xref: /openbmc/linux/fs/reiserfs/stree.c (revision ae213c44)
1 /*
2  *  Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 /*
6  *  Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7  *  Programm System Institute
8  *  Pereslavl-Zalessky Russia
9  */
10 
11 #include <linux/time.h>
12 #include <linux/string.h>
13 #include <linux/pagemap.h>
14 #include <linux/bio.h>
15 #include "reiserfs.h"
16 #include <linux/buffer_head.h>
17 #include <linux/quotaops.h>
18 
19 /* Does the buffer contain a disk block which is in the tree. */
20 inline int B_IS_IN_TREE(const struct buffer_head *bh)
21 {
22 
23 	RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
24 	       "PAP-1010: block (%b) has too big level (%z)", bh, bh);
25 
26 	return (B_LEVEL(bh) != FREE_LEVEL);
27 }
28 
29 /* to get item head in le form */
30 inline void copy_item_head(struct item_head *to,
31 			   const struct item_head *from)
32 {
33 	memcpy(to, from, IH_SIZE);
34 }
35 
36 /*
37  * k1 is pointer to on-disk structure which is stored in little-endian
38  * form. k2 is pointer to cpu variable. For key of items of the same
39  * object this returns 0.
40  * Returns: -1 if key1 < key2
41  * 0 if key1 == key2
42  * 1 if key1 > key2
43  */
44 inline int comp_short_keys(const struct reiserfs_key *le_key,
45 			   const struct cpu_key *cpu_key)
46 {
47 	__u32 n;
48 	n = le32_to_cpu(le_key->k_dir_id);
49 	if (n < cpu_key->on_disk_key.k_dir_id)
50 		return -1;
51 	if (n > cpu_key->on_disk_key.k_dir_id)
52 		return 1;
53 	n = le32_to_cpu(le_key->k_objectid);
54 	if (n < cpu_key->on_disk_key.k_objectid)
55 		return -1;
56 	if (n > cpu_key->on_disk_key.k_objectid)
57 		return 1;
58 	return 0;
59 }
60 
61 /*
62  * k1 is pointer to on-disk structure which is stored in little-endian
63  * form. k2 is pointer to cpu variable.
64  * Compare keys using all 4 key fields.
65  * Returns: -1 if key1 < key2 0
66  * if key1 = key2 1 if key1 > key2
67  */
68 static inline int comp_keys(const struct reiserfs_key *le_key,
69 			    const struct cpu_key *cpu_key)
70 {
71 	int retval;
72 
73 	retval = comp_short_keys(le_key, cpu_key);
74 	if (retval)
75 		return retval;
76 	if (le_key_k_offset(le_key_version(le_key), le_key) <
77 	    cpu_key_k_offset(cpu_key))
78 		return -1;
79 	if (le_key_k_offset(le_key_version(le_key), le_key) >
80 	    cpu_key_k_offset(cpu_key))
81 		return 1;
82 
83 	if (cpu_key->key_length == 3)
84 		return 0;
85 
86 	/* this part is needed only when tail conversion is in progress */
87 	if (le_key_k_type(le_key_version(le_key), le_key) <
88 	    cpu_key_k_type(cpu_key))
89 		return -1;
90 
91 	if (le_key_k_type(le_key_version(le_key), le_key) >
92 	    cpu_key_k_type(cpu_key))
93 		return 1;
94 
95 	return 0;
96 }
97 
98 inline int comp_short_le_keys(const struct reiserfs_key *key1,
99 			      const struct reiserfs_key *key2)
100 {
101 	__u32 *k1_u32, *k2_u32;
102 	int key_length = REISERFS_SHORT_KEY_LEN;
103 
104 	k1_u32 = (__u32 *) key1;
105 	k2_u32 = (__u32 *) key2;
106 	for (; key_length--; ++k1_u32, ++k2_u32) {
107 		if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
108 			return -1;
109 		if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
110 			return 1;
111 	}
112 	return 0;
113 }
114 
115 inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
116 {
117 	int version;
118 	to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
119 	to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
120 
121 	/* find out version of the key */
122 	version = le_key_version(from);
123 	to->version = version;
124 	to->on_disk_key.k_offset = le_key_k_offset(version, from);
125 	to->on_disk_key.k_type = le_key_k_type(version, from);
126 }
127 
128 /*
129  * this does not say which one is bigger, it only returns 1 if keys
130  * are not equal, 0 otherwise
131  */
132 inline int comp_le_keys(const struct reiserfs_key *k1,
133 			const struct reiserfs_key *k2)
134 {
135 	return memcmp(k1, k2, sizeof(struct reiserfs_key));
136 }
137 
138 /**************************************************************************
139  *  Binary search toolkit function                                        *
140  *  Search for an item in the array by the item key                       *
141  *  Returns:    1 if found,  0 if not found;                              *
142  *        *pos = number of the searched element if found, else the        *
143  *        number of the first element that is larger than key.            *
144  **************************************************************************/
145 /*
146  * For those not familiar with binary search: lbound is the leftmost item
147  * that it could be, rbound the rightmost item that it could be.  We examine
148  * the item halfway between lbound and rbound, and that tells us either
149  * that we can increase lbound, or decrease rbound, or that we have found it,
150  * or if lbound <= rbound that there are no possible items, and we have not
151  * found it. With each examination we cut the number of possible items it
152  * could be by one more than half rounded down, or we find it.
153  */
154 static inline int bin_search(const void *key,	/* Key to search for. */
155 			     const void *base,	/* First item in the array. */
156 			     int num,	/* Number of items in the array. */
157 			     /*
158 			      * Item size in the array.  searched. Lest the
159 			      * reader be confused, note that this is crafted
160 			      * as a general function, and when it is applied
161 			      * specifically to the array of item headers in a
162 			      * node, width is actually the item header size
163 			      * not the item size.
164 			      */
165 			     int width,
166 			     int *pos /* Number of the searched for element. */
167     )
168 {
169 	int rbound, lbound, j;
170 
171 	for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
172 	     lbound <= rbound; j = (rbound + lbound) / 2)
173 		switch (comp_keys
174 			((struct reiserfs_key *)((char *)base + j * width),
175 			 (struct cpu_key *)key)) {
176 		case -1:
177 			lbound = j + 1;
178 			continue;
179 		case 1:
180 			rbound = j - 1;
181 			continue;
182 		case 0:
183 			*pos = j;
184 			return ITEM_FOUND;	/* Key found in the array.  */
185 		}
186 
187 	/*
188 	 * bin_search did not find given key, it returns position of key,
189 	 * that is minimal and greater than the given one.
190 	 */
191 	*pos = lbound;
192 	return ITEM_NOT_FOUND;
193 }
194 
195 
196 /* Minimal possible key. It is never in the tree. */
197 const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
198 
199 /* Maximal possible key. It is never in the tree. */
200 static const struct reiserfs_key MAX_KEY = {
201 	cpu_to_le32(0xffffffff),
202 	cpu_to_le32(0xffffffff),
203 	{{cpu_to_le32(0xffffffff),
204 	  cpu_to_le32(0xffffffff)},}
205 };
206 
207 /*
208  * Get delimiting key of the buffer by looking for it in the buffers in the
209  * path, starting from the bottom of the path, and going upwards.  We must
210  * check the path's validity at each step.  If the key is not in the path,
211  * there is no delimiting key in the tree (buffer is first or last buffer
212  * in tree), and in this case we return a special key, either MIN_KEY or
213  * MAX_KEY.
214  */
215 static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
216 						  const struct super_block *sb)
217 {
218 	int position, path_offset = chk_path->path_length;
219 	struct buffer_head *parent;
220 
221 	RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
222 	       "PAP-5010: invalid offset in the path");
223 
224 	/* While not higher in path than first element. */
225 	while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
226 
227 		RFALSE(!buffer_uptodate
228 		       (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
229 		       "PAP-5020: parent is not uptodate");
230 
231 		/* Parent at the path is not in the tree now. */
232 		if (!B_IS_IN_TREE
233 		    (parent =
234 		     PATH_OFFSET_PBUFFER(chk_path, path_offset)))
235 			return &MAX_KEY;
236 		/* Check whether position in the parent is correct. */
237 		if ((position =
238 		     PATH_OFFSET_POSITION(chk_path,
239 					  path_offset)) >
240 		    B_NR_ITEMS(parent))
241 			return &MAX_KEY;
242 		/* Check whether parent at the path really points to the child. */
243 		if (B_N_CHILD_NUM(parent, position) !=
244 		    PATH_OFFSET_PBUFFER(chk_path,
245 					path_offset + 1)->b_blocknr)
246 			return &MAX_KEY;
247 		/*
248 		 * Return delimiting key if position in the parent
249 		 * is not equal to zero.
250 		 */
251 		if (position)
252 			return internal_key(parent, position - 1);
253 	}
254 	/* Return MIN_KEY if we are in the root of the buffer tree. */
255 	if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
256 	    b_blocknr == SB_ROOT_BLOCK(sb))
257 		return &MIN_KEY;
258 	return &MAX_KEY;
259 }
260 
261 /* Get delimiting key of the buffer at the path and its right neighbor. */
262 inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
263 					   const struct super_block *sb)
264 {
265 	int position, path_offset = chk_path->path_length;
266 	struct buffer_head *parent;
267 
268 	RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
269 	       "PAP-5030: invalid offset in the path");
270 
271 	while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
272 
273 		RFALSE(!buffer_uptodate
274 		       (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
275 		       "PAP-5040: parent is not uptodate");
276 
277 		/* Parent at the path is not in the tree now. */
278 		if (!B_IS_IN_TREE
279 		    (parent =
280 		     PATH_OFFSET_PBUFFER(chk_path, path_offset)))
281 			return &MIN_KEY;
282 		/* Check whether position in the parent is correct. */
283 		if ((position =
284 		     PATH_OFFSET_POSITION(chk_path,
285 					  path_offset)) >
286 		    B_NR_ITEMS(parent))
287 			return &MIN_KEY;
288 		/*
289 		 * Check whether parent at the path really points
290 		 * to the child.
291 		 */
292 		if (B_N_CHILD_NUM(parent, position) !=
293 		    PATH_OFFSET_PBUFFER(chk_path,
294 					path_offset + 1)->b_blocknr)
295 			return &MIN_KEY;
296 
297 		/*
298 		 * Return delimiting key if position in the parent
299 		 * is not the last one.
300 		 */
301 		if (position != B_NR_ITEMS(parent))
302 			return internal_key(parent, position);
303 	}
304 
305 	/* Return MAX_KEY if we are in the root of the buffer tree. */
306 	if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
307 	    b_blocknr == SB_ROOT_BLOCK(sb))
308 		return &MAX_KEY;
309 	return &MIN_KEY;
310 }
311 
312 /*
313  * Check whether a key is contained in the tree rooted from a buffer at a path.
314  * This works by looking at the left and right delimiting keys for the buffer
315  * in the last path_element in the path.  These delimiting keys are stored
316  * at least one level above that buffer in the tree. If the buffer is the
317  * first or last node in the tree order then one of the delimiting keys may
318  * be absent, and in this case get_lkey and get_rkey return a special key
319  * which is MIN_KEY or MAX_KEY.
320  */
321 static inline int key_in_buffer(
322 				/* Path which should be checked. */
323 				struct treepath *chk_path,
324 				/* Key which should be checked. */
325 				const struct cpu_key *key,
326 				struct super_block *sb
327     )
328 {
329 
330 	RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
331 	       || chk_path->path_length > MAX_HEIGHT,
332 	       "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
333 	       key, chk_path->path_length);
334 	RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
335 	       "PAP-5060: device must not be NODEV");
336 
337 	if (comp_keys(get_lkey(chk_path, sb), key) == 1)
338 		/* left delimiting key is bigger, that the key we look for */
339 		return 0;
340 	/*  if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
341 	if (comp_keys(get_rkey(chk_path, sb), key) != 1)
342 		/* key must be less than right delimitiing key */
343 		return 0;
344 	return 1;
345 }
346 
347 int reiserfs_check_path(struct treepath *p)
348 {
349 	RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
350 	       "path not properly relsed");
351 	return 0;
352 }
353 
354 /*
355  * Drop the reference to each buffer in a path and restore
356  * dirty bits clean when preparing the buffer for the log.
357  * This version should only be called from fix_nodes()
358  */
359 void pathrelse_and_restore(struct super_block *sb,
360 			   struct treepath *search_path)
361 {
362 	int path_offset = search_path->path_length;
363 
364 	RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
365 	       "clm-4000: invalid path offset");
366 
367 	while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
368 		struct buffer_head *bh;
369 		bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
370 		reiserfs_restore_prepared_buffer(sb, bh);
371 		brelse(bh);
372 	}
373 	search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
374 }
375 
376 /* Drop the reference to each buffer in a path */
377 void pathrelse(struct treepath *search_path)
378 {
379 	int path_offset = search_path->path_length;
380 
381 	RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
382 	       "PAP-5090: invalid path offset");
383 
384 	while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
385 		brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
386 
387 	search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
388 }
389 
390 static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
391 {
392 	struct block_head *blkh;
393 	struct item_head *ih;
394 	int used_space;
395 	int prev_location;
396 	int i;
397 	int nr;
398 
399 	blkh = (struct block_head *)buf;
400 	if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
401 		reiserfs_warning(NULL, "reiserfs-5080",
402 				 "this should be caught earlier");
403 		return 0;
404 	}
405 
406 	nr = blkh_nr_item(blkh);
407 	if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
408 		/* item number is too big or too small */
409 		reiserfs_warning(NULL, "reiserfs-5081",
410 				 "nr_item seems wrong: %z", bh);
411 		return 0;
412 	}
413 	ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
414 	used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
415 
416 	/* free space does not match to calculated amount of use space */
417 	if (used_space != blocksize - blkh_free_space(blkh)) {
418 		reiserfs_warning(NULL, "reiserfs-5082",
419 				 "free space seems wrong: %z", bh);
420 		return 0;
421 	}
422 	/*
423 	 * FIXME: it is_leaf will hit performance too much - we may have
424 	 * return 1 here
425 	 */
426 
427 	/* check tables of item heads */
428 	ih = (struct item_head *)(buf + BLKH_SIZE);
429 	prev_location = blocksize;
430 	for (i = 0; i < nr; i++, ih++) {
431 		if (le_ih_k_type(ih) == TYPE_ANY) {
432 			reiserfs_warning(NULL, "reiserfs-5083",
433 					 "wrong item type for item %h",
434 					 ih);
435 			return 0;
436 		}
437 		if (ih_location(ih) >= blocksize
438 		    || ih_location(ih) < IH_SIZE * nr) {
439 			reiserfs_warning(NULL, "reiserfs-5084",
440 					 "item location seems wrong: %h",
441 					 ih);
442 			return 0;
443 		}
444 		if (ih_item_len(ih) < 1
445 		    || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
446 			reiserfs_warning(NULL, "reiserfs-5085",
447 					 "item length seems wrong: %h",
448 					 ih);
449 			return 0;
450 		}
451 		if (prev_location - ih_location(ih) != ih_item_len(ih)) {
452 			reiserfs_warning(NULL, "reiserfs-5086",
453 					 "item location seems wrong "
454 					 "(second one): %h", ih);
455 			return 0;
456 		}
457 		prev_location = ih_location(ih);
458 	}
459 
460 	/* one may imagine many more checks */
461 	return 1;
462 }
463 
464 /* returns 1 if buf looks like an internal node, 0 otherwise */
465 static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
466 {
467 	struct block_head *blkh;
468 	int nr;
469 	int used_space;
470 
471 	blkh = (struct block_head *)buf;
472 	nr = blkh_level(blkh);
473 	if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
474 		/* this level is not possible for internal nodes */
475 		reiserfs_warning(NULL, "reiserfs-5087",
476 				 "this should be caught earlier");
477 		return 0;
478 	}
479 
480 	nr = blkh_nr_item(blkh);
481 	/* for internal which is not root we might check min number of keys */
482 	if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
483 		reiserfs_warning(NULL, "reiserfs-5088",
484 				 "number of key seems wrong: %z", bh);
485 		return 0;
486 	}
487 
488 	used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
489 	if (used_space != blocksize - blkh_free_space(blkh)) {
490 		reiserfs_warning(NULL, "reiserfs-5089",
491 				 "free space seems wrong: %z", bh);
492 		return 0;
493 	}
494 
495 	/* one may imagine many more checks */
496 	return 1;
497 }
498 
499 /*
500  * make sure that bh contains formatted node of reiserfs tree of
501  * 'level'-th level
502  */
503 static int is_tree_node(struct buffer_head *bh, int level)
504 {
505 	if (B_LEVEL(bh) != level) {
506 		reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
507 				 "not match to the expected one %d",
508 				 B_LEVEL(bh), level);
509 		return 0;
510 	}
511 	if (level == DISK_LEAF_NODE_LEVEL)
512 		return is_leaf(bh->b_data, bh->b_size, bh);
513 
514 	return is_internal(bh->b_data, bh->b_size, bh);
515 }
516 
517 #define SEARCH_BY_KEY_READA 16
518 
519 /*
520  * The function is NOT SCHEDULE-SAFE!
521  * It might unlock the write lock if we needed to wait for a block
522  * to be read. Note that in this case it won't recover the lock to avoid
523  * high contention resulting from too much lock requests, especially
524  * the caller (search_by_key) will perform other schedule-unsafe
525  * operations just after calling this function.
526  *
527  * @return depth of lock to be restored after read completes
528  */
529 static int search_by_key_reada(struct super_block *s,
530 				struct buffer_head **bh,
531 				b_blocknr_t *b, int num)
532 {
533 	int i, j;
534 	int depth = -1;
535 
536 	for (i = 0; i < num; i++) {
537 		bh[i] = sb_getblk(s, b[i]);
538 	}
539 	/*
540 	 * We are going to read some blocks on which we
541 	 * have a reference. It's safe, though we might be
542 	 * reading blocks concurrently changed if we release
543 	 * the lock. But it's still fine because we check later
544 	 * if the tree changed
545 	 */
546 	for (j = 0; j < i; j++) {
547 		/*
548 		 * note, this needs attention if we are getting rid of the BKL
549 		 * you have to make sure the prepared bit isn't set on this
550 		 * buffer
551 		 */
552 		if (!buffer_uptodate(bh[j])) {
553 			if (depth == -1)
554 				depth = reiserfs_write_unlock_nested(s);
555 			ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, bh + j);
556 		}
557 		brelse(bh[j]);
558 	}
559 	return depth;
560 }
561 
562 /*
563  * This function fills up the path from the root to the leaf as it
564  * descends the tree looking for the key.  It uses reiserfs_bread to
565  * try to find buffers in the cache given their block number.  If it
566  * does not find them in the cache it reads them from disk.  For each
567  * node search_by_key finds using reiserfs_bread it then uses
568  * bin_search to look through that node.  bin_search will find the
569  * position of the block_number of the next node if it is looking
570  * through an internal node.  If it is looking through a leaf node
571  * bin_search will find the position of the item which has key either
572  * equal to given key, or which is the maximal key less than the given
573  * key.  search_by_key returns a path that must be checked for the
574  * correctness of the top of the path but need not be checked for the
575  * correctness of the bottom of the path
576  */
577 /*
578  * search_by_key - search for key (and item) in stree
579  * @sb: superblock
580  * @key: pointer to key to search for
581  * @search_path: Allocated and initialized struct treepath; Returned filled
582  *		 on success.
583  * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to
584  *		stop at leaf level.
585  *
586  * The function is NOT SCHEDULE-SAFE!
587  */
588 int search_by_key(struct super_block *sb, const struct cpu_key *key,
589 		  struct treepath *search_path, int stop_level)
590 {
591 	b_blocknr_t block_number;
592 	int expected_level;
593 	struct buffer_head *bh;
594 	struct path_element *last_element;
595 	int node_level, retval;
596 	int right_neighbor_of_leaf_node;
597 	int fs_gen;
598 	struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
599 	b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
600 	int reada_count = 0;
601 
602 #ifdef CONFIG_REISERFS_CHECK
603 	int repeat_counter = 0;
604 #endif
605 
606 	PROC_INFO_INC(sb, search_by_key);
607 
608 	/*
609 	 * As we add each node to a path we increase its count.  This means
610 	 * that we must be careful to release all nodes in a path before we
611 	 * either discard the path struct or re-use the path struct, as we
612 	 * do here.
613 	 */
614 
615 	pathrelse(search_path);
616 
617 	right_neighbor_of_leaf_node = 0;
618 
619 	/*
620 	 * With each iteration of this loop we search through the items in the
621 	 * current node, and calculate the next current node(next path element)
622 	 * for the next iteration of this loop..
623 	 */
624 	block_number = SB_ROOT_BLOCK(sb);
625 	expected_level = -1;
626 	while (1) {
627 
628 #ifdef CONFIG_REISERFS_CHECK
629 		if (!(++repeat_counter % 50000))
630 			reiserfs_warning(sb, "PAP-5100",
631 					 "%s: there were %d iterations of "
632 					 "while loop looking for key %K",
633 					 current->comm, repeat_counter,
634 					 key);
635 #endif
636 
637 		/* prep path to have another element added to it. */
638 		last_element =
639 		    PATH_OFFSET_PELEMENT(search_path,
640 					 ++search_path->path_length);
641 		fs_gen = get_generation(sb);
642 
643 		/*
644 		 * Read the next tree node, and set the last element
645 		 * in the path to have a pointer to it.
646 		 */
647 		if ((bh = last_element->pe_buffer =
648 		     sb_getblk(sb, block_number))) {
649 
650 			/*
651 			 * We'll need to drop the lock if we encounter any
652 			 * buffers that need to be read. If all of them are
653 			 * already up to date, we don't need to drop the lock.
654 			 */
655 			int depth = -1;
656 
657 			if (!buffer_uptodate(bh) && reada_count > 1)
658 				depth = search_by_key_reada(sb, reada_bh,
659 						    reada_blocks, reada_count);
660 
661 			if (!buffer_uptodate(bh) && depth == -1)
662 				depth = reiserfs_write_unlock_nested(sb);
663 
664 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
665 			wait_on_buffer(bh);
666 
667 			if (depth != -1)
668 				reiserfs_write_lock_nested(sb, depth);
669 			if (!buffer_uptodate(bh))
670 				goto io_error;
671 		} else {
672 io_error:
673 			search_path->path_length--;
674 			pathrelse(search_path);
675 			return IO_ERROR;
676 		}
677 		reada_count = 0;
678 		if (expected_level == -1)
679 			expected_level = SB_TREE_HEIGHT(sb);
680 		expected_level--;
681 
682 		/*
683 		 * It is possible that schedule occurred. We must check
684 		 * whether the key to search is still in the tree rooted
685 		 * from the current buffer. If not then repeat search
686 		 * from the root.
687 		 */
688 		if (fs_changed(fs_gen, sb) &&
689 		    (!B_IS_IN_TREE(bh) ||
690 		     B_LEVEL(bh) != expected_level ||
691 		     !key_in_buffer(search_path, key, sb))) {
692 			PROC_INFO_INC(sb, search_by_key_fs_changed);
693 			PROC_INFO_INC(sb, search_by_key_restarted);
694 			PROC_INFO_INC(sb,
695 				      sbk_restarted[expected_level - 1]);
696 			pathrelse(search_path);
697 
698 			/*
699 			 * Get the root block number so that we can
700 			 * repeat the search starting from the root.
701 			 */
702 			block_number = SB_ROOT_BLOCK(sb);
703 			expected_level = -1;
704 			right_neighbor_of_leaf_node = 0;
705 
706 			/* repeat search from the root */
707 			continue;
708 		}
709 
710 		/*
711 		 * only check that the key is in the buffer if key is not
712 		 * equal to the MAX_KEY. Latter case is only possible in
713 		 * "finish_unfinished()" processing during mount.
714 		 */
715 		RFALSE(comp_keys(&MAX_KEY, key) &&
716 		       !key_in_buffer(search_path, key, sb),
717 		       "PAP-5130: key is not in the buffer");
718 #ifdef CONFIG_REISERFS_CHECK
719 		if (REISERFS_SB(sb)->cur_tb) {
720 			print_cur_tb("5140");
721 			reiserfs_panic(sb, "PAP-5140",
722 				       "schedule occurred in do_balance!");
723 		}
724 #endif
725 
726 		/*
727 		 * make sure, that the node contents look like a node of
728 		 * certain level
729 		 */
730 		if (!is_tree_node(bh, expected_level)) {
731 			reiserfs_error(sb, "vs-5150",
732 				       "invalid format found in block %ld. "
733 				       "Fsck?", bh->b_blocknr);
734 			pathrelse(search_path);
735 			return IO_ERROR;
736 		}
737 
738 		/* ok, we have acquired next formatted node in the tree */
739 		node_level = B_LEVEL(bh);
740 
741 		PROC_INFO_BH_STAT(sb, bh, node_level - 1);
742 
743 		RFALSE(node_level < stop_level,
744 		       "vs-5152: tree level (%d) is less than stop level (%d)",
745 		       node_level, stop_level);
746 
747 		retval = bin_search(key, item_head(bh, 0),
748 				      B_NR_ITEMS(bh),
749 				      (node_level ==
750 				       DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
751 				      KEY_SIZE,
752 				      &last_element->pe_position);
753 		if (node_level == stop_level) {
754 			return retval;
755 		}
756 
757 		/* we are not in the stop level */
758 		/*
759 		 * item has been found, so we choose the pointer which
760 		 * is to the right of the found one
761 		 */
762 		if (retval == ITEM_FOUND)
763 			last_element->pe_position++;
764 
765 		/*
766 		 * if item was not found we choose the position which is to
767 		 * the left of the found item. This requires no code,
768 		 * bin_search did it already.
769 		 */
770 
771 		/*
772 		 * So we have chosen a position in the current node which is
773 		 * an internal node.  Now we calculate child block number by
774 		 * position in the node.
775 		 */
776 		block_number =
777 		    B_N_CHILD_NUM(bh, last_element->pe_position);
778 
779 		/*
780 		 * if we are going to read leaf nodes, try for read
781 		 * ahead as well
782 		 */
783 		if ((search_path->reada & PATH_READA) &&
784 		    node_level == DISK_LEAF_NODE_LEVEL + 1) {
785 			int pos = last_element->pe_position;
786 			int limit = B_NR_ITEMS(bh);
787 			struct reiserfs_key *le_key;
788 
789 			if (search_path->reada & PATH_READA_BACK)
790 				limit = 0;
791 			while (reada_count < SEARCH_BY_KEY_READA) {
792 				if (pos == limit)
793 					break;
794 				reada_blocks[reada_count++] =
795 				    B_N_CHILD_NUM(bh, pos);
796 				if (search_path->reada & PATH_READA_BACK)
797 					pos--;
798 				else
799 					pos++;
800 
801 				/*
802 				 * check to make sure we're in the same object
803 				 */
804 				le_key = internal_key(bh, pos);
805 				if (le32_to_cpu(le_key->k_objectid) !=
806 				    key->on_disk_key.k_objectid) {
807 					break;
808 				}
809 			}
810 		}
811 	}
812 }
813 
814 /*
815  * Form the path to an item and position in this item which contains
816  * file byte defined by key. If there is no such item
817  * corresponding to the key, we point the path to the item with
818  * maximal key less than key, and *pos_in_item is set to one
819  * past the last entry/byte in the item.  If searching for entry in a
820  * directory item, and it is not found, *pos_in_item is set to one
821  * entry more than the entry with maximal key which is less than the
822  * sought key.
823  *
824  * Note that if there is no entry in this same node which is one more,
825  * then we point to an imaginary entry.  for direct items, the
826  * position is in units of bytes, for indirect items the position is
827  * in units of blocknr entries, for directory items the position is in
828  * units of directory entries.
829  */
830 /* The function is NOT SCHEDULE-SAFE! */
831 int search_for_position_by_key(struct super_block *sb,
832 			       /* Key to search (cpu variable) */
833 			       const struct cpu_key *p_cpu_key,
834 			       /* Filled up by this function. */
835 			       struct treepath *search_path)
836 {
837 	struct item_head *p_le_ih;	/* pointer to on-disk structure */
838 	int blk_size;
839 	loff_t item_offset, offset;
840 	struct reiserfs_dir_entry de;
841 	int retval;
842 
843 	/* If searching for directory entry. */
844 	if (is_direntry_cpu_key(p_cpu_key))
845 		return search_by_entry_key(sb, p_cpu_key, search_path,
846 					   &de);
847 
848 	/* If not searching for directory entry. */
849 
850 	/* If item is found. */
851 	retval = search_item(sb, p_cpu_key, search_path);
852 	if (retval == IO_ERROR)
853 		return retval;
854 	if (retval == ITEM_FOUND) {
855 
856 		RFALSE(!ih_item_len
857 		       (item_head
858 			(PATH_PLAST_BUFFER(search_path),
859 			 PATH_LAST_POSITION(search_path))),
860 		       "PAP-5165: item length equals zero");
861 
862 		pos_in_item(search_path) = 0;
863 		return POSITION_FOUND;
864 	}
865 
866 	RFALSE(!PATH_LAST_POSITION(search_path),
867 	       "PAP-5170: position equals zero");
868 
869 	/* Item is not found. Set path to the previous item. */
870 	p_le_ih =
871 	    item_head(PATH_PLAST_BUFFER(search_path),
872 			   --PATH_LAST_POSITION(search_path));
873 	blk_size = sb->s_blocksize;
874 
875 	if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key))
876 		return FILE_NOT_FOUND;
877 
878 	/* FIXME: quite ugly this far */
879 
880 	item_offset = le_ih_k_offset(p_le_ih);
881 	offset = cpu_key_k_offset(p_cpu_key);
882 
883 	/* Needed byte is contained in the item pointed to by the path. */
884 	if (item_offset <= offset &&
885 	    item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
886 		pos_in_item(search_path) = offset - item_offset;
887 		if (is_indirect_le_ih(p_le_ih)) {
888 			pos_in_item(search_path) /= blk_size;
889 		}
890 		return POSITION_FOUND;
891 	}
892 
893 	/*
894 	 * Needed byte is not contained in the item pointed to by the
895 	 * path. Set pos_in_item out of the item.
896 	 */
897 	if (is_indirect_le_ih(p_le_ih))
898 		pos_in_item(search_path) =
899 		    ih_item_len(p_le_ih) / UNFM_P_SIZE;
900 	else
901 		pos_in_item(search_path) = ih_item_len(p_le_ih);
902 
903 	return POSITION_NOT_FOUND;
904 }
905 
906 /* Compare given item and item pointed to by the path. */
907 int comp_items(const struct item_head *stored_ih, const struct treepath *path)
908 {
909 	struct buffer_head *bh = PATH_PLAST_BUFFER(path);
910 	struct item_head *ih;
911 
912 	/* Last buffer at the path is not in the tree. */
913 	if (!B_IS_IN_TREE(bh))
914 		return 1;
915 
916 	/* Last path position is invalid. */
917 	if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
918 		return 1;
919 
920 	/* we need only to know, whether it is the same item */
921 	ih = tp_item_head(path);
922 	return memcmp(stored_ih, ih, IH_SIZE);
923 }
924 
925 /* unformatted nodes are not logged anymore, ever.  This is safe now */
926 #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
927 
928 /* block can not be forgotten as it is in I/O or held by someone */
929 #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
930 
931 /* prepare for delete or cut of direct item */
932 static inline int prepare_for_direct_item(struct treepath *path,
933 					  struct item_head *le_ih,
934 					  struct inode *inode,
935 					  loff_t new_file_length, int *cut_size)
936 {
937 	loff_t round_len;
938 
939 	if (new_file_length == max_reiserfs_offset(inode)) {
940 		/* item has to be deleted */
941 		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
942 		return M_DELETE;
943 	}
944 	/* new file gets truncated */
945 	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
946 		round_len = ROUND_UP(new_file_length);
947 		/* this was new_file_length < le_ih ... */
948 		if (round_len < le_ih_k_offset(le_ih)) {
949 			*cut_size = -(IH_SIZE + ih_item_len(le_ih));
950 			return M_DELETE;	/* Delete this item. */
951 		}
952 		/* Calculate first position and size for cutting from item. */
953 		pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
954 		*cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
955 
956 		return M_CUT;	/* Cut from this item. */
957 	}
958 
959 	/* old file: items may have any length */
960 
961 	if (new_file_length < le_ih_k_offset(le_ih)) {
962 		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
963 		return M_DELETE;	/* Delete this item. */
964 	}
965 
966 	/* Calculate first position and size for cutting from item. */
967 	*cut_size = -(ih_item_len(le_ih) -
968 		      (pos_in_item(path) =
969 		       new_file_length + 1 - le_ih_k_offset(le_ih)));
970 	return M_CUT;		/* Cut from this item. */
971 }
972 
973 static inline int prepare_for_direntry_item(struct treepath *path,
974 					    struct item_head *le_ih,
975 					    struct inode *inode,
976 					    loff_t new_file_length,
977 					    int *cut_size)
978 {
979 	if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
980 	    new_file_length == max_reiserfs_offset(inode)) {
981 		RFALSE(ih_entry_count(le_ih) != 2,
982 		       "PAP-5220: incorrect empty directory item (%h)", le_ih);
983 		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
984 		/* Delete the directory item containing "." and ".." entry. */
985 		return M_DELETE;
986 	}
987 
988 	if (ih_entry_count(le_ih) == 1) {
989 		/*
990 		 * Delete the directory item such as there is one record only
991 		 * in this item
992 		 */
993 		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
994 		return M_DELETE;
995 	}
996 
997 	/* Cut one record from the directory item. */
998 	*cut_size =
999 	    -(DEH_SIZE +
1000 	      entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
1001 	return M_CUT;
1002 }
1003 
1004 #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
1005 
1006 /*
1007  * If the path points to a directory or direct item, calculate mode
1008  * and the size cut, for balance.
1009  * If the path points to an indirect item, remove some number of its
1010  * unformatted nodes.
1011  * In case of file truncate calculate whether this item must be
1012  * deleted/truncated or last unformatted node of this item will be
1013  * converted to a direct item.
1014  * This function returns a determination of what balance mode the
1015  * calling function should employ.
1016  */
1017 static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th,
1018 				      struct inode *inode,
1019 				      struct treepath *path,
1020 				      const struct cpu_key *item_key,
1021 				      /*
1022 				       * Number of unformatted nodes
1023 				       * which were removed from end
1024 				       * of the file.
1025 				       */
1026 				      int *removed,
1027 				      int *cut_size,
1028 				      /* MAX_KEY_OFFSET in case of delete. */
1029 				      unsigned long long new_file_length
1030     )
1031 {
1032 	struct super_block *sb = inode->i_sb;
1033 	struct item_head *p_le_ih = tp_item_head(path);
1034 	struct buffer_head *bh = PATH_PLAST_BUFFER(path);
1035 
1036 	BUG_ON(!th->t_trans_id);
1037 
1038 	/* Stat_data item. */
1039 	if (is_statdata_le_ih(p_le_ih)) {
1040 
1041 		RFALSE(new_file_length != max_reiserfs_offset(inode),
1042 		       "PAP-5210: mode must be M_DELETE");
1043 
1044 		*cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1045 		return M_DELETE;
1046 	}
1047 
1048 	/* Directory item. */
1049 	if (is_direntry_le_ih(p_le_ih))
1050 		return prepare_for_direntry_item(path, p_le_ih, inode,
1051 						 new_file_length,
1052 						 cut_size);
1053 
1054 	/* Direct item. */
1055 	if (is_direct_le_ih(p_le_ih))
1056 		return prepare_for_direct_item(path, p_le_ih, inode,
1057 					       new_file_length, cut_size);
1058 
1059 	/* Case of an indirect item. */
1060 	{
1061 	    int blk_size = sb->s_blocksize;
1062 	    struct item_head s_ih;
1063 	    int need_re_search;
1064 	    int delete = 0;
1065 	    int result = M_CUT;
1066 	    int pos = 0;
1067 
1068 	    if ( new_file_length == max_reiserfs_offset (inode) ) {
1069 		/*
1070 		 * prepare_for_delete_or_cut() is called by
1071 		 * reiserfs_delete_item()
1072 		 */
1073 		new_file_length = 0;
1074 		delete = 1;
1075 	    }
1076 
1077 	    do {
1078 		need_re_search = 0;
1079 		*cut_size = 0;
1080 		bh = PATH_PLAST_BUFFER(path);
1081 		copy_item_head(&s_ih, tp_item_head(path));
1082 		pos = I_UNFM_NUM(&s_ih);
1083 
1084 		while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1085 		    __le32 *unfm;
1086 		    __u32 block;
1087 
1088 		    /*
1089 		     * Each unformatted block deletion may involve
1090 		     * one additional bitmap block into the transaction,
1091 		     * thereby the initial journal space reservation
1092 		     * might not be enough.
1093 		     */
1094 		    if (!delete && (*cut_size) != 0 &&
1095 			reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1096 			break;
1097 
1098 		    unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1;
1099 		    block = get_block_num(unfm, 0);
1100 
1101 		    if (block != 0) {
1102 			reiserfs_prepare_for_journal(sb, bh, 1);
1103 			put_block_num(unfm, 0, 0);
1104 			journal_mark_dirty(th, bh);
1105 			reiserfs_free_block(th, inode, block, 1);
1106 		    }
1107 
1108 		    reiserfs_cond_resched(sb);
1109 
1110 		    if (item_moved (&s_ih, path))  {
1111 			need_re_search = 1;
1112 			break;
1113 		    }
1114 
1115 		    pos --;
1116 		    (*removed)++;
1117 		    (*cut_size) -= UNFM_P_SIZE;
1118 
1119 		    if (pos == 0) {
1120 			(*cut_size) -= IH_SIZE;
1121 			result = M_DELETE;
1122 			break;
1123 		    }
1124 		}
1125 		/*
1126 		 * a trick.  If the buffer has been logged, this will
1127 		 * do nothing.  If we've broken the loop without logging
1128 		 * it, it will restore the buffer
1129 		 */
1130 		reiserfs_restore_prepared_buffer(sb, bh);
1131 	    } while (need_re_search &&
1132 		     search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1133 	    pos_in_item(path) = pos * UNFM_P_SIZE;
1134 
1135 	    if (*cut_size == 0) {
1136 		/*
1137 		 * Nothing was cut. maybe convert last unformatted node to the
1138 		 * direct item?
1139 		 */
1140 		result = M_CONVERT;
1141 	    }
1142 	    return result;
1143 	}
1144 }
1145 
1146 /* Calculate number of bytes which will be deleted or cut during balance */
1147 static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1148 {
1149 	int del_size;
1150 	struct item_head *p_le_ih = tp_item_head(tb->tb_path);
1151 
1152 	if (is_statdata_le_ih(p_le_ih))
1153 		return 0;
1154 
1155 	del_size =
1156 	    (mode ==
1157 	     M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1158 	if (is_direntry_le_ih(p_le_ih)) {
1159 		/*
1160 		 * return EMPTY_DIR_SIZE; We delete emty directories only.
1161 		 * we can't use EMPTY_DIR_SIZE, as old format dirs have a
1162 		 * different empty size.  ick. FIXME, is this right?
1163 		 */
1164 		return del_size;
1165 	}
1166 
1167 	if (is_indirect_le_ih(p_le_ih))
1168 		del_size = (del_size / UNFM_P_SIZE) *
1169 				(PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1170 	return del_size;
1171 }
1172 
1173 static void init_tb_struct(struct reiserfs_transaction_handle *th,
1174 			   struct tree_balance *tb,
1175 			   struct super_block *sb,
1176 			   struct treepath *path, int size)
1177 {
1178 
1179 	BUG_ON(!th->t_trans_id);
1180 
1181 	memset(tb, '\0', sizeof(struct tree_balance));
1182 	tb->transaction_handle = th;
1183 	tb->tb_sb = sb;
1184 	tb->tb_path = path;
1185 	PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1186 	PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1187 	tb->insert_size[0] = size;
1188 }
1189 
1190 void padd_item(char *item, int total_length, int length)
1191 {
1192 	int i;
1193 
1194 	for (i = total_length; i > length;)
1195 		item[--i] = 0;
1196 }
1197 
1198 #ifdef REISERQUOTA_DEBUG
1199 char key2type(struct reiserfs_key *ih)
1200 {
1201 	if (is_direntry_le_key(2, ih))
1202 		return 'd';
1203 	if (is_direct_le_key(2, ih))
1204 		return 'D';
1205 	if (is_indirect_le_key(2, ih))
1206 		return 'i';
1207 	if (is_statdata_le_key(2, ih))
1208 		return 's';
1209 	return 'u';
1210 }
1211 
1212 char head2type(struct item_head *ih)
1213 {
1214 	if (is_direntry_le_ih(ih))
1215 		return 'd';
1216 	if (is_direct_le_ih(ih))
1217 		return 'D';
1218 	if (is_indirect_le_ih(ih))
1219 		return 'i';
1220 	if (is_statdata_le_ih(ih))
1221 		return 's';
1222 	return 'u';
1223 }
1224 #endif
1225 
1226 /*
1227  * Delete object item.
1228  * th       - active transaction handle
1229  * path     - path to the deleted item
1230  * item_key - key to search for the deleted item
1231  * indode   - used for updating i_blocks and quotas
1232  * un_bh    - NULL or unformatted node pointer
1233  */
1234 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1235 			 struct treepath *path, const struct cpu_key *item_key,
1236 			 struct inode *inode, struct buffer_head *un_bh)
1237 {
1238 	struct super_block *sb = inode->i_sb;
1239 	struct tree_balance s_del_balance;
1240 	struct item_head s_ih;
1241 	struct item_head *q_ih;
1242 	int quota_cut_bytes;
1243 	int ret_value, del_size, removed;
1244 	int depth;
1245 
1246 #ifdef CONFIG_REISERFS_CHECK
1247 	char mode;
1248 	int iter = 0;
1249 #endif
1250 
1251 	BUG_ON(!th->t_trans_id);
1252 
1253 	init_tb_struct(th, &s_del_balance, sb, path,
1254 		       0 /*size is unknown */ );
1255 
1256 	while (1) {
1257 		removed = 0;
1258 
1259 #ifdef CONFIG_REISERFS_CHECK
1260 		iter++;
1261 		mode =
1262 #endif
1263 		    prepare_for_delete_or_cut(th, inode, path,
1264 					      item_key, &removed,
1265 					      &del_size,
1266 					      max_reiserfs_offset(inode));
1267 
1268 		RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1269 
1270 		copy_item_head(&s_ih, tp_item_head(path));
1271 		s_del_balance.insert_size[0] = del_size;
1272 
1273 		ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1274 		if (ret_value != REPEAT_SEARCH)
1275 			break;
1276 
1277 		PROC_INFO_INC(sb, delete_item_restarted);
1278 
1279 		/* file system changed, repeat search */
1280 		ret_value =
1281 		    search_for_position_by_key(sb, item_key, path);
1282 		if (ret_value == IO_ERROR)
1283 			break;
1284 		if (ret_value == FILE_NOT_FOUND) {
1285 			reiserfs_warning(sb, "vs-5340",
1286 					 "no items of the file %K found",
1287 					 item_key);
1288 			break;
1289 		}
1290 	}			/* while (1) */
1291 
1292 	if (ret_value != CARRY_ON) {
1293 		unfix_nodes(&s_del_balance);
1294 		return 0;
1295 	}
1296 
1297 	/* reiserfs_delete_item returns item length when success */
1298 	ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1299 	q_ih = tp_item_head(path);
1300 	quota_cut_bytes = ih_item_len(q_ih);
1301 
1302 	/*
1303 	 * hack so the quota code doesn't have to guess if the file has a
1304 	 * tail.  On tail insert, we allocate quota for 1 unformatted node.
1305 	 * We test the offset because the tail might have been
1306 	 * split into multiple items, and we only want to decrement for
1307 	 * the unfm node once
1308 	 */
1309 	if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1310 		if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1311 			quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1312 		} else {
1313 			quota_cut_bytes = 0;
1314 		}
1315 	}
1316 
1317 	if (un_bh) {
1318 		int off;
1319 		char *data;
1320 
1321 		/*
1322 		 * We are in direct2indirect conversion, so move tail contents
1323 		 * to the unformatted node
1324 		 */
1325 		/*
1326 		 * note, we do the copy before preparing the buffer because we
1327 		 * don't care about the contents of the unformatted node yet.
1328 		 * the only thing we really care about is the direct item's
1329 		 * data is in the unformatted node.
1330 		 *
1331 		 * Otherwise, we would have to call
1332 		 * reiserfs_prepare_for_journal on the unformatted node,
1333 		 * which might schedule, meaning we'd have to loop all the
1334 		 * way back up to the start of the while loop.
1335 		 *
1336 		 * The unformatted node must be dirtied later on.  We can't be
1337 		 * sure here if the entire tail has been deleted yet.
1338 		 *
1339 		 * un_bh is from the page cache (all unformatted nodes are
1340 		 * from the page cache) and might be a highmem page.  So, we
1341 		 * can't use un_bh->b_data.
1342 		 * -clm
1343 		 */
1344 
1345 		data = kmap_atomic(un_bh->b_page);
1346 		off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1));
1347 		memcpy(data + off,
1348 		       ih_item_body(PATH_PLAST_BUFFER(path), &s_ih),
1349 		       ret_value);
1350 		kunmap_atomic(data);
1351 	}
1352 
1353 	/* Perform balancing after all resources have been collected at once. */
1354 	do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1355 
1356 #ifdef REISERQUOTA_DEBUG
1357 	reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1358 		       "reiserquota delete_item(): freeing %u, id=%u type=%c",
1359 		       quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1360 #endif
1361 	depth = reiserfs_write_unlock_nested(inode->i_sb);
1362 	dquot_free_space_nodirty(inode, quota_cut_bytes);
1363 	reiserfs_write_lock_nested(inode->i_sb, depth);
1364 
1365 	/* Return deleted body length */
1366 	return ret_value;
1367 }
1368 
1369 /*
1370  * Summary Of Mechanisms For Handling Collisions Between Processes:
1371  *
1372  *  deletion of the body of the object is performed by iput(), with the
1373  *  result that if multiple processes are operating on a file, the
1374  *  deletion of the body of the file is deferred until the last process
1375  *  that has an open inode performs its iput().
1376  *
1377  *  writes and truncates are protected from collisions by use of
1378  *  semaphores.
1379  *
1380  *  creates, linking, and mknod are protected from collisions with other
1381  *  processes by making the reiserfs_add_entry() the last step in the
1382  *  creation, and then rolling back all changes if there was a collision.
1383  *  - Hans
1384 */
1385 
1386 /* this deletes item which never gets split */
1387 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1388 				struct inode *inode, struct reiserfs_key *key)
1389 {
1390 	struct super_block *sb = th->t_super;
1391 	struct tree_balance tb;
1392 	INITIALIZE_PATH(path);
1393 	int item_len = 0;
1394 	int tb_init = 0;
1395 	struct cpu_key cpu_key;
1396 	int retval;
1397 	int quota_cut_bytes = 0;
1398 
1399 	BUG_ON(!th->t_trans_id);
1400 
1401 	le_key2cpu_key(&cpu_key, key);
1402 
1403 	while (1) {
1404 		retval = search_item(th->t_super, &cpu_key, &path);
1405 		if (retval == IO_ERROR) {
1406 			reiserfs_error(th->t_super, "vs-5350",
1407 				       "i/o failure occurred trying "
1408 				       "to delete %K", &cpu_key);
1409 			break;
1410 		}
1411 		if (retval != ITEM_FOUND) {
1412 			pathrelse(&path);
1413 			/*
1414 			 * No need for a warning, if there is just no free
1415 			 * space to insert '..' item into the
1416 			 * newly-created subdir
1417 			 */
1418 			if (!
1419 			    ((unsigned long long)
1420 			     GET_HASH_VALUE(le_key_k_offset
1421 					    (le_key_version(key), key)) == 0
1422 			     && (unsigned long long)
1423 			     GET_GENERATION_NUMBER(le_key_k_offset
1424 						   (le_key_version(key),
1425 						    key)) == 1))
1426 				reiserfs_warning(th->t_super, "vs-5355",
1427 						 "%k not found", key);
1428 			break;
1429 		}
1430 		if (!tb_init) {
1431 			tb_init = 1;
1432 			item_len = ih_item_len(tp_item_head(&path));
1433 			init_tb_struct(th, &tb, th->t_super, &path,
1434 				       -(IH_SIZE + item_len));
1435 		}
1436 		quota_cut_bytes = ih_item_len(tp_item_head(&path));
1437 
1438 		retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1439 		if (retval == REPEAT_SEARCH) {
1440 			PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1441 			continue;
1442 		}
1443 
1444 		if (retval == CARRY_ON) {
1445 			do_balance(&tb, NULL, NULL, M_DELETE);
1446 			/*
1447 			 * Should we count quota for item? (we don't
1448 			 * count quotas for save-links)
1449 			 */
1450 			if (inode) {
1451 				int depth;
1452 #ifdef REISERQUOTA_DEBUG
1453 				reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1454 					       "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1455 					       quota_cut_bytes, inode->i_uid,
1456 					       key2type(key));
1457 #endif
1458 				depth = reiserfs_write_unlock_nested(sb);
1459 				dquot_free_space_nodirty(inode,
1460 							 quota_cut_bytes);
1461 				reiserfs_write_lock_nested(sb, depth);
1462 			}
1463 			break;
1464 		}
1465 
1466 		/* IO_ERROR, NO_DISK_SPACE, etc */
1467 		reiserfs_warning(th->t_super, "vs-5360",
1468 				 "could not delete %K due to fix_nodes failure",
1469 				 &cpu_key);
1470 		unfix_nodes(&tb);
1471 		break;
1472 	}
1473 
1474 	reiserfs_check_path(&path);
1475 }
1476 
1477 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1478 			   struct inode *inode)
1479 {
1480 	int err;
1481 	inode->i_size = 0;
1482 	BUG_ON(!th->t_trans_id);
1483 
1484 	/* for directory this deletes item containing "." and ".." */
1485 	err =
1486 	    reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1487 	if (err)
1488 		return err;
1489 
1490 #if defined( USE_INODE_GENERATION_COUNTER )
1491 	if (!old_format_only(th->t_super)) {
1492 		__le32 *inode_generation;
1493 
1494 		inode_generation =
1495 		    &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1496 		le32_add_cpu(inode_generation, 1);
1497 	}
1498 /* USE_INODE_GENERATION_COUNTER */
1499 #endif
1500 	reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1501 
1502 	return err;
1503 }
1504 
1505 static void unmap_buffers(struct page *page, loff_t pos)
1506 {
1507 	struct buffer_head *bh;
1508 	struct buffer_head *head;
1509 	struct buffer_head *next;
1510 	unsigned long tail_index;
1511 	unsigned long cur_index;
1512 
1513 	if (page) {
1514 		if (page_has_buffers(page)) {
1515 			tail_index = pos & (PAGE_SIZE - 1);
1516 			cur_index = 0;
1517 			head = page_buffers(page);
1518 			bh = head;
1519 			do {
1520 				next = bh->b_this_page;
1521 
1522 				/*
1523 				 * we want to unmap the buffers that contain
1524 				 * the tail, and all the buffers after it
1525 				 * (since the tail must be at the end of the
1526 				 * file).  We don't want to unmap file data
1527 				 * before the tail, since it might be dirty
1528 				 * and waiting to reach disk
1529 				 */
1530 				cur_index += bh->b_size;
1531 				if (cur_index > tail_index) {
1532 					reiserfs_unmap_buffer(bh);
1533 				}
1534 				bh = next;
1535 			} while (bh != head);
1536 		}
1537 	}
1538 }
1539 
1540 static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1541 				    struct inode *inode,
1542 				    struct page *page,
1543 				    struct treepath *path,
1544 				    const struct cpu_key *item_key,
1545 				    loff_t new_file_size, char *mode)
1546 {
1547 	struct super_block *sb = inode->i_sb;
1548 	int block_size = sb->s_blocksize;
1549 	int cut_bytes;
1550 	BUG_ON(!th->t_trans_id);
1551 	BUG_ON(new_file_size != inode->i_size);
1552 
1553 	/*
1554 	 * the page being sent in could be NULL if there was an i/o error
1555 	 * reading in the last block.  The user will hit problems trying to
1556 	 * read the file, but for now we just skip the indirect2direct
1557 	 */
1558 	if (atomic_read(&inode->i_count) > 1 ||
1559 	    !tail_has_to_be_packed(inode) ||
1560 	    !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1561 		/* leave tail in an unformatted node */
1562 		*mode = M_SKIP_BALANCING;
1563 		cut_bytes =
1564 		    block_size - (new_file_size & (block_size - 1));
1565 		pathrelse(path);
1566 		return cut_bytes;
1567 	}
1568 
1569 	/* Perform the conversion to a direct_item. */
1570 	return indirect2direct(th, inode, page, path, item_key,
1571 			       new_file_size, mode);
1572 }
1573 
1574 /*
1575  * we did indirect_to_direct conversion. And we have inserted direct
1576  * item successesfully, but there were no disk space to cut unfm
1577  * pointer being converted. Therefore we have to delete inserted
1578  * direct item(s)
1579  */
1580 static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1581 					 struct inode *inode, struct treepath *path)
1582 {
1583 	struct cpu_key tail_key;
1584 	int tail_len;
1585 	int removed;
1586 	BUG_ON(!th->t_trans_id);
1587 
1588 	make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);
1589 	tail_key.key_length = 4;
1590 
1591 	tail_len =
1592 	    (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1593 	while (tail_len) {
1594 		/* look for the last byte of the tail */
1595 		if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1596 		    POSITION_NOT_FOUND)
1597 			reiserfs_panic(inode->i_sb, "vs-5615",
1598 				       "found invalid item");
1599 		RFALSE(path->pos_in_item !=
1600 		       ih_item_len(tp_item_head(path)) - 1,
1601 		       "vs-5616: appended bytes found");
1602 		PATH_LAST_POSITION(path)--;
1603 
1604 		removed =
1605 		    reiserfs_delete_item(th, path, &tail_key, inode,
1606 					 NULL /*unbh not needed */ );
1607 		RFALSE(removed <= 0
1608 		       || removed > tail_len,
1609 		       "vs-5617: there was tail %d bytes, removed item length %d bytes",
1610 		       tail_len, removed);
1611 		tail_len -= removed;
1612 		set_cpu_key_k_offset(&tail_key,
1613 				     cpu_key_k_offset(&tail_key) - removed);
1614 	}
1615 	reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1616 			 "conversion has been rolled back due to "
1617 			 "lack of disk space");
1618 	mark_inode_dirty(inode);
1619 }
1620 
1621 /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1622 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1623 			   struct treepath *path,
1624 			   struct cpu_key *item_key,
1625 			   struct inode *inode,
1626 			   struct page *page, loff_t new_file_size)
1627 {
1628 	struct super_block *sb = inode->i_sb;
1629 	/*
1630 	 * Every function which is going to call do_balance must first
1631 	 * create a tree_balance structure.  Then it must fill up this
1632 	 * structure by using the init_tb_struct and fix_nodes functions.
1633 	 * After that we can make tree balancing.
1634 	 */
1635 	struct tree_balance s_cut_balance;
1636 	struct item_head *p_le_ih;
1637 	int cut_size = 0;	/* Amount to be cut. */
1638 	int ret_value = CARRY_ON;
1639 	int removed = 0;	/* Number of the removed unformatted nodes. */
1640 	int is_inode_locked = 0;
1641 	char mode;		/* Mode of the balance. */
1642 	int retval2 = -1;
1643 	int quota_cut_bytes;
1644 	loff_t tail_pos = 0;
1645 	int depth;
1646 
1647 	BUG_ON(!th->t_trans_id);
1648 
1649 	init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1650 		       cut_size);
1651 
1652 	/*
1653 	 * Repeat this loop until we either cut the item without needing
1654 	 * to balance, or we fix_nodes without schedule occurring
1655 	 */
1656 	while (1) {
1657 		/*
1658 		 * Determine the balance mode, position of the first byte to
1659 		 * be cut, and size to be cut.  In case of the indirect item
1660 		 * free unformatted nodes which are pointed to by the cut
1661 		 * pointers.
1662 		 */
1663 
1664 		mode =
1665 		    prepare_for_delete_or_cut(th, inode, path,
1666 					      item_key, &removed,
1667 					      &cut_size, new_file_size);
1668 		if (mode == M_CONVERT) {
1669 			/*
1670 			 * convert last unformatted node to direct item or
1671 			 * leave tail in the unformatted node
1672 			 */
1673 			RFALSE(ret_value != CARRY_ON,
1674 			       "PAP-5570: can not convert twice");
1675 
1676 			ret_value =
1677 			    maybe_indirect_to_direct(th, inode, page,
1678 						     path, item_key,
1679 						     new_file_size, &mode);
1680 			if (mode == M_SKIP_BALANCING)
1681 				/* tail has been left in the unformatted node */
1682 				return ret_value;
1683 
1684 			is_inode_locked = 1;
1685 
1686 			/*
1687 			 * removing of last unformatted node will
1688 			 * change value we have to return to truncate.
1689 			 * Save it
1690 			 */
1691 			retval2 = ret_value;
1692 
1693 			/*
1694 			 * So, we have performed the first part of the
1695 			 * conversion:
1696 			 * inserting the new direct item.  Now we are
1697 			 * removing the last unformatted node pointer.
1698 			 * Set key to search for it.
1699 			 */
1700 			set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1701 			item_key->key_length = 4;
1702 			new_file_size -=
1703 			    (new_file_size & (sb->s_blocksize - 1));
1704 			tail_pos = new_file_size;
1705 			set_cpu_key_k_offset(item_key, new_file_size + 1);
1706 			if (search_for_position_by_key
1707 			    (sb, item_key,
1708 			     path) == POSITION_NOT_FOUND) {
1709 				print_block(PATH_PLAST_BUFFER(path), 3,
1710 					    PATH_LAST_POSITION(path) - 1,
1711 					    PATH_LAST_POSITION(path) + 1);
1712 				reiserfs_panic(sb, "PAP-5580", "item to "
1713 					       "convert does not exist (%K)",
1714 					       item_key);
1715 			}
1716 			continue;
1717 		}
1718 		if (cut_size == 0) {
1719 			pathrelse(path);
1720 			return 0;
1721 		}
1722 
1723 		s_cut_balance.insert_size[0] = cut_size;
1724 
1725 		ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1726 		if (ret_value != REPEAT_SEARCH)
1727 			break;
1728 
1729 		PROC_INFO_INC(sb, cut_from_item_restarted);
1730 
1731 		ret_value =
1732 		    search_for_position_by_key(sb, item_key, path);
1733 		if (ret_value == POSITION_FOUND)
1734 			continue;
1735 
1736 		reiserfs_warning(sb, "PAP-5610", "item %K not found",
1737 				 item_key);
1738 		unfix_nodes(&s_cut_balance);
1739 		return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1740 	}			/* while */
1741 
1742 	/* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */
1743 	if (ret_value != CARRY_ON) {
1744 		if (is_inode_locked) {
1745 			/*
1746 			 * FIXME: this seems to be not needed: we are always
1747 			 * able to cut item
1748 			 */
1749 			indirect_to_direct_roll_back(th, inode, path);
1750 		}
1751 		if (ret_value == NO_DISK_SPACE)
1752 			reiserfs_warning(sb, "reiserfs-5092",
1753 					 "NO_DISK_SPACE");
1754 		unfix_nodes(&s_cut_balance);
1755 		return -EIO;
1756 	}
1757 
1758 	/* go ahead and perform balancing */
1759 
1760 	RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1761 
1762 	/* Calculate number of bytes that need to be cut from the item. */
1763 	quota_cut_bytes =
1764 	    (mode ==
1765 	     M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance.
1766 	    insert_size[0];
1767 	if (retval2 == -1)
1768 		ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1769 	else
1770 		ret_value = retval2;
1771 
1772 	/*
1773 	 * For direct items, we only change the quota when deleting the last
1774 	 * item.
1775 	 */
1776 	p_le_ih = tp_item_head(s_cut_balance.tb_path);
1777 	if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1778 		if (mode == M_DELETE &&
1779 		    (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1780 		    1) {
1781 			/* FIXME: this is to keep 3.5 happy */
1782 			REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1783 			quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1784 		} else {
1785 			quota_cut_bytes = 0;
1786 		}
1787 	}
1788 #ifdef CONFIG_REISERFS_CHECK
1789 	if (is_inode_locked) {
1790 		struct item_head *le_ih =
1791 		    tp_item_head(s_cut_balance.tb_path);
1792 		/*
1793 		 * we are going to complete indirect2direct conversion. Make
1794 		 * sure, that we exactly remove last unformatted node pointer
1795 		 * of the item
1796 		 */
1797 		if (!is_indirect_le_ih(le_ih))
1798 			reiserfs_panic(sb, "vs-5652",
1799 				       "item must be indirect %h", le_ih);
1800 
1801 		if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1802 			reiserfs_panic(sb, "vs-5653", "completing "
1803 				       "indirect2direct conversion indirect "
1804 				       "item %h being deleted must be of "
1805 				       "4 byte long", le_ih);
1806 
1807 		if (mode == M_CUT
1808 		    && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1809 			reiserfs_panic(sb, "vs-5654", "can not complete "
1810 				       "indirect2direct conversion of %h "
1811 				       "(CUT, insert_size==%d)",
1812 				       le_ih, s_cut_balance.insert_size[0]);
1813 		}
1814 		/*
1815 		 * it would be useful to make sure, that right neighboring
1816 		 * item is direct item of this file
1817 		 */
1818 	}
1819 #endif
1820 
1821 	do_balance(&s_cut_balance, NULL, NULL, mode);
1822 	if (is_inode_locked) {
1823 		/*
1824 		 * we've done an indirect->direct conversion.  when the
1825 		 * data block was freed, it was removed from the list of
1826 		 * blocks that must be flushed before the transaction
1827 		 * commits, make sure to unmap and invalidate it
1828 		 */
1829 		unmap_buffers(page, tail_pos);
1830 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1831 	}
1832 #ifdef REISERQUOTA_DEBUG
1833 	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1834 		       "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1835 		       quota_cut_bytes, inode->i_uid, '?');
1836 #endif
1837 	depth = reiserfs_write_unlock_nested(sb);
1838 	dquot_free_space_nodirty(inode, quota_cut_bytes);
1839 	reiserfs_write_lock_nested(sb, depth);
1840 	return ret_value;
1841 }
1842 
1843 static void truncate_directory(struct reiserfs_transaction_handle *th,
1844 			       struct inode *inode)
1845 {
1846 	BUG_ON(!th->t_trans_id);
1847 	if (inode->i_nlink)
1848 		reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1849 
1850 	set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1851 	set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1852 	reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1853 	reiserfs_update_sd(th, inode);
1854 	set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1855 	set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1856 }
1857 
1858 /*
1859  * Truncate file to the new size. Note, this must be called with a
1860  * transaction already started
1861  */
1862 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1863 			 struct inode *inode,	/* ->i_size contains new size */
1864 			 struct page *page,	/* up to date for last block */
1865 			 /*
1866 			  * when it is called by file_release to convert
1867 			  * the tail - no timestamps should be updated
1868 			  */
1869 			 int update_timestamps
1870     )
1871 {
1872 	INITIALIZE_PATH(s_search_path);	/* Path to the current object item. */
1873 	struct item_head *p_le_ih;	/* Pointer to an item header. */
1874 
1875 	/* Key to search for a previous file item. */
1876 	struct cpu_key s_item_key;
1877 	loff_t file_size,	/* Old file size. */
1878 	 new_file_size;	/* New file size. */
1879 	int deleted;		/* Number of deleted or truncated bytes. */
1880 	int retval;
1881 	int err = 0;
1882 
1883 	BUG_ON(!th->t_trans_id);
1884 	if (!
1885 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1886 	     || S_ISLNK(inode->i_mode)))
1887 		return 0;
1888 
1889 	/* deletion of directory - no need to update timestamps */
1890 	if (S_ISDIR(inode->i_mode)) {
1891 		truncate_directory(th, inode);
1892 		return 0;
1893 	}
1894 
1895 	/* Get new file size. */
1896 	new_file_size = inode->i_size;
1897 
1898 	/* FIXME: note, that key type is unimportant here */
1899 	make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1900 		     TYPE_DIRECT, 3);
1901 
1902 	retval =
1903 	    search_for_position_by_key(inode->i_sb, &s_item_key,
1904 				       &s_search_path);
1905 	if (retval == IO_ERROR) {
1906 		reiserfs_error(inode->i_sb, "vs-5657",
1907 			       "i/o failure occurred trying to truncate %K",
1908 			       &s_item_key);
1909 		err = -EIO;
1910 		goto out;
1911 	}
1912 	if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1913 		reiserfs_error(inode->i_sb, "PAP-5660",
1914 			       "wrong result %d of search for %K", retval,
1915 			       &s_item_key);
1916 
1917 		err = -EIO;
1918 		goto out;
1919 	}
1920 
1921 	s_search_path.pos_in_item--;
1922 
1923 	/* Get real file size (total length of all file items) */
1924 	p_le_ih = tp_item_head(&s_search_path);
1925 	if (is_statdata_le_ih(p_le_ih))
1926 		file_size = 0;
1927 	else {
1928 		loff_t offset = le_ih_k_offset(p_le_ih);
1929 		int bytes =
1930 		    op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1931 
1932 		/*
1933 		 * this may mismatch with real file size: if last direct item
1934 		 * had no padding zeros and last unformatted node had no free
1935 		 * space, this file would have this file size
1936 		 */
1937 		file_size = offset + bytes - 1;
1938 	}
1939 	/*
1940 	 * are we doing a full truncate or delete, if so
1941 	 * kick in the reada code
1942 	 */
1943 	if (new_file_size == 0)
1944 		s_search_path.reada = PATH_READA | PATH_READA_BACK;
1945 
1946 	if (file_size == 0 || file_size < new_file_size) {
1947 		goto update_and_out;
1948 	}
1949 
1950 	/* Update key to search for the last file item. */
1951 	set_cpu_key_k_offset(&s_item_key, file_size);
1952 
1953 	do {
1954 		/* Cut or delete file item. */
1955 		deleted =
1956 		    reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1957 					   inode, page, new_file_size);
1958 		if (deleted < 0) {
1959 			reiserfs_warning(inode->i_sb, "vs-5665",
1960 					 "reiserfs_cut_from_item failed");
1961 			reiserfs_check_path(&s_search_path);
1962 			return 0;
1963 		}
1964 
1965 		RFALSE(deleted > file_size,
1966 		       "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1967 		       deleted, file_size, &s_item_key);
1968 
1969 		/* Change key to search the last file item. */
1970 		file_size -= deleted;
1971 
1972 		set_cpu_key_k_offset(&s_item_key, file_size);
1973 
1974 		/*
1975 		 * While there are bytes to truncate and previous
1976 		 * file item is presented in the tree.
1977 		 */
1978 
1979 		/*
1980 		 * This loop could take a really long time, and could log
1981 		 * many more blocks than a transaction can hold.  So, we do
1982 		 * a polite journal end here, and if the transaction needs
1983 		 * ending, we make sure the file is consistent before ending
1984 		 * the current trans and starting a new one
1985 		 */
1986 		if (journal_transaction_should_end(th, 0) ||
1987 		    reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1988 			pathrelse(&s_search_path);
1989 
1990 			if (update_timestamps) {
1991 				inode->i_mtime = current_time(inode);
1992 				inode->i_ctime = current_time(inode);
1993 			}
1994 			reiserfs_update_sd(th, inode);
1995 
1996 			err = journal_end(th);
1997 			if (err)
1998 				goto out;
1999 			err = journal_begin(th, inode->i_sb,
2000 					    JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
2001 			if (err)
2002 				goto out;
2003 			reiserfs_update_inode_transaction(inode);
2004 		}
2005 	} while (file_size > ROUND_UP(new_file_size) &&
2006 		 search_for_position_by_key(inode->i_sb, &s_item_key,
2007 					    &s_search_path) == POSITION_FOUND);
2008 
2009 	RFALSE(file_size > ROUND_UP(new_file_size),
2010 	       "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d",
2011 	       new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
2012 
2013 update_and_out:
2014 	if (update_timestamps) {
2015 		/* this is truncate, not file closing */
2016 		inode->i_mtime = current_time(inode);
2017 		inode->i_ctime = current_time(inode);
2018 	}
2019 	reiserfs_update_sd(th, inode);
2020 
2021 out:
2022 	pathrelse(&s_search_path);
2023 	return err;
2024 }
2025 
2026 #ifdef CONFIG_REISERFS_CHECK
2027 /* this makes sure, that we __append__, not overwrite or add holes */
2028 static void check_research_for_paste(struct treepath *path,
2029 				     const struct cpu_key *key)
2030 {
2031 	struct item_head *found_ih = tp_item_head(path);
2032 
2033 	if (is_direct_le_ih(found_ih)) {
2034 		if (le_ih_k_offset(found_ih) +
2035 		    op_bytes_number(found_ih,
2036 				    get_last_bh(path)->b_size) !=
2037 		    cpu_key_k_offset(key)
2038 		    || op_bytes_number(found_ih,
2039 				       get_last_bh(path)->b_size) !=
2040 		    pos_in_item(path))
2041 			reiserfs_panic(NULL, "PAP-5720", "found direct item "
2042 				       "%h or position (%d) does not match "
2043 				       "to key %K", found_ih,
2044 				       pos_in_item(path), key);
2045 	}
2046 	if (is_indirect_le_ih(found_ih)) {
2047 		if (le_ih_k_offset(found_ih) +
2048 		    op_bytes_number(found_ih,
2049 				    get_last_bh(path)->b_size) !=
2050 		    cpu_key_k_offset(key)
2051 		    || I_UNFM_NUM(found_ih) != pos_in_item(path)
2052 		    || get_ih_free_space(found_ih) != 0)
2053 			reiserfs_panic(NULL, "PAP-5730", "found indirect "
2054 				       "item (%h) or position (%d) does not "
2055 				       "match to key (%K)",
2056 				       found_ih, pos_in_item(path), key);
2057 	}
2058 }
2059 #endif				/* config reiserfs check */
2060 
2061 /*
2062  * Paste bytes to the existing item.
2063  * Returns bytes number pasted into the item.
2064  */
2065 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2066 			     /* Path to the pasted item. */
2067 			     struct treepath *search_path,
2068 			     /* Key to search for the needed item. */
2069 			     const struct cpu_key *key,
2070 			     /* Inode item belongs to */
2071 			     struct inode *inode,
2072 			     /* Pointer to the bytes to paste. */
2073 			     const char *body,
2074 			     /* Size of pasted bytes. */
2075 			     int pasted_size)
2076 {
2077 	struct super_block *sb = inode->i_sb;
2078 	struct tree_balance s_paste_balance;
2079 	int retval;
2080 	int fs_gen;
2081 	int depth;
2082 
2083 	BUG_ON(!th->t_trans_id);
2084 
2085 	fs_gen = get_generation(inode->i_sb);
2086 
2087 #ifdef REISERQUOTA_DEBUG
2088 	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2089 		       "reiserquota paste_into_item(): allocating %u id=%u type=%c",
2090 		       pasted_size, inode->i_uid,
2091 		       key2type(&key->on_disk_key));
2092 #endif
2093 
2094 	depth = reiserfs_write_unlock_nested(sb);
2095 	retval = dquot_alloc_space_nodirty(inode, pasted_size);
2096 	reiserfs_write_lock_nested(sb, depth);
2097 	if (retval) {
2098 		pathrelse(search_path);
2099 		return retval;
2100 	}
2101 	init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
2102 		       pasted_size);
2103 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2104 	s_paste_balance.key = key->on_disk_key;
2105 #endif
2106 
2107 	/* DQUOT_* can schedule, must check before the fix_nodes */
2108 	if (fs_changed(fs_gen, inode->i_sb)) {
2109 		goto search_again;
2110 	}
2111 
2112 	while ((retval =
2113 		fix_nodes(M_PASTE, &s_paste_balance, NULL,
2114 			  body)) == REPEAT_SEARCH) {
2115 search_again:
2116 		/* file system changed while we were in the fix_nodes */
2117 		PROC_INFO_INC(th->t_super, paste_into_item_restarted);
2118 		retval =
2119 		    search_for_position_by_key(th->t_super, key,
2120 					       search_path);
2121 		if (retval == IO_ERROR) {
2122 			retval = -EIO;
2123 			goto error_out;
2124 		}
2125 		if (retval == POSITION_FOUND) {
2126 			reiserfs_warning(inode->i_sb, "PAP-5710",
2127 					 "entry or pasted byte (%K) exists",
2128 					 key);
2129 			retval = -EEXIST;
2130 			goto error_out;
2131 		}
2132 #ifdef CONFIG_REISERFS_CHECK
2133 		check_research_for_paste(search_path, key);
2134 #endif
2135 	}
2136 
2137 	/*
2138 	 * Perform balancing after all resources are collected by fix_nodes,
2139 	 * and accessing them will not risk triggering schedule.
2140 	 */
2141 	if (retval == CARRY_ON) {
2142 		do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2143 		return 0;
2144 	}
2145 	retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2146 error_out:
2147 	/* this also releases the path */
2148 	unfix_nodes(&s_paste_balance);
2149 #ifdef REISERQUOTA_DEBUG
2150 	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2151 		       "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2152 		       pasted_size, inode->i_uid,
2153 		       key2type(&key->on_disk_key));
2154 #endif
2155 	depth = reiserfs_write_unlock_nested(sb);
2156 	dquot_free_space_nodirty(inode, pasted_size);
2157 	reiserfs_write_lock_nested(sb, depth);
2158 	return retval;
2159 }
2160 
2161 /*
2162  * Insert new item into the buffer at the path.
2163  * th   - active transaction handle
2164  * path - path to the inserted item
2165  * ih   - pointer to the item header to insert
2166  * body - pointer to the bytes to insert
2167  */
2168 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2169 			 struct treepath *path, const struct cpu_key *key,
2170 			 struct item_head *ih, struct inode *inode,
2171 			 const char *body)
2172 {
2173 	struct tree_balance s_ins_balance;
2174 	int retval;
2175 	int fs_gen = 0;
2176 	int quota_bytes = 0;
2177 
2178 	BUG_ON(!th->t_trans_id);
2179 
2180 	if (inode) {		/* Do we count quotas for item? */
2181 		int depth;
2182 		fs_gen = get_generation(inode->i_sb);
2183 		quota_bytes = ih_item_len(ih);
2184 
2185 		/*
2186 		 * hack so the quota code doesn't have to guess
2187 		 * if the file has a tail, links are always tails,
2188 		 * so there's no guessing needed
2189 		 */
2190 		if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2191 			quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2192 #ifdef REISERQUOTA_DEBUG
2193 		reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2194 			       "reiserquota insert_item(): allocating %u id=%u type=%c",
2195 			       quota_bytes, inode->i_uid, head2type(ih));
2196 #endif
2197 		/*
2198 		 * We can't dirty inode here. It would be immediately
2199 		 * written but appropriate stat item isn't inserted yet...
2200 		 */
2201 		depth = reiserfs_write_unlock_nested(inode->i_sb);
2202 		retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2203 		reiserfs_write_lock_nested(inode->i_sb, depth);
2204 		if (retval) {
2205 			pathrelse(path);
2206 			return retval;
2207 		}
2208 	}
2209 	init_tb_struct(th, &s_ins_balance, th->t_super, path,
2210 		       IH_SIZE + ih_item_len(ih));
2211 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2212 	s_ins_balance.key = key->on_disk_key;
2213 #endif
2214 	/*
2215 	 * DQUOT_* can schedule, must check to be sure calling
2216 	 * fix_nodes is safe
2217 	 */
2218 	if (inode && fs_changed(fs_gen, inode->i_sb)) {
2219 		goto search_again;
2220 	}
2221 
2222 	while ((retval =
2223 		fix_nodes(M_INSERT, &s_ins_balance, ih,
2224 			  body)) == REPEAT_SEARCH) {
2225 search_again:
2226 		/* file system changed while we were in the fix_nodes */
2227 		PROC_INFO_INC(th->t_super, insert_item_restarted);
2228 		retval = search_item(th->t_super, key, path);
2229 		if (retval == IO_ERROR) {
2230 			retval = -EIO;
2231 			goto error_out;
2232 		}
2233 		if (retval == ITEM_FOUND) {
2234 			reiserfs_warning(th->t_super, "PAP-5760",
2235 					 "key %K already exists in the tree",
2236 					 key);
2237 			retval = -EEXIST;
2238 			goto error_out;
2239 		}
2240 	}
2241 
2242 	/* make balancing after all resources will be collected at a time */
2243 	if (retval == CARRY_ON) {
2244 		do_balance(&s_ins_balance, ih, body, M_INSERT);
2245 		return 0;
2246 	}
2247 
2248 	retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2249 error_out:
2250 	/* also releases the path */
2251 	unfix_nodes(&s_ins_balance);
2252 #ifdef REISERQUOTA_DEBUG
2253 	reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2254 		       "reiserquota insert_item(): freeing %u id=%u type=%c",
2255 		       quota_bytes, inode->i_uid, head2type(ih));
2256 #endif
2257 	if (inode) {
2258 		int depth = reiserfs_write_unlock_nested(inode->i_sb);
2259 		dquot_free_space_nodirty(inode, quota_bytes);
2260 		reiserfs_write_lock_nested(inode->i_sb, depth);
2261 	}
2262 	return retval;
2263 }
2264