1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 /* 6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru 7 * Programm System Institute 8 * Pereslavl-Zalessky Russia 9 */ 10 11 #include <linux/time.h> 12 #include <linux/string.h> 13 #include <linux/pagemap.h> 14 #include <linux/bio.h> 15 #include "reiserfs.h" 16 #include <linux/buffer_head.h> 17 #include <linux/quotaops.h> 18 19 /* Does the buffer contain a disk block which is in the tree. */ 20 inline int B_IS_IN_TREE(const struct buffer_head *bh) 21 { 22 23 RFALSE(B_LEVEL(bh) > MAX_HEIGHT, 24 "PAP-1010: block (%b) has too big level (%z)", bh, bh); 25 26 return (B_LEVEL(bh) != FREE_LEVEL); 27 } 28 29 /* to get item head in le form */ 30 inline void copy_item_head(struct item_head *to, 31 const struct item_head *from) 32 { 33 memcpy(to, from, IH_SIZE); 34 } 35 36 /* 37 * k1 is pointer to on-disk structure which is stored in little-endian 38 * form. k2 is pointer to cpu variable. For key of items of the same 39 * object this returns 0. 40 * Returns: -1 if key1 < key2 41 * 0 if key1 == key2 42 * 1 if key1 > key2 43 */ 44 inline int comp_short_keys(const struct reiserfs_key *le_key, 45 const struct cpu_key *cpu_key) 46 { 47 __u32 n; 48 n = le32_to_cpu(le_key->k_dir_id); 49 if (n < cpu_key->on_disk_key.k_dir_id) 50 return -1; 51 if (n > cpu_key->on_disk_key.k_dir_id) 52 return 1; 53 n = le32_to_cpu(le_key->k_objectid); 54 if (n < cpu_key->on_disk_key.k_objectid) 55 return -1; 56 if (n > cpu_key->on_disk_key.k_objectid) 57 return 1; 58 return 0; 59 } 60 61 /* 62 * k1 is pointer to on-disk structure which is stored in little-endian 63 * form. k2 is pointer to cpu variable. 64 * Compare keys using all 4 key fields. 65 * Returns: -1 if key1 < key2 0 66 * if key1 = key2 1 if key1 > key2 67 */ 68 static inline int comp_keys(const struct reiserfs_key *le_key, 69 const struct cpu_key *cpu_key) 70 { 71 int retval; 72 73 retval = comp_short_keys(le_key, cpu_key); 74 if (retval) 75 return retval; 76 if (le_key_k_offset(le_key_version(le_key), le_key) < 77 cpu_key_k_offset(cpu_key)) 78 return -1; 79 if (le_key_k_offset(le_key_version(le_key), le_key) > 80 cpu_key_k_offset(cpu_key)) 81 return 1; 82 83 if (cpu_key->key_length == 3) 84 return 0; 85 86 /* this part is needed only when tail conversion is in progress */ 87 if (le_key_k_type(le_key_version(le_key), le_key) < 88 cpu_key_k_type(cpu_key)) 89 return -1; 90 91 if (le_key_k_type(le_key_version(le_key), le_key) > 92 cpu_key_k_type(cpu_key)) 93 return 1; 94 95 return 0; 96 } 97 98 inline int comp_short_le_keys(const struct reiserfs_key *key1, 99 const struct reiserfs_key *key2) 100 { 101 __u32 *k1_u32, *k2_u32; 102 int key_length = REISERFS_SHORT_KEY_LEN; 103 104 k1_u32 = (__u32 *) key1; 105 k2_u32 = (__u32 *) key2; 106 for (; key_length--; ++k1_u32, ++k2_u32) { 107 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32)) 108 return -1; 109 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32)) 110 return 1; 111 } 112 return 0; 113 } 114 115 inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from) 116 { 117 int version; 118 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id); 119 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid); 120 121 /* find out version of the key */ 122 version = le_key_version(from); 123 to->version = version; 124 to->on_disk_key.k_offset = le_key_k_offset(version, from); 125 to->on_disk_key.k_type = le_key_k_type(version, from); 126 } 127 128 /* 129 * this does not say which one is bigger, it only returns 1 if keys 130 * are not equal, 0 otherwise 131 */ 132 inline int comp_le_keys(const struct reiserfs_key *k1, 133 const struct reiserfs_key *k2) 134 { 135 return memcmp(k1, k2, sizeof(struct reiserfs_key)); 136 } 137 138 /************************************************************************** 139 * Binary search toolkit function * 140 * Search for an item in the array by the item key * 141 * Returns: 1 if found, 0 if not found; * 142 * *pos = number of the searched element if found, else the * 143 * number of the first element that is larger than key. * 144 **************************************************************************/ 145 /* 146 * For those not familiar with binary search: lbound is the leftmost item 147 * that it could be, rbound the rightmost item that it could be. We examine 148 * the item halfway between lbound and rbound, and that tells us either 149 * that we can increase lbound, or decrease rbound, or that we have found it, 150 * or if lbound <= rbound that there are no possible items, and we have not 151 * found it. With each examination we cut the number of possible items it 152 * could be by one more than half rounded down, or we find it. 153 */ 154 static inline int bin_search(const void *key, /* Key to search for. */ 155 const void *base, /* First item in the array. */ 156 int num, /* Number of items in the array. */ 157 /* 158 * Item size in the array. searched. Lest the 159 * reader be confused, note that this is crafted 160 * as a general function, and when it is applied 161 * specifically to the array of item headers in a 162 * node, width is actually the item header size 163 * not the item size. 164 */ 165 int width, 166 int *pos /* Number of the searched for element. */ 167 ) 168 { 169 int rbound, lbound, j; 170 171 for (j = ((rbound = num - 1) + (lbound = 0)) / 2; 172 lbound <= rbound; j = (rbound + lbound) / 2) 173 switch (comp_keys 174 ((struct reiserfs_key *)((char *)base + j * width), 175 (struct cpu_key *)key)) { 176 case -1: 177 lbound = j + 1; 178 continue; 179 case 1: 180 rbound = j - 1; 181 continue; 182 case 0: 183 *pos = j; 184 return ITEM_FOUND; /* Key found in the array. */ 185 } 186 187 /* 188 * bin_search did not find given key, it returns position of key, 189 * that is minimal and greater than the given one. 190 */ 191 *pos = lbound; 192 return ITEM_NOT_FOUND; 193 } 194 195 196 /* Minimal possible key. It is never in the tree. */ 197 const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} }; 198 199 /* Maximal possible key. It is never in the tree. */ 200 static const struct reiserfs_key MAX_KEY = { 201 cpu_to_le32(0xffffffff), 202 cpu_to_le32(0xffffffff), 203 {{cpu_to_le32(0xffffffff), 204 cpu_to_le32(0xffffffff)},} 205 }; 206 207 /* 208 * Get delimiting key of the buffer by looking for it in the buffers in the 209 * path, starting from the bottom of the path, and going upwards. We must 210 * check the path's validity at each step. If the key is not in the path, 211 * there is no delimiting key in the tree (buffer is first or last buffer 212 * in tree), and in this case we return a special key, either MIN_KEY or 213 * MAX_KEY. 214 */ 215 static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path, 216 const struct super_block *sb) 217 { 218 int position, path_offset = chk_path->path_length; 219 struct buffer_head *parent; 220 221 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET, 222 "PAP-5010: invalid offset in the path"); 223 224 /* While not higher in path than first element. */ 225 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { 226 227 RFALSE(!buffer_uptodate 228 (PATH_OFFSET_PBUFFER(chk_path, path_offset)), 229 "PAP-5020: parent is not uptodate"); 230 231 /* Parent at the path is not in the tree now. */ 232 if (!B_IS_IN_TREE 233 (parent = 234 PATH_OFFSET_PBUFFER(chk_path, path_offset))) 235 return &MAX_KEY; 236 /* Check whether position in the parent is correct. */ 237 if ((position = 238 PATH_OFFSET_POSITION(chk_path, 239 path_offset)) > 240 B_NR_ITEMS(parent)) 241 return &MAX_KEY; 242 /* Check whether parent at the path really points to the child. */ 243 if (B_N_CHILD_NUM(parent, position) != 244 PATH_OFFSET_PBUFFER(chk_path, 245 path_offset + 1)->b_blocknr) 246 return &MAX_KEY; 247 /* 248 * Return delimiting key if position in the parent 249 * is not equal to zero. 250 */ 251 if (position) 252 return internal_key(parent, position - 1); 253 } 254 /* Return MIN_KEY if we are in the root of the buffer tree. */ 255 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)-> 256 b_blocknr == SB_ROOT_BLOCK(sb)) 257 return &MIN_KEY; 258 return &MAX_KEY; 259 } 260 261 /* Get delimiting key of the buffer at the path and its right neighbor. */ 262 inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path, 263 const struct super_block *sb) 264 { 265 int position, path_offset = chk_path->path_length; 266 struct buffer_head *parent; 267 268 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET, 269 "PAP-5030: invalid offset in the path"); 270 271 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { 272 273 RFALSE(!buffer_uptodate 274 (PATH_OFFSET_PBUFFER(chk_path, path_offset)), 275 "PAP-5040: parent is not uptodate"); 276 277 /* Parent at the path is not in the tree now. */ 278 if (!B_IS_IN_TREE 279 (parent = 280 PATH_OFFSET_PBUFFER(chk_path, path_offset))) 281 return &MIN_KEY; 282 /* Check whether position in the parent is correct. */ 283 if ((position = 284 PATH_OFFSET_POSITION(chk_path, 285 path_offset)) > 286 B_NR_ITEMS(parent)) 287 return &MIN_KEY; 288 /* 289 * Check whether parent at the path really points 290 * to the child. 291 */ 292 if (B_N_CHILD_NUM(parent, position) != 293 PATH_OFFSET_PBUFFER(chk_path, 294 path_offset + 1)->b_blocknr) 295 return &MIN_KEY; 296 297 /* 298 * Return delimiting key if position in the parent 299 * is not the last one. 300 */ 301 if (position != B_NR_ITEMS(parent)) 302 return internal_key(parent, position); 303 } 304 305 /* Return MAX_KEY if we are in the root of the buffer tree. */ 306 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)-> 307 b_blocknr == SB_ROOT_BLOCK(sb)) 308 return &MAX_KEY; 309 return &MIN_KEY; 310 } 311 312 /* 313 * Check whether a key is contained in the tree rooted from a buffer at a path. 314 * This works by looking at the left and right delimiting keys for the buffer 315 * in the last path_element in the path. These delimiting keys are stored 316 * at least one level above that buffer in the tree. If the buffer is the 317 * first or last node in the tree order then one of the delimiting keys may 318 * be absent, and in this case get_lkey and get_rkey return a special key 319 * which is MIN_KEY or MAX_KEY. 320 */ 321 static inline int key_in_buffer( 322 /* Path which should be checked. */ 323 struct treepath *chk_path, 324 /* Key which should be checked. */ 325 const struct cpu_key *key, 326 struct super_block *sb 327 ) 328 { 329 330 RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET 331 || chk_path->path_length > MAX_HEIGHT, 332 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)", 333 key, chk_path->path_length); 334 RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev, 335 "PAP-5060: device must not be NODEV"); 336 337 if (comp_keys(get_lkey(chk_path, sb), key) == 1) 338 /* left delimiting key is bigger, that the key we look for */ 339 return 0; 340 /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */ 341 if (comp_keys(get_rkey(chk_path, sb), key) != 1) 342 /* key must be less than right delimitiing key */ 343 return 0; 344 return 1; 345 } 346 347 int reiserfs_check_path(struct treepath *p) 348 { 349 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET, 350 "path not properly relsed"); 351 return 0; 352 } 353 354 /* 355 * Drop the reference to each buffer in a path and restore 356 * dirty bits clean when preparing the buffer for the log. 357 * This version should only be called from fix_nodes() 358 */ 359 void pathrelse_and_restore(struct super_block *sb, 360 struct treepath *search_path) 361 { 362 int path_offset = search_path->path_length; 363 364 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, 365 "clm-4000: invalid path offset"); 366 367 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) { 368 struct buffer_head *bh; 369 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--); 370 reiserfs_restore_prepared_buffer(sb, bh); 371 brelse(bh); 372 } 373 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; 374 } 375 376 /* Drop the reference to each buffer in a path */ 377 void pathrelse(struct treepath *search_path) 378 { 379 int path_offset = search_path->path_length; 380 381 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, 382 "PAP-5090: invalid path offset"); 383 384 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) 385 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--)); 386 387 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; 388 } 389 390 static int is_leaf(char *buf, int blocksize, struct buffer_head *bh) 391 { 392 struct block_head *blkh; 393 struct item_head *ih; 394 int used_space; 395 int prev_location; 396 int i; 397 int nr; 398 399 blkh = (struct block_head *)buf; 400 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) { 401 reiserfs_warning(NULL, "reiserfs-5080", 402 "this should be caught earlier"); 403 return 0; 404 } 405 406 nr = blkh_nr_item(blkh); 407 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) { 408 /* item number is too big or too small */ 409 reiserfs_warning(NULL, "reiserfs-5081", 410 "nr_item seems wrong: %z", bh); 411 return 0; 412 } 413 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1; 414 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih)); 415 416 /* free space does not match to calculated amount of use space */ 417 if (used_space != blocksize - blkh_free_space(blkh)) { 418 reiserfs_warning(NULL, "reiserfs-5082", 419 "free space seems wrong: %z", bh); 420 return 0; 421 } 422 /* 423 * FIXME: it is_leaf will hit performance too much - we may have 424 * return 1 here 425 */ 426 427 /* check tables of item heads */ 428 ih = (struct item_head *)(buf + BLKH_SIZE); 429 prev_location = blocksize; 430 for (i = 0; i < nr; i++, ih++) { 431 if (le_ih_k_type(ih) == TYPE_ANY) { 432 reiserfs_warning(NULL, "reiserfs-5083", 433 "wrong item type for item %h", 434 ih); 435 return 0; 436 } 437 if (ih_location(ih) >= blocksize 438 || ih_location(ih) < IH_SIZE * nr) { 439 reiserfs_warning(NULL, "reiserfs-5084", 440 "item location seems wrong: %h", 441 ih); 442 return 0; 443 } 444 if (ih_item_len(ih) < 1 445 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) { 446 reiserfs_warning(NULL, "reiserfs-5085", 447 "item length seems wrong: %h", 448 ih); 449 return 0; 450 } 451 if (prev_location - ih_location(ih) != ih_item_len(ih)) { 452 reiserfs_warning(NULL, "reiserfs-5086", 453 "item location seems wrong " 454 "(second one): %h", ih); 455 return 0; 456 } 457 prev_location = ih_location(ih); 458 } 459 460 /* one may imagine many more checks */ 461 return 1; 462 } 463 464 /* returns 1 if buf looks like an internal node, 0 otherwise */ 465 static int is_internal(char *buf, int blocksize, struct buffer_head *bh) 466 { 467 struct block_head *blkh; 468 int nr; 469 int used_space; 470 471 blkh = (struct block_head *)buf; 472 nr = blkh_level(blkh); 473 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) { 474 /* this level is not possible for internal nodes */ 475 reiserfs_warning(NULL, "reiserfs-5087", 476 "this should be caught earlier"); 477 return 0; 478 } 479 480 nr = blkh_nr_item(blkh); 481 /* for internal which is not root we might check min number of keys */ 482 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) { 483 reiserfs_warning(NULL, "reiserfs-5088", 484 "number of key seems wrong: %z", bh); 485 return 0; 486 } 487 488 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1); 489 if (used_space != blocksize - blkh_free_space(blkh)) { 490 reiserfs_warning(NULL, "reiserfs-5089", 491 "free space seems wrong: %z", bh); 492 return 0; 493 } 494 495 /* one may imagine many more checks */ 496 return 1; 497 } 498 499 /* 500 * make sure that bh contains formatted node of reiserfs tree of 501 * 'level'-th level 502 */ 503 static int is_tree_node(struct buffer_head *bh, int level) 504 { 505 if (B_LEVEL(bh) != level) { 506 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does " 507 "not match to the expected one %d", 508 B_LEVEL(bh), level); 509 return 0; 510 } 511 if (level == DISK_LEAF_NODE_LEVEL) 512 return is_leaf(bh->b_data, bh->b_size, bh); 513 514 return is_internal(bh->b_data, bh->b_size, bh); 515 } 516 517 #define SEARCH_BY_KEY_READA 16 518 519 /* 520 * The function is NOT SCHEDULE-SAFE! 521 * It might unlock the write lock if we needed to wait for a block 522 * to be read. Note that in this case it won't recover the lock to avoid 523 * high contention resulting from too much lock requests, especially 524 * the caller (search_by_key) will perform other schedule-unsafe 525 * operations just after calling this function. 526 * 527 * @return depth of lock to be restored after read completes 528 */ 529 static int search_by_key_reada(struct super_block *s, 530 struct buffer_head **bh, 531 b_blocknr_t *b, int num) 532 { 533 int i, j; 534 int depth = -1; 535 536 for (i = 0; i < num; i++) { 537 bh[i] = sb_getblk(s, b[i]); 538 } 539 /* 540 * We are going to read some blocks on which we 541 * have a reference. It's safe, though we might be 542 * reading blocks concurrently changed if we release 543 * the lock. But it's still fine because we check later 544 * if the tree changed 545 */ 546 for (j = 0; j < i; j++) { 547 /* 548 * note, this needs attention if we are getting rid of the BKL 549 * you have to make sure the prepared bit isn't set on this 550 * buffer 551 */ 552 if (!buffer_uptodate(bh[j])) { 553 if (depth == -1) 554 depth = reiserfs_write_unlock_nested(s); 555 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, bh + j); 556 } 557 brelse(bh[j]); 558 } 559 return depth; 560 } 561 562 /* 563 * This function fills up the path from the root to the leaf as it 564 * descends the tree looking for the key. It uses reiserfs_bread to 565 * try to find buffers in the cache given their block number. If it 566 * does not find them in the cache it reads them from disk. For each 567 * node search_by_key finds using reiserfs_bread it then uses 568 * bin_search to look through that node. bin_search will find the 569 * position of the block_number of the next node if it is looking 570 * through an internal node. If it is looking through a leaf node 571 * bin_search will find the position of the item which has key either 572 * equal to given key, or which is the maximal key less than the given 573 * key. search_by_key returns a path that must be checked for the 574 * correctness of the top of the path but need not be checked for the 575 * correctness of the bottom of the path 576 */ 577 /* 578 * search_by_key - search for key (and item) in stree 579 * @sb: superblock 580 * @key: pointer to key to search for 581 * @search_path: Allocated and initialized struct treepath; Returned filled 582 * on success. 583 * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to 584 * stop at leaf level. 585 * 586 * The function is NOT SCHEDULE-SAFE! 587 */ 588 int search_by_key(struct super_block *sb, const struct cpu_key *key, 589 struct treepath *search_path, int stop_level) 590 { 591 b_blocknr_t block_number; 592 int expected_level; 593 struct buffer_head *bh; 594 struct path_element *last_element; 595 int node_level, retval; 596 int fs_gen; 597 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA]; 598 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA]; 599 int reada_count = 0; 600 601 #ifdef CONFIG_REISERFS_CHECK 602 int repeat_counter = 0; 603 #endif 604 605 PROC_INFO_INC(sb, search_by_key); 606 607 /* 608 * As we add each node to a path we increase its count. This means 609 * that we must be careful to release all nodes in a path before we 610 * either discard the path struct or re-use the path struct, as we 611 * do here. 612 */ 613 614 pathrelse(search_path); 615 616 /* 617 * With each iteration of this loop we search through the items in the 618 * current node, and calculate the next current node(next path element) 619 * for the next iteration of this loop.. 620 */ 621 block_number = SB_ROOT_BLOCK(sb); 622 expected_level = -1; 623 while (1) { 624 625 #ifdef CONFIG_REISERFS_CHECK 626 if (!(++repeat_counter % 50000)) 627 reiserfs_warning(sb, "PAP-5100", 628 "%s: there were %d iterations of " 629 "while loop looking for key %K", 630 current->comm, repeat_counter, 631 key); 632 #endif 633 634 /* prep path to have another element added to it. */ 635 last_element = 636 PATH_OFFSET_PELEMENT(search_path, 637 ++search_path->path_length); 638 fs_gen = get_generation(sb); 639 640 /* 641 * Read the next tree node, and set the last element 642 * in the path to have a pointer to it. 643 */ 644 if ((bh = last_element->pe_buffer = 645 sb_getblk(sb, block_number))) { 646 647 /* 648 * We'll need to drop the lock if we encounter any 649 * buffers that need to be read. If all of them are 650 * already up to date, we don't need to drop the lock. 651 */ 652 int depth = -1; 653 654 if (!buffer_uptodate(bh) && reada_count > 1) 655 depth = search_by_key_reada(sb, reada_bh, 656 reada_blocks, reada_count); 657 658 if (!buffer_uptodate(bh) && depth == -1) 659 depth = reiserfs_write_unlock_nested(sb); 660 661 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 662 wait_on_buffer(bh); 663 664 if (depth != -1) 665 reiserfs_write_lock_nested(sb, depth); 666 if (!buffer_uptodate(bh)) 667 goto io_error; 668 } else { 669 io_error: 670 search_path->path_length--; 671 pathrelse(search_path); 672 return IO_ERROR; 673 } 674 reada_count = 0; 675 if (expected_level == -1) 676 expected_level = SB_TREE_HEIGHT(sb); 677 expected_level--; 678 679 /* 680 * It is possible that schedule occurred. We must check 681 * whether the key to search is still in the tree rooted 682 * from the current buffer. If not then repeat search 683 * from the root. 684 */ 685 if (fs_changed(fs_gen, sb) && 686 (!B_IS_IN_TREE(bh) || 687 B_LEVEL(bh) != expected_level || 688 !key_in_buffer(search_path, key, sb))) { 689 PROC_INFO_INC(sb, search_by_key_fs_changed); 690 PROC_INFO_INC(sb, search_by_key_restarted); 691 PROC_INFO_INC(sb, 692 sbk_restarted[expected_level - 1]); 693 pathrelse(search_path); 694 695 /* 696 * Get the root block number so that we can 697 * repeat the search starting from the root. 698 */ 699 block_number = SB_ROOT_BLOCK(sb); 700 expected_level = -1; 701 702 /* repeat search from the root */ 703 continue; 704 } 705 706 /* 707 * only check that the key is in the buffer if key is not 708 * equal to the MAX_KEY. Latter case is only possible in 709 * "finish_unfinished()" processing during mount. 710 */ 711 RFALSE(comp_keys(&MAX_KEY, key) && 712 !key_in_buffer(search_path, key, sb), 713 "PAP-5130: key is not in the buffer"); 714 #ifdef CONFIG_REISERFS_CHECK 715 if (REISERFS_SB(sb)->cur_tb) { 716 print_cur_tb("5140"); 717 reiserfs_panic(sb, "PAP-5140", 718 "schedule occurred in do_balance!"); 719 } 720 #endif 721 722 /* 723 * make sure, that the node contents look like a node of 724 * certain level 725 */ 726 if (!is_tree_node(bh, expected_level)) { 727 reiserfs_error(sb, "vs-5150", 728 "invalid format found in block %ld. " 729 "Fsck?", bh->b_blocknr); 730 pathrelse(search_path); 731 return IO_ERROR; 732 } 733 734 /* ok, we have acquired next formatted node in the tree */ 735 node_level = B_LEVEL(bh); 736 737 PROC_INFO_BH_STAT(sb, bh, node_level - 1); 738 739 RFALSE(node_level < stop_level, 740 "vs-5152: tree level (%d) is less than stop level (%d)", 741 node_level, stop_level); 742 743 retval = bin_search(key, item_head(bh, 0), 744 B_NR_ITEMS(bh), 745 (node_level == 746 DISK_LEAF_NODE_LEVEL) ? IH_SIZE : 747 KEY_SIZE, 748 &last_element->pe_position); 749 if (node_level == stop_level) { 750 return retval; 751 } 752 753 /* we are not in the stop level */ 754 /* 755 * item has been found, so we choose the pointer which 756 * is to the right of the found one 757 */ 758 if (retval == ITEM_FOUND) 759 last_element->pe_position++; 760 761 /* 762 * if item was not found we choose the position which is to 763 * the left of the found item. This requires no code, 764 * bin_search did it already. 765 */ 766 767 /* 768 * So we have chosen a position in the current node which is 769 * an internal node. Now we calculate child block number by 770 * position in the node. 771 */ 772 block_number = 773 B_N_CHILD_NUM(bh, last_element->pe_position); 774 775 /* 776 * if we are going to read leaf nodes, try for read 777 * ahead as well 778 */ 779 if ((search_path->reada & PATH_READA) && 780 node_level == DISK_LEAF_NODE_LEVEL + 1) { 781 int pos = last_element->pe_position; 782 int limit = B_NR_ITEMS(bh); 783 struct reiserfs_key *le_key; 784 785 if (search_path->reada & PATH_READA_BACK) 786 limit = 0; 787 while (reada_count < SEARCH_BY_KEY_READA) { 788 if (pos == limit) 789 break; 790 reada_blocks[reada_count++] = 791 B_N_CHILD_NUM(bh, pos); 792 if (search_path->reada & PATH_READA_BACK) 793 pos--; 794 else 795 pos++; 796 797 /* 798 * check to make sure we're in the same object 799 */ 800 le_key = internal_key(bh, pos); 801 if (le32_to_cpu(le_key->k_objectid) != 802 key->on_disk_key.k_objectid) { 803 break; 804 } 805 } 806 } 807 } 808 } 809 810 /* 811 * Form the path to an item and position in this item which contains 812 * file byte defined by key. If there is no such item 813 * corresponding to the key, we point the path to the item with 814 * maximal key less than key, and *pos_in_item is set to one 815 * past the last entry/byte in the item. If searching for entry in a 816 * directory item, and it is not found, *pos_in_item is set to one 817 * entry more than the entry with maximal key which is less than the 818 * sought key. 819 * 820 * Note that if there is no entry in this same node which is one more, 821 * then we point to an imaginary entry. for direct items, the 822 * position is in units of bytes, for indirect items the position is 823 * in units of blocknr entries, for directory items the position is in 824 * units of directory entries. 825 */ 826 /* The function is NOT SCHEDULE-SAFE! */ 827 int search_for_position_by_key(struct super_block *sb, 828 /* Key to search (cpu variable) */ 829 const struct cpu_key *p_cpu_key, 830 /* Filled up by this function. */ 831 struct treepath *search_path) 832 { 833 struct item_head *p_le_ih; /* pointer to on-disk structure */ 834 int blk_size; 835 loff_t item_offset, offset; 836 struct reiserfs_dir_entry de; 837 int retval; 838 839 /* If searching for directory entry. */ 840 if (is_direntry_cpu_key(p_cpu_key)) 841 return search_by_entry_key(sb, p_cpu_key, search_path, 842 &de); 843 844 /* If not searching for directory entry. */ 845 846 /* If item is found. */ 847 retval = search_item(sb, p_cpu_key, search_path); 848 if (retval == IO_ERROR) 849 return retval; 850 if (retval == ITEM_FOUND) { 851 852 RFALSE(!ih_item_len 853 (item_head 854 (PATH_PLAST_BUFFER(search_path), 855 PATH_LAST_POSITION(search_path))), 856 "PAP-5165: item length equals zero"); 857 858 pos_in_item(search_path) = 0; 859 return POSITION_FOUND; 860 } 861 862 RFALSE(!PATH_LAST_POSITION(search_path), 863 "PAP-5170: position equals zero"); 864 865 /* Item is not found. Set path to the previous item. */ 866 p_le_ih = 867 item_head(PATH_PLAST_BUFFER(search_path), 868 --PATH_LAST_POSITION(search_path)); 869 blk_size = sb->s_blocksize; 870 871 if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key)) 872 return FILE_NOT_FOUND; 873 874 /* FIXME: quite ugly this far */ 875 876 item_offset = le_ih_k_offset(p_le_ih); 877 offset = cpu_key_k_offset(p_cpu_key); 878 879 /* Needed byte is contained in the item pointed to by the path. */ 880 if (item_offset <= offset && 881 item_offset + op_bytes_number(p_le_ih, blk_size) > offset) { 882 pos_in_item(search_path) = offset - item_offset; 883 if (is_indirect_le_ih(p_le_ih)) { 884 pos_in_item(search_path) /= blk_size; 885 } 886 return POSITION_FOUND; 887 } 888 889 /* 890 * Needed byte is not contained in the item pointed to by the 891 * path. Set pos_in_item out of the item. 892 */ 893 if (is_indirect_le_ih(p_le_ih)) 894 pos_in_item(search_path) = 895 ih_item_len(p_le_ih) / UNFM_P_SIZE; 896 else 897 pos_in_item(search_path) = ih_item_len(p_le_ih); 898 899 return POSITION_NOT_FOUND; 900 } 901 902 /* Compare given item and item pointed to by the path. */ 903 int comp_items(const struct item_head *stored_ih, const struct treepath *path) 904 { 905 struct buffer_head *bh = PATH_PLAST_BUFFER(path); 906 struct item_head *ih; 907 908 /* Last buffer at the path is not in the tree. */ 909 if (!B_IS_IN_TREE(bh)) 910 return 1; 911 912 /* Last path position is invalid. */ 913 if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh)) 914 return 1; 915 916 /* we need only to know, whether it is the same item */ 917 ih = tp_item_head(path); 918 return memcmp(stored_ih, ih, IH_SIZE); 919 } 920 921 /* prepare for delete or cut of direct item */ 922 static inline int prepare_for_direct_item(struct treepath *path, 923 struct item_head *le_ih, 924 struct inode *inode, 925 loff_t new_file_length, int *cut_size) 926 { 927 loff_t round_len; 928 929 if (new_file_length == max_reiserfs_offset(inode)) { 930 /* item has to be deleted */ 931 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 932 return M_DELETE; 933 } 934 /* new file gets truncated */ 935 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) { 936 round_len = ROUND_UP(new_file_length); 937 /* this was new_file_length < le_ih ... */ 938 if (round_len < le_ih_k_offset(le_ih)) { 939 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 940 return M_DELETE; /* Delete this item. */ 941 } 942 /* Calculate first position and size for cutting from item. */ 943 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1); 944 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path)); 945 946 return M_CUT; /* Cut from this item. */ 947 } 948 949 /* old file: items may have any length */ 950 951 if (new_file_length < le_ih_k_offset(le_ih)) { 952 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 953 return M_DELETE; /* Delete this item. */ 954 } 955 956 /* Calculate first position and size for cutting from item. */ 957 *cut_size = -(ih_item_len(le_ih) - 958 (pos_in_item(path) = 959 new_file_length + 1 - le_ih_k_offset(le_ih))); 960 return M_CUT; /* Cut from this item. */ 961 } 962 963 static inline int prepare_for_direntry_item(struct treepath *path, 964 struct item_head *le_ih, 965 struct inode *inode, 966 loff_t new_file_length, 967 int *cut_size) 968 { 969 if (le_ih_k_offset(le_ih) == DOT_OFFSET && 970 new_file_length == max_reiserfs_offset(inode)) { 971 RFALSE(ih_entry_count(le_ih) != 2, 972 "PAP-5220: incorrect empty directory item (%h)", le_ih); 973 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 974 /* Delete the directory item containing "." and ".." entry. */ 975 return M_DELETE; 976 } 977 978 if (ih_entry_count(le_ih) == 1) { 979 /* 980 * Delete the directory item such as there is one record only 981 * in this item 982 */ 983 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 984 return M_DELETE; 985 } 986 987 /* Cut one record from the directory item. */ 988 *cut_size = 989 -(DEH_SIZE + 990 entry_length(get_last_bh(path), le_ih, pos_in_item(path))); 991 return M_CUT; 992 } 993 994 #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1) 995 996 /* 997 * If the path points to a directory or direct item, calculate mode 998 * and the size cut, for balance. 999 * If the path points to an indirect item, remove some number of its 1000 * unformatted nodes. 1001 * In case of file truncate calculate whether this item must be 1002 * deleted/truncated or last unformatted node of this item will be 1003 * converted to a direct item. 1004 * This function returns a determination of what balance mode the 1005 * calling function should employ. 1006 */ 1007 static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, 1008 struct inode *inode, 1009 struct treepath *path, 1010 const struct cpu_key *item_key, 1011 /* 1012 * Number of unformatted nodes 1013 * which were removed from end 1014 * of the file. 1015 */ 1016 int *removed, 1017 int *cut_size, 1018 /* MAX_KEY_OFFSET in case of delete. */ 1019 unsigned long long new_file_length 1020 ) 1021 { 1022 struct super_block *sb = inode->i_sb; 1023 struct item_head *p_le_ih = tp_item_head(path); 1024 struct buffer_head *bh = PATH_PLAST_BUFFER(path); 1025 1026 BUG_ON(!th->t_trans_id); 1027 1028 /* Stat_data item. */ 1029 if (is_statdata_le_ih(p_le_ih)) { 1030 1031 RFALSE(new_file_length != max_reiserfs_offset(inode), 1032 "PAP-5210: mode must be M_DELETE"); 1033 1034 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih)); 1035 return M_DELETE; 1036 } 1037 1038 /* Directory item. */ 1039 if (is_direntry_le_ih(p_le_ih)) 1040 return prepare_for_direntry_item(path, p_le_ih, inode, 1041 new_file_length, 1042 cut_size); 1043 1044 /* Direct item. */ 1045 if (is_direct_le_ih(p_le_ih)) 1046 return prepare_for_direct_item(path, p_le_ih, inode, 1047 new_file_length, cut_size); 1048 1049 /* Case of an indirect item. */ 1050 { 1051 int blk_size = sb->s_blocksize; 1052 struct item_head s_ih; 1053 int need_re_search; 1054 int delete = 0; 1055 int result = M_CUT; 1056 int pos = 0; 1057 1058 if ( new_file_length == max_reiserfs_offset (inode) ) { 1059 /* 1060 * prepare_for_delete_or_cut() is called by 1061 * reiserfs_delete_item() 1062 */ 1063 new_file_length = 0; 1064 delete = 1; 1065 } 1066 1067 do { 1068 need_re_search = 0; 1069 *cut_size = 0; 1070 bh = PATH_PLAST_BUFFER(path); 1071 copy_item_head(&s_ih, tp_item_head(path)); 1072 pos = I_UNFM_NUM(&s_ih); 1073 1074 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) { 1075 __le32 *unfm; 1076 __u32 block; 1077 1078 /* 1079 * Each unformatted block deletion may involve 1080 * one additional bitmap block into the transaction, 1081 * thereby the initial journal space reservation 1082 * might not be enough. 1083 */ 1084 if (!delete && (*cut_size) != 0 && 1085 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) 1086 break; 1087 1088 unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1; 1089 block = get_block_num(unfm, 0); 1090 1091 if (block != 0) { 1092 reiserfs_prepare_for_journal(sb, bh, 1); 1093 put_block_num(unfm, 0, 0); 1094 journal_mark_dirty(th, bh); 1095 reiserfs_free_block(th, inode, block, 1); 1096 } 1097 1098 reiserfs_cond_resched(sb); 1099 1100 if (item_moved (&s_ih, path)) { 1101 need_re_search = 1; 1102 break; 1103 } 1104 1105 pos --; 1106 (*removed)++; 1107 (*cut_size) -= UNFM_P_SIZE; 1108 1109 if (pos == 0) { 1110 (*cut_size) -= IH_SIZE; 1111 result = M_DELETE; 1112 break; 1113 } 1114 } 1115 /* 1116 * a trick. If the buffer has been logged, this will 1117 * do nothing. If we've broken the loop without logging 1118 * it, it will restore the buffer 1119 */ 1120 reiserfs_restore_prepared_buffer(sb, bh); 1121 } while (need_re_search && 1122 search_for_position_by_key(sb, item_key, path) == POSITION_FOUND); 1123 pos_in_item(path) = pos * UNFM_P_SIZE; 1124 1125 if (*cut_size == 0) { 1126 /* 1127 * Nothing was cut. maybe convert last unformatted node to the 1128 * direct item? 1129 */ 1130 result = M_CONVERT; 1131 } 1132 return result; 1133 } 1134 } 1135 1136 /* Calculate number of bytes which will be deleted or cut during balance */ 1137 static int calc_deleted_bytes_number(struct tree_balance *tb, char mode) 1138 { 1139 int del_size; 1140 struct item_head *p_le_ih = tp_item_head(tb->tb_path); 1141 1142 if (is_statdata_le_ih(p_le_ih)) 1143 return 0; 1144 1145 del_size = 1146 (mode == 1147 M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0]; 1148 if (is_direntry_le_ih(p_le_ih)) { 1149 /* 1150 * return EMPTY_DIR_SIZE; We delete emty directories only. 1151 * we can't use EMPTY_DIR_SIZE, as old format dirs have a 1152 * different empty size. ick. FIXME, is this right? 1153 */ 1154 return del_size; 1155 } 1156 1157 if (is_indirect_le_ih(p_le_ih)) 1158 del_size = (del_size / UNFM_P_SIZE) * 1159 (PATH_PLAST_BUFFER(tb->tb_path)->b_size); 1160 return del_size; 1161 } 1162 1163 static void init_tb_struct(struct reiserfs_transaction_handle *th, 1164 struct tree_balance *tb, 1165 struct super_block *sb, 1166 struct treepath *path, int size) 1167 { 1168 1169 BUG_ON(!th->t_trans_id); 1170 1171 memset(tb, '\0', sizeof(struct tree_balance)); 1172 tb->transaction_handle = th; 1173 tb->tb_sb = sb; 1174 tb->tb_path = path; 1175 PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL; 1176 PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0; 1177 tb->insert_size[0] = size; 1178 } 1179 1180 void padd_item(char *item, int total_length, int length) 1181 { 1182 int i; 1183 1184 for (i = total_length; i > length;) 1185 item[--i] = 0; 1186 } 1187 1188 #ifdef REISERQUOTA_DEBUG 1189 char key2type(struct reiserfs_key *ih) 1190 { 1191 if (is_direntry_le_key(2, ih)) 1192 return 'd'; 1193 if (is_direct_le_key(2, ih)) 1194 return 'D'; 1195 if (is_indirect_le_key(2, ih)) 1196 return 'i'; 1197 if (is_statdata_le_key(2, ih)) 1198 return 's'; 1199 return 'u'; 1200 } 1201 1202 char head2type(struct item_head *ih) 1203 { 1204 if (is_direntry_le_ih(ih)) 1205 return 'd'; 1206 if (is_direct_le_ih(ih)) 1207 return 'D'; 1208 if (is_indirect_le_ih(ih)) 1209 return 'i'; 1210 if (is_statdata_le_ih(ih)) 1211 return 's'; 1212 return 'u'; 1213 } 1214 #endif 1215 1216 /* 1217 * Delete object item. 1218 * th - active transaction handle 1219 * path - path to the deleted item 1220 * item_key - key to search for the deleted item 1221 * indode - used for updating i_blocks and quotas 1222 * un_bh - NULL or unformatted node pointer 1223 */ 1224 int reiserfs_delete_item(struct reiserfs_transaction_handle *th, 1225 struct treepath *path, const struct cpu_key *item_key, 1226 struct inode *inode, struct buffer_head *un_bh) 1227 { 1228 struct super_block *sb = inode->i_sb; 1229 struct tree_balance s_del_balance; 1230 struct item_head s_ih; 1231 struct item_head *q_ih; 1232 int quota_cut_bytes; 1233 int ret_value, del_size, removed; 1234 int depth; 1235 1236 #ifdef CONFIG_REISERFS_CHECK 1237 char mode; 1238 int iter = 0; 1239 #endif 1240 1241 BUG_ON(!th->t_trans_id); 1242 1243 init_tb_struct(th, &s_del_balance, sb, path, 1244 0 /*size is unknown */ ); 1245 1246 while (1) { 1247 removed = 0; 1248 1249 #ifdef CONFIG_REISERFS_CHECK 1250 iter++; 1251 mode = 1252 #endif 1253 prepare_for_delete_or_cut(th, inode, path, 1254 item_key, &removed, 1255 &del_size, 1256 max_reiserfs_offset(inode)); 1257 1258 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE"); 1259 1260 copy_item_head(&s_ih, tp_item_head(path)); 1261 s_del_balance.insert_size[0] = del_size; 1262 1263 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL); 1264 if (ret_value != REPEAT_SEARCH) 1265 break; 1266 1267 PROC_INFO_INC(sb, delete_item_restarted); 1268 1269 /* file system changed, repeat search */ 1270 ret_value = 1271 search_for_position_by_key(sb, item_key, path); 1272 if (ret_value == IO_ERROR) 1273 break; 1274 if (ret_value == FILE_NOT_FOUND) { 1275 reiserfs_warning(sb, "vs-5340", 1276 "no items of the file %K found", 1277 item_key); 1278 break; 1279 } 1280 } /* while (1) */ 1281 1282 if (ret_value != CARRY_ON) { 1283 unfix_nodes(&s_del_balance); 1284 return 0; 1285 } 1286 1287 /* reiserfs_delete_item returns item length when success */ 1288 ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE); 1289 q_ih = tp_item_head(path); 1290 quota_cut_bytes = ih_item_len(q_ih); 1291 1292 /* 1293 * hack so the quota code doesn't have to guess if the file has a 1294 * tail. On tail insert, we allocate quota for 1 unformatted node. 1295 * We test the offset because the tail might have been 1296 * split into multiple items, and we only want to decrement for 1297 * the unfm node once 1298 */ 1299 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) { 1300 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) { 1301 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE; 1302 } else { 1303 quota_cut_bytes = 0; 1304 } 1305 } 1306 1307 if (un_bh) { 1308 int off; 1309 char *data; 1310 1311 /* 1312 * We are in direct2indirect conversion, so move tail contents 1313 * to the unformatted node 1314 */ 1315 /* 1316 * note, we do the copy before preparing the buffer because we 1317 * don't care about the contents of the unformatted node yet. 1318 * the only thing we really care about is the direct item's 1319 * data is in the unformatted node. 1320 * 1321 * Otherwise, we would have to call 1322 * reiserfs_prepare_for_journal on the unformatted node, 1323 * which might schedule, meaning we'd have to loop all the 1324 * way back up to the start of the while loop. 1325 * 1326 * The unformatted node must be dirtied later on. We can't be 1327 * sure here if the entire tail has been deleted yet. 1328 * 1329 * un_bh is from the page cache (all unformatted nodes are 1330 * from the page cache) and might be a highmem page. So, we 1331 * can't use un_bh->b_data. 1332 * -clm 1333 */ 1334 1335 data = kmap_atomic(un_bh->b_page); 1336 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1)); 1337 memcpy(data + off, 1338 ih_item_body(PATH_PLAST_BUFFER(path), &s_ih), 1339 ret_value); 1340 kunmap_atomic(data); 1341 } 1342 1343 /* Perform balancing after all resources have been collected at once. */ 1344 do_balance(&s_del_balance, NULL, NULL, M_DELETE); 1345 1346 #ifdef REISERQUOTA_DEBUG 1347 reiserfs_debug(sb, REISERFS_DEBUG_CODE, 1348 "reiserquota delete_item(): freeing %u, id=%u type=%c", 1349 quota_cut_bytes, inode->i_uid, head2type(&s_ih)); 1350 #endif 1351 depth = reiserfs_write_unlock_nested(inode->i_sb); 1352 dquot_free_space_nodirty(inode, quota_cut_bytes); 1353 reiserfs_write_lock_nested(inode->i_sb, depth); 1354 1355 /* Return deleted body length */ 1356 return ret_value; 1357 } 1358 1359 /* 1360 * Summary Of Mechanisms For Handling Collisions Between Processes: 1361 * 1362 * deletion of the body of the object is performed by iput(), with the 1363 * result that if multiple processes are operating on a file, the 1364 * deletion of the body of the file is deferred until the last process 1365 * that has an open inode performs its iput(). 1366 * 1367 * writes and truncates are protected from collisions by use of 1368 * semaphores. 1369 * 1370 * creates, linking, and mknod are protected from collisions with other 1371 * processes by making the reiserfs_add_entry() the last step in the 1372 * creation, and then rolling back all changes if there was a collision. 1373 * - Hans 1374 */ 1375 1376 /* this deletes item which never gets split */ 1377 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, 1378 struct inode *inode, struct reiserfs_key *key) 1379 { 1380 struct super_block *sb = th->t_super; 1381 struct tree_balance tb; 1382 INITIALIZE_PATH(path); 1383 int item_len = 0; 1384 int tb_init = 0; 1385 struct cpu_key cpu_key; 1386 int retval; 1387 int quota_cut_bytes = 0; 1388 1389 BUG_ON(!th->t_trans_id); 1390 1391 le_key2cpu_key(&cpu_key, key); 1392 1393 while (1) { 1394 retval = search_item(th->t_super, &cpu_key, &path); 1395 if (retval == IO_ERROR) { 1396 reiserfs_error(th->t_super, "vs-5350", 1397 "i/o failure occurred trying " 1398 "to delete %K", &cpu_key); 1399 break; 1400 } 1401 if (retval != ITEM_FOUND) { 1402 pathrelse(&path); 1403 /* 1404 * No need for a warning, if there is just no free 1405 * space to insert '..' item into the 1406 * newly-created subdir 1407 */ 1408 if (! 1409 ((unsigned long long) 1410 GET_HASH_VALUE(le_key_k_offset 1411 (le_key_version(key), key)) == 0 1412 && (unsigned long long) 1413 GET_GENERATION_NUMBER(le_key_k_offset 1414 (le_key_version(key), 1415 key)) == 1)) 1416 reiserfs_warning(th->t_super, "vs-5355", 1417 "%k not found", key); 1418 break; 1419 } 1420 if (!tb_init) { 1421 tb_init = 1; 1422 item_len = ih_item_len(tp_item_head(&path)); 1423 init_tb_struct(th, &tb, th->t_super, &path, 1424 -(IH_SIZE + item_len)); 1425 } 1426 quota_cut_bytes = ih_item_len(tp_item_head(&path)); 1427 1428 retval = fix_nodes(M_DELETE, &tb, NULL, NULL); 1429 if (retval == REPEAT_SEARCH) { 1430 PROC_INFO_INC(th->t_super, delete_solid_item_restarted); 1431 continue; 1432 } 1433 1434 if (retval == CARRY_ON) { 1435 do_balance(&tb, NULL, NULL, M_DELETE); 1436 /* 1437 * Should we count quota for item? (we don't 1438 * count quotas for save-links) 1439 */ 1440 if (inode) { 1441 int depth; 1442 #ifdef REISERQUOTA_DEBUG 1443 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, 1444 "reiserquota delete_solid_item(): freeing %u id=%u type=%c", 1445 quota_cut_bytes, inode->i_uid, 1446 key2type(key)); 1447 #endif 1448 depth = reiserfs_write_unlock_nested(sb); 1449 dquot_free_space_nodirty(inode, 1450 quota_cut_bytes); 1451 reiserfs_write_lock_nested(sb, depth); 1452 } 1453 break; 1454 } 1455 1456 /* IO_ERROR, NO_DISK_SPACE, etc */ 1457 reiserfs_warning(th->t_super, "vs-5360", 1458 "could not delete %K due to fix_nodes failure", 1459 &cpu_key); 1460 unfix_nodes(&tb); 1461 break; 1462 } 1463 1464 reiserfs_check_path(&path); 1465 } 1466 1467 int reiserfs_delete_object(struct reiserfs_transaction_handle *th, 1468 struct inode *inode) 1469 { 1470 int err; 1471 inode->i_size = 0; 1472 BUG_ON(!th->t_trans_id); 1473 1474 /* for directory this deletes item containing "." and ".." */ 1475 err = 1476 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ ); 1477 if (err) 1478 return err; 1479 1480 #if defined( USE_INODE_GENERATION_COUNTER ) 1481 if (!old_format_only(th->t_super)) { 1482 __le32 *inode_generation; 1483 1484 inode_generation = 1485 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation; 1486 le32_add_cpu(inode_generation, 1); 1487 } 1488 /* USE_INODE_GENERATION_COUNTER */ 1489 #endif 1490 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); 1491 1492 return err; 1493 } 1494 1495 static void unmap_buffers(struct page *page, loff_t pos) 1496 { 1497 struct buffer_head *bh; 1498 struct buffer_head *head; 1499 struct buffer_head *next; 1500 unsigned long tail_index; 1501 unsigned long cur_index; 1502 1503 if (page) { 1504 if (page_has_buffers(page)) { 1505 tail_index = pos & (PAGE_SIZE - 1); 1506 cur_index = 0; 1507 head = page_buffers(page); 1508 bh = head; 1509 do { 1510 next = bh->b_this_page; 1511 1512 /* 1513 * we want to unmap the buffers that contain 1514 * the tail, and all the buffers after it 1515 * (since the tail must be at the end of the 1516 * file). We don't want to unmap file data 1517 * before the tail, since it might be dirty 1518 * and waiting to reach disk 1519 */ 1520 cur_index += bh->b_size; 1521 if (cur_index > tail_index) { 1522 reiserfs_unmap_buffer(bh); 1523 } 1524 bh = next; 1525 } while (bh != head); 1526 } 1527 } 1528 } 1529 1530 static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th, 1531 struct inode *inode, 1532 struct page *page, 1533 struct treepath *path, 1534 const struct cpu_key *item_key, 1535 loff_t new_file_size, char *mode) 1536 { 1537 struct super_block *sb = inode->i_sb; 1538 int block_size = sb->s_blocksize; 1539 int cut_bytes; 1540 BUG_ON(!th->t_trans_id); 1541 BUG_ON(new_file_size != inode->i_size); 1542 1543 /* 1544 * the page being sent in could be NULL if there was an i/o error 1545 * reading in the last block. The user will hit problems trying to 1546 * read the file, but for now we just skip the indirect2direct 1547 */ 1548 if (atomic_read(&inode->i_count) > 1 || 1549 !tail_has_to_be_packed(inode) || 1550 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) { 1551 /* leave tail in an unformatted node */ 1552 *mode = M_SKIP_BALANCING; 1553 cut_bytes = 1554 block_size - (new_file_size & (block_size - 1)); 1555 pathrelse(path); 1556 return cut_bytes; 1557 } 1558 1559 /* Perform the conversion to a direct_item. */ 1560 return indirect2direct(th, inode, page, path, item_key, 1561 new_file_size, mode); 1562 } 1563 1564 /* 1565 * we did indirect_to_direct conversion. And we have inserted direct 1566 * item successesfully, but there were no disk space to cut unfm 1567 * pointer being converted. Therefore we have to delete inserted 1568 * direct item(s) 1569 */ 1570 static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th, 1571 struct inode *inode, struct treepath *path) 1572 { 1573 struct cpu_key tail_key; 1574 int tail_len; 1575 int removed; 1576 BUG_ON(!th->t_trans_id); 1577 1578 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4); 1579 tail_key.key_length = 4; 1580 1581 tail_len = 1582 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1; 1583 while (tail_len) { 1584 /* look for the last byte of the tail */ 1585 if (search_for_position_by_key(inode->i_sb, &tail_key, path) == 1586 POSITION_NOT_FOUND) 1587 reiserfs_panic(inode->i_sb, "vs-5615", 1588 "found invalid item"); 1589 RFALSE(path->pos_in_item != 1590 ih_item_len(tp_item_head(path)) - 1, 1591 "vs-5616: appended bytes found"); 1592 PATH_LAST_POSITION(path)--; 1593 1594 removed = 1595 reiserfs_delete_item(th, path, &tail_key, inode, 1596 NULL /*unbh not needed */ ); 1597 RFALSE(removed <= 0 1598 || removed > tail_len, 1599 "vs-5617: there was tail %d bytes, removed item length %d bytes", 1600 tail_len, removed); 1601 tail_len -= removed; 1602 set_cpu_key_k_offset(&tail_key, 1603 cpu_key_k_offset(&tail_key) - removed); 1604 } 1605 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct " 1606 "conversion has been rolled back due to " 1607 "lack of disk space"); 1608 mark_inode_dirty(inode); 1609 } 1610 1611 /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */ 1612 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, 1613 struct treepath *path, 1614 struct cpu_key *item_key, 1615 struct inode *inode, 1616 struct page *page, loff_t new_file_size) 1617 { 1618 struct super_block *sb = inode->i_sb; 1619 /* 1620 * Every function which is going to call do_balance must first 1621 * create a tree_balance structure. Then it must fill up this 1622 * structure by using the init_tb_struct and fix_nodes functions. 1623 * After that we can make tree balancing. 1624 */ 1625 struct tree_balance s_cut_balance; 1626 struct item_head *p_le_ih; 1627 int cut_size = 0; /* Amount to be cut. */ 1628 int ret_value = CARRY_ON; 1629 int removed = 0; /* Number of the removed unformatted nodes. */ 1630 int is_inode_locked = 0; 1631 char mode; /* Mode of the balance. */ 1632 int retval2 = -1; 1633 int quota_cut_bytes; 1634 loff_t tail_pos = 0; 1635 int depth; 1636 1637 BUG_ON(!th->t_trans_id); 1638 1639 init_tb_struct(th, &s_cut_balance, inode->i_sb, path, 1640 cut_size); 1641 1642 /* 1643 * Repeat this loop until we either cut the item without needing 1644 * to balance, or we fix_nodes without schedule occurring 1645 */ 1646 while (1) { 1647 /* 1648 * Determine the balance mode, position of the first byte to 1649 * be cut, and size to be cut. In case of the indirect item 1650 * free unformatted nodes which are pointed to by the cut 1651 * pointers. 1652 */ 1653 1654 mode = 1655 prepare_for_delete_or_cut(th, inode, path, 1656 item_key, &removed, 1657 &cut_size, new_file_size); 1658 if (mode == M_CONVERT) { 1659 /* 1660 * convert last unformatted node to direct item or 1661 * leave tail in the unformatted node 1662 */ 1663 RFALSE(ret_value != CARRY_ON, 1664 "PAP-5570: can not convert twice"); 1665 1666 ret_value = 1667 maybe_indirect_to_direct(th, inode, page, 1668 path, item_key, 1669 new_file_size, &mode); 1670 if (mode == M_SKIP_BALANCING) 1671 /* tail has been left in the unformatted node */ 1672 return ret_value; 1673 1674 is_inode_locked = 1; 1675 1676 /* 1677 * removing of last unformatted node will 1678 * change value we have to return to truncate. 1679 * Save it 1680 */ 1681 retval2 = ret_value; 1682 1683 /* 1684 * So, we have performed the first part of the 1685 * conversion: 1686 * inserting the new direct item. Now we are 1687 * removing the last unformatted node pointer. 1688 * Set key to search for it. 1689 */ 1690 set_cpu_key_k_type(item_key, TYPE_INDIRECT); 1691 item_key->key_length = 4; 1692 new_file_size -= 1693 (new_file_size & (sb->s_blocksize - 1)); 1694 tail_pos = new_file_size; 1695 set_cpu_key_k_offset(item_key, new_file_size + 1); 1696 if (search_for_position_by_key 1697 (sb, item_key, 1698 path) == POSITION_NOT_FOUND) { 1699 print_block(PATH_PLAST_BUFFER(path), 3, 1700 PATH_LAST_POSITION(path) - 1, 1701 PATH_LAST_POSITION(path) + 1); 1702 reiserfs_panic(sb, "PAP-5580", "item to " 1703 "convert does not exist (%K)", 1704 item_key); 1705 } 1706 continue; 1707 } 1708 if (cut_size == 0) { 1709 pathrelse(path); 1710 return 0; 1711 } 1712 1713 s_cut_balance.insert_size[0] = cut_size; 1714 1715 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL); 1716 if (ret_value != REPEAT_SEARCH) 1717 break; 1718 1719 PROC_INFO_INC(sb, cut_from_item_restarted); 1720 1721 ret_value = 1722 search_for_position_by_key(sb, item_key, path); 1723 if (ret_value == POSITION_FOUND) 1724 continue; 1725 1726 reiserfs_warning(sb, "PAP-5610", "item %K not found", 1727 item_key); 1728 unfix_nodes(&s_cut_balance); 1729 return (ret_value == IO_ERROR) ? -EIO : -ENOENT; 1730 } /* while */ 1731 1732 /* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */ 1733 if (ret_value != CARRY_ON) { 1734 if (is_inode_locked) { 1735 /* 1736 * FIXME: this seems to be not needed: we are always 1737 * able to cut item 1738 */ 1739 indirect_to_direct_roll_back(th, inode, path); 1740 } 1741 if (ret_value == NO_DISK_SPACE) 1742 reiserfs_warning(sb, "reiserfs-5092", 1743 "NO_DISK_SPACE"); 1744 unfix_nodes(&s_cut_balance); 1745 return -EIO; 1746 } 1747 1748 /* go ahead and perform balancing */ 1749 1750 RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode"); 1751 1752 /* Calculate number of bytes that need to be cut from the item. */ 1753 quota_cut_bytes = 1754 (mode == 1755 M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance. 1756 insert_size[0]; 1757 if (retval2 == -1) 1758 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode); 1759 else 1760 ret_value = retval2; 1761 1762 /* 1763 * For direct items, we only change the quota when deleting the last 1764 * item. 1765 */ 1766 p_le_ih = tp_item_head(s_cut_balance.tb_path); 1767 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) { 1768 if (mode == M_DELETE && 1769 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) == 1770 1) { 1771 /* FIXME: this is to keep 3.5 happy */ 1772 REISERFS_I(inode)->i_first_direct_byte = U32_MAX; 1773 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE; 1774 } else { 1775 quota_cut_bytes = 0; 1776 } 1777 } 1778 #ifdef CONFIG_REISERFS_CHECK 1779 if (is_inode_locked) { 1780 struct item_head *le_ih = 1781 tp_item_head(s_cut_balance.tb_path); 1782 /* 1783 * we are going to complete indirect2direct conversion. Make 1784 * sure, that we exactly remove last unformatted node pointer 1785 * of the item 1786 */ 1787 if (!is_indirect_le_ih(le_ih)) 1788 reiserfs_panic(sb, "vs-5652", 1789 "item must be indirect %h", le_ih); 1790 1791 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE) 1792 reiserfs_panic(sb, "vs-5653", "completing " 1793 "indirect2direct conversion indirect " 1794 "item %h being deleted must be of " 1795 "4 byte long", le_ih); 1796 1797 if (mode == M_CUT 1798 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) { 1799 reiserfs_panic(sb, "vs-5654", "can not complete " 1800 "indirect2direct conversion of %h " 1801 "(CUT, insert_size==%d)", 1802 le_ih, s_cut_balance.insert_size[0]); 1803 } 1804 /* 1805 * it would be useful to make sure, that right neighboring 1806 * item is direct item of this file 1807 */ 1808 } 1809 #endif 1810 1811 do_balance(&s_cut_balance, NULL, NULL, mode); 1812 if (is_inode_locked) { 1813 /* 1814 * we've done an indirect->direct conversion. when the 1815 * data block was freed, it was removed from the list of 1816 * blocks that must be flushed before the transaction 1817 * commits, make sure to unmap and invalidate it 1818 */ 1819 unmap_buffers(page, tail_pos); 1820 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 1821 } 1822 #ifdef REISERQUOTA_DEBUG 1823 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 1824 "reiserquota cut_from_item(): freeing %u id=%u type=%c", 1825 quota_cut_bytes, inode->i_uid, '?'); 1826 #endif 1827 depth = reiserfs_write_unlock_nested(sb); 1828 dquot_free_space_nodirty(inode, quota_cut_bytes); 1829 reiserfs_write_lock_nested(sb, depth); 1830 return ret_value; 1831 } 1832 1833 static void truncate_directory(struct reiserfs_transaction_handle *th, 1834 struct inode *inode) 1835 { 1836 BUG_ON(!th->t_trans_id); 1837 if (inode->i_nlink) 1838 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0"); 1839 1840 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET); 1841 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY); 1842 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); 1843 reiserfs_update_sd(th, inode); 1844 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET); 1845 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA); 1846 } 1847 1848 /* 1849 * Truncate file to the new size. Note, this must be called with a 1850 * transaction already started 1851 */ 1852 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, 1853 struct inode *inode, /* ->i_size contains new size */ 1854 struct page *page, /* up to date for last block */ 1855 /* 1856 * when it is called by file_release to convert 1857 * the tail - no timestamps should be updated 1858 */ 1859 int update_timestamps 1860 ) 1861 { 1862 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */ 1863 struct item_head *p_le_ih; /* Pointer to an item header. */ 1864 1865 /* Key to search for a previous file item. */ 1866 struct cpu_key s_item_key; 1867 loff_t file_size, /* Old file size. */ 1868 new_file_size; /* New file size. */ 1869 int deleted; /* Number of deleted or truncated bytes. */ 1870 int retval; 1871 int err = 0; 1872 1873 BUG_ON(!th->t_trans_id); 1874 if (! 1875 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) 1876 || S_ISLNK(inode->i_mode))) 1877 return 0; 1878 1879 /* deletion of directory - no need to update timestamps */ 1880 if (S_ISDIR(inode->i_mode)) { 1881 truncate_directory(th, inode); 1882 return 0; 1883 } 1884 1885 /* Get new file size. */ 1886 new_file_size = inode->i_size; 1887 1888 /* FIXME: note, that key type is unimportant here */ 1889 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode), 1890 TYPE_DIRECT, 3); 1891 1892 retval = 1893 search_for_position_by_key(inode->i_sb, &s_item_key, 1894 &s_search_path); 1895 if (retval == IO_ERROR) { 1896 reiserfs_error(inode->i_sb, "vs-5657", 1897 "i/o failure occurred trying to truncate %K", 1898 &s_item_key); 1899 err = -EIO; 1900 goto out; 1901 } 1902 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) { 1903 reiserfs_error(inode->i_sb, "PAP-5660", 1904 "wrong result %d of search for %K", retval, 1905 &s_item_key); 1906 1907 err = -EIO; 1908 goto out; 1909 } 1910 1911 s_search_path.pos_in_item--; 1912 1913 /* Get real file size (total length of all file items) */ 1914 p_le_ih = tp_item_head(&s_search_path); 1915 if (is_statdata_le_ih(p_le_ih)) 1916 file_size = 0; 1917 else { 1918 loff_t offset = le_ih_k_offset(p_le_ih); 1919 int bytes = 1920 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize); 1921 1922 /* 1923 * this may mismatch with real file size: if last direct item 1924 * had no padding zeros and last unformatted node had no free 1925 * space, this file would have this file size 1926 */ 1927 file_size = offset + bytes - 1; 1928 } 1929 /* 1930 * are we doing a full truncate or delete, if so 1931 * kick in the reada code 1932 */ 1933 if (new_file_size == 0) 1934 s_search_path.reada = PATH_READA | PATH_READA_BACK; 1935 1936 if (file_size == 0 || file_size < new_file_size) { 1937 goto update_and_out; 1938 } 1939 1940 /* Update key to search for the last file item. */ 1941 set_cpu_key_k_offset(&s_item_key, file_size); 1942 1943 do { 1944 /* Cut or delete file item. */ 1945 deleted = 1946 reiserfs_cut_from_item(th, &s_search_path, &s_item_key, 1947 inode, page, new_file_size); 1948 if (deleted < 0) { 1949 reiserfs_warning(inode->i_sb, "vs-5665", 1950 "reiserfs_cut_from_item failed"); 1951 reiserfs_check_path(&s_search_path); 1952 return 0; 1953 } 1954 1955 RFALSE(deleted > file_size, 1956 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K", 1957 deleted, file_size, &s_item_key); 1958 1959 /* Change key to search the last file item. */ 1960 file_size -= deleted; 1961 1962 set_cpu_key_k_offset(&s_item_key, file_size); 1963 1964 /* 1965 * While there are bytes to truncate and previous 1966 * file item is presented in the tree. 1967 */ 1968 1969 /* 1970 * This loop could take a really long time, and could log 1971 * many more blocks than a transaction can hold. So, we do 1972 * a polite journal end here, and if the transaction needs 1973 * ending, we make sure the file is consistent before ending 1974 * the current trans and starting a new one 1975 */ 1976 if (journal_transaction_should_end(th, 0) || 1977 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) { 1978 pathrelse(&s_search_path); 1979 1980 if (update_timestamps) { 1981 inode->i_mtime = current_time(inode); 1982 inode->i_ctime = current_time(inode); 1983 } 1984 reiserfs_update_sd(th, inode); 1985 1986 err = journal_end(th); 1987 if (err) 1988 goto out; 1989 err = journal_begin(th, inode->i_sb, 1990 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ; 1991 if (err) 1992 goto out; 1993 reiserfs_update_inode_transaction(inode); 1994 } 1995 } while (file_size > ROUND_UP(new_file_size) && 1996 search_for_position_by_key(inode->i_sb, &s_item_key, 1997 &s_search_path) == POSITION_FOUND); 1998 1999 RFALSE(file_size > ROUND_UP(new_file_size), 2000 "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d", 2001 new_file_size, file_size, s_item_key.on_disk_key.k_objectid); 2002 2003 update_and_out: 2004 if (update_timestamps) { 2005 /* this is truncate, not file closing */ 2006 inode->i_mtime = current_time(inode); 2007 inode->i_ctime = current_time(inode); 2008 } 2009 reiserfs_update_sd(th, inode); 2010 2011 out: 2012 pathrelse(&s_search_path); 2013 return err; 2014 } 2015 2016 #ifdef CONFIG_REISERFS_CHECK 2017 /* this makes sure, that we __append__, not overwrite or add holes */ 2018 static void check_research_for_paste(struct treepath *path, 2019 const struct cpu_key *key) 2020 { 2021 struct item_head *found_ih = tp_item_head(path); 2022 2023 if (is_direct_le_ih(found_ih)) { 2024 if (le_ih_k_offset(found_ih) + 2025 op_bytes_number(found_ih, 2026 get_last_bh(path)->b_size) != 2027 cpu_key_k_offset(key) 2028 || op_bytes_number(found_ih, 2029 get_last_bh(path)->b_size) != 2030 pos_in_item(path)) 2031 reiserfs_panic(NULL, "PAP-5720", "found direct item " 2032 "%h or position (%d) does not match " 2033 "to key %K", found_ih, 2034 pos_in_item(path), key); 2035 } 2036 if (is_indirect_le_ih(found_ih)) { 2037 if (le_ih_k_offset(found_ih) + 2038 op_bytes_number(found_ih, 2039 get_last_bh(path)->b_size) != 2040 cpu_key_k_offset(key) 2041 || I_UNFM_NUM(found_ih) != pos_in_item(path) 2042 || get_ih_free_space(found_ih) != 0) 2043 reiserfs_panic(NULL, "PAP-5730", "found indirect " 2044 "item (%h) or position (%d) does not " 2045 "match to key (%K)", 2046 found_ih, pos_in_item(path), key); 2047 } 2048 } 2049 #endif /* config reiserfs check */ 2050 2051 /* 2052 * Paste bytes to the existing item. 2053 * Returns bytes number pasted into the item. 2054 */ 2055 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, 2056 /* Path to the pasted item. */ 2057 struct treepath *search_path, 2058 /* Key to search for the needed item. */ 2059 const struct cpu_key *key, 2060 /* Inode item belongs to */ 2061 struct inode *inode, 2062 /* Pointer to the bytes to paste. */ 2063 const char *body, 2064 /* Size of pasted bytes. */ 2065 int pasted_size) 2066 { 2067 struct super_block *sb = inode->i_sb; 2068 struct tree_balance s_paste_balance; 2069 int retval; 2070 int fs_gen; 2071 int depth; 2072 2073 BUG_ON(!th->t_trans_id); 2074 2075 fs_gen = get_generation(inode->i_sb); 2076 2077 #ifdef REISERQUOTA_DEBUG 2078 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 2079 "reiserquota paste_into_item(): allocating %u id=%u type=%c", 2080 pasted_size, inode->i_uid, 2081 key2type(&key->on_disk_key)); 2082 #endif 2083 2084 depth = reiserfs_write_unlock_nested(sb); 2085 retval = dquot_alloc_space_nodirty(inode, pasted_size); 2086 reiserfs_write_lock_nested(sb, depth); 2087 if (retval) { 2088 pathrelse(search_path); 2089 return retval; 2090 } 2091 init_tb_struct(th, &s_paste_balance, th->t_super, search_path, 2092 pasted_size); 2093 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2094 s_paste_balance.key = key->on_disk_key; 2095 #endif 2096 2097 /* DQUOT_* can schedule, must check before the fix_nodes */ 2098 if (fs_changed(fs_gen, inode->i_sb)) { 2099 goto search_again; 2100 } 2101 2102 while ((retval = 2103 fix_nodes(M_PASTE, &s_paste_balance, NULL, 2104 body)) == REPEAT_SEARCH) { 2105 search_again: 2106 /* file system changed while we were in the fix_nodes */ 2107 PROC_INFO_INC(th->t_super, paste_into_item_restarted); 2108 retval = 2109 search_for_position_by_key(th->t_super, key, 2110 search_path); 2111 if (retval == IO_ERROR) { 2112 retval = -EIO; 2113 goto error_out; 2114 } 2115 if (retval == POSITION_FOUND) { 2116 reiserfs_warning(inode->i_sb, "PAP-5710", 2117 "entry or pasted byte (%K) exists", 2118 key); 2119 retval = -EEXIST; 2120 goto error_out; 2121 } 2122 #ifdef CONFIG_REISERFS_CHECK 2123 check_research_for_paste(search_path, key); 2124 #endif 2125 } 2126 2127 /* 2128 * Perform balancing after all resources are collected by fix_nodes, 2129 * and accessing them will not risk triggering schedule. 2130 */ 2131 if (retval == CARRY_ON) { 2132 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE); 2133 return 0; 2134 } 2135 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; 2136 error_out: 2137 /* this also releases the path */ 2138 unfix_nodes(&s_paste_balance); 2139 #ifdef REISERQUOTA_DEBUG 2140 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 2141 "reiserquota paste_into_item(): freeing %u id=%u type=%c", 2142 pasted_size, inode->i_uid, 2143 key2type(&key->on_disk_key)); 2144 #endif 2145 depth = reiserfs_write_unlock_nested(sb); 2146 dquot_free_space_nodirty(inode, pasted_size); 2147 reiserfs_write_lock_nested(sb, depth); 2148 return retval; 2149 } 2150 2151 /* 2152 * Insert new item into the buffer at the path. 2153 * th - active transaction handle 2154 * path - path to the inserted item 2155 * ih - pointer to the item header to insert 2156 * body - pointer to the bytes to insert 2157 */ 2158 int reiserfs_insert_item(struct reiserfs_transaction_handle *th, 2159 struct treepath *path, const struct cpu_key *key, 2160 struct item_head *ih, struct inode *inode, 2161 const char *body) 2162 { 2163 struct tree_balance s_ins_balance; 2164 int retval; 2165 int fs_gen = 0; 2166 int quota_bytes = 0; 2167 2168 BUG_ON(!th->t_trans_id); 2169 2170 if (inode) { /* Do we count quotas for item? */ 2171 int depth; 2172 fs_gen = get_generation(inode->i_sb); 2173 quota_bytes = ih_item_len(ih); 2174 2175 /* 2176 * hack so the quota code doesn't have to guess 2177 * if the file has a tail, links are always tails, 2178 * so there's no guessing needed 2179 */ 2180 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih)) 2181 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE; 2182 #ifdef REISERQUOTA_DEBUG 2183 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 2184 "reiserquota insert_item(): allocating %u id=%u type=%c", 2185 quota_bytes, inode->i_uid, head2type(ih)); 2186 #endif 2187 /* 2188 * We can't dirty inode here. It would be immediately 2189 * written but appropriate stat item isn't inserted yet... 2190 */ 2191 depth = reiserfs_write_unlock_nested(inode->i_sb); 2192 retval = dquot_alloc_space_nodirty(inode, quota_bytes); 2193 reiserfs_write_lock_nested(inode->i_sb, depth); 2194 if (retval) { 2195 pathrelse(path); 2196 return retval; 2197 } 2198 } 2199 init_tb_struct(th, &s_ins_balance, th->t_super, path, 2200 IH_SIZE + ih_item_len(ih)); 2201 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2202 s_ins_balance.key = key->on_disk_key; 2203 #endif 2204 /* 2205 * DQUOT_* can schedule, must check to be sure calling 2206 * fix_nodes is safe 2207 */ 2208 if (inode && fs_changed(fs_gen, inode->i_sb)) { 2209 goto search_again; 2210 } 2211 2212 while ((retval = 2213 fix_nodes(M_INSERT, &s_ins_balance, ih, 2214 body)) == REPEAT_SEARCH) { 2215 search_again: 2216 /* file system changed while we were in the fix_nodes */ 2217 PROC_INFO_INC(th->t_super, insert_item_restarted); 2218 retval = search_item(th->t_super, key, path); 2219 if (retval == IO_ERROR) { 2220 retval = -EIO; 2221 goto error_out; 2222 } 2223 if (retval == ITEM_FOUND) { 2224 reiserfs_warning(th->t_super, "PAP-5760", 2225 "key %K already exists in the tree", 2226 key); 2227 retval = -EEXIST; 2228 goto error_out; 2229 } 2230 } 2231 2232 /* make balancing after all resources will be collected at a time */ 2233 if (retval == CARRY_ON) { 2234 do_balance(&s_ins_balance, ih, body, M_INSERT); 2235 return 0; 2236 } 2237 2238 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; 2239 error_out: 2240 /* also releases the path */ 2241 unfix_nodes(&s_ins_balance); 2242 #ifdef REISERQUOTA_DEBUG 2243 if (inode) 2244 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, 2245 "reiserquota insert_item(): freeing %u id=%u type=%c", 2246 quota_bytes, inode->i_uid, head2type(ih)); 2247 #endif 2248 if (inode) { 2249 int depth = reiserfs_write_unlock_nested(inode->i_sb); 2250 dquot_free_space_nodirty(inode, quota_bytes); 2251 reiserfs_write_lock_nested(inode->i_sb, depth); 2252 } 2253 return retval; 2254 } 2255