29 #include <linux/sched/rt.h> 30 #include <linux/freezer.h> 31 #include <net/busy_poll.h> 32 33 #include <asm/uaccess.h> 34 35 36 /* 37 * Estimate expected accuracy in ns from a timeval. 38 * 39 * After quite a bit of churning around, we've settled on 40 * a simple thing of taking 0.1% of the timeout as the 41 * slack, with a cap of 100 msec. 42 * "nice" tasks get a 0.5% slack instead. 43 * 44 * Consider this comment an open invitation to come up with even 45 * better solutions.. 46 */ 47 48 #define MAX_SLACK (100 * NSEC_PER_MSEC) 49 50 static long __estimate_accuracy(struct timespec *tv) 51 { 52 long slack; 53 int divfactor = 1000; 54 55 if (tv->tv_sec < 0) 56 return 0; 57 58 if (task_nice(current) > 0) 59 divfactor = divfactor / 5; 60 61 if (tv->tv_sec > MAX_SLACK / (NSEC_PER_SEC/divfactor)) 62 return MAX_SLACK; 63 64 slack = tv->tv_nsec / divfactor; 65 slack += tv->tv_sec * (NSEC_PER_SEC/divfactor); 66 67 if (slack > MAX_SLACK) 68 return MAX_SLACK; 69 70 return slack; 71 } 72 73 long select_estimate_accuracy(struct timespec *tv) 74 { 75 unsigned long ret; 76 struct timespec now; 77 78 /* 79 * Realtime tasks get a slack of 0 for obvious reasons. 80 */ 81 82 if (rt_task(current)) 83 return 0; 84 85 ktime_get_ts(&now); 86 now = timespec_sub(*tv, now); 87 ret = __estimate_accuracy(&now); 88 if (ret < current->timer_slack_ns) 89 return current->timer_slack_ns; 90 return ret; 91 } 92 93 94 95 struct poll_table_page { 96 struct poll_table_page * next; 97 struct poll_table_entry * entry; 98 struct poll_table_entry entries[0]; 99 }; 100 101 #define POLL_TABLE_FULL(table) \ 102 ((unsigned long)((table)->entry+1) > PAGE_SIZE + (unsigned long)(table)) 103 104 /* 105 * Ok, Peter made a complicated, but straightforward multiple_wait() function. 106 * I have rewritten this, taking some shortcuts: This code may not be easy to 107 * follow, but it should be free of race-conditions, and it's practical. If you 108 * understand what I'm doing here, then you understand how the linux 109 * sleep/wakeup mechanism works. 110 * 111 * Two very simple procedures, poll_wait() and poll_freewait() make all the 112 * work. poll_wait() is an inline-function defined in <linux/poll.h>, 113 * as all select/poll functions have to call it to add an entry to the 114 * poll table. 115 */ 116 static void __pollwait(struct file *filp, wait_queue_head_t *wait_address, 117 poll_table *p); 118 119 void poll_initwait(struct poll_wqueues *pwq) 120 { 121 init_poll_funcptr(&pwq->pt, __pollwait); 122 pwq->polling_task = current; 123 pwq->triggered = 0; 124 pwq->error = 0; 125 pwq->table = NULL; 126 pwq->inline_index = 0; 127 } 128 EXPORT_SYMBOL(poll_initwait); 129 130 static void free_poll_entry(struct poll_table_entry *entry) 131 { 132 remove_wait_queue(entry->wait_address, &entry->wait); 133 fput(entry->filp); 134 } 135 136 void poll_freewait(struct poll_wqueues *pwq) 137 { 138 struct poll_table_page * p = pwq->table; 139 int i; 140 for (i = 0; i < pwq->inline_index; i++) 141 free_poll_entry(pwq->inline_entries + i); 142 while (p) { 143 struct poll_table_entry * entry; 144 struct poll_table_page *old; 145 146 entry = p->entry; 147 do { 148 entry--; 149 free_poll_entry(entry); 150 } while (entry > p->entries); 151 old = p; 152 p = p->next; 153 free_page((unsigned long) old); 154 } 155 } 156 EXPORT_SYMBOL(poll_freewait); 157 158 static struct poll_table_entry *poll_get_entry(struct poll_wqueues *p) 159 { 160 struct poll_table_page *table = p->table; 161 162 if (p->inline_index < N_INLINE_POLL_ENTRIES) 163 return p->inline_entries + p->inline_index++; 164 165 if (!table || POLL_TABLE_FULL(table)) { 166 struct poll_table_page *new_table; 167 168 new_table = (struct poll_table_page *) __get_free_page(GFP_KERNEL); 169 if (!new_table) { 170 p->error = -ENOMEM; 171 return NULL; 172 } 173 new_table->entry = new_table->entries; 174 new_table->next = table; 175 p->table = new_table; 176 table = new_table; 177 } 178 179 return table->entry++; 180 } 181 182 static int __pollwake(wait_queue_t *wait, unsigned mode, int sync, void *key) 183 { 184 struct poll_wqueues *pwq = wait->private; 185 DECLARE_WAITQUEUE(dummy_wait, pwq->polling_task); 186 187 /* 188 * Although this function is called under waitqueue lock, LOCK 189 * doesn't imply write barrier and the users expect write 190 * barrier semantics on wakeup functions. The following 191 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up() 192 * and is paired with set_mb() in poll_schedule_timeout. 193 */ 194 smp_wmb(); 195 pwq->triggered = 1; 196 197 /* 198 * Perform the default wake up operation using a dummy 199 * waitqueue. 200 * 201 * TODO: This is hacky but there currently is no interface to 202 * pass in @sync. @sync is scheduled to be removed and once 203 * that happens, wake_up_process() can be used directly. 204 */ 205 return default_wake_function(&dummy_wait, mode, sync, key); 206 } 207 208 static int pollwake(wait_queue_t *wait, unsigned mode, int sync, void *key) 209 { 210 struct poll_table_entry *entry; 211 212 entry = container_of(wait, struct poll_table_entry, wait); 213 if (key && !((unsigned long)key & entry->key)) 214 return 0; 215 return __pollwake(wait, mode, sync, key); 216 } 217 218 /* Add a new entry */ 219 static void __pollwait(struct file *filp, wait_queue_head_t *wait_address, 220 poll_table *p) 221 { 222 struct poll_wqueues *pwq = container_of(p, struct poll_wqueues, pt); 223 struct poll_table_entry *entry = poll_get_entry(pwq); 224 if (!entry) 225 return; 226 entry->filp = get_file(filp); 227 entry->wait_address = wait_address; 228 entry->key = p->_key; 229 init_waitqueue_func_entry(&entry->wait, pollwake); 230 entry->wait.private = pwq; 231 add_wait_queue(wait_address, &entry->wait); 232 } 233 234 int poll_schedule_timeout(struct poll_wqueues *pwq, int state, 235 ktime_t *expires, unsigned long slack) 236 { 237 int rc = -EINTR; 238 239 set_current_state(state); 240 if (!pwq->triggered) 241 rc = freezable_schedule_hrtimeout_range(expires, slack, 242 HRTIMER_MODE_ABS); 243 __set_current_state(TASK_RUNNING); 244 245 /* 246 * Prepare for the next iteration. 247 * 248 * The following set_mb() serves two purposes. First, it's 249 * the counterpart rmb of the wmb in pollwake() such that data 250 * written before wake up is always visible after wake up. 251 * Second, the full barrier guarantees that triggered clearing 252 * doesn't pass event check of the next iteration. Note that 253 * this problem doesn't exist for the first iteration as 254 * add_wait_queue() has full barrier semantics. 255 */ 256 set_mb(pwq->triggered, 0); 257 258 return rc; 259 } 260 EXPORT_SYMBOL(poll_schedule_timeout); 261 262 /** 263 * poll_select_set_timeout - helper function to setup the timeout value 264 * @to: pointer to timespec variable for the final timeout 265 * @sec: seconds (from user space) 266 * @nsec: nanoseconds (from user space) 267 * 268 * Note, we do not use a timespec for the user space value here, That 269 * way we can use the function for timeval and compat interfaces as well. 270 * 271 * Returns -EINVAL if sec/nsec are not normalized. Otherwise 0. 272 */ 273 int poll_select_set_timeout(struct timespec *to, long sec, long nsec) 274 { 275 struct timespec ts = {.tv_sec = sec, .tv_nsec = nsec}; 276 277 if (!timespec_valid(&ts)) 278 return -EINVAL; 279 280 /* Optimize for the zero timeout value here */ 281 if (!sec && !nsec) { 282 to->tv_sec = to->tv_nsec = 0; 283 } else { 284 ktime_get_ts(to); 285 *to = timespec_add_safe(*to, ts); 286 } 287 return 0; 288 } 289 290 static int poll_select_copy_remaining(struct timespec *end_time, void __user *p, 291 int timeval, int ret) 292 { 293 struct timespec rts; 294 struct timeval rtv; 295 296 if (!p) 297 return ret; 298 299 if (current->personality & STICKY_TIMEOUTS) 300 goto sticky; 301 302 /* No update for zero timeout */ 303 if (!end_time->tv_sec && !end_time->tv_nsec) 304 return ret; 305 306 ktime_get_ts(&rts); 307 rts = timespec_sub(*end_time, rts); 308 if (rts.tv_sec < 0) 309 rts.tv_sec = rts.tv_nsec = 0; 310 311 if (timeval) { 312 if (sizeof(rtv) > sizeof(rtv.tv_sec) + sizeof(rtv.tv_usec)) 313 memset(&rtv, 0, sizeof(rtv)); 314 rtv.tv_sec = rts.tv_sec; 315 rtv.tv_usec = rts.tv_nsec / NSEC_PER_USEC; 316 317 if (!copy_to_user(p, &rtv, sizeof(rtv))) 318 return ret; 319 320 } else if (!copy_to_user(p, &rts, sizeof(rts))) 321 return ret; 322 323 /* 324 * If an application puts its timeval in read-only memory, we 325 * don't want the Linux-specific update to the timeval to 326 * cause a fault after the select has completed 327 * successfully. However, because we're not updating the 328 * timeval, we can't restart the system call. 329 */ 330 331 sticky: 332 if (ret == -ERESTARTNOHAND) 333 ret = -EINTR; 334 return ret; 335 } 336 337 #define FDS_IN(fds, n) (fds->in + n) 338 #define FDS_OUT(fds, n) (fds->out + n) 339 #define FDS_EX(fds, n) (fds->ex + n) 340 341 #define BITS(fds, n) (*FDS_IN(fds, n)|*FDS_OUT(fds, n)|*FDS_EX(fds, n)) 342 343 static int max_select_fd(unsigned long n, fd_set_bits *fds) 344 { 345 unsigned long *open_fds; 346 unsigned long set; 347 int max; 348 struct fdtable *fdt; 349 350 /* handle last in-complete long-word first */ 351 set = ~(~0UL << (n & (BITS_PER_LONG-1))); 352 n /= BITS_PER_LONG; 353 fdt = files_fdtable(current->files); 354 open_fds = fdt->open_fds + n; 355 max = 0; 356 if (set) { 357 set &= BITS(fds, n); 358 if (set) { 359 if (!(set & ~*open_fds)) 360 goto get_max; 361 return -EBADF; 362 } 363 } 364 while (n) { 365 open_fds--; 366 n--; 367 set = BITS(fds, n); 368 if (!set) 369 continue; 370 if (set & ~*open_fds) 371 return -EBADF; 372 if (max) 373 continue; 374 get_max: 375 do { 376 max++; 377 set >>= 1; 378 } while (set); 379 max += n * BITS_PER_LONG; 380 } 381 382 return max; 383 } 384 385 #define POLLIN_SET (POLLRDNORM | POLLRDBAND | POLLIN | POLLHUP | POLLERR) 386 #define POLLOUT_SET (POLLWRBAND | POLLWRNORM | POLLOUT | POLLERR) 387 #define POLLEX_SET (POLLPRI) 388 389 static inline void wait_key_set(poll_table *wait, unsigned long in, 390 unsigned long out, unsigned long bit, 391 unsigned int ll_flag) 392 { 393 wait->_key = POLLEX_SET | ll_flag; 394 if (in & bit) 395 wait->_key |= POLLIN_SET; 396 if (out & bit) 397 wait->_key |= POLLOUT_SET; 398 } 399 400 int do_select(int n, fd_set_bits *fds, struct timespec *end_time) 401 { 402 ktime_t expire, *to = NULL; 403 struct poll_wqueues table; 404 poll_table *wait; 405 int retval, i, timed_out = 0; 406 unsigned long slack = 0; 407 unsigned int busy_flag = net_busy_loop_on() ? POLL_BUSY_LOOP : 0; 408 unsigned long busy_end = 0; 409 410 rcu_read_lock(); 411 retval = max_select_fd(n, fds); 412 rcu_read_unlock(); 413 414 if (retval < 0) 415 return retval; 416 n = retval; 417 418 poll_initwait(&table); 419 wait = &table.pt; 420 if (end_time && !end_time->tv_sec && !end_time->tv_nsec) { 421 wait->_qproc = NULL; 422 timed_out = 1; 423 } 424 425 if (end_time && !timed_out) 426 slack = select_estimate_accuracy(end_time); 427 428 retval = 0; 429 for (;;) { 430 unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp; 431 bool can_busy_loop = false; 432 433 inp = fds->in; outp = fds->out; exp = fds->ex; 434 rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex; 435 436 for (i = 0; i < n; ++rinp, ++routp, ++rexp) { 437 unsigned long in, out, ex, all_bits, bit = 1, mask, j; 438 unsigned long res_in = 0, res_out = 0, res_ex = 0; 439 440 in = *inp++; out = *outp++; ex = *exp++; 441 all_bits = in | out | ex; 442 if (all_bits == 0) { 443 i += BITS_PER_LONG; 444 continue; 445 } 446 447 for (j = 0; j < BITS_PER_LONG; ++j, ++i, bit <<= 1) { 448 struct fd f; 449 if (i >= n) 450 break; 451 if (!(bit & all_bits)) 452 continue; 453 f = fdget(i); 454 if (f.file) { 455 const struct file_operations *f_op; 456 f_op = f.file->f_op; 457 mask = DEFAULT_POLLMASK; 458 if (f_op && f_op->poll) { 459 wait_key_set(wait, in, out, 460 bit, busy_flag); 461 mask = (*f_op->poll)(f.file, wait); 462 } 463 fdput(f); 464 if ((mask & POLLIN_SET) && (in & bit)) { 465 res_in |= bit; 466 retval++; 467 wait->_qproc = NULL; 468 } 469 if ((mask & POLLOUT_SET) && (out & bit)) { 470 res_out |= bit; 471 retval++; 472 wait->_qproc = NULL; 473 } 474 if ((mask & POLLEX_SET) && (ex & bit)) { 475 res_ex |= bit; 476 retval++; 477 wait->_qproc = NULL; 478 } 479 /* got something, stop busy polling */ 480 if (retval) { 481 can_busy_loop = false; 482 busy_flag = 0; 483 484 /* 485 * only remember a returned 486 * POLL_BUSY_LOOP if we asked for it 487 */ 488 } else if (busy_flag & mask) 489 can_busy_loop = true; 490 491 } 492 } 493 if (res_in) 494 *rinp = res_in; 495 if (res_out) 496 *routp = res_out; 497 if (res_ex) 498 *rexp = res_ex; 499 cond_resched(); 500 } 501 wait->_qproc = NULL; 502 if (retval || timed_out || signal_pending(current)) 503 break; 504 if (table.error) { 505 retval = table.error; 506 break; 507 } 508 509 /* only if found POLL_BUSY_LOOP sockets && not out of time */ 510 if (can_busy_loop && !need_resched()) { 511 if (!busy_end) { 512 busy_end = busy_loop_end_time(); 513 continue; 514 } 515 if (!busy_loop_timeout(busy_end)) 516 continue; 517 } 518 busy_flag = 0; 519 520 /* 521 * If this is the first loop and we have a timeout 522 * given, then we convert to ktime_t and set the to 523 * pointer to the expiry value. 524 */ 525 if (end_time && !to) { 526 expire = timespec_to_ktime(*end_time); 527 to = &expire; 528 } 529 530 if (!poll_schedule_timeout(&table, TASK_INTERRUPTIBLE, 531 to, slack)) 532 timed_out = 1; 533 } 534 535 poll_freewait(&table); 536 537 return retval; 538 } 539 540 /* 541 * We can actually return ERESTARTSYS instead of EINTR, but I'd 542 * like to be certain this leads to no problems. So I return 543 * EINTR just for safety. 544 * 545 * Update: ERESTARTSYS breaks at least the xview clock binary, so 546 * I'm trying ERESTARTNOHAND which restart only when you want to. 547 */ 548 int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp, 549 fd_set __user *exp, struct timespec *end_time) 550 { 551 fd_set_bits fds; 552 void *bits; 553 int ret, max_fds; 554 unsigned int size; 555 struct fdtable *fdt; 556 /* Allocate small arguments on the stack to save memory and be faster */ 557 long stack_fds[SELECT_STACK_ALLOC/sizeof(long)]; 558 559 ret = -EINVAL; 560 if (n < 0) 561 goto out_nofds; 562 563 /* max_fds can increase, so grab it once to avoid race */ 564 rcu_read_lock(); 565 fdt = files_fdtable(current->files); 566 max_fds = fdt->max_fds; 567 rcu_read_unlock(); 568 if (n > max_fds) 569 n = max_fds; 570 571 /* 572 * We need 6 bitmaps (in/out/ex for both incoming and outgoing), 573 * since we used fdset we need to allocate memory in units of 574 * long-words. 575 */ 576 size = FDS_BYTES(n); 577 bits = stack_fds; 578 if (size > sizeof(stack_fds) / 6) { 579 /* Not enough space in on-stack array; must use kmalloc */ 580 ret = -ENOMEM; 581 bits = kmalloc(6 * size, GFP_KERNEL); 582 if (!bits) 583 goto out_nofds; 584 } 585 fds.in = bits; 586 fds.out = bits + size; 587 fds.ex = bits + 2*size; 588 fds.res_in = bits + 3*size; 589 fds.res_out = bits + 4*size; 590 fds.res_ex = bits + 5*size; 591 592 if ((ret = get_fd_set(n, inp, fds.in)) || 593 (ret = get_fd_set(n, outp, fds.out)) || 594 (ret = get_fd_set(n, exp, fds.ex))) 595 goto out; 596 zero_fd_set(n, fds.res_in); 597 zero_fd_set(n, fds.res_out); 598 zero_fd_set(n, fds.res_ex); 599 600 ret = do_select(n, &fds, end_time); 601 602 if (ret < 0) 603 goto out; 604 if (!ret) { 605 ret = -ERESTARTNOHAND; 606 if (signal_pending(current)) 607 goto out; 608 ret = 0; 609 } 610 611 if (set_fd_set(n, inp, fds.res_in) || 612 set_fd_set(n, outp, fds.res_out) || 613 set_fd_set(n, exp, fds.res_ex)) 614 ret = -EFAULT; 615 616 out: 617 if (bits != stack_fds) 618 kfree(bits); 619 out_nofds: 620 return ret; 621 } 622 623 SYSCALL_DEFINE5(select, int, n, fd_set __user *, inp, fd_set __user *, outp, 624 fd_set __user *, exp, struct timeval __user *, tvp) 625 { 626 struct timespec end_time, *to = NULL; 627 struct timeval tv; 628 int ret; 629 630 if (tvp) { 631 if (copy_from_user(&tv, tvp, sizeof(tv))) 632 return -EFAULT; 633 634 to = &end_time; 635 if (poll_select_set_timeout(to, 636 tv.tv_sec + (tv.tv_usec / USEC_PER_SEC), 637 (tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC)) 638 return -EINVAL; 639 } 640 641 ret = core_sys_select(n, inp, outp, exp, to); 642 ret = poll_select_copy_remaining(&end_time, tvp, 1, ret); 643 644 return ret; 645 } 646 647 static long do_pselect(int n, fd_set __user *inp, fd_set __user *outp, 648 fd_set __user *exp, struct timespec __user *tsp, 649 const sigset_t __user *sigmask, size_t sigsetsize) 650 { 651 sigset_t ksigmask, sigsaved; 652 struct timespec ts, end_time, *to = NULL; 653 int ret; 654 655 if (tsp) { 656 if (copy_from_user(&ts, tsp, sizeof(ts))) 657 return -EFAULT; 658 659 to = &end_time; 660 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 661 return -EINVAL; 662 } 663 664 if (sigmask) { 665 /* XXX: Don't preclude handling different sized sigset_t's. */ 666 if (sigsetsize != sizeof(sigset_t)) 667 return -EINVAL; 668 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 669 return -EFAULT; 670 671 sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP)); 672 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 673 } 674 675 ret = core_sys_select(n, inp, outp, exp, to); 676 ret = poll_select_copy_remaining(&end_time, tsp, 0, ret); 677 678 if (ret == -ERESTARTNOHAND) { 679 /* 680 * Don't restore the signal mask yet. Let do_signal() deliver 681 * the signal on the way back to userspace, before the signal 682 * mask is restored. 683 */ 684 if (sigmask) { 685 memcpy(¤t->saved_sigmask, &sigsaved, 686 sizeof(sigsaved)); 687 set_restore_sigmask(); 688 } 689 } else if (sigmask) 690 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 691 692 return ret; 693 } 694 695 /* 696 * Most architectures can't handle 7-argument syscalls. So we provide a 697 * 6-argument version where the sixth argument is a pointer to a structure 698 * which has a pointer to the sigset_t itself followed by a size_t containing 699 * the sigset size. 700 */ 701 SYSCALL_DEFINE6(pselect6, int, n, fd_set __user *, inp, fd_set __user *, outp, 702 fd_set __user *, exp, struct timespec __user *, tsp, 703 void __user *, sig) 704 { 705 size_t sigsetsize = 0; 706 sigset_t __user *up = NULL; 707 708 if (sig) { 709 if (!access_ok(VERIFY_READ, sig, sizeof(void *)+sizeof(size_t)) 710 || __get_user(up, (sigset_t __user * __user *)sig) 711 || __get_user(sigsetsize, 712 (size_t __user *)(sig+sizeof(void *)))) 713 return -EFAULT; 714 } 715 716 return do_pselect(n, inp, outp, exp, tsp, up, sigsetsize); 717 } 718 719 #ifdef __ARCH_WANT_SYS_OLD_SELECT 720 struct sel_arg_struct { 721 unsigned long n; 722 fd_set __user *inp, *outp, *exp; 723 struct timeval __user *tvp; 724 }; 725 726 SYSCALL_DEFINE1(old_select, struct sel_arg_struct __user *, arg) 727 { 728 struct sel_arg_struct a; 729 730 if (copy_from_user(&a, arg, sizeof(a))) 731 return -EFAULT; 732 return sys_select(a.n, a.inp, a.outp, a.exp, a.tvp); 733 } 734 #endif 735 736 struct poll_list { 737 struct poll_list *next; 738 int len; 739 struct pollfd entries[0]; 740 }; 741 742 #define POLLFD_PER_PAGE ((PAGE_SIZE-sizeof(struct poll_list)) / sizeof(struct pollfd)) 743 744 /* 745 * Fish for pollable events on the pollfd->fd file descriptor. We're only 746 * interested in events matching the pollfd->events mask, and the result 747 * matching that mask is both recorded in pollfd->revents and returned. The 748 * pwait poll_table will be used by the fd-provided poll handler for waiting, 749 * if pwait->_qproc is non-NULL. 750 */ 751 static inline unsigned int do_pollfd(struct pollfd *pollfd, poll_table *pwait, 752 bool *can_busy_poll, 753 unsigned int busy_flag) 754 { 755 unsigned int mask; 756 int fd; 757 758 mask = 0; 759 fd = pollfd->fd; 760 if (fd >= 0) { 761 struct fd f = fdget(fd); 762 mask = POLLNVAL; 763 if (f.file) { 764 mask = DEFAULT_POLLMASK; 765 if (f.file->f_op && f.file->f_op->poll) { 766 pwait->_key = pollfd->events|POLLERR|POLLHUP; 767 pwait->_key |= busy_flag; 768 mask = f.file->f_op->poll(f.file, pwait); 769 if (mask & busy_flag) 770 *can_busy_poll = true; 771 } 772 /* Mask out unneeded events. */ 773 mask &= pollfd->events | POLLERR | POLLHUP; 774 fdput(f); 775 } 776 } 777 pollfd->revents = mask; 778 779 return mask; 780 } 781 782 static int do_poll(unsigned int nfds, struct poll_list *list, 783 struct poll_wqueues *wait, struct timespec *end_time) 784 { 785 poll_table* pt = &wait->pt; 786 ktime_t expire, *to = NULL; 787 int timed_out = 0, count = 0; 788 unsigned long slack = 0; 789 unsigned int busy_flag = net_busy_loop_on() ? POLL_BUSY_LOOP : 0; 790 unsigned long busy_end = 0; 791 792 /* Optimise the no-wait case */ 793 if (end_time && !end_time->tv_sec && !end_time->tv_nsec) { 794 pt->_qproc = NULL; 795 timed_out = 1; 796 } 797 798 if (end_time && !timed_out) 799 slack = select_estimate_accuracy(end_time); 800 801 for (;;) { 802 struct poll_list *walk; 803 bool can_busy_loop = false; 804 805 for (walk = list; walk != NULL; walk = walk->next) { 806 struct pollfd * pfd, * pfd_end; 807 808 pfd = walk->entries; 809 pfd_end = pfd + walk->len; 810 for (; pfd != pfd_end; pfd++) { 811 /* 812 * Fish for events. If we found one, record it 813 * and kill poll_table->_qproc, so we don't 814 * needlessly register any other waiters after 815 * this. They'll get immediately deregistered 816 * when we break out and return. 817 */ 818 if (do_pollfd(pfd, pt, &can_busy_loop, 819 busy_flag)) { 820 count++; 821 pt->_qproc = NULL; 822 /* found something, stop busy polling */ 823 busy_flag = 0; 824 can_busy_loop = false; 825 } 826 } 827 } 828 /* 829 * All waiters have already been registered, so don't provide 830 * a poll_table->_qproc to them on the next loop iteration. 831 */ 832 pt->_qproc = NULL; 833 if (!count) { 834 count = wait->error; 835 if (signal_pending(current)) 836 count = -EINTR; 837 } 838 if (count || timed_out) 839 break; 840 841 /* only if found POLL_BUSY_LOOP sockets && not out of time */ 842 if (can_busy_loop && !need_resched()) { 843 if (!busy_end) { 844 busy_end = busy_loop_end_time(); 845 continue; 846 } 847 if (!busy_loop_timeout(busy_end)) 848 continue; 849 } 850 busy_flag = 0; 851 852 /* 853 * If this is the first loop and we have a timeout 854 * given, then we convert to ktime_t and set the to 855 * pointer to the expiry value. 856 */ 857 if (end_time && !to) { 858 expire = timespec_to_ktime(*end_time); 859 to = &expire; 860 } 861 862 if (!poll_schedule_timeout(wait, TASK_INTERRUPTIBLE, to, slack)) 863 timed_out = 1; 864 } 865 return count; 866 } 867 868 #define N_STACK_PPS ((sizeof(stack_pps) - sizeof(struct poll_list)) / \ 869 sizeof(struct pollfd)) 870 871 int do_sys_poll(struct pollfd __user *ufds, unsigned int nfds, 872 struct timespec *end_time) 873 { 874 struct poll_wqueues table; 875 int err = -EFAULT, fdcount, len, size; 876 /* Allocate small arguments on the stack to save memory and be 877 faster - use long to make sure the buffer is aligned properly 878 on 64 bit archs to avoid unaligned access */ 879 long stack_pps[POLL_STACK_ALLOC/sizeof(long)]; 880 struct poll_list *const head = (struct poll_list *)stack_pps; 881 struct poll_list *walk = head; 882 unsigned long todo = nfds; 883 884 if (nfds > rlimit(RLIMIT_NOFILE)) 885 return -EINVAL; 886 887 len = min_t(unsigned int, nfds, N_STACK_PPS); 888 for (;;) { 889 walk->next = NULL; 890 walk->len = len; 891 if (!len) 892 break; 893 894 if (copy_from_user(walk->entries, ufds + nfds-todo, 895 sizeof(struct pollfd) * walk->len)) 896 goto out_fds; 897 898 todo -= walk->len; 899 if (!todo) 900 break; 901 902 len = min(todo, POLLFD_PER_PAGE); 903 size = sizeof(struct poll_list) + sizeof(struct pollfd) * len; 904 walk = walk->next = kmalloc(size, GFP_KERNEL); 905 if (!walk) { 906 err = -ENOMEM; 907 goto out_fds; 908 } 909 } 910 911 poll_initwait(&table); 912 fdcount = do_poll(nfds, head, &table, end_time); 913 poll_freewait(&table); 914 915 for (walk = head; walk; walk = walk->next) { 916 struct pollfd *fds = walk->entries; 917 int j; 918 919 for (j = 0; j < walk->len; j++, ufds++) 920 if (__put_user(fds[j].revents, &ufds->revents)) 921 goto out_fds; 922 } 923 924 err = fdcount; 925 out_fds: 926 walk = head->next; 927 while (walk) { 928 struct poll_list *pos = walk; 929 walk = walk->next; 930 kfree(pos); 931 } 932 933 return err; 934 } 935 936 static long do_restart_poll(struct restart_block *restart_block) 937 { 938 struct pollfd __user *ufds = restart_block->poll.ufds; 939 int nfds = restart_block->poll.nfds; 940 struct timespec *to = NULL, end_time; 941 int ret; 942 943 if (restart_block->poll.has_timeout) { 944 end_time.tv_sec = restart_block->poll.tv_sec; 945 end_time.tv_nsec = restart_block->poll.tv_nsec; 946 to = &end_time; 947 } 948 949 ret = do_sys_poll(ufds, nfds, to); 950 951 if (ret == -EINTR) { 952 restart_block->fn = do_restart_poll; 953 ret = -ERESTART_RESTARTBLOCK; 954 } 955 return ret; 956 } 957 958 SYSCALL_DEFINE3(poll, struct pollfd __user *, ufds, unsigned int, nfds, 959 int, timeout_msecs) 960 { 961 struct timespec end_time, *to = NULL; 962 int ret; 963 964 if (timeout_msecs >= 0) { 965 to = &end_time; 966 poll_select_set_timeout(to, timeout_msecs / MSEC_PER_SEC, 967 NSEC_PER_MSEC * (timeout_msecs % MSEC_PER_SEC)); 968 } 969 970 ret = do_sys_poll(ufds, nfds, to); 971 972 if (ret == -EINTR) { 973 struct restart_block *restart_block; 974 975 restart_block = ¤t_thread_info()->restart_block; 976 restart_block->fn = do_restart_poll; 977 restart_block->poll.ufds = ufds; 978 restart_block->poll.nfds = nfds; 979 980 if (timeout_msecs >= 0) { 981 restart_block->poll.tv_sec = end_time.tv_sec; 982 restart_block->poll.tv_nsec = end_time.tv_nsec; 983 restart_block->poll.has_timeout = 1; 984 } else 985 restart_block->poll.has_timeout = 0; 986 987 ret = -ERESTART_RESTARTBLOCK; 988 } 989 return ret; 990 } 991 992 SYSCALL_DEFINE5(ppoll, struct pollfd __user *, ufds, unsigned int, nfds, 993 struct timespec __user *, tsp, const sigset_t __user *, sigmask, 994 size_t, sigsetsize) 995 { 996 sigset_t ksigmask, sigsaved; 997 struct timespec ts, end_time, *to = NULL; 998 int ret; 999 1000 if (tsp) { 1001 if (copy_from_user(&ts, tsp, sizeof(ts))) 1002 return -EFAULT; 1003 1004 to = &end_time; 1005 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 1006 return -EINVAL; 1007 } 1008 1009 if (sigmask) { 1010 /* XXX: Don't preclude handling different sized sigset_t's. */ 1011 if (sigsetsize != sizeof(sigset_t)) 1012 return -EINVAL; 1013 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1014 return -EFAULT; 1015 1016 sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1017 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1018 } 1019 1020 ret = do_sys_poll(ufds, nfds, to); 1021 1022 /* We can restart this syscall, usually */ 1023 if (ret == -EINTR) { 1024 /* 1025 * Don't restore the signal mask yet. Let do_signal() deliver 1026 * the signal on the way back to userspace, before the signal 1027 * mask is restored. 1028 */ 1029 if (sigmask) { 1030 memcpy(¤t->saved_sigmask, &sigsaved, 1031 sizeof(sigsaved)); 1032 set_restore_sigmask(); 1033 } 1034 ret = -ERESTARTNOHAND; 1035 } else if (sigmask) 1036 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1037 1038 ret = poll_select_copy_remaining(&end_time, tsp, 0, ret); 1039 1040 return ret; 1041 } 1042