xref: /openbmc/linux/fs/reiserfs/stree.c (revision ee93961b)
1 /*
2  *  Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 /*
6  *  Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7  *  Programm System Institute
8  *  Pereslavl-Zalessky Russia
9  */
10 
11 /*
12  *  This file contains functions dealing with S+tree
13  *
14  * B_IS_IN_TREE
15  * copy_item_head
16  * comp_short_keys
17  * comp_keys
18  * comp_short_le_keys
19  * le_key2cpu_key
20  * comp_le_keys
21  * bin_search
22  * get_lkey
23  * get_rkey
24  * key_in_buffer
25  * decrement_bcount
26  * reiserfs_check_path
27  * pathrelse_and_restore
28  * pathrelse
29  * search_by_key_reada
30  * search_by_key
31  * search_for_position_by_key
32  * comp_items
33  * prepare_for_direct_item
34  * prepare_for_direntry_item
35  * prepare_for_delete_or_cut
36  * calc_deleted_bytes_number
37  * init_tb_struct
38  * padd_item
39  * reiserfs_delete_item
40  * reiserfs_delete_solid_item
41  * reiserfs_delete_object
42  * maybe_indirect_to_direct
43  * indirect_to_direct_roll_back
44  * reiserfs_cut_from_item
45  * truncate_directory
46  * reiserfs_do_truncate
47  * reiserfs_paste_into_item
48  * reiserfs_insert_item
49  */
50 
51 #include <linux/time.h>
52 #include <linux/string.h>
53 #include <linux/pagemap.h>
54 #include <linux/reiserfs_fs.h>
55 #include <linux/buffer_head.h>
56 #include <linux/quotaops.h>
57 
58 /* Does the buffer contain a disk block which is in the tree. */
59 inline int B_IS_IN_TREE(const struct buffer_head *bh)
60 {
61 
62 	RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
63 	       "PAP-1010: block (%b) has too big level (%z)", bh, bh);
64 
65 	return (B_LEVEL(bh) != FREE_LEVEL);
66 }
67 
68 //
69 // to gets item head in le form
70 //
71 inline void copy_item_head(struct item_head *to,
72 			   const struct item_head *from)
73 {
74 	memcpy(to, from, IH_SIZE);
75 }
76 
77 /* k1 is pointer to on-disk structure which is stored in little-endian
78    form. k2 is pointer to cpu variable. For key of items of the same
79    object this returns 0.
80    Returns: -1 if key1 < key2
81    0 if key1 == key2
82    1 if key1 > key2 */
83 inline int comp_short_keys(const struct reiserfs_key *le_key,
84 			   const struct cpu_key *cpu_key)
85 {
86 	__u32 n;
87 	n = le32_to_cpu(le_key->k_dir_id);
88 	if (n < cpu_key->on_disk_key.k_dir_id)
89 		return -1;
90 	if (n > cpu_key->on_disk_key.k_dir_id)
91 		return 1;
92 	n = le32_to_cpu(le_key->k_objectid);
93 	if (n < cpu_key->on_disk_key.k_objectid)
94 		return -1;
95 	if (n > cpu_key->on_disk_key.k_objectid)
96 		return 1;
97 	return 0;
98 }
99 
100 /* k1 is pointer to on-disk structure which is stored in little-endian
101    form. k2 is pointer to cpu variable.
102    Compare keys using all 4 key fields.
103    Returns: -1 if key1 < key2 0
104    if key1 = key2 1 if key1 > key2 */
105 static inline int comp_keys(const struct reiserfs_key *le_key,
106 			    const struct cpu_key *cpu_key)
107 {
108 	int retval;
109 
110 	retval = comp_short_keys(le_key, cpu_key);
111 	if (retval)
112 		return retval;
113 	if (le_key_k_offset(le_key_version(le_key), le_key) <
114 	    cpu_key_k_offset(cpu_key))
115 		return -1;
116 	if (le_key_k_offset(le_key_version(le_key), le_key) >
117 	    cpu_key_k_offset(cpu_key))
118 		return 1;
119 
120 	if (cpu_key->key_length == 3)
121 		return 0;
122 
123 	/* this part is needed only when tail conversion is in progress */
124 	if (le_key_k_type(le_key_version(le_key), le_key) <
125 	    cpu_key_k_type(cpu_key))
126 		return -1;
127 
128 	if (le_key_k_type(le_key_version(le_key), le_key) >
129 	    cpu_key_k_type(cpu_key))
130 		return 1;
131 
132 	return 0;
133 }
134 
135 inline int comp_short_le_keys(const struct reiserfs_key *key1,
136 			      const struct reiserfs_key *key2)
137 {
138 	__u32 *k1_u32, *k2_u32;
139 	int key_length = REISERFS_SHORT_KEY_LEN;
140 
141 	k1_u32 = (__u32 *) key1;
142 	k2_u32 = (__u32 *) key2;
143 	for (; key_length--; ++k1_u32, ++k2_u32) {
144 		if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
145 			return -1;
146 		if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
147 			return 1;
148 	}
149 	return 0;
150 }
151 
152 inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
153 {
154 	int version;
155 	to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
156 	to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
157 
158 	// find out version of the key
159 	version = le_key_version(from);
160 	to->version = version;
161 	to->on_disk_key.k_offset = le_key_k_offset(version, from);
162 	to->on_disk_key.k_type = le_key_k_type(version, from);
163 }
164 
165 // this does not say which one is bigger, it only returns 1 if keys
166 // are not equal, 0 otherwise
167 inline int comp_le_keys(const struct reiserfs_key *k1,
168 			const struct reiserfs_key *k2)
169 {
170 	return memcmp(k1, k2, sizeof(struct reiserfs_key));
171 }
172 
173 /**************************************************************************
174  *  Binary search toolkit function                                        *
175  *  Search for an item in the array by the item key                       *
176  *  Returns:    1 if found,  0 if not found;                              *
177  *        *pos = number of the searched element if found, else the        *
178  *        number of the first element that is larger than key.            *
179  **************************************************************************/
180 /* For those not familiar with binary search: lbound is the leftmost item that it
181  could be, rbound the rightmost item that it could be.  We examine the item
182  halfway between lbound and rbound, and that tells us either that we can increase
183  lbound, or decrease rbound, or that we have found it, or if lbound <= rbound that
184  there are no possible items, and we have not found it. With each examination we
185  cut the number of possible items it could be by one more than half rounded down,
186  or we find it. */
187 static inline int bin_search(const void *key,	/* Key to search for. */
188 			     const void *base,	/* First item in the array. */
189 			     int num,	/* Number of items in the array. */
190 			     int width,	/* Item size in the array.
191 					   searched. Lest the reader be
192 					   confused, note that this is crafted
193 					   as a general function, and when it
194 					   is applied specifically to the array
195 					   of item headers in a node, width
196 					   is actually the item header size not
197 					   the item size. */
198 			     int *pos /* Number of the searched for element. */
199     )
200 {
201 	int rbound, lbound, j;
202 
203 	for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
204 	     lbound <= rbound; j = (rbound + lbound) / 2)
205 		switch (comp_keys
206 			((struct reiserfs_key *)((char *)base + j * width),
207 			 (struct cpu_key *)key)) {
208 		case -1:
209 			lbound = j + 1;
210 			continue;
211 		case 1:
212 			rbound = j - 1;
213 			continue;
214 		case 0:
215 			*pos = j;
216 			return ITEM_FOUND;	/* Key found in the array.  */
217 		}
218 
219 	/* bin_search did not find given key, it returns position of key,
220 	   that is minimal and greater than the given one. */
221 	*pos = lbound;
222 	return ITEM_NOT_FOUND;
223 }
224 
225 #ifdef CONFIG_REISERFS_CHECK
226 extern struct tree_balance *cur_tb;
227 #endif
228 
229 /* Minimal possible key. It is never in the tree. */
230 const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
231 
232 /* Maximal possible key. It is never in the tree. */
233 static const struct reiserfs_key MAX_KEY = {
234 	__constant_cpu_to_le32(0xffffffff),
235 	__constant_cpu_to_le32(0xffffffff),
236 	{{__constant_cpu_to_le32(0xffffffff),
237 	  __constant_cpu_to_le32(0xffffffff)},}
238 };
239 
240 /* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom
241    of the path, and going upwards.  We must check the path's validity at each step.  If the key is not in
242    the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this
243    case we return a special key, either MIN_KEY or MAX_KEY. */
244 static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
245 						  const struct super_block *sb)
246 {
247 	int position, path_offset = chk_path->path_length;
248 	struct buffer_head *parent;
249 
250 	RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
251 	       "PAP-5010: invalid offset in the path");
252 
253 	/* While not higher in path than first element. */
254 	while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
255 
256 		RFALSE(!buffer_uptodate
257 		       (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
258 		       "PAP-5020: parent is not uptodate");
259 
260 		/* Parent at the path is not in the tree now. */
261 		if (!B_IS_IN_TREE
262 		    (parent =
263 		     PATH_OFFSET_PBUFFER(chk_path, path_offset)))
264 			return &MAX_KEY;
265 		/* Check whether position in the parent is correct. */
266 		if ((position =
267 		     PATH_OFFSET_POSITION(chk_path,
268 					  path_offset)) >
269 		    B_NR_ITEMS(parent))
270 			return &MAX_KEY;
271 		/* Check whether parent at the path really points to the child. */
272 		if (B_N_CHILD_NUM(parent, position) !=
273 		    PATH_OFFSET_PBUFFER(chk_path,
274 					path_offset + 1)->b_blocknr)
275 			return &MAX_KEY;
276 		/* Return delimiting key if position in the parent is not equal to zero. */
277 		if (position)
278 			return B_N_PDELIM_KEY(parent, position - 1);
279 	}
280 	/* Return MIN_KEY if we are in the root of the buffer tree. */
281 	if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
282 	    b_blocknr == SB_ROOT_BLOCK(sb))
283 		return &MIN_KEY;
284 	return &MAX_KEY;
285 }
286 
287 /* Get delimiting key of the buffer at the path and its right neighbor. */
288 inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
289 					   const struct super_block *sb)
290 {
291 	int position, path_offset = chk_path->path_length;
292 	struct buffer_head *parent;
293 
294 	RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
295 	       "PAP-5030: invalid offset in the path");
296 
297 	while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
298 
299 		RFALSE(!buffer_uptodate
300 		       (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
301 		       "PAP-5040: parent is not uptodate");
302 
303 		/* Parent at the path is not in the tree now. */
304 		if (!B_IS_IN_TREE
305 		    (parent =
306 		     PATH_OFFSET_PBUFFER(chk_path, path_offset)))
307 			return &MIN_KEY;
308 		/* Check whether position in the parent is correct. */
309 		if ((position =
310 		     PATH_OFFSET_POSITION(chk_path,
311 					  path_offset)) >
312 		    B_NR_ITEMS(parent))
313 			return &MIN_KEY;
314 		/* Check whether parent at the path really points to the child. */
315 		if (B_N_CHILD_NUM(parent, position) !=
316 		    PATH_OFFSET_PBUFFER(chk_path,
317 					path_offset + 1)->b_blocknr)
318 			return &MIN_KEY;
319 		/* Return delimiting key if position in the parent is not the last one. */
320 		if (position != B_NR_ITEMS(parent))
321 			return B_N_PDELIM_KEY(parent, position);
322 	}
323 	/* Return MAX_KEY if we are in the root of the buffer tree. */
324 	if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
325 	    b_blocknr == SB_ROOT_BLOCK(sb))
326 		return &MAX_KEY;
327 	return &MIN_KEY;
328 }
329 
330 /* Check whether a key is contained in the tree rooted from a buffer at a path. */
331 /* This works by looking at the left and right delimiting keys for the buffer in the last path_element in
332    the path.  These delimiting keys are stored at least one level above that buffer in the tree. If the
333    buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in
334    this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */
335 static inline int key_in_buffer(struct treepath *chk_path,	/* Path which should be checked.  */
336 				const struct cpu_key *key,	/* Key which should be checked.   */
337 				struct super_block *sb
338     )
339 {
340 
341 	RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
342 	       || chk_path->path_length > MAX_HEIGHT,
343 	       "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
344 	       key, chk_path->path_length);
345 	RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
346 	       "PAP-5060: device must not be NODEV");
347 
348 	if (comp_keys(get_lkey(chk_path, sb), key) == 1)
349 		/* left delimiting key is bigger, that the key we look for */
350 		return 0;
351 	/*  if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
352 	if (comp_keys(get_rkey(chk_path, sb), key) != 1)
353 		/* key must be less than right delimitiing key */
354 		return 0;
355 	return 1;
356 }
357 
358 int reiserfs_check_path(struct treepath *p)
359 {
360 	RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
361 	       "path not properly relsed");
362 	return 0;
363 }
364 
365 /* Drop the reference to each buffer in a path and restore
366  * dirty bits clean when preparing the buffer for the log.
367  * This version should only be called from fix_nodes() */
368 void pathrelse_and_restore(struct super_block *sb,
369 			   struct treepath *search_path)
370 {
371 	int path_offset = search_path->path_length;
372 
373 	RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
374 	       "clm-4000: invalid path offset");
375 
376 	while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
377 		struct buffer_head *bh;
378 		bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
379 		reiserfs_restore_prepared_buffer(sb, bh);
380 		brelse(bh);
381 	}
382 	search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
383 }
384 
385 /* Drop the reference to each buffer in a path */
386 void pathrelse(struct treepath *search_path)
387 {
388 	int path_offset = search_path->path_length;
389 
390 	RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
391 	       "PAP-5090: invalid path offset");
392 
393 	while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
394 		brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
395 
396 	search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
397 }
398 
399 static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
400 {
401 	struct block_head *blkh;
402 	struct item_head *ih;
403 	int used_space;
404 	int prev_location;
405 	int i;
406 	int nr;
407 
408 	blkh = (struct block_head *)buf;
409 	if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
410 		reiserfs_warning(NULL, "reiserfs-5080",
411 				 "this should be caught earlier");
412 		return 0;
413 	}
414 
415 	nr = blkh_nr_item(blkh);
416 	if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
417 		/* item number is too big or too small */
418 		reiserfs_warning(NULL, "reiserfs-5081",
419 				 "nr_item seems wrong: %z", bh);
420 		return 0;
421 	}
422 	ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
423 	used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
424 	if (used_space != blocksize - blkh_free_space(blkh)) {
425 		/* free space does not match to calculated amount of use space */
426 		reiserfs_warning(NULL, "reiserfs-5082",
427 				 "free space seems wrong: %z", bh);
428 		return 0;
429 	}
430 	// FIXME: it is_leaf will hit performance too much - we may have
431 	// return 1 here
432 
433 	/* check tables of item heads */
434 	ih = (struct item_head *)(buf + BLKH_SIZE);
435 	prev_location = blocksize;
436 	for (i = 0; i < nr; i++, ih++) {
437 		if (le_ih_k_type(ih) == TYPE_ANY) {
438 			reiserfs_warning(NULL, "reiserfs-5083",
439 					 "wrong item type for item %h",
440 					 ih);
441 			return 0;
442 		}
443 		if (ih_location(ih) >= blocksize
444 		    || ih_location(ih) < IH_SIZE * nr) {
445 			reiserfs_warning(NULL, "reiserfs-5084",
446 					 "item location seems wrong: %h",
447 					 ih);
448 			return 0;
449 		}
450 		if (ih_item_len(ih) < 1
451 		    || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
452 			reiserfs_warning(NULL, "reiserfs-5085",
453 					 "item length seems wrong: %h",
454 					 ih);
455 			return 0;
456 		}
457 		if (prev_location - ih_location(ih) != ih_item_len(ih)) {
458 			reiserfs_warning(NULL, "reiserfs-5086",
459 					 "item location seems wrong "
460 					 "(second one): %h", ih);
461 			return 0;
462 		}
463 		prev_location = ih_location(ih);
464 	}
465 
466 	// one may imagine much more checks
467 	return 1;
468 }
469 
470 /* returns 1 if buf looks like an internal node, 0 otherwise */
471 static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
472 {
473 	struct block_head *blkh;
474 	int nr;
475 	int used_space;
476 
477 	blkh = (struct block_head *)buf;
478 	nr = blkh_level(blkh);
479 	if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
480 		/* this level is not possible for internal nodes */
481 		reiserfs_warning(NULL, "reiserfs-5087",
482 				 "this should be caught earlier");
483 		return 0;
484 	}
485 
486 	nr = blkh_nr_item(blkh);
487 	if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
488 		/* for internal which is not root we might check min number of keys */
489 		reiserfs_warning(NULL, "reiserfs-5088",
490 				 "number of key seems wrong: %z", bh);
491 		return 0;
492 	}
493 
494 	used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
495 	if (used_space != blocksize - blkh_free_space(blkh)) {
496 		reiserfs_warning(NULL, "reiserfs-5089",
497 				 "free space seems wrong: %z", bh);
498 		return 0;
499 	}
500 	// one may imagine much more checks
501 	return 1;
502 }
503 
504 // make sure that bh contains formatted node of reiserfs tree of
505 // 'level'-th level
506 static int is_tree_node(struct buffer_head *bh, int level)
507 {
508 	if (B_LEVEL(bh) != level) {
509 		reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
510 				 "not match to the expected one %d",
511 				 B_LEVEL(bh), level);
512 		return 0;
513 	}
514 	if (level == DISK_LEAF_NODE_LEVEL)
515 		return is_leaf(bh->b_data, bh->b_size, bh);
516 
517 	return is_internal(bh->b_data, bh->b_size, bh);
518 }
519 
520 #define SEARCH_BY_KEY_READA 16
521 
522 /* The function is NOT SCHEDULE-SAFE! */
523 static void search_by_key_reada(struct super_block *s,
524 				struct buffer_head **bh,
525 				b_blocknr_t *b, int num)
526 {
527 	int i, j;
528 
529 	for (i = 0; i < num; i++) {
530 		bh[i] = sb_getblk(s, b[i]);
531 	}
532 	for (j = 0; j < i; j++) {
533 		/*
534 		 * note, this needs attention if we are getting rid of the BKL
535 		 * you have to make sure the prepared bit isn't set on this buffer
536 		 */
537 		if (!buffer_uptodate(bh[j]))
538 			ll_rw_block(READA, 1, bh + j);
539 		brelse(bh[j]);
540 	}
541 }
542 
543 /**************************************************************************
544  * Algorithm   SearchByKey                                                *
545  *             look for item in the Disk S+Tree by its key                *
546  * Input:  sb   -  super block                                            *
547  *         key  - pointer to the key to search                            *
548  * Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR                         *
549  *         search_path - path from the root to the needed leaf            *
550  **************************************************************************/
551 
552 /* This function fills up the path from the root to the leaf as it
553    descends the tree looking for the key.  It uses reiserfs_bread to
554    try to find buffers in the cache given their block number.  If it
555    does not find them in the cache it reads them from disk.  For each
556    node search_by_key finds using reiserfs_bread it then uses
557    bin_search to look through that node.  bin_search will find the
558    position of the block_number of the next node if it is looking
559    through an internal node.  If it is looking through a leaf node
560    bin_search will find the position of the item which has key either
561    equal to given key, or which is the maximal key less than the given
562    key.  search_by_key returns a path that must be checked for the
563    correctness of the top of the path but need not be checked for the
564    correctness of the bottom of the path */
565 /* The function is NOT SCHEDULE-SAFE! */
566 int search_by_key(struct super_block *sb, const struct cpu_key *key,	/* Key to search. */
567 		  struct treepath *search_path,/* This structure was
568 						   allocated and initialized
569 						   by the calling
570 						   function. It is filled up
571 						   by this function.  */
572 		  int stop_level	/* How far down the tree to search. To
573 					   stop at leaf level - set to
574 					   DISK_LEAF_NODE_LEVEL */
575     )
576 {
577 	b_blocknr_t block_number;
578 	int expected_level;
579 	struct buffer_head *bh;
580 	struct path_element *last_element;
581 	int node_level, retval;
582 	int right_neighbor_of_leaf_node;
583 	int fs_gen;
584 	struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
585 	b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
586 	int reada_count = 0;
587 
588 #ifdef CONFIG_REISERFS_CHECK
589 	int repeat_counter = 0;
590 #endif
591 
592 	PROC_INFO_INC(sb, search_by_key);
593 
594 	/* As we add each node to a path we increase its count.  This means that
595 	   we must be careful to release all nodes in a path before we either
596 	   discard the path struct or re-use the path struct, as we do here. */
597 
598 	pathrelse(search_path);
599 
600 	right_neighbor_of_leaf_node = 0;
601 
602 	/* With each iteration of this loop we search through the items in the
603 	   current node, and calculate the next current node(next path element)
604 	   for the next iteration of this loop.. */
605 	block_number = SB_ROOT_BLOCK(sb);
606 	expected_level = -1;
607 	while (1) {
608 
609 #ifdef CONFIG_REISERFS_CHECK
610 		if (!(++repeat_counter % 50000))
611 			reiserfs_warning(sb, "PAP-5100",
612 					 "%s: there were %d iterations of "
613 					 "while loop looking for key %K",
614 					 current->comm, repeat_counter,
615 					 key);
616 #endif
617 
618 		/* prep path to have another element added to it. */
619 		last_element =
620 		    PATH_OFFSET_PELEMENT(search_path,
621 					 ++search_path->path_length);
622 		fs_gen = get_generation(sb);
623 
624 		/* Read the next tree node, and set the last element in the path to
625 		   have a pointer to it. */
626 		if ((bh = last_element->pe_buffer =
627 		     sb_getblk(sb, block_number))) {
628 			if (!buffer_uptodate(bh) && reada_count > 1)
629 				search_by_key_reada(sb, reada_bh,
630 						    reada_blocks, reada_count);
631 			ll_rw_block(READ, 1, &bh);
632 			wait_on_buffer(bh);
633 			if (!buffer_uptodate(bh))
634 				goto io_error;
635 		} else {
636 		      io_error:
637 			search_path->path_length--;
638 			pathrelse(search_path);
639 			return IO_ERROR;
640 		}
641 		reada_count = 0;
642 		if (expected_level == -1)
643 			expected_level = SB_TREE_HEIGHT(sb);
644 		expected_level--;
645 
646 		/* It is possible that schedule occurred. We must check whether the key
647 		   to search is still in the tree rooted from the current buffer. If
648 		   not then repeat search from the root. */
649 		if (fs_changed(fs_gen, sb) &&
650 		    (!B_IS_IN_TREE(bh) ||
651 		     B_LEVEL(bh) != expected_level ||
652 		     !key_in_buffer(search_path, key, sb))) {
653 			PROC_INFO_INC(sb, search_by_key_fs_changed);
654 			PROC_INFO_INC(sb, search_by_key_restarted);
655 			PROC_INFO_INC(sb,
656 				      sbk_restarted[expected_level - 1]);
657 			pathrelse(search_path);
658 
659 			/* Get the root block number so that we can repeat the search
660 			   starting from the root. */
661 			block_number = SB_ROOT_BLOCK(sb);
662 			expected_level = -1;
663 			right_neighbor_of_leaf_node = 0;
664 
665 			/* repeat search from the root */
666 			continue;
667 		}
668 
669 		/* only check that the key is in the buffer if key is not
670 		   equal to the MAX_KEY. Latter case is only possible in
671 		   "finish_unfinished()" processing during mount. */
672 		RFALSE(comp_keys(&MAX_KEY, key) &&
673 		       !key_in_buffer(search_path, key, sb),
674 		       "PAP-5130: key is not in the buffer");
675 #ifdef CONFIG_REISERFS_CHECK
676 		if (cur_tb) {
677 			print_cur_tb("5140");
678 			reiserfs_panic(sb, "PAP-5140",
679 				       "schedule occurred in do_balance!");
680 		}
681 #endif
682 
683 		// make sure, that the node contents look like a node of
684 		// certain level
685 		if (!is_tree_node(bh, expected_level)) {
686 			reiserfs_error(sb, "vs-5150",
687 				       "invalid format found in block %ld. "
688 				       "Fsck?", bh->b_blocknr);
689 			pathrelse(search_path);
690 			return IO_ERROR;
691 		}
692 
693 		/* ok, we have acquired next formatted node in the tree */
694 		node_level = B_LEVEL(bh);
695 
696 		PROC_INFO_BH_STAT(sb, bh, node_level - 1);
697 
698 		RFALSE(node_level < stop_level,
699 		       "vs-5152: tree level (%d) is less than stop level (%d)",
700 		       node_level, stop_level);
701 
702 		retval = bin_search(key, B_N_PITEM_HEAD(bh, 0),
703 				      B_NR_ITEMS(bh),
704 				      (node_level ==
705 				       DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
706 				      KEY_SIZE,
707 				      &(last_element->pe_position));
708 		if (node_level == stop_level) {
709 			return retval;
710 		}
711 
712 		/* we are not in the stop level */
713 		if (retval == ITEM_FOUND)
714 			/* item has been found, so we choose the pointer which is to the right of the found one */
715 			last_element->pe_position++;
716 
717 		/* if item was not found we choose the position which is to
718 		   the left of the found item. This requires no code,
719 		   bin_search did it already. */
720 
721 		/* So we have chosen a position in the current node which is
722 		   an internal node.  Now we calculate child block number by
723 		   position in the node. */
724 		block_number =
725 		    B_N_CHILD_NUM(bh, last_element->pe_position);
726 
727 		/* if we are going to read leaf nodes, try for read ahead as well */
728 		if ((search_path->reada & PATH_READA) &&
729 		    node_level == DISK_LEAF_NODE_LEVEL + 1) {
730 			int pos = last_element->pe_position;
731 			int limit = B_NR_ITEMS(bh);
732 			struct reiserfs_key *le_key;
733 
734 			if (search_path->reada & PATH_READA_BACK)
735 				limit = 0;
736 			while (reada_count < SEARCH_BY_KEY_READA) {
737 				if (pos == limit)
738 					break;
739 				reada_blocks[reada_count++] =
740 				    B_N_CHILD_NUM(bh, pos);
741 				if (search_path->reada & PATH_READA_BACK)
742 					pos--;
743 				else
744 					pos++;
745 
746 				/*
747 				 * check to make sure we're in the same object
748 				 */
749 				le_key = B_N_PDELIM_KEY(bh, pos);
750 				if (le32_to_cpu(le_key->k_objectid) !=
751 				    key->on_disk_key.k_objectid) {
752 					break;
753 				}
754 			}
755 		}
756 	}
757 }
758 
759 /* Form the path to an item and position in this item which contains
760    file byte defined by key. If there is no such item
761    corresponding to the key, we point the path to the item with
762    maximal key less than key, and *pos_in_item is set to one
763    past the last entry/byte in the item.  If searching for entry in a
764    directory item, and it is not found, *pos_in_item is set to one
765    entry more than the entry with maximal key which is less than the
766    sought key.
767 
768    Note that if there is no entry in this same node which is one more,
769    then we point to an imaginary entry.  for direct items, the
770    position is in units of bytes, for indirect items the position is
771    in units of blocknr entries, for directory items the position is in
772    units of directory entries.  */
773 
774 /* The function is NOT SCHEDULE-SAFE! */
775 int search_for_position_by_key(struct super_block *sb,	/* Pointer to the super block.          */
776 			       const struct cpu_key *p_cpu_key,	/* Key to search (cpu variable)         */
777 			       struct treepath *search_path	/* Filled up by this function.          */
778     )
779 {
780 	struct item_head *p_le_ih;	/* pointer to on-disk structure */
781 	int blk_size;
782 	loff_t item_offset, offset;
783 	struct reiserfs_dir_entry de;
784 	int retval;
785 
786 	/* If searching for directory entry. */
787 	if (is_direntry_cpu_key(p_cpu_key))
788 		return search_by_entry_key(sb, p_cpu_key, search_path,
789 					   &de);
790 
791 	/* If not searching for directory entry. */
792 
793 	/* If item is found. */
794 	retval = search_item(sb, p_cpu_key, search_path);
795 	if (retval == IO_ERROR)
796 		return retval;
797 	if (retval == ITEM_FOUND) {
798 
799 		RFALSE(!ih_item_len
800 		       (B_N_PITEM_HEAD
801 			(PATH_PLAST_BUFFER(search_path),
802 			 PATH_LAST_POSITION(search_path))),
803 		       "PAP-5165: item length equals zero");
804 
805 		pos_in_item(search_path) = 0;
806 		return POSITION_FOUND;
807 	}
808 
809 	RFALSE(!PATH_LAST_POSITION(search_path),
810 	       "PAP-5170: position equals zero");
811 
812 	/* Item is not found. Set path to the previous item. */
813 	p_le_ih =
814 	    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(search_path),
815 			   --PATH_LAST_POSITION(search_path));
816 	blk_size = sb->s_blocksize;
817 
818 	if (comp_short_keys(&(p_le_ih->ih_key), p_cpu_key)) {
819 		return FILE_NOT_FOUND;
820 	}
821 	// FIXME: quite ugly this far
822 
823 	item_offset = le_ih_k_offset(p_le_ih);
824 	offset = cpu_key_k_offset(p_cpu_key);
825 
826 	/* Needed byte is contained in the item pointed to by the path. */
827 	if (item_offset <= offset &&
828 	    item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
829 		pos_in_item(search_path) = offset - item_offset;
830 		if (is_indirect_le_ih(p_le_ih)) {
831 			pos_in_item(search_path) /= blk_size;
832 		}
833 		return POSITION_FOUND;
834 	}
835 
836 	/* Needed byte is not contained in the item pointed to by the
837 	   path. Set pos_in_item out of the item. */
838 	if (is_indirect_le_ih(p_le_ih))
839 		pos_in_item(search_path) =
840 		    ih_item_len(p_le_ih) / UNFM_P_SIZE;
841 	else
842 		pos_in_item(search_path) = ih_item_len(p_le_ih);
843 
844 	return POSITION_NOT_FOUND;
845 }
846 
847 /* Compare given item and item pointed to by the path. */
848 int comp_items(const struct item_head *stored_ih, const struct treepath *path)
849 {
850 	struct buffer_head *bh = PATH_PLAST_BUFFER(path);
851 	struct item_head *ih;
852 
853 	/* Last buffer at the path is not in the tree. */
854 	if (!B_IS_IN_TREE(bh))
855 		return 1;
856 
857 	/* Last path position is invalid. */
858 	if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
859 		return 1;
860 
861 	/* we need only to know, whether it is the same item */
862 	ih = get_ih(path);
863 	return memcmp(stored_ih, ih, IH_SIZE);
864 }
865 
866 /* unformatted nodes are not logged anymore, ever.  This is safe
867 ** now
868 */
869 #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
870 
871 // block can not be forgotten as it is in I/O or held by someone
872 #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
873 
874 // prepare for delete or cut of direct item
875 static inline int prepare_for_direct_item(struct treepath *path,
876 					  struct item_head *le_ih,
877 					  struct inode *inode,
878 					  loff_t new_file_length, int *cut_size)
879 {
880 	loff_t round_len;
881 
882 	if (new_file_length == max_reiserfs_offset(inode)) {
883 		/* item has to be deleted */
884 		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
885 		return M_DELETE;
886 	}
887 	// new file gets truncated
888 	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
889 		//
890 		round_len = ROUND_UP(new_file_length);
891 		/* this was new_file_length < le_ih ... */
892 		if (round_len < le_ih_k_offset(le_ih)) {
893 			*cut_size = -(IH_SIZE + ih_item_len(le_ih));
894 			return M_DELETE;	/* Delete this item. */
895 		}
896 		/* Calculate first position and size for cutting from item. */
897 		pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
898 		*cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
899 
900 		return M_CUT;	/* Cut from this item. */
901 	}
902 
903 	// old file: items may have any length
904 
905 	if (new_file_length < le_ih_k_offset(le_ih)) {
906 		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
907 		return M_DELETE;	/* Delete this item. */
908 	}
909 	/* Calculate first position and size for cutting from item. */
910 	*cut_size = -(ih_item_len(le_ih) -
911 		      (pos_in_item(path) =
912 		       new_file_length + 1 - le_ih_k_offset(le_ih)));
913 	return M_CUT;		/* Cut from this item. */
914 }
915 
916 static inline int prepare_for_direntry_item(struct treepath *path,
917 					    struct item_head *le_ih,
918 					    struct inode *inode,
919 					    loff_t new_file_length,
920 					    int *cut_size)
921 {
922 	if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
923 	    new_file_length == max_reiserfs_offset(inode)) {
924 		RFALSE(ih_entry_count(le_ih) != 2,
925 		       "PAP-5220: incorrect empty directory item (%h)", le_ih);
926 		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
927 		return M_DELETE;	/* Delete the directory item containing "." and ".." entry. */
928 	}
929 
930 	if (ih_entry_count(le_ih) == 1) {
931 		/* Delete the directory item such as there is one record only
932 		   in this item */
933 		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
934 		return M_DELETE;
935 	}
936 
937 	/* Cut one record from the directory item. */
938 	*cut_size =
939 	    -(DEH_SIZE +
940 	      entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
941 	return M_CUT;
942 }
943 
944 #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
945 
946 /*  If the path points to a directory or direct item, calculate mode and the size cut, for balance.
947     If the path points to an indirect item, remove some number of its unformatted nodes.
948     In case of file truncate calculate whether this item must be deleted/truncated or last
949     unformatted node of this item will be converted to a direct item.
950     This function returns a determination of what balance mode the calling function should employ. */
951 static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, struct inode *inode, struct treepath *path, const struct cpu_key *item_key, int *removed,	/* Number of unformatted nodes which were removed
952 																						   from end of the file. */
953 				      int *cut_size, unsigned long long new_file_length	/* MAX_KEY_OFFSET in case of delete. */
954     )
955 {
956 	struct super_block *sb = inode->i_sb;
957 	struct item_head *p_le_ih = PATH_PITEM_HEAD(path);
958 	struct buffer_head *bh = PATH_PLAST_BUFFER(path);
959 
960 	BUG_ON(!th->t_trans_id);
961 
962 	/* Stat_data item. */
963 	if (is_statdata_le_ih(p_le_ih)) {
964 
965 		RFALSE(new_file_length != max_reiserfs_offset(inode),
966 		       "PAP-5210: mode must be M_DELETE");
967 
968 		*cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
969 		return M_DELETE;
970 	}
971 
972 	/* Directory item. */
973 	if (is_direntry_le_ih(p_le_ih))
974 		return prepare_for_direntry_item(path, p_le_ih, inode,
975 						 new_file_length,
976 						 cut_size);
977 
978 	/* Direct item. */
979 	if (is_direct_le_ih(p_le_ih))
980 		return prepare_for_direct_item(path, p_le_ih, inode,
981 					       new_file_length, cut_size);
982 
983 	/* Case of an indirect item. */
984 	{
985 	    int blk_size = sb->s_blocksize;
986 	    struct item_head s_ih;
987 	    int need_re_search;
988 	    int delete = 0;
989 	    int result = M_CUT;
990 	    int pos = 0;
991 
992 	    if ( new_file_length == max_reiserfs_offset (inode) ) {
993 		/* prepare_for_delete_or_cut() is called by
994 		 * reiserfs_delete_item() */
995 		new_file_length = 0;
996 		delete = 1;
997 	    }
998 
999 	    do {
1000 		need_re_search = 0;
1001 		*cut_size = 0;
1002 		bh = PATH_PLAST_BUFFER(path);
1003 		copy_item_head(&s_ih, PATH_PITEM_HEAD(path));
1004 		pos = I_UNFM_NUM(&s_ih);
1005 
1006 		while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1007 		    __le32 *unfm;
1008 		    __u32 block;
1009 
1010 		    /* Each unformatted block deletion may involve one additional
1011 		     * bitmap block into the transaction, thereby the initial
1012 		     * journal space reservation might not be enough. */
1013 		    if (!delete && (*cut_size) != 0 &&
1014 			reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1015 			break;
1016 
1017 		    unfm = (__le32 *)B_I_PITEM(bh, &s_ih) + pos - 1;
1018 		    block = get_block_num(unfm, 0);
1019 
1020 		    if (block != 0) {
1021 			reiserfs_prepare_for_journal(sb, bh, 1);
1022 			put_block_num(unfm, 0, 0);
1023 			journal_mark_dirty(th, sb, bh);
1024 			reiserfs_free_block(th, inode, block, 1);
1025 		    }
1026 
1027 		    cond_resched();
1028 
1029 		    if (item_moved (&s_ih, path))  {
1030 			need_re_search = 1;
1031 			break;
1032 		    }
1033 
1034 		    pos --;
1035 		    (*removed)++;
1036 		    (*cut_size) -= UNFM_P_SIZE;
1037 
1038 		    if (pos == 0) {
1039 			(*cut_size) -= IH_SIZE;
1040 			result = M_DELETE;
1041 			break;
1042 		    }
1043 		}
1044 		/* a trick.  If the buffer has been logged, this will do nothing.  If
1045 		** we've broken the loop without logging it, it will restore the
1046 		** buffer */
1047 		reiserfs_restore_prepared_buffer(sb, bh);
1048 	    } while (need_re_search &&
1049 		     search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1050 	    pos_in_item(path) = pos * UNFM_P_SIZE;
1051 
1052 	    if (*cut_size == 0) {
1053 		/* Nothing were cut. maybe convert last unformatted node to the
1054 		 * direct item? */
1055 		result = M_CONVERT;
1056 	    }
1057 	    return result;
1058 	}
1059 }
1060 
1061 /* Calculate number of bytes which will be deleted or cut during balance */
1062 static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1063 {
1064 	int del_size;
1065 	struct item_head *p_le_ih = PATH_PITEM_HEAD(tb->tb_path);
1066 
1067 	if (is_statdata_le_ih(p_le_ih))
1068 		return 0;
1069 
1070 	del_size =
1071 	    (mode ==
1072 	     M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1073 	if (is_direntry_le_ih(p_le_ih)) {
1074 		/* return EMPTY_DIR_SIZE; We delete emty directoris only.
1075 		 * we can't use EMPTY_DIR_SIZE, as old format dirs have a different
1076 		 * empty size.  ick. FIXME, is this right? */
1077 		return del_size;
1078 	}
1079 
1080 	if (is_indirect_le_ih(p_le_ih))
1081 		del_size = (del_size / UNFM_P_SIZE) *
1082 				(PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1083 	return del_size;
1084 }
1085 
1086 static void init_tb_struct(struct reiserfs_transaction_handle *th,
1087 			   struct tree_balance *tb,
1088 			   struct super_block *sb,
1089 			   struct treepath *path, int size)
1090 {
1091 
1092 	BUG_ON(!th->t_trans_id);
1093 
1094 	memset(tb, '\0', sizeof(struct tree_balance));
1095 	tb->transaction_handle = th;
1096 	tb->tb_sb = sb;
1097 	tb->tb_path = path;
1098 	PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1099 	PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1100 	tb->insert_size[0] = size;
1101 }
1102 
1103 void padd_item(char *item, int total_length, int length)
1104 {
1105 	int i;
1106 
1107 	for (i = total_length; i > length;)
1108 		item[--i] = 0;
1109 }
1110 
1111 #ifdef REISERQUOTA_DEBUG
1112 char key2type(struct reiserfs_key *ih)
1113 {
1114 	if (is_direntry_le_key(2, ih))
1115 		return 'd';
1116 	if (is_direct_le_key(2, ih))
1117 		return 'D';
1118 	if (is_indirect_le_key(2, ih))
1119 		return 'i';
1120 	if (is_statdata_le_key(2, ih))
1121 		return 's';
1122 	return 'u';
1123 }
1124 
1125 char head2type(struct item_head *ih)
1126 {
1127 	if (is_direntry_le_ih(ih))
1128 		return 'd';
1129 	if (is_direct_le_ih(ih))
1130 		return 'D';
1131 	if (is_indirect_le_ih(ih))
1132 		return 'i';
1133 	if (is_statdata_le_ih(ih))
1134 		return 's';
1135 	return 'u';
1136 }
1137 #endif
1138 
1139 /* Delete object item.
1140  * th       - active transaction handle
1141  * path     - path to the deleted item
1142  * item_key - key to search for the deleted item
1143  * indode   - used for updating i_blocks and quotas
1144  * un_bh    - NULL or unformatted node pointer
1145  */
1146 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1147 			 struct treepath *path, const struct cpu_key *item_key,
1148 			 struct inode *inode, struct buffer_head *un_bh)
1149 {
1150 	struct super_block *sb = inode->i_sb;
1151 	struct tree_balance s_del_balance;
1152 	struct item_head s_ih;
1153 	struct item_head *q_ih;
1154 	int quota_cut_bytes;
1155 	int ret_value, del_size, removed;
1156 
1157 #ifdef CONFIG_REISERFS_CHECK
1158 	char mode;
1159 	int iter = 0;
1160 #endif
1161 
1162 	BUG_ON(!th->t_trans_id);
1163 
1164 	init_tb_struct(th, &s_del_balance, sb, path,
1165 		       0 /*size is unknown */ );
1166 
1167 	while (1) {
1168 		removed = 0;
1169 
1170 #ifdef CONFIG_REISERFS_CHECK
1171 		iter++;
1172 		mode =
1173 #endif
1174 		    prepare_for_delete_or_cut(th, inode, path,
1175 					      item_key, &removed,
1176 					      &del_size,
1177 					      max_reiserfs_offset(inode));
1178 
1179 		RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1180 
1181 		copy_item_head(&s_ih, PATH_PITEM_HEAD(path));
1182 		s_del_balance.insert_size[0] = del_size;
1183 
1184 		ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1185 		if (ret_value != REPEAT_SEARCH)
1186 			break;
1187 
1188 		PROC_INFO_INC(sb, delete_item_restarted);
1189 
1190 		// file system changed, repeat search
1191 		ret_value =
1192 		    search_for_position_by_key(sb, item_key, path);
1193 		if (ret_value == IO_ERROR)
1194 			break;
1195 		if (ret_value == FILE_NOT_FOUND) {
1196 			reiserfs_warning(sb, "vs-5340",
1197 					 "no items of the file %K found",
1198 					 item_key);
1199 			break;
1200 		}
1201 	}			/* while (1) */
1202 
1203 	if (ret_value != CARRY_ON) {
1204 		unfix_nodes(&s_del_balance);
1205 		return 0;
1206 	}
1207 	// reiserfs_delete_item returns item length when success
1208 	ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1209 	q_ih = get_ih(path);
1210 	quota_cut_bytes = ih_item_len(q_ih);
1211 
1212 	/* hack so the quota code doesn't have to guess if the file
1213 	 ** has a tail.  On tail insert, we allocate quota for 1 unformatted node.
1214 	 ** We test the offset because the tail might have been
1215 	 ** split into multiple items, and we only want to decrement for
1216 	 ** the unfm node once
1217 	 */
1218 	if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1219 		if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1220 			quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1221 		} else {
1222 			quota_cut_bytes = 0;
1223 		}
1224 	}
1225 
1226 	if (un_bh) {
1227 		int off;
1228 		char *data;
1229 
1230 		/* We are in direct2indirect conversion, so move tail contents
1231 		   to the unformatted node */
1232 		/* note, we do the copy before preparing the buffer because we
1233 		 ** don't care about the contents of the unformatted node yet.
1234 		 ** the only thing we really care about is the direct item's data
1235 		 ** is in the unformatted node.
1236 		 **
1237 		 ** Otherwise, we would have to call reiserfs_prepare_for_journal on
1238 		 ** the unformatted node, which might schedule, meaning we'd have to
1239 		 ** loop all the way back up to the start of the while loop.
1240 		 **
1241 		 ** The unformatted node must be dirtied later on.  We can't be
1242 		 ** sure here if the entire tail has been deleted yet.
1243 		 **
1244 		 ** un_bh is from the page cache (all unformatted nodes are
1245 		 ** from the page cache) and might be a highmem page.  So, we
1246 		 ** can't use un_bh->b_data.
1247 		 ** -clm
1248 		 */
1249 
1250 		data = kmap_atomic(un_bh->b_page, KM_USER0);
1251 		off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_CACHE_SIZE - 1));
1252 		memcpy(data + off,
1253 		       B_I_PITEM(PATH_PLAST_BUFFER(path), &s_ih),
1254 		       ret_value);
1255 		kunmap_atomic(data, KM_USER0);
1256 	}
1257 	/* Perform balancing after all resources have been collected at once. */
1258 	do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1259 
1260 #ifdef REISERQUOTA_DEBUG
1261 	reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1262 		       "reiserquota delete_item(): freeing %u, id=%u type=%c",
1263 		       quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1264 #endif
1265 	DQUOT_FREE_SPACE_NODIRTY(inode, quota_cut_bytes);
1266 
1267 	/* Return deleted body length */
1268 	return ret_value;
1269 }
1270 
1271 /* Summary Of Mechanisms For Handling Collisions Between Processes:
1272 
1273  deletion of the body of the object is performed by iput(), with the
1274  result that if multiple processes are operating on a file, the
1275  deletion of the body of the file is deferred until the last process
1276  that has an open inode performs its iput().
1277 
1278  writes and truncates are protected from collisions by use of
1279  semaphores.
1280 
1281  creates, linking, and mknod are protected from collisions with other
1282  processes by making the reiserfs_add_entry() the last step in the
1283  creation, and then rolling back all changes if there was a collision.
1284  - Hans
1285 */
1286 
1287 /* this deletes item which never gets split */
1288 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1289 				struct inode *inode, struct reiserfs_key *key)
1290 {
1291 	struct tree_balance tb;
1292 	INITIALIZE_PATH(path);
1293 	int item_len = 0;
1294 	int tb_init = 0;
1295 	struct cpu_key cpu_key;
1296 	int retval;
1297 	int quota_cut_bytes = 0;
1298 
1299 	BUG_ON(!th->t_trans_id);
1300 
1301 	le_key2cpu_key(&cpu_key, key);
1302 
1303 	while (1) {
1304 		retval = search_item(th->t_super, &cpu_key, &path);
1305 		if (retval == IO_ERROR) {
1306 			reiserfs_error(th->t_super, "vs-5350",
1307 				       "i/o failure occurred trying "
1308 				       "to delete %K", &cpu_key);
1309 			break;
1310 		}
1311 		if (retval != ITEM_FOUND) {
1312 			pathrelse(&path);
1313 			// No need for a warning, if there is just no free space to insert '..' item into the newly-created subdir
1314 			if (!
1315 			    ((unsigned long long)
1316 			     GET_HASH_VALUE(le_key_k_offset
1317 					    (le_key_version(key), key)) == 0
1318 			     && (unsigned long long)
1319 			     GET_GENERATION_NUMBER(le_key_k_offset
1320 						   (le_key_version(key),
1321 						    key)) == 1))
1322 				reiserfs_warning(th->t_super, "vs-5355",
1323 						 "%k not found", key);
1324 			break;
1325 		}
1326 		if (!tb_init) {
1327 			tb_init = 1;
1328 			item_len = ih_item_len(PATH_PITEM_HEAD(&path));
1329 			init_tb_struct(th, &tb, th->t_super, &path,
1330 				       -(IH_SIZE + item_len));
1331 		}
1332 		quota_cut_bytes = ih_item_len(PATH_PITEM_HEAD(&path));
1333 
1334 		retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1335 		if (retval == REPEAT_SEARCH) {
1336 			PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1337 			continue;
1338 		}
1339 
1340 		if (retval == CARRY_ON) {
1341 			do_balance(&tb, NULL, NULL, M_DELETE);
1342 			if (inode) {	/* Should we count quota for item? (we don't count quotas for save-links) */
1343 #ifdef REISERQUOTA_DEBUG
1344 				reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1345 					       "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1346 					       quota_cut_bytes, inode->i_uid,
1347 					       key2type(key));
1348 #endif
1349 				DQUOT_FREE_SPACE_NODIRTY(inode,
1350 							 quota_cut_bytes);
1351 			}
1352 			break;
1353 		}
1354 		// IO_ERROR, NO_DISK_SPACE, etc
1355 		reiserfs_warning(th->t_super, "vs-5360",
1356 				 "could not delete %K due to fix_nodes failure",
1357 				 &cpu_key);
1358 		unfix_nodes(&tb);
1359 		break;
1360 	}
1361 
1362 	reiserfs_check_path(&path);
1363 }
1364 
1365 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1366 			   struct inode *inode)
1367 {
1368 	int err;
1369 	inode->i_size = 0;
1370 	BUG_ON(!th->t_trans_id);
1371 
1372 	/* for directory this deletes item containing "." and ".." */
1373 	err =
1374 	    reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1375 	if (err)
1376 		return err;
1377 
1378 #if defined( USE_INODE_GENERATION_COUNTER )
1379 	if (!old_format_only(th->t_super)) {
1380 		__le32 *inode_generation;
1381 
1382 		inode_generation =
1383 		    &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1384 		le32_add_cpu(inode_generation, 1);
1385 	}
1386 /* USE_INODE_GENERATION_COUNTER */
1387 #endif
1388 	reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1389 
1390 	return err;
1391 }
1392 
1393 static void unmap_buffers(struct page *page, loff_t pos)
1394 {
1395 	struct buffer_head *bh;
1396 	struct buffer_head *head;
1397 	struct buffer_head *next;
1398 	unsigned long tail_index;
1399 	unsigned long cur_index;
1400 
1401 	if (page) {
1402 		if (page_has_buffers(page)) {
1403 			tail_index = pos & (PAGE_CACHE_SIZE - 1);
1404 			cur_index = 0;
1405 			head = page_buffers(page);
1406 			bh = head;
1407 			do {
1408 				next = bh->b_this_page;
1409 
1410 				/* we want to unmap the buffers that contain the tail, and
1411 				 ** all the buffers after it (since the tail must be at the
1412 				 ** end of the file).  We don't want to unmap file data
1413 				 ** before the tail, since it might be dirty and waiting to
1414 				 ** reach disk
1415 				 */
1416 				cur_index += bh->b_size;
1417 				if (cur_index > tail_index) {
1418 					reiserfs_unmap_buffer(bh);
1419 				}
1420 				bh = next;
1421 			} while (bh != head);
1422 		}
1423 	}
1424 }
1425 
1426 static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1427 				    struct inode *inode,
1428 				    struct page *page,
1429 				    struct treepath *path,
1430 				    const struct cpu_key *item_key,
1431 				    loff_t new_file_size, char *mode)
1432 {
1433 	struct super_block *sb = inode->i_sb;
1434 	int block_size = sb->s_blocksize;
1435 	int cut_bytes;
1436 	BUG_ON(!th->t_trans_id);
1437 	BUG_ON(new_file_size != inode->i_size);
1438 
1439 	/* the page being sent in could be NULL if there was an i/o error
1440 	 ** reading in the last block.  The user will hit problems trying to
1441 	 ** read the file, but for now we just skip the indirect2direct
1442 	 */
1443 	if (atomic_read(&inode->i_count) > 1 ||
1444 	    !tail_has_to_be_packed(inode) ||
1445 	    !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1446 		/* leave tail in an unformatted node */
1447 		*mode = M_SKIP_BALANCING;
1448 		cut_bytes =
1449 		    block_size - (new_file_size & (block_size - 1));
1450 		pathrelse(path);
1451 		return cut_bytes;
1452 	}
1453 	/* Perform the conversion to a direct_item. */
1454 	/* return indirect_to_direct(inode, path, item_key,
1455 				  new_file_size, mode); */
1456 	return indirect2direct(th, inode, page, path, item_key,
1457 			       new_file_size, mode);
1458 }
1459 
1460 /* we did indirect_to_direct conversion. And we have inserted direct
1461    item successesfully, but there were no disk space to cut unfm
1462    pointer being converted. Therefore we have to delete inserted
1463    direct item(s) */
1464 static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1465 					 struct inode *inode, struct treepath *path)
1466 {
1467 	struct cpu_key tail_key;
1468 	int tail_len;
1469 	int removed;
1470 	BUG_ON(!th->t_trans_id);
1471 
1472 	make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);	// !!!!
1473 	tail_key.key_length = 4;
1474 
1475 	tail_len =
1476 	    (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1477 	while (tail_len) {
1478 		/* look for the last byte of the tail */
1479 		if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1480 		    POSITION_NOT_FOUND)
1481 			reiserfs_panic(inode->i_sb, "vs-5615",
1482 				       "found invalid item");
1483 		RFALSE(path->pos_in_item !=
1484 		       ih_item_len(PATH_PITEM_HEAD(path)) - 1,
1485 		       "vs-5616: appended bytes found");
1486 		PATH_LAST_POSITION(path)--;
1487 
1488 		removed =
1489 		    reiserfs_delete_item(th, path, &tail_key, inode,
1490 					 NULL /*unbh not needed */ );
1491 		RFALSE(removed <= 0
1492 		       || removed > tail_len,
1493 		       "vs-5617: there was tail %d bytes, removed item length %d bytes",
1494 		       tail_len, removed);
1495 		tail_len -= removed;
1496 		set_cpu_key_k_offset(&tail_key,
1497 				     cpu_key_k_offset(&tail_key) - removed);
1498 	}
1499 	reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1500 			 "conversion has been rolled back due to "
1501 			 "lack of disk space");
1502 	//mark_file_without_tail (inode);
1503 	mark_inode_dirty(inode);
1504 }
1505 
1506 /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1507 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1508 			   struct treepath *path,
1509 			   struct cpu_key *item_key,
1510 			   struct inode *inode,
1511 			   struct page *page, loff_t new_file_size)
1512 {
1513 	struct super_block *sb = inode->i_sb;
1514 	/* Every function which is going to call do_balance must first
1515 	   create a tree_balance structure.  Then it must fill up this
1516 	   structure by using the init_tb_struct and fix_nodes functions.
1517 	   After that we can make tree balancing. */
1518 	struct tree_balance s_cut_balance;
1519 	struct item_head *p_le_ih;
1520 	int cut_size = 0,	/* Amount to be cut. */
1521 	    ret_value = CARRY_ON, removed = 0,	/* Number of the removed unformatted nodes. */
1522 	    is_inode_locked = 0;
1523 	char mode;		/* Mode of the balance. */
1524 	int retval2 = -1;
1525 	int quota_cut_bytes;
1526 	loff_t tail_pos = 0;
1527 
1528 	BUG_ON(!th->t_trans_id);
1529 
1530 	init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1531 		       cut_size);
1532 
1533 	/* Repeat this loop until we either cut the item without needing
1534 	   to balance, or we fix_nodes without schedule occurring */
1535 	while (1) {
1536 		/* Determine the balance mode, position of the first byte to
1537 		   be cut, and size to be cut.  In case of the indirect item
1538 		   free unformatted nodes which are pointed to by the cut
1539 		   pointers. */
1540 
1541 		mode =
1542 		    prepare_for_delete_or_cut(th, inode, path,
1543 					      item_key, &removed,
1544 					      &cut_size, new_file_size);
1545 		if (mode == M_CONVERT) {
1546 			/* convert last unformatted node to direct item or leave
1547 			   tail in the unformatted node */
1548 			RFALSE(ret_value != CARRY_ON,
1549 			       "PAP-5570: can not convert twice");
1550 
1551 			ret_value =
1552 			    maybe_indirect_to_direct(th, inode, page,
1553 						     path, item_key,
1554 						     new_file_size, &mode);
1555 			if (mode == M_SKIP_BALANCING)
1556 				/* tail has been left in the unformatted node */
1557 				return ret_value;
1558 
1559 			is_inode_locked = 1;
1560 
1561 			/* removing of last unformatted node will change value we
1562 			   have to return to truncate. Save it */
1563 			retval2 = ret_value;
1564 			/*retval2 = sb->s_blocksize - (new_file_size & (sb->s_blocksize - 1)); */
1565 
1566 			/* So, we have performed the first part of the conversion:
1567 			   inserting the new direct item.  Now we are removing the
1568 			   last unformatted node pointer. Set key to search for
1569 			   it. */
1570 			set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1571 			item_key->key_length = 4;
1572 			new_file_size -=
1573 			    (new_file_size & (sb->s_blocksize - 1));
1574 			tail_pos = new_file_size;
1575 			set_cpu_key_k_offset(item_key, new_file_size + 1);
1576 			if (search_for_position_by_key
1577 			    (sb, item_key,
1578 			     path) == POSITION_NOT_FOUND) {
1579 				print_block(PATH_PLAST_BUFFER(path), 3,
1580 					    PATH_LAST_POSITION(path) - 1,
1581 					    PATH_LAST_POSITION(path) + 1);
1582 				reiserfs_panic(sb, "PAP-5580", "item to "
1583 					       "convert does not exist (%K)",
1584 					       item_key);
1585 			}
1586 			continue;
1587 		}
1588 		if (cut_size == 0) {
1589 			pathrelse(path);
1590 			return 0;
1591 		}
1592 
1593 		s_cut_balance.insert_size[0] = cut_size;
1594 
1595 		ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1596 		if (ret_value != REPEAT_SEARCH)
1597 			break;
1598 
1599 		PROC_INFO_INC(sb, cut_from_item_restarted);
1600 
1601 		ret_value =
1602 		    search_for_position_by_key(sb, item_key, path);
1603 		if (ret_value == POSITION_FOUND)
1604 			continue;
1605 
1606 		reiserfs_warning(sb, "PAP-5610", "item %K not found",
1607 				 item_key);
1608 		unfix_nodes(&s_cut_balance);
1609 		return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1610 	}			/* while */
1611 
1612 	// check fix_nodes results (IO_ERROR or NO_DISK_SPACE)
1613 	if (ret_value != CARRY_ON) {
1614 		if (is_inode_locked) {
1615 			// FIXME: this seems to be not needed: we are always able
1616 			// to cut item
1617 			indirect_to_direct_roll_back(th, inode, path);
1618 		}
1619 		if (ret_value == NO_DISK_SPACE)
1620 			reiserfs_warning(sb, "reiserfs-5092",
1621 					 "NO_DISK_SPACE");
1622 		unfix_nodes(&s_cut_balance);
1623 		return -EIO;
1624 	}
1625 
1626 	/* go ahead and perform balancing */
1627 
1628 	RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1629 
1630 	/* Calculate number of bytes that need to be cut from the item. */
1631 	quota_cut_bytes =
1632 	    (mode ==
1633 	     M_DELETE) ? ih_item_len(get_ih(path)) : -s_cut_balance.
1634 	    insert_size[0];
1635 	if (retval2 == -1)
1636 		ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1637 	else
1638 		ret_value = retval2;
1639 
1640 	/* For direct items, we only change the quota when deleting the last
1641 	 ** item.
1642 	 */
1643 	p_le_ih = PATH_PITEM_HEAD(s_cut_balance.tb_path);
1644 	if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1645 		if (mode == M_DELETE &&
1646 		    (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1647 		    1) {
1648 			// FIXME: this is to keep 3.5 happy
1649 			REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1650 			quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1651 		} else {
1652 			quota_cut_bytes = 0;
1653 		}
1654 	}
1655 #ifdef CONFIG_REISERFS_CHECK
1656 	if (is_inode_locked) {
1657 		struct item_head *le_ih =
1658 		    PATH_PITEM_HEAD(s_cut_balance.tb_path);
1659 		/* we are going to complete indirect2direct conversion. Make
1660 		   sure, that we exactly remove last unformatted node pointer
1661 		   of the item */
1662 		if (!is_indirect_le_ih(le_ih))
1663 			reiserfs_panic(sb, "vs-5652",
1664 				       "item must be indirect %h", le_ih);
1665 
1666 		if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1667 			reiserfs_panic(sb, "vs-5653", "completing "
1668 				       "indirect2direct conversion indirect "
1669 				       "item %h being deleted must be of "
1670 				       "4 byte long", le_ih);
1671 
1672 		if (mode == M_CUT
1673 		    && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1674 			reiserfs_panic(sb, "vs-5654", "can not complete "
1675 				       "indirect2direct conversion of %h "
1676 				       "(CUT, insert_size==%d)",
1677 				       le_ih, s_cut_balance.insert_size[0]);
1678 		}
1679 		/* it would be useful to make sure, that right neighboring
1680 		   item is direct item of this file */
1681 	}
1682 #endif
1683 
1684 	do_balance(&s_cut_balance, NULL, NULL, mode);
1685 	if (is_inode_locked) {
1686 		/* we've done an indirect->direct conversion.  when the data block
1687 		 ** was freed, it was removed from the list of blocks that must
1688 		 ** be flushed before the transaction commits, make sure to
1689 		 ** unmap and invalidate it
1690 		 */
1691 		unmap_buffers(page, tail_pos);
1692 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1693 	}
1694 #ifdef REISERQUOTA_DEBUG
1695 	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1696 		       "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1697 		       quota_cut_bytes, inode->i_uid, '?');
1698 #endif
1699 	DQUOT_FREE_SPACE_NODIRTY(inode, quota_cut_bytes);
1700 	return ret_value;
1701 }
1702 
1703 static void truncate_directory(struct reiserfs_transaction_handle *th,
1704 			       struct inode *inode)
1705 {
1706 	BUG_ON(!th->t_trans_id);
1707 	if (inode->i_nlink)
1708 		reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1709 
1710 	set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1711 	set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1712 	reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1713 	reiserfs_update_sd(th, inode);
1714 	set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1715 	set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1716 }
1717 
1718 /* Truncate file to the new size. Note, this must be called with a transaction
1719    already started */
1720 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1721 			  struct inode *inode,	/* ->i_size contains new size */
1722 			 struct page *page,	/* up to date for last block */
1723 			 int update_timestamps	/* when it is called by
1724 						   file_release to convert
1725 						   the tail - no timestamps
1726 						   should be updated */
1727     )
1728 {
1729 	INITIALIZE_PATH(s_search_path);	/* Path to the current object item. */
1730 	struct item_head *p_le_ih;	/* Pointer to an item header. */
1731 	struct cpu_key s_item_key;	/* Key to search for a previous file item. */
1732 	loff_t file_size,	/* Old file size. */
1733 	 new_file_size;	/* New file size. */
1734 	int deleted;		/* Number of deleted or truncated bytes. */
1735 	int retval;
1736 	int err = 0;
1737 
1738 	BUG_ON(!th->t_trans_id);
1739 	if (!
1740 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1741 	     || S_ISLNK(inode->i_mode)))
1742 		return 0;
1743 
1744 	if (S_ISDIR(inode->i_mode)) {
1745 		// deletion of directory - no need to update timestamps
1746 		truncate_directory(th, inode);
1747 		return 0;
1748 	}
1749 
1750 	/* Get new file size. */
1751 	new_file_size = inode->i_size;
1752 
1753 	// FIXME: note, that key type is unimportant here
1754 	make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1755 		     TYPE_DIRECT, 3);
1756 
1757 	retval =
1758 	    search_for_position_by_key(inode->i_sb, &s_item_key,
1759 				       &s_search_path);
1760 	if (retval == IO_ERROR) {
1761 		reiserfs_error(inode->i_sb, "vs-5657",
1762 			       "i/o failure occurred trying to truncate %K",
1763 			       &s_item_key);
1764 		err = -EIO;
1765 		goto out;
1766 	}
1767 	if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1768 		reiserfs_error(inode->i_sb, "PAP-5660",
1769 			       "wrong result %d of search for %K", retval,
1770 			       &s_item_key);
1771 
1772 		err = -EIO;
1773 		goto out;
1774 	}
1775 
1776 	s_search_path.pos_in_item--;
1777 
1778 	/* Get real file size (total length of all file items) */
1779 	p_le_ih = PATH_PITEM_HEAD(&s_search_path);
1780 	if (is_statdata_le_ih(p_le_ih))
1781 		file_size = 0;
1782 	else {
1783 		loff_t offset = le_ih_k_offset(p_le_ih);
1784 		int bytes =
1785 		    op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1786 
1787 		/* this may mismatch with real file size: if last direct item
1788 		   had no padding zeros and last unformatted node had no free
1789 		   space, this file would have this file size */
1790 		file_size = offset + bytes - 1;
1791 	}
1792 	/*
1793 	 * are we doing a full truncate or delete, if so
1794 	 * kick in the reada code
1795 	 */
1796 	if (new_file_size == 0)
1797 		s_search_path.reada = PATH_READA | PATH_READA_BACK;
1798 
1799 	if (file_size == 0 || file_size < new_file_size) {
1800 		goto update_and_out;
1801 	}
1802 
1803 	/* Update key to search for the last file item. */
1804 	set_cpu_key_k_offset(&s_item_key, file_size);
1805 
1806 	do {
1807 		/* Cut or delete file item. */
1808 		deleted =
1809 		    reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1810 					   inode, page, new_file_size);
1811 		if (deleted < 0) {
1812 			reiserfs_warning(inode->i_sb, "vs-5665",
1813 					 "reiserfs_cut_from_item failed");
1814 			reiserfs_check_path(&s_search_path);
1815 			return 0;
1816 		}
1817 
1818 		RFALSE(deleted > file_size,
1819 		       "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1820 		       deleted, file_size, &s_item_key);
1821 
1822 		/* Change key to search the last file item. */
1823 		file_size -= deleted;
1824 
1825 		set_cpu_key_k_offset(&s_item_key, file_size);
1826 
1827 		/* While there are bytes to truncate and previous file item is presented in the tree. */
1828 
1829 		/*
1830 		 ** This loop could take a really long time, and could log
1831 		 ** many more blocks than a transaction can hold.  So, we do a polite
1832 		 ** journal end here, and if the transaction needs ending, we make
1833 		 ** sure the file is consistent before ending the current trans
1834 		 ** and starting a new one
1835 		 */
1836 		if (journal_transaction_should_end(th, 0) ||
1837 		    reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1838 			int orig_len_alloc = th->t_blocks_allocated;
1839 			pathrelse(&s_search_path);
1840 
1841 			if (update_timestamps) {
1842 				inode->i_mtime = CURRENT_TIME_SEC;
1843 				inode->i_ctime = CURRENT_TIME_SEC;
1844 			}
1845 			reiserfs_update_sd(th, inode);
1846 
1847 			err = journal_end(th, inode->i_sb, orig_len_alloc);
1848 			if (err)
1849 				goto out;
1850 			err = journal_begin(th, inode->i_sb,
1851 					    JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
1852 			if (err)
1853 				goto out;
1854 			reiserfs_update_inode_transaction(inode);
1855 		}
1856 	} while (file_size > ROUND_UP(new_file_size) &&
1857 		 search_for_position_by_key(inode->i_sb, &s_item_key,
1858 					    &s_search_path) == POSITION_FOUND);
1859 
1860 	RFALSE(file_size > ROUND_UP(new_file_size),
1861 	       "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d",
1862 	       new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
1863 
1864       update_and_out:
1865 	if (update_timestamps) {
1866 		// this is truncate, not file closing
1867 		inode->i_mtime = CURRENT_TIME_SEC;
1868 		inode->i_ctime = CURRENT_TIME_SEC;
1869 	}
1870 	reiserfs_update_sd(th, inode);
1871 
1872       out:
1873 	pathrelse(&s_search_path);
1874 	return err;
1875 }
1876 
1877 #ifdef CONFIG_REISERFS_CHECK
1878 // this makes sure, that we __append__, not overwrite or add holes
1879 static void check_research_for_paste(struct treepath *path,
1880 				     const struct cpu_key *key)
1881 {
1882 	struct item_head *found_ih = get_ih(path);
1883 
1884 	if (is_direct_le_ih(found_ih)) {
1885 		if (le_ih_k_offset(found_ih) +
1886 		    op_bytes_number(found_ih,
1887 				    get_last_bh(path)->b_size) !=
1888 		    cpu_key_k_offset(key)
1889 		    || op_bytes_number(found_ih,
1890 				       get_last_bh(path)->b_size) !=
1891 		    pos_in_item(path))
1892 			reiserfs_panic(NULL, "PAP-5720", "found direct item "
1893 				       "%h or position (%d) does not match "
1894 				       "to key %K", found_ih,
1895 				       pos_in_item(path), key);
1896 	}
1897 	if (is_indirect_le_ih(found_ih)) {
1898 		if (le_ih_k_offset(found_ih) +
1899 		    op_bytes_number(found_ih,
1900 				    get_last_bh(path)->b_size) !=
1901 		    cpu_key_k_offset(key)
1902 		    || I_UNFM_NUM(found_ih) != pos_in_item(path)
1903 		    || get_ih_free_space(found_ih) != 0)
1904 			reiserfs_panic(NULL, "PAP-5730", "found indirect "
1905 				       "item (%h) or position (%d) does not "
1906 				       "match to key (%K)",
1907 				       found_ih, pos_in_item(path), key);
1908 	}
1909 }
1910 #endif				/* config reiserfs check */
1911 
1912 /* Paste bytes to the existing item. Returns bytes number pasted into the item. */
1913 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, struct treepath *search_path,	/* Path to the pasted item.	  */
1914 			     const struct cpu_key *key,	/* Key to search for the needed item. */
1915 			     struct inode *inode,	/* Inode item belongs to */
1916 			     const char *body,	/* Pointer to the bytes to paste.    */
1917 			     int pasted_size)
1918 {				/* Size of pasted bytes.             */
1919 	struct tree_balance s_paste_balance;
1920 	int retval;
1921 	int fs_gen;
1922 
1923 	BUG_ON(!th->t_trans_id);
1924 
1925 	fs_gen = get_generation(inode->i_sb);
1926 
1927 #ifdef REISERQUOTA_DEBUG
1928 	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1929 		       "reiserquota paste_into_item(): allocating %u id=%u type=%c",
1930 		       pasted_size, inode->i_uid,
1931 		       key2type(&(key->on_disk_key)));
1932 #endif
1933 
1934 	if (DQUOT_ALLOC_SPACE_NODIRTY(inode, pasted_size)) {
1935 		pathrelse(search_path);
1936 		return -EDQUOT;
1937 	}
1938 	init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
1939 		       pasted_size);
1940 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1941 	s_paste_balance.key = key->on_disk_key;
1942 #endif
1943 
1944 	/* DQUOT_* can schedule, must check before the fix_nodes */
1945 	if (fs_changed(fs_gen, inode->i_sb)) {
1946 		goto search_again;
1947 	}
1948 
1949 	while ((retval =
1950 		fix_nodes(M_PASTE, &s_paste_balance, NULL,
1951 			  body)) == REPEAT_SEARCH) {
1952 	      search_again:
1953 		/* file system changed while we were in the fix_nodes */
1954 		PROC_INFO_INC(th->t_super, paste_into_item_restarted);
1955 		retval =
1956 		    search_for_position_by_key(th->t_super, key,
1957 					       search_path);
1958 		if (retval == IO_ERROR) {
1959 			retval = -EIO;
1960 			goto error_out;
1961 		}
1962 		if (retval == POSITION_FOUND) {
1963 			reiserfs_warning(inode->i_sb, "PAP-5710",
1964 					 "entry or pasted byte (%K) exists",
1965 					 key);
1966 			retval = -EEXIST;
1967 			goto error_out;
1968 		}
1969 #ifdef CONFIG_REISERFS_CHECK
1970 		check_research_for_paste(search_path, key);
1971 #endif
1972 	}
1973 
1974 	/* Perform balancing after all resources are collected by fix_nodes, and
1975 	   accessing them will not risk triggering schedule. */
1976 	if (retval == CARRY_ON) {
1977 		do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
1978 		return 0;
1979 	}
1980 	retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
1981       error_out:
1982 	/* this also releases the path */
1983 	unfix_nodes(&s_paste_balance);
1984 #ifdef REISERQUOTA_DEBUG
1985 	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1986 		       "reiserquota paste_into_item(): freeing %u id=%u type=%c",
1987 		       pasted_size, inode->i_uid,
1988 		       key2type(&(key->on_disk_key)));
1989 #endif
1990 	DQUOT_FREE_SPACE_NODIRTY(inode, pasted_size);
1991 	return retval;
1992 }
1993 
1994 /* Insert new item into the buffer at the path.
1995  * th   - active transaction handle
1996  * path - path to the inserted item
1997  * ih   - pointer to the item header to insert
1998  * body - pointer to the bytes to insert
1999  */
2000 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2001 			 struct treepath *path, const struct cpu_key *key,
2002 			 struct item_head *ih, struct inode *inode,
2003 			 const char *body)
2004 {
2005 	struct tree_balance s_ins_balance;
2006 	int retval;
2007 	int fs_gen = 0;
2008 	int quota_bytes = 0;
2009 
2010 	BUG_ON(!th->t_trans_id);
2011 
2012 	if (inode) {		/* Do we count quotas for item? */
2013 		fs_gen = get_generation(inode->i_sb);
2014 		quota_bytes = ih_item_len(ih);
2015 
2016 		/* hack so the quota code doesn't have to guess if the file has
2017 		 ** a tail, links are always tails, so there's no guessing needed
2018 		 */
2019 		if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2020 			quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2021 #ifdef REISERQUOTA_DEBUG
2022 		reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2023 			       "reiserquota insert_item(): allocating %u id=%u type=%c",
2024 			       quota_bytes, inode->i_uid, head2type(ih));
2025 #endif
2026 		/* We can't dirty inode here. It would be immediately written but
2027 		 * appropriate stat item isn't inserted yet... */
2028 		if (DQUOT_ALLOC_SPACE_NODIRTY(inode, quota_bytes)) {
2029 			pathrelse(path);
2030 			return -EDQUOT;
2031 		}
2032 	}
2033 	init_tb_struct(th, &s_ins_balance, th->t_super, path,
2034 		       IH_SIZE + ih_item_len(ih));
2035 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2036 	s_ins_balance.key = key->on_disk_key;
2037 #endif
2038 	/* DQUOT_* can schedule, must check to be sure calling fix_nodes is safe */
2039 	if (inode && fs_changed(fs_gen, inode->i_sb)) {
2040 		goto search_again;
2041 	}
2042 
2043 	while ((retval =
2044 		fix_nodes(M_INSERT, &s_ins_balance, ih,
2045 			  body)) == REPEAT_SEARCH) {
2046 	      search_again:
2047 		/* file system changed while we were in the fix_nodes */
2048 		PROC_INFO_INC(th->t_super, insert_item_restarted);
2049 		retval = search_item(th->t_super, key, path);
2050 		if (retval == IO_ERROR) {
2051 			retval = -EIO;
2052 			goto error_out;
2053 		}
2054 		if (retval == ITEM_FOUND) {
2055 			reiserfs_warning(th->t_super, "PAP-5760",
2056 					 "key %K already exists in the tree",
2057 					 key);
2058 			retval = -EEXIST;
2059 			goto error_out;
2060 		}
2061 	}
2062 
2063 	/* make balancing after all resources will be collected at a time */
2064 	if (retval == CARRY_ON) {
2065 		do_balance(&s_ins_balance, ih, body, M_INSERT);
2066 		return 0;
2067 	}
2068 
2069 	retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2070       error_out:
2071 	/* also releases the path */
2072 	unfix_nodes(&s_ins_balance);
2073 #ifdef REISERQUOTA_DEBUG
2074 	reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2075 		       "reiserquota insert_item(): freeing %u id=%u type=%c",
2076 		       quota_bytes, inode->i_uid, head2type(ih));
2077 #endif
2078 	if (inode)
2079 		DQUOT_FREE_SPACE_NODIRTY(inode, quota_bytes);
2080 	return retval;
2081 }
2082