1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 /* 6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru 7 * Programm System Institute 8 * Pereslavl-Zalessky Russia 9 */ 10 11 #include <linux/time.h> 12 #include <linux/string.h> 13 #include <linux/pagemap.h> 14 #include <linux/bio.h> 15 #include "reiserfs.h" 16 #include <linux/buffer_head.h> 17 #include <linux/quotaops.h> 18 19 /* Does the buffer contain a disk block which is in the tree. */ 20 inline int B_IS_IN_TREE(const struct buffer_head *bh) 21 { 22 23 RFALSE(B_LEVEL(bh) > MAX_HEIGHT, 24 "PAP-1010: block (%b) has too big level (%z)", bh, bh); 25 26 return (B_LEVEL(bh) != FREE_LEVEL); 27 } 28 29 /* to get item head in le form */ 30 inline void copy_item_head(struct item_head *to, 31 const struct item_head *from) 32 { 33 memcpy(to, from, IH_SIZE); 34 } 35 36 /* 37 * k1 is pointer to on-disk structure which is stored in little-endian 38 * form. k2 is pointer to cpu variable. For key of items of the same 39 * object this returns 0. 40 * Returns: -1 if key1 < key2 41 * 0 if key1 == key2 42 * 1 if key1 > key2 43 */ 44 inline int comp_short_keys(const struct reiserfs_key *le_key, 45 const struct cpu_key *cpu_key) 46 { 47 __u32 n; 48 n = le32_to_cpu(le_key->k_dir_id); 49 if (n < cpu_key->on_disk_key.k_dir_id) 50 return -1; 51 if (n > cpu_key->on_disk_key.k_dir_id) 52 return 1; 53 n = le32_to_cpu(le_key->k_objectid); 54 if (n < cpu_key->on_disk_key.k_objectid) 55 return -1; 56 if (n > cpu_key->on_disk_key.k_objectid) 57 return 1; 58 return 0; 59 } 60 61 /* 62 * k1 is pointer to on-disk structure which is stored in little-endian 63 * form. k2 is pointer to cpu variable. 64 * Compare keys using all 4 key fields. 65 * Returns: -1 if key1 < key2 0 66 * if key1 = key2 1 if key1 > key2 67 */ 68 static inline int comp_keys(const struct reiserfs_key *le_key, 69 const struct cpu_key *cpu_key) 70 { 71 int retval; 72 73 retval = comp_short_keys(le_key, cpu_key); 74 if (retval) 75 return retval; 76 if (le_key_k_offset(le_key_version(le_key), le_key) < 77 cpu_key_k_offset(cpu_key)) 78 return -1; 79 if (le_key_k_offset(le_key_version(le_key), le_key) > 80 cpu_key_k_offset(cpu_key)) 81 return 1; 82 83 if (cpu_key->key_length == 3) 84 return 0; 85 86 /* this part is needed only when tail conversion is in progress */ 87 if (le_key_k_type(le_key_version(le_key), le_key) < 88 cpu_key_k_type(cpu_key)) 89 return -1; 90 91 if (le_key_k_type(le_key_version(le_key), le_key) > 92 cpu_key_k_type(cpu_key)) 93 return 1; 94 95 return 0; 96 } 97 98 inline int comp_short_le_keys(const struct reiserfs_key *key1, 99 const struct reiserfs_key *key2) 100 { 101 __u32 *k1_u32, *k2_u32; 102 int key_length = REISERFS_SHORT_KEY_LEN; 103 104 k1_u32 = (__u32 *) key1; 105 k2_u32 = (__u32 *) key2; 106 for (; key_length--; ++k1_u32, ++k2_u32) { 107 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32)) 108 return -1; 109 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32)) 110 return 1; 111 } 112 return 0; 113 } 114 115 inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from) 116 { 117 int version; 118 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id); 119 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid); 120 121 /* find out version of the key */ 122 version = le_key_version(from); 123 to->version = version; 124 to->on_disk_key.k_offset = le_key_k_offset(version, from); 125 to->on_disk_key.k_type = le_key_k_type(version, from); 126 } 127 128 /* 129 * this does not say which one is bigger, it only returns 1 if keys 130 * are not equal, 0 otherwise 131 */ 132 inline int comp_le_keys(const struct reiserfs_key *k1, 133 const struct reiserfs_key *k2) 134 { 135 return memcmp(k1, k2, sizeof(struct reiserfs_key)); 136 } 137 138 /************************************************************************** 139 * Binary search toolkit function * 140 * Search for an item in the array by the item key * 141 * Returns: 1 if found, 0 if not found; * 142 * *pos = number of the searched element if found, else the * 143 * number of the first element that is larger than key. * 144 **************************************************************************/ 145 /* 146 * For those not familiar with binary search: lbound is the leftmost item 147 * that it could be, rbound the rightmost item that it could be. We examine 148 * the item halfway between lbound and rbound, and that tells us either 149 * that we can increase lbound, or decrease rbound, or that we have found it, 150 * or if lbound <= rbound that there are no possible items, and we have not 151 * found it. With each examination we cut the number of possible items it 152 * could be by one more than half rounded down, or we find it. 153 */ 154 static inline int bin_search(const void *key, /* Key to search for. */ 155 const void *base, /* First item in the array. */ 156 int num, /* Number of items in the array. */ 157 /* 158 * Item size in the array. searched. Lest the 159 * reader be confused, note that this is crafted 160 * as a general function, and when it is applied 161 * specifically to the array of item headers in a 162 * node, width is actually the item header size 163 * not the item size. 164 */ 165 int width, 166 int *pos /* Number of the searched for element. */ 167 ) 168 { 169 int rbound, lbound, j; 170 171 for (j = ((rbound = num - 1) + (lbound = 0)) / 2; 172 lbound <= rbound; j = (rbound + lbound) / 2) 173 switch (comp_keys 174 ((struct reiserfs_key *)((char *)base + j * width), 175 (struct cpu_key *)key)) { 176 case -1: 177 lbound = j + 1; 178 continue; 179 case 1: 180 rbound = j - 1; 181 continue; 182 case 0: 183 *pos = j; 184 return ITEM_FOUND; /* Key found in the array. */ 185 } 186 187 /* 188 * bin_search did not find given key, it returns position of key, 189 * that is minimal and greater than the given one. 190 */ 191 *pos = lbound; 192 return ITEM_NOT_FOUND; 193 } 194 195 196 /* Minimal possible key. It is never in the tree. */ 197 const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} }; 198 199 /* Maximal possible key. It is never in the tree. */ 200 static const struct reiserfs_key MAX_KEY = { 201 cpu_to_le32(0xffffffff), 202 cpu_to_le32(0xffffffff), 203 {{cpu_to_le32(0xffffffff), 204 cpu_to_le32(0xffffffff)},} 205 }; 206 207 /* 208 * Get delimiting key of the buffer by looking for it in the buffers in the 209 * path, starting from the bottom of the path, and going upwards. We must 210 * check the path's validity at each step. If the key is not in the path, 211 * there is no delimiting key in the tree (buffer is first or last buffer 212 * in tree), and in this case we return a special key, either MIN_KEY or 213 * MAX_KEY. 214 */ 215 static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path, 216 const struct super_block *sb) 217 { 218 int position, path_offset = chk_path->path_length; 219 struct buffer_head *parent; 220 221 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET, 222 "PAP-5010: invalid offset in the path"); 223 224 /* While not higher in path than first element. */ 225 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { 226 227 RFALSE(!buffer_uptodate 228 (PATH_OFFSET_PBUFFER(chk_path, path_offset)), 229 "PAP-5020: parent is not uptodate"); 230 231 /* Parent at the path is not in the tree now. */ 232 if (!B_IS_IN_TREE 233 (parent = 234 PATH_OFFSET_PBUFFER(chk_path, path_offset))) 235 return &MAX_KEY; 236 /* Check whether position in the parent is correct. */ 237 if ((position = 238 PATH_OFFSET_POSITION(chk_path, 239 path_offset)) > 240 B_NR_ITEMS(parent)) 241 return &MAX_KEY; 242 /* Check whether parent at the path really points to the child. */ 243 if (B_N_CHILD_NUM(parent, position) != 244 PATH_OFFSET_PBUFFER(chk_path, 245 path_offset + 1)->b_blocknr) 246 return &MAX_KEY; 247 /* 248 * Return delimiting key if position in the parent 249 * is not equal to zero. 250 */ 251 if (position) 252 return internal_key(parent, position - 1); 253 } 254 /* Return MIN_KEY if we are in the root of the buffer tree. */ 255 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)-> 256 b_blocknr == SB_ROOT_BLOCK(sb)) 257 return &MIN_KEY; 258 return &MAX_KEY; 259 } 260 261 /* Get delimiting key of the buffer at the path and its right neighbor. */ 262 inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path, 263 const struct super_block *sb) 264 { 265 int position, path_offset = chk_path->path_length; 266 struct buffer_head *parent; 267 268 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET, 269 "PAP-5030: invalid offset in the path"); 270 271 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { 272 273 RFALSE(!buffer_uptodate 274 (PATH_OFFSET_PBUFFER(chk_path, path_offset)), 275 "PAP-5040: parent is not uptodate"); 276 277 /* Parent at the path is not in the tree now. */ 278 if (!B_IS_IN_TREE 279 (parent = 280 PATH_OFFSET_PBUFFER(chk_path, path_offset))) 281 return &MIN_KEY; 282 /* Check whether position in the parent is correct. */ 283 if ((position = 284 PATH_OFFSET_POSITION(chk_path, 285 path_offset)) > 286 B_NR_ITEMS(parent)) 287 return &MIN_KEY; 288 /* 289 * Check whether parent at the path really points 290 * to the child. 291 */ 292 if (B_N_CHILD_NUM(parent, position) != 293 PATH_OFFSET_PBUFFER(chk_path, 294 path_offset + 1)->b_blocknr) 295 return &MIN_KEY; 296 297 /* 298 * Return delimiting key if position in the parent 299 * is not the last one. 300 */ 301 if (position != B_NR_ITEMS(parent)) 302 return internal_key(parent, position); 303 } 304 305 /* Return MAX_KEY if we are in the root of the buffer tree. */ 306 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)-> 307 b_blocknr == SB_ROOT_BLOCK(sb)) 308 return &MAX_KEY; 309 return &MIN_KEY; 310 } 311 312 /* 313 * Check whether a key is contained in the tree rooted from a buffer at a path. 314 * This works by looking at the left and right delimiting keys for the buffer 315 * in the last path_element in the path. These delimiting keys are stored 316 * at least one level above that buffer in the tree. If the buffer is the 317 * first or last node in the tree order then one of the delimiting keys may 318 * be absent, and in this case get_lkey and get_rkey return a special key 319 * which is MIN_KEY or MAX_KEY. 320 */ 321 static inline int key_in_buffer( 322 /* Path which should be checked. */ 323 struct treepath *chk_path, 324 /* Key which should be checked. */ 325 const struct cpu_key *key, 326 struct super_block *sb 327 ) 328 { 329 330 RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET 331 || chk_path->path_length > MAX_HEIGHT, 332 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)", 333 key, chk_path->path_length); 334 RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev, 335 "PAP-5060: device must not be NODEV"); 336 337 if (comp_keys(get_lkey(chk_path, sb), key) == 1) 338 /* left delimiting key is bigger, that the key we look for */ 339 return 0; 340 /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */ 341 if (comp_keys(get_rkey(chk_path, sb), key) != 1) 342 /* key must be less than right delimitiing key */ 343 return 0; 344 return 1; 345 } 346 347 int reiserfs_check_path(struct treepath *p) 348 { 349 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET, 350 "path not properly relsed"); 351 return 0; 352 } 353 354 /* 355 * Drop the reference to each buffer in a path and restore 356 * dirty bits clean when preparing the buffer for the log. 357 * This version should only be called from fix_nodes() 358 */ 359 void pathrelse_and_restore(struct super_block *sb, 360 struct treepath *search_path) 361 { 362 int path_offset = search_path->path_length; 363 364 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, 365 "clm-4000: invalid path offset"); 366 367 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) { 368 struct buffer_head *bh; 369 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--); 370 reiserfs_restore_prepared_buffer(sb, bh); 371 brelse(bh); 372 } 373 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; 374 } 375 376 /* Drop the reference to each buffer in a path */ 377 void pathrelse(struct treepath *search_path) 378 { 379 int path_offset = search_path->path_length; 380 381 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, 382 "PAP-5090: invalid path offset"); 383 384 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) 385 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--)); 386 387 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; 388 } 389 390 static int is_leaf(char *buf, int blocksize, struct buffer_head *bh) 391 { 392 struct block_head *blkh; 393 struct item_head *ih; 394 int used_space; 395 int prev_location; 396 int i; 397 int nr; 398 399 blkh = (struct block_head *)buf; 400 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) { 401 reiserfs_warning(NULL, "reiserfs-5080", 402 "this should be caught earlier"); 403 return 0; 404 } 405 406 nr = blkh_nr_item(blkh); 407 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) { 408 /* item number is too big or too small */ 409 reiserfs_warning(NULL, "reiserfs-5081", 410 "nr_item seems wrong: %z", bh); 411 return 0; 412 } 413 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1; 414 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih)); 415 416 /* free space does not match to calculated amount of use space */ 417 if (used_space != blocksize - blkh_free_space(blkh)) { 418 reiserfs_warning(NULL, "reiserfs-5082", 419 "free space seems wrong: %z", bh); 420 return 0; 421 } 422 /* 423 * FIXME: it is_leaf will hit performance too much - we may have 424 * return 1 here 425 */ 426 427 /* check tables of item heads */ 428 ih = (struct item_head *)(buf + BLKH_SIZE); 429 prev_location = blocksize; 430 for (i = 0; i < nr; i++, ih++) { 431 if (le_ih_k_type(ih) == TYPE_ANY) { 432 reiserfs_warning(NULL, "reiserfs-5083", 433 "wrong item type for item %h", 434 ih); 435 return 0; 436 } 437 if (ih_location(ih) >= blocksize 438 || ih_location(ih) < IH_SIZE * nr) { 439 reiserfs_warning(NULL, "reiserfs-5084", 440 "item location seems wrong: %h", 441 ih); 442 return 0; 443 } 444 if (ih_item_len(ih) < 1 445 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) { 446 reiserfs_warning(NULL, "reiserfs-5085", 447 "item length seems wrong: %h", 448 ih); 449 return 0; 450 } 451 if (prev_location - ih_location(ih) != ih_item_len(ih)) { 452 reiserfs_warning(NULL, "reiserfs-5086", 453 "item location seems wrong " 454 "(second one): %h", ih); 455 return 0; 456 } 457 prev_location = ih_location(ih); 458 } 459 460 /* one may imagine many more checks */ 461 return 1; 462 } 463 464 /* returns 1 if buf looks like an internal node, 0 otherwise */ 465 static int is_internal(char *buf, int blocksize, struct buffer_head *bh) 466 { 467 struct block_head *blkh; 468 int nr; 469 int used_space; 470 471 blkh = (struct block_head *)buf; 472 nr = blkh_level(blkh); 473 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) { 474 /* this level is not possible for internal nodes */ 475 reiserfs_warning(NULL, "reiserfs-5087", 476 "this should be caught earlier"); 477 return 0; 478 } 479 480 nr = blkh_nr_item(blkh); 481 /* for internal which is not root we might check min number of keys */ 482 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) { 483 reiserfs_warning(NULL, "reiserfs-5088", 484 "number of key seems wrong: %z", bh); 485 return 0; 486 } 487 488 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1); 489 if (used_space != blocksize - blkh_free_space(blkh)) { 490 reiserfs_warning(NULL, "reiserfs-5089", 491 "free space seems wrong: %z", bh); 492 return 0; 493 } 494 495 /* one may imagine many more checks */ 496 return 1; 497 } 498 499 /* 500 * make sure that bh contains formatted node of reiserfs tree of 501 * 'level'-th level 502 */ 503 static int is_tree_node(struct buffer_head *bh, int level) 504 { 505 if (B_LEVEL(bh) != level) { 506 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does " 507 "not match to the expected one %d", 508 B_LEVEL(bh), level); 509 return 0; 510 } 511 if (level == DISK_LEAF_NODE_LEVEL) 512 return is_leaf(bh->b_data, bh->b_size, bh); 513 514 return is_internal(bh->b_data, bh->b_size, bh); 515 } 516 517 #define SEARCH_BY_KEY_READA 16 518 519 /* 520 * The function is NOT SCHEDULE-SAFE! 521 * It might unlock the write lock if we needed to wait for a block 522 * to be read. Note that in this case it won't recover the lock to avoid 523 * high contention resulting from too much lock requests, especially 524 * the caller (search_by_key) will perform other schedule-unsafe 525 * operations just after calling this function. 526 * 527 * @return depth of lock to be restored after read completes 528 */ 529 static int search_by_key_reada(struct super_block *s, 530 struct buffer_head **bh, 531 b_blocknr_t *b, int num) 532 { 533 int i, j; 534 int depth = -1; 535 536 for (i = 0; i < num; i++) { 537 bh[i] = sb_getblk(s, b[i]); 538 } 539 /* 540 * We are going to read some blocks on which we 541 * have a reference. It's safe, though we might be 542 * reading blocks concurrently changed if we release 543 * the lock. But it's still fine because we check later 544 * if the tree changed 545 */ 546 for (j = 0; j < i; j++) { 547 /* 548 * note, this needs attention if we are getting rid of the BKL 549 * you have to make sure the prepared bit isn't set on this 550 * buffer 551 */ 552 if (!buffer_uptodate(bh[j])) { 553 if (depth == -1) 554 depth = reiserfs_write_unlock_nested(s); 555 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, bh + j); 556 } 557 brelse(bh[j]); 558 } 559 return depth; 560 } 561 562 /* 563 * This function fills up the path from the root to the leaf as it 564 * descends the tree looking for the key. It uses reiserfs_bread to 565 * try to find buffers in the cache given their block number. If it 566 * does not find them in the cache it reads them from disk. For each 567 * node search_by_key finds using reiserfs_bread it then uses 568 * bin_search to look through that node. bin_search will find the 569 * position of the block_number of the next node if it is looking 570 * through an internal node. If it is looking through a leaf node 571 * bin_search will find the position of the item which has key either 572 * equal to given key, or which is the maximal key less than the given 573 * key. search_by_key returns a path that must be checked for the 574 * correctness of the top of the path but need not be checked for the 575 * correctness of the bottom of the path 576 */ 577 /* 578 * search_by_key - search for key (and item) in stree 579 * @sb: superblock 580 * @key: pointer to key to search for 581 * @search_path: Allocated and initialized struct treepath; Returned filled 582 * on success. 583 * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to 584 * stop at leaf level. 585 * 586 * The function is NOT SCHEDULE-SAFE! 587 */ 588 int search_by_key(struct super_block *sb, const struct cpu_key *key, 589 struct treepath *search_path, int stop_level) 590 { 591 b_blocknr_t block_number; 592 int expected_level; 593 struct buffer_head *bh; 594 struct path_element *last_element; 595 int node_level, retval; 596 int right_neighbor_of_leaf_node; 597 int fs_gen; 598 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA]; 599 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA]; 600 int reada_count = 0; 601 602 #ifdef CONFIG_REISERFS_CHECK 603 int repeat_counter = 0; 604 #endif 605 606 PROC_INFO_INC(sb, search_by_key); 607 608 /* 609 * As we add each node to a path we increase its count. This means 610 * that we must be careful to release all nodes in a path before we 611 * either discard the path struct or re-use the path struct, as we 612 * do here. 613 */ 614 615 pathrelse(search_path); 616 617 right_neighbor_of_leaf_node = 0; 618 619 /* 620 * With each iteration of this loop we search through the items in the 621 * current node, and calculate the next current node(next path element) 622 * for the next iteration of this loop.. 623 */ 624 block_number = SB_ROOT_BLOCK(sb); 625 expected_level = -1; 626 while (1) { 627 628 #ifdef CONFIG_REISERFS_CHECK 629 if (!(++repeat_counter % 50000)) 630 reiserfs_warning(sb, "PAP-5100", 631 "%s: there were %d iterations of " 632 "while loop looking for key %K", 633 current->comm, repeat_counter, 634 key); 635 #endif 636 637 /* prep path to have another element added to it. */ 638 last_element = 639 PATH_OFFSET_PELEMENT(search_path, 640 ++search_path->path_length); 641 fs_gen = get_generation(sb); 642 643 /* 644 * Read the next tree node, and set the last element 645 * in the path to have a pointer to it. 646 */ 647 if ((bh = last_element->pe_buffer = 648 sb_getblk(sb, block_number))) { 649 650 /* 651 * We'll need to drop the lock if we encounter any 652 * buffers that need to be read. If all of them are 653 * already up to date, we don't need to drop the lock. 654 */ 655 int depth = -1; 656 657 if (!buffer_uptodate(bh) && reada_count > 1) 658 depth = search_by_key_reada(sb, reada_bh, 659 reada_blocks, reada_count); 660 661 if (!buffer_uptodate(bh) && depth == -1) 662 depth = reiserfs_write_unlock_nested(sb); 663 664 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 665 wait_on_buffer(bh); 666 667 if (depth != -1) 668 reiserfs_write_lock_nested(sb, depth); 669 if (!buffer_uptodate(bh)) 670 goto io_error; 671 } else { 672 io_error: 673 search_path->path_length--; 674 pathrelse(search_path); 675 return IO_ERROR; 676 } 677 reada_count = 0; 678 if (expected_level == -1) 679 expected_level = SB_TREE_HEIGHT(sb); 680 expected_level--; 681 682 /* 683 * It is possible that schedule occurred. We must check 684 * whether the key to search is still in the tree rooted 685 * from the current buffer. If not then repeat search 686 * from the root. 687 */ 688 if (fs_changed(fs_gen, sb) && 689 (!B_IS_IN_TREE(bh) || 690 B_LEVEL(bh) != expected_level || 691 !key_in_buffer(search_path, key, sb))) { 692 PROC_INFO_INC(sb, search_by_key_fs_changed); 693 PROC_INFO_INC(sb, search_by_key_restarted); 694 PROC_INFO_INC(sb, 695 sbk_restarted[expected_level - 1]); 696 pathrelse(search_path); 697 698 /* 699 * Get the root block number so that we can 700 * repeat the search starting from the root. 701 */ 702 block_number = SB_ROOT_BLOCK(sb); 703 expected_level = -1; 704 right_neighbor_of_leaf_node = 0; 705 706 /* repeat search from the root */ 707 continue; 708 } 709 710 /* 711 * only check that the key is in the buffer if key is not 712 * equal to the MAX_KEY. Latter case is only possible in 713 * "finish_unfinished()" processing during mount. 714 */ 715 RFALSE(comp_keys(&MAX_KEY, key) && 716 !key_in_buffer(search_path, key, sb), 717 "PAP-5130: key is not in the buffer"); 718 #ifdef CONFIG_REISERFS_CHECK 719 if (REISERFS_SB(sb)->cur_tb) { 720 print_cur_tb("5140"); 721 reiserfs_panic(sb, "PAP-5140", 722 "schedule occurred in do_balance!"); 723 } 724 #endif 725 726 /* 727 * make sure, that the node contents look like a node of 728 * certain level 729 */ 730 if (!is_tree_node(bh, expected_level)) { 731 reiserfs_error(sb, "vs-5150", 732 "invalid format found in block %ld. " 733 "Fsck?", bh->b_blocknr); 734 pathrelse(search_path); 735 return IO_ERROR; 736 } 737 738 /* ok, we have acquired next formatted node in the tree */ 739 node_level = B_LEVEL(bh); 740 741 PROC_INFO_BH_STAT(sb, bh, node_level - 1); 742 743 RFALSE(node_level < stop_level, 744 "vs-5152: tree level (%d) is less than stop level (%d)", 745 node_level, stop_level); 746 747 retval = bin_search(key, item_head(bh, 0), 748 B_NR_ITEMS(bh), 749 (node_level == 750 DISK_LEAF_NODE_LEVEL) ? IH_SIZE : 751 KEY_SIZE, 752 &last_element->pe_position); 753 if (node_level == stop_level) { 754 return retval; 755 } 756 757 /* we are not in the stop level */ 758 /* 759 * item has been found, so we choose the pointer which 760 * is to the right of the found one 761 */ 762 if (retval == ITEM_FOUND) 763 last_element->pe_position++; 764 765 /* 766 * if item was not found we choose the position which is to 767 * the left of the found item. This requires no code, 768 * bin_search did it already. 769 */ 770 771 /* 772 * So we have chosen a position in the current node which is 773 * an internal node. Now we calculate child block number by 774 * position in the node. 775 */ 776 block_number = 777 B_N_CHILD_NUM(bh, last_element->pe_position); 778 779 /* 780 * if we are going to read leaf nodes, try for read 781 * ahead as well 782 */ 783 if ((search_path->reada & PATH_READA) && 784 node_level == DISK_LEAF_NODE_LEVEL + 1) { 785 int pos = last_element->pe_position; 786 int limit = B_NR_ITEMS(bh); 787 struct reiserfs_key *le_key; 788 789 if (search_path->reada & PATH_READA_BACK) 790 limit = 0; 791 while (reada_count < SEARCH_BY_KEY_READA) { 792 if (pos == limit) 793 break; 794 reada_blocks[reada_count++] = 795 B_N_CHILD_NUM(bh, pos); 796 if (search_path->reada & PATH_READA_BACK) 797 pos--; 798 else 799 pos++; 800 801 /* 802 * check to make sure we're in the same object 803 */ 804 le_key = internal_key(bh, pos); 805 if (le32_to_cpu(le_key->k_objectid) != 806 key->on_disk_key.k_objectid) { 807 break; 808 } 809 } 810 } 811 } 812 } 813 814 /* 815 * Form the path to an item and position in this item which contains 816 * file byte defined by key. If there is no such item 817 * corresponding to the key, we point the path to the item with 818 * maximal key less than key, and *pos_in_item is set to one 819 * past the last entry/byte in the item. If searching for entry in a 820 * directory item, and it is not found, *pos_in_item is set to one 821 * entry more than the entry with maximal key which is less than the 822 * sought key. 823 * 824 * Note that if there is no entry in this same node which is one more, 825 * then we point to an imaginary entry. for direct items, the 826 * position is in units of bytes, for indirect items the position is 827 * in units of blocknr entries, for directory items the position is in 828 * units of directory entries. 829 */ 830 /* The function is NOT SCHEDULE-SAFE! */ 831 int search_for_position_by_key(struct super_block *sb, 832 /* Key to search (cpu variable) */ 833 const struct cpu_key *p_cpu_key, 834 /* Filled up by this function. */ 835 struct treepath *search_path) 836 { 837 struct item_head *p_le_ih; /* pointer to on-disk structure */ 838 int blk_size; 839 loff_t item_offset, offset; 840 struct reiserfs_dir_entry de; 841 int retval; 842 843 /* If searching for directory entry. */ 844 if (is_direntry_cpu_key(p_cpu_key)) 845 return search_by_entry_key(sb, p_cpu_key, search_path, 846 &de); 847 848 /* If not searching for directory entry. */ 849 850 /* If item is found. */ 851 retval = search_item(sb, p_cpu_key, search_path); 852 if (retval == IO_ERROR) 853 return retval; 854 if (retval == ITEM_FOUND) { 855 856 RFALSE(!ih_item_len 857 (item_head 858 (PATH_PLAST_BUFFER(search_path), 859 PATH_LAST_POSITION(search_path))), 860 "PAP-5165: item length equals zero"); 861 862 pos_in_item(search_path) = 0; 863 return POSITION_FOUND; 864 } 865 866 RFALSE(!PATH_LAST_POSITION(search_path), 867 "PAP-5170: position equals zero"); 868 869 /* Item is not found. Set path to the previous item. */ 870 p_le_ih = 871 item_head(PATH_PLAST_BUFFER(search_path), 872 --PATH_LAST_POSITION(search_path)); 873 blk_size = sb->s_blocksize; 874 875 if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key)) 876 return FILE_NOT_FOUND; 877 878 /* FIXME: quite ugly this far */ 879 880 item_offset = le_ih_k_offset(p_le_ih); 881 offset = cpu_key_k_offset(p_cpu_key); 882 883 /* Needed byte is contained in the item pointed to by the path. */ 884 if (item_offset <= offset && 885 item_offset + op_bytes_number(p_le_ih, blk_size) > offset) { 886 pos_in_item(search_path) = offset - item_offset; 887 if (is_indirect_le_ih(p_le_ih)) { 888 pos_in_item(search_path) /= blk_size; 889 } 890 return POSITION_FOUND; 891 } 892 893 /* 894 * Needed byte is not contained in the item pointed to by the 895 * path. Set pos_in_item out of the item. 896 */ 897 if (is_indirect_le_ih(p_le_ih)) 898 pos_in_item(search_path) = 899 ih_item_len(p_le_ih) / UNFM_P_SIZE; 900 else 901 pos_in_item(search_path) = ih_item_len(p_le_ih); 902 903 return POSITION_NOT_FOUND; 904 } 905 906 /* Compare given item and item pointed to by the path. */ 907 int comp_items(const struct item_head *stored_ih, const struct treepath *path) 908 { 909 struct buffer_head *bh = PATH_PLAST_BUFFER(path); 910 struct item_head *ih; 911 912 /* Last buffer at the path is not in the tree. */ 913 if (!B_IS_IN_TREE(bh)) 914 return 1; 915 916 /* Last path position is invalid. */ 917 if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh)) 918 return 1; 919 920 /* we need only to know, whether it is the same item */ 921 ih = tp_item_head(path); 922 return memcmp(stored_ih, ih, IH_SIZE); 923 } 924 925 /* unformatted nodes are not logged anymore, ever. This is safe now */ 926 #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1) 927 928 /* block can not be forgotten as it is in I/O or held by someone */ 929 #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh))) 930 931 /* prepare for delete or cut of direct item */ 932 static inline int prepare_for_direct_item(struct treepath *path, 933 struct item_head *le_ih, 934 struct inode *inode, 935 loff_t new_file_length, int *cut_size) 936 { 937 loff_t round_len; 938 939 if (new_file_length == max_reiserfs_offset(inode)) { 940 /* item has to be deleted */ 941 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 942 return M_DELETE; 943 } 944 /* new file gets truncated */ 945 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) { 946 round_len = ROUND_UP(new_file_length); 947 /* this was new_file_length < le_ih ... */ 948 if (round_len < le_ih_k_offset(le_ih)) { 949 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 950 return M_DELETE; /* Delete this item. */ 951 } 952 /* Calculate first position and size for cutting from item. */ 953 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1); 954 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path)); 955 956 return M_CUT; /* Cut from this item. */ 957 } 958 959 /* old file: items may have any length */ 960 961 if (new_file_length < le_ih_k_offset(le_ih)) { 962 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 963 return M_DELETE; /* Delete this item. */ 964 } 965 966 /* Calculate first position and size for cutting from item. */ 967 *cut_size = -(ih_item_len(le_ih) - 968 (pos_in_item(path) = 969 new_file_length + 1 - le_ih_k_offset(le_ih))); 970 return M_CUT; /* Cut from this item. */ 971 } 972 973 static inline int prepare_for_direntry_item(struct treepath *path, 974 struct item_head *le_ih, 975 struct inode *inode, 976 loff_t new_file_length, 977 int *cut_size) 978 { 979 if (le_ih_k_offset(le_ih) == DOT_OFFSET && 980 new_file_length == max_reiserfs_offset(inode)) { 981 RFALSE(ih_entry_count(le_ih) != 2, 982 "PAP-5220: incorrect empty directory item (%h)", le_ih); 983 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 984 /* Delete the directory item containing "." and ".." entry. */ 985 return M_DELETE; 986 } 987 988 if (ih_entry_count(le_ih) == 1) { 989 /* 990 * Delete the directory item such as there is one record only 991 * in this item 992 */ 993 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 994 return M_DELETE; 995 } 996 997 /* Cut one record from the directory item. */ 998 *cut_size = 999 -(DEH_SIZE + 1000 entry_length(get_last_bh(path), le_ih, pos_in_item(path))); 1001 return M_CUT; 1002 } 1003 1004 #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1) 1005 1006 /* 1007 * If the path points to a directory or direct item, calculate mode 1008 * and the size cut, for balance. 1009 * If the path points to an indirect item, remove some number of its 1010 * unformatted nodes. 1011 * In case of file truncate calculate whether this item must be 1012 * deleted/truncated or last unformatted node of this item will be 1013 * converted to a direct item. 1014 * This function returns a determination of what balance mode the 1015 * calling function should employ. 1016 */ 1017 static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, 1018 struct inode *inode, 1019 struct treepath *path, 1020 const struct cpu_key *item_key, 1021 /* 1022 * Number of unformatted nodes 1023 * which were removed from end 1024 * of the file. 1025 */ 1026 int *removed, 1027 int *cut_size, 1028 /* MAX_KEY_OFFSET in case of delete. */ 1029 unsigned long long new_file_length 1030 ) 1031 { 1032 struct super_block *sb = inode->i_sb; 1033 struct item_head *p_le_ih = tp_item_head(path); 1034 struct buffer_head *bh = PATH_PLAST_BUFFER(path); 1035 1036 BUG_ON(!th->t_trans_id); 1037 1038 /* Stat_data item. */ 1039 if (is_statdata_le_ih(p_le_ih)) { 1040 1041 RFALSE(new_file_length != max_reiserfs_offset(inode), 1042 "PAP-5210: mode must be M_DELETE"); 1043 1044 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih)); 1045 return M_DELETE; 1046 } 1047 1048 /* Directory item. */ 1049 if (is_direntry_le_ih(p_le_ih)) 1050 return prepare_for_direntry_item(path, p_le_ih, inode, 1051 new_file_length, 1052 cut_size); 1053 1054 /* Direct item. */ 1055 if (is_direct_le_ih(p_le_ih)) 1056 return prepare_for_direct_item(path, p_le_ih, inode, 1057 new_file_length, cut_size); 1058 1059 /* Case of an indirect item. */ 1060 { 1061 int blk_size = sb->s_blocksize; 1062 struct item_head s_ih; 1063 int need_re_search; 1064 int delete = 0; 1065 int result = M_CUT; 1066 int pos = 0; 1067 1068 if ( new_file_length == max_reiserfs_offset (inode) ) { 1069 /* 1070 * prepare_for_delete_or_cut() is called by 1071 * reiserfs_delete_item() 1072 */ 1073 new_file_length = 0; 1074 delete = 1; 1075 } 1076 1077 do { 1078 need_re_search = 0; 1079 *cut_size = 0; 1080 bh = PATH_PLAST_BUFFER(path); 1081 copy_item_head(&s_ih, tp_item_head(path)); 1082 pos = I_UNFM_NUM(&s_ih); 1083 1084 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) { 1085 __le32 *unfm; 1086 __u32 block; 1087 1088 /* 1089 * Each unformatted block deletion may involve 1090 * one additional bitmap block into the transaction, 1091 * thereby the initial journal space reservation 1092 * might not be enough. 1093 */ 1094 if (!delete && (*cut_size) != 0 && 1095 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) 1096 break; 1097 1098 unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1; 1099 block = get_block_num(unfm, 0); 1100 1101 if (block != 0) { 1102 reiserfs_prepare_for_journal(sb, bh, 1); 1103 put_block_num(unfm, 0, 0); 1104 journal_mark_dirty(th, bh); 1105 reiserfs_free_block(th, inode, block, 1); 1106 } 1107 1108 reiserfs_cond_resched(sb); 1109 1110 if (item_moved (&s_ih, path)) { 1111 need_re_search = 1; 1112 break; 1113 } 1114 1115 pos --; 1116 (*removed)++; 1117 (*cut_size) -= UNFM_P_SIZE; 1118 1119 if (pos == 0) { 1120 (*cut_size) -= IH_SIZE; 1121 result = M_DELETE; 1122 break; 1123 } 1124 } 1125 /* 1126 * a trick. If the buffer has been logged, this will 1127 * do nothing. If we've broken the loop without logging 1128 * it, it will restore the buffer 1129 */ 1130 reiserfs_restore_prepared_buffer(sb, bh); 1131 } while (need_re_search && 1132 search_for_position_by_key(sb, item_key, path) == POSITION_FOUND); 1133 pos_in_item(path) = pos * UNFM_P_SIZE; 1134 1135 if (*cut_size == 0) { 1136 /* 1137 * Nothing was cut. maybe convert last unformatted node to the 1138 * direct item? 1139 */ 1140 result = M_CONVERT; 1141 } 1142 return result; 1143 } 1144 } 1145 1146 /* Calculate number of bytes which will be deleted or cut during balance */ 1147 static int calc_deleted_bytes_number(struct tree_balance *tb, char mode) 1148 { 1149 int del_size; 1150 struct item_head *p_le_ih = tp_item_head(tb->tb_path); 1151 1152 if (is_statdata_le_ih(p_le_ih)) 1153 return 0; 1154 1155 del_size = 1156 (mode == 1157 M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0]; 1158 if (is_direntry_le_ih(p_le_ih)) { 1159 /* 1160 * return EMPTY_DIR_SIZE; We delete emty directories only. 1161 * we can't use EMPTY_DIR_SIZE, as old format dirs have a 1162 * different empty size. ick. FIXME, is this right? 1163 */ 1164 return del_size; 1165 } 1166 1167 if (is_indirect_le_ih(p_le_ih)) 1168 del_size = (del_size / UNFM_P_SIZE) * 1169 (PATH_PLAST_BUFFER(tb->tb_path)->b_size); 1170 return del_size; 1171 } 1172 1173 static void init_tb_struct(struct reiserfs_transaction_handle *th, 1174 struct tree_balance *tb, 1175 struct super_block *sb, 1176 struct treepath *path, int size) 1177 { 1178 1179 BUG_ON(!th->t_trans_id); 1180 1181 memset(tb, '\0', sizeof(struct tree_balance)); 1182 tb->transaction_handle = th; 1183 tb->tb_sb = sb; 1184 tb->tb_path = path; 1185 PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL; 1186 PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0; 1187 tb->insert_size[0] = size; 1188 } 1189 1190 void padd_item(char *item, int total_length, int length) 1191 { 1192 int i; 1193 1194 for (i = total_length; i > length;) 1195 item[--i] = 0; 1196 } 1197 1198 #ifdef REISERQUOTA_DEBUG 1199 char key2type(struct reiserfs_key *ih) 1200 { 1201 if (is_direntry_le_key(2, ih)) 1202 return 'd'; 1203 if (is_direct_le_key(2, ih)) 1204 return 'D'; 1205 if (is_indirect_le_key(2, ih)) 1206 return 'i'; 1207 if (is_statdata_le_key(2, ih)) 1208 return 's'; 1209 return 'u'; 1210 } 1211 1212 char head2type(struct item_head *ih) 1213 { 1214 if (is_direntry_le_ih(ih)) 1215 return 'd'; 1216 if (is_direct_le_ih(ih)) 1217 return 'D'; 1218 if (is_indirect_le_ih(ih)) 1219 return 'i'; 1220 if (is_statdata_le_ih(ih)) 1221 return 's'; 1222 return 'u'; 1223 } 1224 #endif 1225 1226 /* 1227 * Delete object item. 1228 * th - active transaction handle 1229 * path - path to the deleted item 1230 * item_key - key to search for the deleted item 1231 * indode - used for updating i_blocks and quotas 1232 * un_bh - NULL or unformatted node pointer 1233 */ 1234 int reiserfs_delete_item(struct reiserfs_transaction_handle *th, 1235 struct treepath *path, const struct cpu_key *item_key, 1236 struct inode *inode, struct buffer_head *un_bh) 1237 { 1238 struct super_block *sb = inode->i_sb; 1239 struct tree_balance s_del_balance; 1240 struct item_head s_ih; 1241 struct item_head *q_ih; 1242 int quota_cut_bytes; 1243 int ret_value, del_size, removed; 1244 int depth; 1245 1246 #ifdef CONFIG_REISERFS_CHECK 1247 char mode; 1248 int iter = 0; 1249 #endif 1250 1251 BUG_ON(!th->t_trans_id); 1252 1253 init_tb_struct(th, &s_del_balance, sb, path, 1254 0 /*size is unknown */ ); 1255 1256 while (1) { 1257 removed = 0; 1258 1259 #ifdef CONFIG_REISERFS_CHECK 1260 iter++; 1261 mode = 1262 #endif 1263 prepare_for_delete_or_cut(th, inode, path, 1264 item_key, &removed, 1265 &del_size, 1266 max_reiserfs_offset(inode)); 1267 1268 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE"); 1269 1270 copy_item_head(&s_ih, tp_item_head(path)); 1271 s_del_balance.insert_size[0] = del_size; 1272 1273 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL); 1274 if (ret_value != REPEAT_SEARCH) 1275 break; 1276 1277 PROC_INFO_INC(sb, delete_item_restarted); 1278 1279 /* file system changed, repeat search */ 1280 ret_value = 1281 search_for_position_by_key(sb, item_key, path); 1282 if (ret_value == IO_ERROR) 1283 break; 1284 if (ret_value == FILE_NOT_FOUND) { 1285 reiserfs_warning(sb, "vs-5340", 1286 "no items of the file %K found", 1287 item_key); 1288 break; 1289 } 1290 } /* while (1) */ 1291 1292 if (ret_value != CARRY_ON) { 1293 unfix_nodes(&s_del_balance); 1294 return 0; 1295 } 1296 1297 /* reiserfs_delete_item returns item length when success */ 1298 ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE); 1299 q_ih = tp_item_head(path); 1300 quota_cut_bytes = ih_item_len(q_ih); 1301 1302 /* 1303 * hack so the quota code doesn't have to guess if the file has a 1304 * tail. On tail insert, we allocate quota for 1 unformatted node. 1305 * We test the offset because the tail might have been 1306 * split into multiple items, and we only want to decrement for 1307 * the unfm node once 1308 */ 1309 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) { 1310 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) { 1311 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE; 1312 } else { 1313 quota_cut_bytes = 0; 1314 } 1315 } 1316 1317 if (un_bh) { 1318 int off; 1319 char *data; 1320 1321 /* 1322 * We are in direct2indirect conversion, so move tail contents 1323 * to the unformatted node 1324 */ 1325 /* 1326 * note, we do the copy before preparing the buffer because we 1327 * don't care about the contents of the unformatted node yet. 1328 * the only thing we really care about is the direct item's 1329 * data is in the unformatted node. 1330 * 1331 * Otherwise, we would have to call 1332 * reiserfs_prepare_for_journal on the unformatted node, 1333 * which might schedule, meaning we'd have to loop all the 1334 * way back up to the start of the while loop. 1335 * 1336 * The unformatted node must be dirtied later on. We can't be 1337 * sure here if the entire tail has been deleted yet. 1338 * 1339 * un_bh is from the page cache (all unformatted nodes are 1340 * from the page cache) and might be a highmem page. So, we 1341 * can't use un_bh->b_data. 1342 * -clm 1343 */ 1344 1345 data = kmap_atomic(un_bh->b_page); 1346 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1)); 1347 memcpy(data + off, 1348 ih_item_body(PATH_PLAST_BUFFER(path), &s_ih), 1349 ret_value); 1350 kunmap_atomic(data); 1351 } 1352 1353 /* Perform balancing after all resources have been collected at once. */ 1354 do_balance(&s_del_balance, NULL, NULL, M_DELETE); 1355 1356 #ifdef REISERQUOTA_DEBUG 1357 reiserfs_debug(sb, REISERFS_DEBUG_CODE, 1358 "reiserquota delete_item(): freeing %u, id=%u type=%c", 1359 quota_cut_bytes, inode->i_uid, head2type(&s_ih)); 1360 #endif 1361 depth = reiserfs_write_unlock_nested(inode->i_sb); 1362 dquot_free_space_nodirty(inode, quota_cut_bytes); 1363 reiserfs_write_lock_nested(inode->i_sb, depth); 1364 1365 /* Return deleted body length */ 1366 return ret_value; 1367 } 1368 1369 /* 1370 * Summary Of Mechanisms For Handling Collisions Between Processes: 1371 * 1372 * deletion of the body of the object is performed by iput(), with the 1373 * result that if multiple processes are operating on a file, the 1374 * deletion of the body of the file is deferred until the last process 1375 * that has an open inode performs its iput(). 1376 * 1377 * writes and truncates are protected from collisions by use of 1378 * semaphores. 1379 * 1380 * creates, linking, and mknod are protected from collisions with other 1381 * processes by making the reiserfs_add_entry() the last step in the 1382 * creation, and then rolling back all changes if there was a collision. 1383 * - Hans 1384 */ 1385 1386 /* this deletes item which never gets split */ 1387 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, 1388 struct inode *inode, struct reiserfs_key *key) 1389 { 1390 struct super_block *sb = th->t_super; 1391 struct tree_balance tb; 1392 INITIALIZE_PATH(path); 1393 int item_len = 0; 1394 int tb_init = 0; 1395 struct cpu_key cpu_key; 1396 int retval; 1397 int quota_cut_bytes = 0; 1398 1399 BUG_ON(!th->t_trans_id); 1400 1401 le_key2cpu_key(&cpu_key, key); 1402 1403 while (1) { 1404 retval = search_item(th->t_super, &cpu_key, &path); 1405 if (retval == IO_ERROR) { 1406 reiserfs_error(th->t_super, "vs-5350", 1407 "i/o failure occurred trying " 1408 "to delete %K", &cpu_key); 1409 break; 1410 } 1411 if (retval != ITEM_FOUND) { 1412 pathrelse(&path); 1413 /* 1414 * No need for a warning, if there is just no free 1415 * space to insert '..' item into the 1416 * newly-created subdir 1417 */ 1418 if (! 1419 ((unsigned long long) 1420 GET_HASH_VALUE(le_key_k_offset 1421 (le_key_version(key), key)) == 0 1422 && (unsigned long long) 1423 GET_GENERATION_NUMBER(le_key_k_offset 1424 (le_key_version(key), 1425 key)) == 1)) 1426 reiserfs_warning(th->t_super, "vs-5355", 1427 "%k not found", key); 1428 break; 1429 } 1430 if (!tb_init) { 1431 tb_init = 1; 1432 item_len = ih_item_len(tp_item_head(&path)); 1433 init_tb_struct(th, &tb, th->t_super, &path, 1434 -(IH_SIZE + item_len)); 1435 } 1436 quota_cut_bytes = ih_item_len(tp_item_head(&path)); 1437 1438 retval = fix_nodes(M_DELETE, &tb, NULL, NULL); 1439 if (retval == REPEAT_SEARCH) { 1440 PROC_INFO_INC(th->t_super, delete_solid_item_restarted); 1441 continue; 1442 } 1443 1444 if (retval == CARRY_ON) { 1445 do_balance(&tb, NULL, NULL, M_DELETE); 1446 /* 1447 * Should we count quota for item? (we don't 1448 * count quotas for save-links) 1449 */ 1450 if (inode) { 1451 int depth; 1452 #ifdef REISERQUOTA_DEBUG 1453 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, 1454 "reiserquota delete_solid_item(): freeing %u id=%u type=%c", 1455 quota_cut_bytes, inode->i_uid, 1456 key2type(key)); 1457 #endif 1458 depth = reiserfs_write_unlock_nested(sb); 1459 dquot_free_space_nodirty(inode, 1460 quota_cut_bytes); 1461 reiserfs_write_lock_nested(sb, depth); 1462 } 1463 break; 1464 } 1465 1466 /* IO_ERROR, NO_DISK_SPACE, etc */ 1467 reiserfs_warning(th->t_super, "vs-5360", 1468 "could not delete %K due to fix_nodes failure", 1469 &cpu_key); 1470 unfix_nodes(&tb); 1471 break; 1472 } 1473 1474 reiserfs_check_path(&path); 1475 } 1476 1477 int reiserfs_delete_object(struct reiserfs_transaction_handle *th, 1478 struct inode *inode) 1479 { 1480 int err; 1481 inode->i_size = 0; 1482 BUG_ON(!th->t_trans_id); 1483 1484 /* for directory this deletes item containing "." and ".." */ 1485 err = 1486 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ ); 1487 if (err) 1488 return err; 1489 1490 #if defined( USE_INODE_GENERATION_COUNTER ) 1491 if (!old_format_only(th->t_super)) { 1492 __le32 *inode_generation; 1493 1494 inode_generation = 1495 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation; 1496 le32_add_cpu(inode_generation, 1); 1497 } 1498 /* USE_INODE_GENERATION_COUNTER */ 1499 #endif 1500 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); 1501 1502 return err; 1503 } 1504 1505 static void unmap_buffers(struct page *page, loff_t pos) 1506 { 1507 struct buffer_head *bh; 1508 struct buffer_head *head; 1509 struct buffer_head *next; 1510 unsigned long tail_index; 1511 unsigned long cur_index; 1512 1513 if (page) { 1514 if (page_has_buffers(page)) { 1515 tail_index = pos & (PAGE_SIZE - 1); 1516 cur_index = 0; 1517 head = page_buffers(page); 1518 bh = head; 1519 do { 1520 next = bh->b_this_page; 1521 1522 /* 1523 * we want to unmap the buffers that contain 1524 * the tail, and all the buffers after it 1525 * (since the tail must be at the end of the 1526 * file). We don't want to unmap file data 1527 * before the tail, since it might be dirty 1528 * and waiting to reach disk 1529 */ 1530 cur_index += bh->b_size; 1531 if (cur_index > tail_index) { 1532 reiserfs_unmap_buffer(bh); 1533 } 1534 bh = next; 1535 } while (bh != head); 1536 } 1537 } 1538 } 1539 1540 static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th, 1541 struct inode *inode, 1542 struct page *page, 1543 struct treepath *path, 1544 const struct cpu_key *item_key, 1545 loff_t new_file_size, char *mode) 1546 { 1547 struct super_block *sb = inode->i_sb; 1548 int block_size = sb->s_blocksize; 1549 int cut_bytes; 1550 BUG_ON(!th->t_trans_id); 1551 BUG_ON(new_file_size != inode->i_size); 1552 1553 /* 1554 * the page being sent in could be NULL if there was an i/o error 1555 * reading in the last block. The user will hit problems trying to 1556 * read the file, but for now we just skip the indirect2direct 1557 */ 1558 if (atomic_read(&inode->i_count) > 1 || 1559 !tail_has_to_be_packed(inode) || 1560 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) { 1561 /* leave tail in an unformatted node */ 1562 *mode = M_SKIP_BALANCING; 1563 cut_bytes = 1564 block_size - (new_file_size & (block_size - 1)); 1565 pathrelse(path); 1566 return cut_bytes; 1567 } 1568 1569 /* Perform the conversion to a direct_item. */ 1570 return indirect2direct(th, inode, page, path, item_key, 1571 new_file_size, mode); 1572 } 1573 1574 /* 1575 * we did indirect_to_direct conversion. And we have inserted direct 1576 * item successesfully, but there were no disk space to cut unfm 1577 * pointer being converted. Therefore we have to delete inserted 1578 * direct item(s) 1579 */ 1580 static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th, 1581 struct inode *inode, struct treepath *path) 1582 { 1583 struct cpu_key tail_key; 1584 int tail_len; 1585 int removed; 1586 BUG_ON(!th->t_trans_id); 1587 1588 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4); 1589 tail_key.key_length = 4; 1590 1591 tail_len = 1592 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1; 1593 while (tail_len) { 1594 /* look for the last byte of the tail */ 1595 if (search_for_position_by_key(inode->i_sb, &tail_key, path) == 1596 POSITION_NOT_FOUND) 1597 reiserfs_panic(inode->i_sb, "vs-5615", 1598 "found invalid item"); 1599 RFALSE(path->pos_in_item != 1600 ih_item_len(tp_item_head(path)) - 1, 1601 "vs-5616: appended bytes found"); 1602 PATH_LAST_POSITION(path)--; 1603 1604 removed = 1605 reiserfs_delete_item(th, path, &tail_key, inode, 1606 NULL /*unbh not needed */ ); 1607 RFALSE(removed <= 0 1608 || removed > tail_len, 1609 "vs-5617: there was tail %d bytes, removed item length %d bytes", 1610 tail_len, removed); 1611 tail_len -= removed; 1612 set_cpu_key_k_offset(&tail_key, 1613 cpu_key_k_offset(&tail_key) - removed); 1614 } 1615 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct " 1616 "conversion has been rolled back due to " 1617 "lack of disk space"); 1618 mark_inode_dirty(inode); 1619 } 1620 1621 /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */ 1622 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, 1623 struct treepath *path, 1624 struct cpu_key *item_key, 1625 struct inode *inode, 1626 struct page *page, loff_t new_file_size) 1627 { 1628 struct super_block *sb = inode->i_sb; 1629 /* 1630 * Every function which is going to call do_balance must first 1631 * create a tree_balance structure. Then it must fill up this 1632 * structure by using the init_tb_struct and fix_nodes functions. 1633 * After that we can make tree balancing. 1634 */ 1635 struct tree_balance s_cut_balance; 1636 struct item_head *p_le_ih; 1637 int cut_size = 0; /* Amount to be cut. */ 1638 int ret_value = CARRY_ON; 1639 int removed = 0; /* Number of the removed unformatted nodes. */ 1640 int is_inode_locked = 0; 1641 char mode; /* Mode of the balance. */ 1642 int retval2 = -1; 1643 int quota_cut_bytes; 1644 loff_t tail_pos = 0; 1645 int depth; 1646 1647 BUG_ON(!th->t_trans_id); 1648 1649 init_tb_struct(th, &s_cut_balance, inode->i_sb, path, 1650 cut_size); 1651 1652 /* 1653 * Repeat this loop until we either cut the item without needing 1654 * to balance, or we fix_nodes without schedule occurring 1655 */ 1656 while (1) { 1657 /* 1658 * Determine the balance mode, position of the first byte to 1659 * be cut, and size to be cut. In case of the indirect item 1660 * free unformatted nodes which are pointed to by the cut 1661 * pointers. 1662 */ 1663 1664 mode = 1665 prepare_for_delete_or_cut(th, inode, path, 1666 item_key, &removed, 1667 &cut_size, new_file_size); 1668 if (mode == M_CONVERT) { 1669 /* 1670 * convert last unformatted node to direct item or 1671 * leave tail in the unformatted node 1672 */ 1673 RFALSE(ret_value != CARRY_ON, 1674 "PAP-5570: can not convert twice"); 1675 1676 ret_value = 1677 maybe_indirect_to_direct(th, inode, page, 1678 path, item_key, 1679 new_file_size, &mode); 1680 if (mode == M_SKIP_BALANCING) 1681 /* tail has been left in the unformatted node */ 1682 return ret_value; 1683 1684 is_inode_locked = 1; 1685 1686 /* 1687 * removing of last unformatted node will 1688 * change value we have to return to truncate. 1689 * Save it 1690 */ 1691 retval2 = ret_value; 1692 1693 /* 1694 * So, we have performed the first part of the 1695 * conversion: 1696 * inserting the new direct item. Now we are 1697 * removing the last unformatted node pointer. 1698 * Set key to search for it. 1699 */ 1700 set_cpu_key_k_type(item_key, TYPE_INDIRECT); 1701 item_key->key_length = 4; 1702 new_file_size -= 1703 (new_file_size & (sb->s_blocksize - 1)); 1704 tail_pos = new_file_size; 1705 set_cpu_key_k_offset(item_key, new_file_size + 1); 1706 if (search_for_position_by_key 1707 (sb, item_key, 1708 path) == POSITION_NOT_FOUND) { 1709 print_block(PATH_PLAST_BUFFER(path), 3, 1710 PATH_LAST_POSITION(path) - 1, 1711 PATH_LAST_POSITION(path) + 1); 1712 reiserfs_panic(sb, "PAP-5580", "item to " 1713 "convert does not exist (%K)", 1714 item_key); 1715 } 1716 continue; 1717 } 1718 if (cut_size == 0) { 1719 pathrelse(path); 1720 return 0; 1721 } 1722 1723 s_cut_balance.insert_size[0] = cut_size; 1724 1725 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL); 1726 if (ret_value != REPEAT_SEARCH) 1727 break; 1728 1729 PROC_INFO_INC(sb, cut_from_item_restarted); 1730 1731 ret_value = 1732 search_for_position_by_key(sb, item_key, path); 1733 if (ret_value == POSITION_FOUND) 1734 continue; 1735 1736 reiserfs_warning(sb, "PAP-5610", "item %K not found", 1737 item_key); 1738 unfix_nodes(&s_cut_balance); 1739 return (ret_value == IO_ERROR) ? -EIO : -ENOENT; 1740 } /* while */ 1741 1742 /* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */ 1743 if (ret_value != CARRY_ON) { 1744 if (is_inode_locked) { 1745 /* 1746 * FIXME: this seems to be not needed: we are always 1747 * able to cut item 1748 */ 1749 indirect_to_direct_roll_back(th, inode, path); 1750 } 1751 if (ret_value == NO_DISK_SPACE) 1752 reiserfs_warning(sb, "reiserfs-5092", 1753 "NO_DISK_SPACE"); 1754 unfix_nodes(&s_cut_balance); 1755 return -EIO; 1756 } 1757 1758 /* go ahead and perform balancing */ 1759 1760 RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode"); 1761 1762 /* Calculate number of bytes that need to be cut from the item. */ 1763 quota_cut_bytes = 1764 (mode == 1765 M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance. 1766 insert_size[0]; 1767 if (retval2 == -1) 1768 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode); 1769 else 1770 ret_value = retval2; 1771 1772 /* 1773 * For direct items, we only change the quota when deleting the last 1774 * item. 1775 */ 1776 p_le_ih = tp_item_head(s_cut_balance.tb_path); 1777 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) { 1778 if (mode == M_DELETE && 1779 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) == 1780 1) { 1781 /* FIXME: this is to keep 3.5 happy */ 1782 REISERFS_I(inode)->i_first_direct_byte = U32_MAX; 1783 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE; 1784 } else { 1785 quota_cut_bytes = 0; 1786 } 1787 } 1788 #ifdef CONFIG_REISERFS_CHECK 1789 if (is_inode_locked) { 1790 struct item_head *le_ih = 1791 tp_item_head(s_cut_balance.tb_path); 1792 /* 1793 * we are going to complete indirect2direct conversion. Make 1794 * sure, that we exactly remove last unformatted node pointer 1795 * of the item 1796 */ 1797 if (!is_indirect_le_ih(le_ih)) 1798 reiserfs_panic(sb, "vs-5652", 1799 "item must be indirect %h", le_ih); 1800 1801 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE) 1802 reiserfs_panic(sb, "vs-5653", "completing " 1803 "indirect2direct conversion indirect " 1804 "item %h being deleted must be of " 1805 "4 byte long", le_ih); 1806 1807 if (mode == M_CUT 1808 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) { 1809 reiserfs_panic(sb, "vs-5654", "can not complete " 1810 "indirect2direct conversion of %h " 1811 "(CUT, insert_size==%d)", 1812 le_ih, s_cut_balance.insert_size[0]); 1813 } 1814 /* 1815 * it would be useful to make sure, that right neighboring 1816 * item is direct item of this file 1817 */ 1818 } 1819 #endif 1820 1821 do_balance(&s_cut_balance, NULL, NULL, mode); 1822 if (is_inode_locked) { 1823 /* 1824 * we've done an indirect->direct conversion. when the 1825 * data block was freed, it was removed from the list of 1826 * blocks that must be flushed before the transaction 1827 * commits, make sure to unmap and invalidate it 1828 */ 1829 unmap_buffers(page, tail_pos); 1830 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 1831 } 1832 #ifdef REISERQUOTA_DEBUG 1833 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 1834 "reiserquota cut_from_item(): freeing %u id=%u type=%c", 1835 quota_cut_bytes, inode->i_uid, '?'); 1836 #endif 1837 depth = reiserfs_write_unlock_nested(sb); 1838 dquot_free_space_nodirty(inode, quota_cut_bytes); 1839 reiserfs_write_lock_nested(sb, depth); 1840 return ret_value; 1841 } 1842 1843 static void truncate_directory(struct reiserfs_transaction_handle *th, 1844 struct inode *inode) 1845 { 1846 BUG_ON(!th->t_trans_id); 1847 if (inode->i_nlink) 1848 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0"); 1849 1850 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET); 1851 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY); 1852 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); 1853 reiserfs_update_sd(th, inode); 1854 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET); 1855 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA); 1856 } 1857 1858 /* 1859 * Truncate file to the new size. Note, this must be called with a 1860 * transaction already started 1861 */ 1862 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, 1863 struct inode *inode, /* ->i_size contains new size */ 1864 struct page *page, /* up to date for last block */ 1865 /* 1866 * when it is called by file_release to convert 1867 * the tail - no timestamps should be updated 1868 */ 1869 int update_timestamps 1870 ) 1871 { 1872 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */ 1873 struct item_head *p_le_ih; /* Pointer to an item header. */ 1874 1875 /* Key to search for a previous file item. */ 1876 struct cpu_key s_item_key; 1877 loff_t file_size, /* Old file size. */ 1878 new_file_size; /* New file size. */ 1879 int deleted; /* Number of deleted or truncated bytes. */ 1880 int retval; 1881 int err = 0; 1882 1883 BUG_ON(!th->t_trans_id); 1884 if (! 1885 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) 1886 || S_ISLNK(inode->i_mode))) 1887 return 0; 1888 1889 /* deletion of directory - no need to update timestamps */ 1890 if (S_ISDIR(inode->i_mode)) { 1891 truncate_directory(th, inode); 1892 return 0; 1893 } 1894 1895 /* Get new file size. */ 1896 new_file_size = inode->i_size; 1897 1898 /* FIXME: note, that key type is unimportant here */ 1899 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode), 1900 TYPE_DIRECT, 3); 1901 1902 retval = 1903 search_for_position_by_key(inode->i_sb, &s_item_key, 1904 &s_search_path); 1905 if (retval == IO_ERROR) { 1906 reiserfs_error(inode->i_sb, "vs-5657", 1907 "i/o failure occurred trying to truncate %K", 1908 &s_item_key); 1909 err = -EIO; 1910 goto out; 1911 } 1912 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) { 1913 reiserfs_error(inode->i_sb, "PAP-5660", 1914 "wrong result %d of search for %K", retval, 1915 &s_item_key); 1916 1917 err = -EIO; 1918 goto out; 1919 } 1920 1921 s_search_path.pos_in_item--; 1922 1923 /* Get real file size (total length of all file items) */ 1924 p_le_ih = tp_item_head(&s_search_path); 1925 if (is_statdata_le_ih(p_le_ih)) 1926 file_size = 0; 1927 else { 1928 loff_t offset = le_ih_k_offset(p_le_ih); 1929 int bytes = 1930 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize); 1931 1932 /* 1933 * this may mismatch with real file size: if last direct item 1934 * had no padding zeros and last unformatted node had no free 1935 * space, this file would have this file size 1936 */ 1937 file_size = offset + bytes - 1; 1938 } 1939 /* 1940 * are we doing a full truncate or delete, if so 1941 * kick in the reada code 1942 */ 1943 if (new_file_size == 0) 1944 s_search_path.reada = PATH_READA | PATH_READA_BACK; 1945 1946 if (file_size == 0 || file_size < new_file_size) { 1947 goto update_and_out; 1948 } 1949 1950 /* Update key to search for the last file item. */ 1951 set_cpu_key_k_offset(&s_item_key, file_size); 1952 1953 do { 1954 /* Cut or delete file item. */ 1955 deleted = 1956 reiserfs_cut_from_item(th, &s_search_path, &s_item_key, 1957 inode, page, new_file_size); 1958 if (deleted < 0) { 1959 reiserfs_warning(inode->i_sb, "vs-5665", 1960 "reiserfs_cut_from_item failed"); 1961 reiserfs_check_path(&s_search_path); 1962 return 0; 1963 } 1964 1965 RFALSE(deleted > file_size, 1966 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K", 1967 deleted, file_size, &s_item_key); 1968 1969 /* Change key to search the last file item. */ 1970 file_size -= deleted; 1971 1972 set_cpu_key_k_offset(&s_item_key, file_size); 1973 1974 /* 1975 * While there are bytes to truncate and previous 1976 * file item is presented in the tree. 1977 */ 1978 1979 /* 1980 * This loop could take a really long time, and could log 1981 * many more blocks than a transaction can hold. So, we do 1982 * a polite journal end here, and if the transaction needs 1983 * ending, we make sure the file is consistent before ending 1984 * the current trans and starting a new one 1985 */ 1986 if (journal_transaction_should_end(th, 0) || 1987 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) { 1988 pathrelse(&s_search_path); 1989 1990 if (update_timestamps) { 1991 inode->i_mtime = current_time(inode); 1992 inode->i_ctime = current_time(inode); 1993 } 1994 reiserfs_update_sd(th, inode); 1995 1996 err = journal_end(th); 1997 if (err) 1998 goto out; 1999 err = journal_begin(th, inode->i_sb, 2000 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ; 2001 if (err) 2002 goto out; 2003 reiserfs_update_inode_transaction(inode); 2004 } 2005 } while (file_size > ROUND_UP(new_file_size) && 2006 search_for_position_by_key(inode->i_sb, &s_item_key, 2007 &s_search_path) == POSITION_FOUND); 2008 2009 RFALSE(file_size > ROUND_UP(new_file_size), 2010 "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d", 2011 new_file_size, file_size, s_item_key.on_disk_key.k_objectid); 2012 2013 update_and_out: 2014 if (update_timestamps) { 2015 /* this is truncate, not file closing */ 2016 inode->i_mtime = current_time(inode); 2017 inode->i_ctime = current_time(inode); 2018 } 2019 reiserfs_update_sd(th, inode); 2020 2021 out: 2022 pathrelse(&s_search_path); 2023 return err; 2024 } 2025 2026 #ifdef CONFIG_REISERFS_CHECK 2027 /* this makes sure, that we __append__, not overwrite or add holes */ 2028 static void check_research_for_paste(struct treepath *path, 2029 const struct cpu_key *key) 2030 { 2031 struct item_head *found_ih = tp_item_head(path); 2032 2033 if (is_direct_le_ih(found_ih)) { 2034 if (le_ih_k_offset(found_ih) + 2035 op_bytes_number(found_ih, 2036 get_last_bh(path)->b_size) != 2037 cpu_key_k_offset(key) 2038 || op_bytes_number(found_ih, 2039 get_last_bh(path)->b_size) != 2040 pos_in_item(path)) 2041 reiserfs_panic(NULL, "PAP-5720", "found direct item " 2042 "%h or position (%d) does not match " 2043 "to key %K", found_ih, 2044 pos_in_item(path), key); 2045 } 2046 if (is_indirect_le_ih(found_ih)) { 2047 if (le_ih_k_offset(found_ih) + 2048 op_bytes_number(found_ih, 2049 get_last_bh(path)->b_size) != 2050 cpu_key_k_offset(key) 2051 || I_UNFM_NUM(found_ih) != pos_in_item(path) 2052 || get_ih_free_space(found_ih) != 0) 2053 reiserfs_panic(NULL, "PAP-5730", "found indirect " 2054 "item (%h) or position (%d) does not " 2055 "match to key (%K)", 2056 found_ih, pos_in_item(path), key); 2057 } 2058 } 2059 #endif /* config reiserfs check */ 2060 2061 /* 2062 * Paste bytes to the existing item. 2063 * Returns bytes number pasted into the item. 2064 */ 2065 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, 2066 /* Path to the pasted item. */ 2067 struct treepath *search_path, 2068 /* Key to search for the needed item. */ 2069 const struct cpu_key *key, 2070 /* Inode item belongs to */ 2071 struct inode *inode, 2072 /* Pointer to the bytes to paste. */ 2073 const char *body, 2074 /* Size of pasted bytes. */ 2075 int pasted_size) 2076 { 2077 struct super_block *sb = inode->i_sb; 2078 struct tree_balance s_paste_balance; 2079 int retval; 2080 int fs_gen; 2081 int depth; 2082 2083 BUG_ON(!th->t_trans_id); 2084 2085 fs_gen = get_generation(inode->i_sb); 2086 2087 #ifdef REISERQUOTA_DEBUG 2088 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 2089 "reiserquota paste_into_item(): allocating %u id=%u type=%c", 2090 pasted_size, inode->i_uid, 2091 key2type(&key->on_disk_key)); 2092 #endif 2093 2094 depth = reiserfs_write_unlock_nested(sb); 2095 retval = dquot_alloc_space_nodirty(inode, pasted_size); 2096 reiserfs_write_lock_nested(sb, depth); 2097 if (retval) { 2098 pathrelse(search_path); 2099 return retval; 2100 } 2101 init_tb_struct(th, &s_paste_balance, th->t_super, search_path, 2102 pasted_size); 2103 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2104 s_paste_balance.key = key->on_disk_key; 2105 #endif 2106 2107 /* DQUOT_* can schedule, must check before the fix_nodes */ 2108 if (fs_changed(fs_gen, inode->i_sb)) { 2109 goto search_again; 2110 } 2111 2112 while ((retval = 2113 fix_nodes(M_PASTE, &s_paste_balance, NULL, 2114 body)) == REPEAT_SEARCH) { 2115 search_again: 2116 /* file system changed while we were in the fix_nodes */ 2117 PROC_INFO_INC(th->t_super, paste_into_item_restarted); 2118 retval = 2119 search_for_position_by_key(th->t_super, key, 2120 search_path); 2121 if (retval == IO_ERROR) { 2122 retval = -EIO; 2123 goto error_out; 2124 } 2125 if (retval == POSITION_FOUND) { 2126 reiserfs_warning(inode->i_sb, "PAP-5710", 2127 "entry or pasted byte (%K) exists", 2128 key); 2129 retval = -EEXIST; 2130 goto error_out; 2131 } 2132 #ifdef CONFIG_REISERFS_CHECK 2133 check_research_for_paste(search_path, key); 2134 #endif 2135 } 2136 2137 /* 2138 * Perform balancing after all resources are collected by fix_nodes, 2139 * and accessing them will not risk triggering schedule. 2140 */ 2141 if (retval == CARRY_ON) { 2142 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE); 2143 return 0; 2144 } 2145 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; 2146 error_out: 2147 /* this also releases the path */ 2148 unfix_nodes(&s_paste_balance); 2149 #ifdef REISERQUOTA_DEBUG 2150 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 2151 "reiserquota paste_into_item(): freeing %u id=%u type=%c", 2152 pasted_size, inode->i_uid, 2153 key2type(&key->on_disk_key)); 2154 #endif 2155 depth = reiserfs_write_unlock_nested(sb); 2156 dquot_free_space_nodirty(inode, pasted_size); 2157 reiserfs_write_lock_nested(sb, depth); 2158 return retval; 2159 } 2160 2161 /* 2162 * Insert new item into the buffer at the path. 2163 * th - active transaction handle 2164 * path - path to the inserted item 2165 * ih - pointer to the item header to insert 2166 * body - pointer to the bytes to insert 2167 */ 2168 int reiserfs_insert_item(struct reiserfs_transaction_handle *th, 2169 struct treepath *path, const struct cpu_key *key, 2170 struct item_head *ih, struct inode *inode, 2171 const char *body) 2172 { 2173 struct tree_balance s_ins_balance; 2174 int retval; 2175 int fs_gen = 0; 2176 int quota_bytes = 0; 2177 2178 BUG_ON(!th->t_trans_id); 2179 2180 if (inode) { /* Do we count quotas for item? */ 2181 int depth; 2182 fs_gen = get_generation(inode->i_sb); 2183 quota_bytes = ih_item_len(ih); 2184 2185 /* 2186 * hack so the quota code doesn't have to guess 2187 * if the file has a tail, links are always tails, 2188 * so there's no guessing needed 2189 */ 2190 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih)) 2191 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE; 2192 #ifdef REISERQUOTA_DEBUG 2193 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 2194 "reiserquota insert_item(): allocating %u id=%u type=%c", 2195 quota_bytes, inode->i_uid, head2type(ih)); 2196 #endif 2197 /* 2198 * We can't dirty inode here. It would be immediately 2199 * written but appropriate stat item isn't inserted yet... 2200 */ 2201 depth = reiserfs_write_unlock_nested(inode->i_sb); 2202 retval = dquot_alloc_space_nodirty(inode, quota_bytes); 2203 reiserfs_write_lock_nested(inode->i_sb, depth); 2204 if (retval) { 2205 pathrelse(path); 2206 return retval; 2207 } 2208 } 2209 init_tb_struct(th, &s_ins_balance, th->t_super, path, 2210 IH_SIZE + ih_item_len(ih)); 2211 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2212 s_ins_balance.key = key->on_disk_key; 2213 #endif 2214 /* 2215 * DQUOT_* can schedule, must check to be sure calling 2216 * fix_nodes is safe 2217 */ 2218 if (inode && fs_changed(fs_gen, inode->i_sb)) { 2219 goto search_again; 2220 } 2221 2222 while ((retval = 2223 fix_nodes(M_INSERT, &s_ins_balance, ih, 2224 body)) == REPEAT_SEARCH) { 2225 search_again: 2226 /* file system changed while we were in the fix_nodes */ 2227 PROC_INFO_INC(th->t_super, insert_item_restarted); 2228 retval = search_item(th->t_super, key, path); 2229 if (retval == IO_ERROR) { 2230 retval = -EIO; 2231 goto error_out; 2232 } 2233 if (retval == ITEM_FOUND) { 2234 reiserfs_warning(th->t_super, "PAP-5760", 2235 "key %K already exists in the tree", 2236 key); 2237 retval = -EEXIST; 2238 goto error_out; 2239 } 2240 } 2241 2242 /* make balancing after all resources will be collected at a time */ 2243 if (retval == CARRY_ON) { 2244 do_balance(&s_ins_balance, ih, body, M_INSERT); 2245 return 0; 2246 } 2247 2248 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; 2249 error_out: 2250 /* also releases the path */ 2251 unfix_nodes(&s_ins_balance); 2252 #ifdef REISERQUOTA_DEBUG 2253 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, 2254 "reiserquota insert_item(): freeing %u id=%u type=%c", 2255 quota_bytes, inode->i_uid, head2type(ih)); 2256 #endif 2257 if (inode) { 2258 int depth = reiserfs_write_unlock_nested(inode->i_sb); 2259 dquot_free_space_nodirty(inode, quota_bytes); 2260 reiserfs_write_lock_nested(inode->i_sb, depth); 2261 } 2262 return retval; 2263 } 2264