1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 /* 6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru 7 * Programm System Institute 8 * Pereslavl-Zalessky Russia 9 */ 10 11 /* 12 * This file contains functions dealing with S+tree 13 * 14 * B_IS_IN_TREE 15 * copy_item_head 16 * comp_short_keys 17 * comp_keys 18 * comp_short_le_keys 19 * le_key2cpu_key 20 * comp_le_keys 21 * bin_search 22 * get_lkey 23 * get_rkey 24 * key_in_buffer 25 * decrement_bcount 26 * reiserfs_check_path 27 * pathrelse_and_restore 28 * pathrelse 29 * search_by_key_reada 30 * search_by_key 31 * search_for_position_by_key 32 * comp_items 33 * prepare_for_direct_item 34 * prepare_for_direntry_item 35 * prepare_for_delete_or_cut 36 * calc_deleted_bytes_number 37 * init_tb_struct 38 * padd_item 39 * reiserfs_delete_item 40 * reiserfs_delete_solid_item 41 * reiserfs_delete_object 42 * maybe_indirect_to_direct 43 * indirect_to_direct_roll_back 44 * reiserfs_cut_from_item 45 * truncate_directory 46 * reiserfs_do_truncate 47 * reiserfs_paste_into_item 48 * reiserfs_insert_item 49 */ 50 51 #include <linux/time.h> 52 #include <linux/string.h> 53 #include <linux/pagemap.h> 54 #include "reiserfs.h" 55 #include <linux/buffer_head.h> 56 #include <linux/quotaops.h> 57 58 /* Does the buffer contain a disk block which is in the tree. */ 59 inline int B_IS_IN_TREE(const struct buffer_head *bh) 60 { 61 62 RFALSE(B_LEVEL(bh) > MAX_HEIGHT, 63 "PAP-1010: block (%b) has too big level (%z)", bh, bh); 64 65 return (B_LEVEL(bh) != FREE_LEVEL); 66 } 67 68 // 69 // to gets item head in le form 70 // 71 inline void copy_item_head(struct item_head *to, 72 const struct item_head *from) 73 { 74 memcpy(to, from, IH_SIZE); 75 } 76 77 /* k1 is pointer to on-disk structure which is stored in little-endian 78 form. k2 is pointer to cpu variable. For key of items of the same 79 object this returns 0. 80 Returns: -1 if key1 < key2 81 0 if key1 == key2 82 1 if key1 > key2 */ 83 inline int comp_short_keys(const struct reiserfs_key *le_key, 84 const struct cpu_key *cpu_key) 85 { 86 __u32 n; 87 n = le32_to_cpu(le_key->k_dir_id); 88 if (n < cpu_key->on_disk_key.k_dir_id) 89 return -1; 90 if (n > cpu_key->on_disk_key.k_dir_id) 91 return 1; 92 n = le32_to_cpu(le_key->k_objectid); 93 if (n < cpu_key->on_disk_key.k_objectid) 94 return -1; 95 if (n > cpu_key->on_disk_key.k_objectid) 96 return 1; 97 return 0; 98 } 99 100 /* k1 is pointer to on-disk structure which is stored in little-endian 101 form. k2 is pointer to cpu variable. 102 Compare keys using all 4 key fields. 103 Returns: -1 if key1 < key2 0 104 if key1 = key2 1 if key1 > key2 */ 105 static inline int comp_keys(const struct reiserfs_key *le_key, 106 const struct cpu_key *cpu_key) 107 { 108 int retval; 109 110 retval = comp_short_keys(le_key, cpu_key); 111 if (retval) 112 return retval; 113 if (le_key_k_offset(le_key_version(le_key), le_key) < 114 cpu_key_k_offset(cpu_key)) 115 return -1; 116 if (le_key_k_offset(le_key_version(le_key), le_key) > 117 cpu_key_k_offset(cpu_key)) 118 return 1; 119 120 if (cpu_key->key_length == 3) 121 return 0; 122 123 /* this part is needed only when tail conversion is in progress */ 124 if (le_key_k_type(le_key_version(le_key), le_key) < 125 cpu_key_k_type(cpu_key)) 126 return -1; 127 128 if (le_key_k_type(le_key_version(le_key), le_key) > 129 cpu_key_k_type(cpu_key)) 130 return 1; 131 132 return 0; 133 } 134 135 inline int comp_short_le_keys(const struct reiserfs_key *key1, 136 const struct reiserfs_key *key2) 137 { 138 __u32 *k1_u32, *k2_u32; 139 int key_length = REISERFS_SHORT_KEY_LEN; 140 141 k1_u32 = (__u32 *) key1; 142 k2_u32 = (__u32 *) key2; 143 for (; key_length--; ++k1_u32, ++k2_u32) { 144 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32)) 145 return -1; 146 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32)) 147 return 1; 148 } 149 return 0; 150 } 151 152 inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from) 153 { 154 int version; 155 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id); 156 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid); 157 158 // find out version of the key 159 version = le_key_version(from); 160 to->version = version; 161 to->on_disk_key.k_offset = le_key_k_offset(version, from); 162 to->on_disk_key.k_type = le_key_k_type(version, from); 163 } 164 165 // this does not say which one is bigger, it only returns 1 if keys 166 // are not equal, 0 otherwise 167 inline int comp_le_keys(const struct reiserfs_key *k1, 168 const struct reiserfs_key *k2) 169 { 170 return memcmp(k1, k2, sizeof(struct reiserfs_key)); 171 } 172 173 /************************************************************************** 174 * Binary search toolkit function * 175 * Search for an item in the array by the item key * 176 * Returns: 1 if found, 0 if not found; * 177 * *pos = number of the searched element if found, else the * 178 * number of the first element that is larger than key. * 179 **************************************************************************/ 180 /* For those not familiar with binary search: lbound is the leftmost item that it 181 could be, rbound the rightmost item that it could be. We examine the item 182 halfway between lbound and rbound, and that tells us either that we can increase 183 lbound, or decrease rbound, or that we have found it, or if lbound <= rbound that 184 there are no possible items, and we have not found it. With each examination we 185 cut the number of possible items it could be by one more than half rounded down, 186 or we find it. */ 187 static inline int bin_search(const void *key, /* Key to search for. */ 188 const void *base, /* First item in the array. */ 189 int num, /* Number of items in the array. */ 190 int width, /* Item size in the array. 191 searched. Lest the reader be 192 confused, note that this is crafted 193 as a general function, and when it 194 is applied specifically to the array 195 of item headers in a node, width 196 is actually the item header size not 197 the item size. */ 198 int *pos /* Number of the searched for element. */ 199 ) 200 { 201 int rbound, lbound, j; 202 203 for (j = ((rbound = num - 1) + (lbound = 0)) / 2; 204 lbound <= rbound; j = (rbound + lbound) / 2) 205 switch (comp_keys 206 ((struct reiserfs_key *)((char *)base + j * width), 207 (struct cpu_key *)key)) { 208 case -1: 209 lbound = j + 1; 210 continue; 211 case 1: 212 rbound = j - 1; 213 continue; 214 case 0: 215 *pos = j; 216 return ITEM_FOUND; /* Key found in the array. */ 217 } 218 219 /* bin_search did not find given key, it returns position of key, 220 that is minimal and greater than the given one. */ 221 *pos = lbound; 222 return ITEM_NOT_FOUND; 223 } 224 225 226 /* Minimal possible key. It is never in the tree. */ 227 const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} }; 228 229 /* Maximal possible key. It is never in the tree. */ 230 static const struct reiserfs_key MAX_KEY = { 231 __constant_cpu_to_le32(0xffffffff), 232 __constant_cpu_to_le32(0xffffffff), 233 {{__constant_cpu_to_le32(0xffffffff), 234 __constant_cpu_to_le32(0xffffffff)},} 235 }; 236 237 /* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom 238 of the path, and going upwards. We must check the path's validity at each step. If the key is not in 239 the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this 240 case we return a special key, either MIN_KEY or MAX_KEY. */ 241 static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path, 242 const struct super_block *sb) 243 { 244 int position, path_offset = chk_path->path_length; 245 struct buffer_head *parent; 246 247 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET, 248 "PAP-5010: invalid offset in the path"); 249 250 /* While not higher in path than first element. */ 251 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { 252 253 RFALSE(!buffer_uptodate 254 (PATH_OFFSET_PBUFFER(chk_path, path_offset)), 255 "PAP-5020: parent is not uptodate"); 256 257 /* Parent at the path is not in the tree now. */ 258 if (!B_IS_IN_TREE 259 (parent = 260 PATH_OFFSET_PBUFFER(chk_path, path_offset))) 261 return &MAX_KEY; 262 /* Check whether position in the parent is correct. */ 263 if ((position = 264 PATH_OFFSET_POSITION(chk_path, 265 path_offset)) > 266 B_NR_ITEMS(parent)) 267 return &MAX_KEY; 268 /* Check whether parent at the path really points to the child. */ 269 if (B_N_CHILD_NUM(parent, position) != 270 PATH_OFFSET_PBUFFER(chk_path, 271 path_offset + 1)->b_blocknr) 272 return &MAX_KEY; 273 /* Return delimiting key if position in the parent is not equal to zero. */ 274 if (position) 275 return B_N_PDELIM_KEY(parent, position - 1); 276 } 277 /* Return MIN_KEY if we are in the root of the buffer tree. */ 278 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)-> 279 b_blocknr == SB_ROOT_BLOCK(sb)) 280 return &MIN_KEY; 281 return &MAX_KEY; 282 } 283 284 /* Get delimiting key of the buffer at the path and its right neighbor. */ 285 inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path, 286 const struct super_block *sb) 287 { 288 int position, path_offset = chk_path->path_length; 289 struct buffer_head *parent; 290 291 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET, 292 "PAP-5030: invalid offset in the path"); 293 294 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { 295 296 RFALSE(!buffer_uptodate 297 (PATH_OFFSET_PBUFFER(chk_path, path_offset)), 298 "PAP-5040: parent is not uptodate"); 299 300 /* Parent at the path is not in the tree now. */ 301 if (!B_IS_IN_TREE 302 (parent = 303 PATH_OFFSET_PBUFFER(chk_path, path_offset))) 304 return &MIN_KEY; 305 /* Check whether position in the parent is correct. */ 306 if ((position = 307 PATH_OFFSET_POSITION(chk_path, 308 path_offset)) > 309 B_NR_ITEMS(parent)) 310 return &MIN_KEY; 311 /* Check whether parent at the path really points to the child. */ 312 if (B_N_CHILD_NUM(parent, position) != 313 PATH_OFFSET_PBUFFER(chk_path, 314 path_offset + 1)->b_blocknr) 315 return &MIN_KEY; 316 /* Return delimiting key if position in the parent is not the last one. */ 317 if (position != B_NR_ITEMS(parent)) 318 return B_N_PDELIM_KEY(parent, position); 319 } 320 /* Return MAX_KEY if we are in the root of the buffer tree. */ 321 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)-> 322 b_blocknr == SB_ROOT_BLOCK(sb)) 323 return &MAX_KEY; 324 return &MIN_KEY; 325 } 326 327 /* Check whether a key is contained in the tree rooted from a buffer at a path. */ 328 /* This works by looking at the left and right delimiting keys for the buffer in the last path_element in 329 the path. These delimiting keys are stored at least one level above that buffer in the tree. If the 330 buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in 331 this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */ 332 static inline int key_in_buffer(struct treepath *chk_path, /* Path which should be checked. */ 333 const struct cpu_key *key, /* Key which should be checked. */ 334 struct super_block *sb 335 ) 336 { 337 338 RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET 339 || chk_path->path_length > MAX_HEIGHT, 340 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)", 341 key, chk_path->path_length); 342 RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev, 343 "PAP-5060: device must not be NODEV"); 344 345 if (comp_keys(get_lkey(chk_path, sb), key) == 1) 346 /* left delimiting key is bigger, that the key we look for */ 347 return 0; 348 /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */ 349 if (comp_keys(get_rkey(chk_path, sb), key) != 1) 350 /* key must be less than right delimitiing key */ 351 return 0; 352 return 1; 353 } 354 355 int reiserfs_check_path(struct treepath *p) 356 { 357 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET, 358 "path not properly relsed"); 359 return 0; 360 } 361 362 /* Drop the reference to each buffer in a path and restore 363 * dirty bits clean when preparing the buffer for the log. 364 * This version should only be called from fix_nodes() */ 365 void pathrelse_and_restore(struct super_block *sb, 366 struct treepath *search_path) 367 { 368 int path_offset = search_path->path_length; 369 370 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, 371 "clm-4000: invalid path offset"); 372 373 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) { 374 struct buffer_head *bh; 375 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--); 376 reiserfs_restore_prepared_buffer(sb, bh); 377 brelse(bh); 378 } 379 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; 380 } 381 382 /* Drop the reference to each buffer in a path */ 383 void pathrelse(struct treepath *search_path) 384 { 385 int path_offset = search_path->path_length; 386 387 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, 388 "PAP-5090: invalid path offset"); 389 390 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) 391 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--)); 392 393 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; 394 } 395 396 static int is_leaf(char *buf, int blocksize, struct buffer_head *bh) 397 { 398 struct block_head *blkh; 399 struct item_head *ih; 400 int used_space; 401 int prev_location; 402 int i; 403 int nr; 404 405 blkh = (struct block_head *)buf; 406 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) { 407 reiserfs_warning(NULL, "reiserfs-5080", 408 "this should be caught earlier"); 409 return 0; 410 } 411 412 nr = blkh_nr_item(blkh); 413 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) { 414 /* item number is too big or too small */ 415 reiserfs_warning(NULL, "reiserfs-5081", 416 "nr_item seems wrong: %z", bh); 417 return 0; 418 } 419 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1; 420 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih)); 421 if (used_space != blocksize - blkh_free_space(blkh)) { 422 /* free space does not match to calculated amount of use space */ 423 reiserfs_warning(NULL, "reiserfs-5082", 424 "free space seems wrong: %z", bh); 425 return 0; 426 } 427 // FIXME: it is_leaf will hit performance too much - we may have 428 // return 1 here 429 430 /* check tables of item heads */ 431 ih = (struct item_head *)(buf + BLKH_SIZE); 432 prev_location = blocksize; 433 for (i = 0; i < nr; i++, ih++) { 434 if (le_ih_k_type(ih) == TYPE_ANY) { 435 reiserfs_warning(NULL, "reiserfs-5083", 436 "wrong item type for item %h", 437 ih); 438 return 0; 439 } 440 if (ih_location(ih) >= blocksize 441 || ih_location(ih) < IH_SIZE * nr) { 442 reiserfs_warning(NULL, "reiserfs-5084", 443 "item location seems wrong: %h", 444 ih); 445 return 0; 446 } 447 if (ih_item_len(ih) < 1 448 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) { 449 reiserfs_warning(NULL, "reiserfs-5085", 450 "item length seems wrong: %h", 451 ih); 452 return 0; 453 } 454 if (prev_location - ih_location(ih) != ih_item_len(ih)) { 455 reiserfs_warning(NULL, "reiserfs-5086", 456 "item location seems wrong " 457 "(second one): %h", ih); 458 return 0; 459 } 460 prev_location = ih_location(ih); 461 } 462 463 // one may imagine much more checks 464 return 1; 465 } 466 467 /* returns 1 if buf looks like an internal node, 0 otherwise */ 468 static int is_internal(char *buf, int blocksize, struct buffer_head *bh) 469 { 470 struct block_head *blkh; 471 int nr; 472 int used_space; 473 474 blkh = (struct block_head *)buf; 475 nr = blkh_level(blkh); 476 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) { 477 /* this level is not possible for internal nodes */ 478 reiserfs_warning(NULL, "reiserfs-5087", 479 "this should be caught earlier"); 480 return 0; 481 } 482 483 nr = blkh_nr_item(blkh); 484 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) { 485 /* for internal which is not root we might check min number of keys */ 486 reiserfs_warning(NULL, "reiserfs-5088", 487 "number of key seems wrong: %z", bh); 488 return 0; 489 } 490 491 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1); 492 if (used_space != blocksize - blkh_free_space(blkh)) { 493 reiserfs_warning(NULL, "reiserfs-5089", 494 "free space seems wrong: %z", bh); 495 return 0; 496 } 497 // one may imagine much more checks 498 return 1; 499 } 500 501 // make sure that bh contains formatted node of reiserfs tree of 502 // 'level'-th level 503 static int is_tree_node(struct buffer_head *bh, int level) 504 { 505 if (B_LEVEL(bh) != level) { 506 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does " 507 "not match to the expected one %d", 508 B_LEVEL(bh), level); 509 return 0; 510 } 511 if (level == DISK_LEAF_NODE_LEVEL) 512 return is_leaf(bh->b_data, bh->b_size, bh); 513 514 return is_internal(bh->b_data, bh->b_size, bh); 515 } 516 517 #define SEARCH_BY_KEY_READA 16 518 519 /* 520 * The function is NOT SCHEDULE-SAFE! 521 * It might unlock the write lock if we needed to wait for a block 522 * to be read. Note that in this case it won't recover the lock to avoid 523 * high contention resulting from too much lock requests, especially 524 * the caller (search_by_key) will perform other schedule-unsafe 525 * operations just after calling this function. 526 * 527 * @return depth of lock to be restored after read completes 528 */ 529 static int search_by_key_reada(struct super_block *s, 530 struct buffer_head **bh, 531 b_blocknr_t *b, int num) 532 { 533 int i, j; 534 int depth = -1; 535 536 for (i = 0; i < num; i++) { 537 bh[i] = sb_getblk(s, b[i]); 538 } 539 /* 540 * We are going to read some blocks on which we 541 * have a reference. It's safe, though we might be 542 * reading blocks concurrently changed if we release 543 * the lock. But it's still fine because we check later 544 * if the tree changed 545 */ 546 for (j = 0; j < i; j++) { 547 /* 548 * note, this needs attention if we are getting rid of the BKL 549 * you have to make sure the prepared bit isn't set on this buffer 550 */ 551 if (!buffer_uptodate(bh[j])) { 552 if (depth == -1) 553 depth = reiserfs_write_unlock_nested(s); 554 ll_rw_block(READA, 1, bh + j); 555 } 556 brelse(bh[j]); 557 } 558 return depth; 559 } 560 561 /************************************************************************** 562 * Algorithm SearchByKey * 563 * look for item in the Disk S+Tree by its key * 564 * Input: sb - super block * 565 * key - pointer to the key to search * 566 * Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR * 567 * search_path - path from the root to the needed leaf * 568 **************************************************************************/ 569 570 /* This function fills up the path from the root to the leaf as it 571 descends the tree looking for the key. It uses reiserfs_bread to 572 try to find buffers in the cache given their block number. If it 573 does not find them in the cache it reads them from disk. For each 574 node search_by_key finds using reiserfs_bread it then uses 575 bin_search to look through that node. bin_search will find the 576 position of the block_number of the next node if it is looking 577 through an internal node. If it is looking through a leaf node 578 bin_search will find the position of the item which has key either 579 equal to given key, or which is the maximal key less than the given 580 key. search_by_key returns a path that must be checked for the 581 correctness of the top of the path but need not be checked for the 582 correctness of the bottom of the path */ 583 /* The function is NOT SCHEDULE-SAFE! */ 584 int search_by_key(struct super_block *sb, const struct cpu_key *key, /* Key to search. */ 585 struct treepath *search_path,/* This structure was 586 allocated and initialized 587 by the calling 588 function. It is filled up 589 by this function. */ 590 int stop_level /* How far down the tree to search. To 591 stop at leaf level - set to 592 DISK_LEAF_NODE_LEVEL */ 593 ) 594 { 595 b_blocknr_t block_number; 596 int expected_level; 597 struct buffer_head *bh; 598 struct path_element *last_element; 599 int node_level, retval; 600 int right_neighbor_of_leaf_node; 601 int fs_gen; 602 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA]; 603 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA]; 604 int reada_count = 0; 605 606 #ifdef CONFIG_REISERFS_CHECK 607 int repeat_counter = 0; 608 #endif 609 610 PROC_INFO_INC(sb, search_by_key); 611 612 /* As we add each node to a path we increase its count. This means that 613 we must be careful to release all nodes in a path before we either 614 discard the path struct or re-use the path struct, as we do here. */ 615 616 pathrelse(search_path); 617 618 right_neighbor_of_leaf_node = 0; 619 620 /* With each iteration of this loop we search through the items in the 621 current node, and calculate the next current node(next path element) 622 for the next iteration of this loop.. */ 623 block_number = SB_ROOT_BLOCK(sb); 624 expected_level = -1; 625 while (1) { 626 627 #ifdef CONFIG_REISERFS_CHECK 628 if (!(++repeat_counter % 50000)) 629 reiserfs_warning(sb, "PAP-5100", 630 "%s: there were %d iterations of " 631 "while loop looking for key %K", 632 current->comm, repeat_counter, 633 key); 634 #endif 635 636 /* prep path to have another element added to it. */ 637 last_element = 638 PATH_OFFSET_PELEMENT(search_path, 639 ++search_path->path_length); 640 fs_gen = get_generation(sb); 641 642 /* Read the next tree node, and set the last element in the path to 643 have a pointer to it. */ 644 if ((bh = last_element->pe_buffer = 645 sb_getblk(sb, block_number))) { 646 647 /* 648 * We'll need to drop the lock if we encounter any 649 * buffers that need to be read. If all of them are 650 * already up to date, we don't need to drop the lock. 651 */ 652 int depth = -1; 653 654 if (!buffer_uptodate(bh) && reada_count > 1) 655 depth = search_by_key_reada(sb, reada_bh, 656 reada_blocks, reada_count); 657 658 if (!buffer_uptodate(bh) && depth == -1) 659 depth = reiserfs_write_unlock_nested(sb); 660 661 ll_rw_block(READ, 1, &bh); 662 wait_on_buffer(bh); 663 664 if (depth != -1) 665 reiserfs_write_lock_nested(sb, depth); 666 if (!buffer_uptodate(bh)) 667 goto io_error; 668 } else { 669 io_error: 670 search_path->path_length--; 671 pathrelse(search_path); 672 return IO_ERROR; 673 } 674 reada_count = 0; 675 if (expected_level == -1) 676 expected_level = SB_TREE_HEIGHT(sb); 677 expected_level--; 678 679 /* It is possible that schedule occurred. We must check whether the key 680 to search is still in the tree rooted from the current buffer. If 681 not then repeat search from the root. */ 682 if (fs_changed(fs_gen, sb) && 683 (!B_IS_IN_TREE(bh) || 684 B_LEVEL(bh) != expected_level || 685 !key_in_buffer(search_path, key, sb))) { 686 PROC_INFO_INC(sb, search_by_key_fs_changed); 687 PROC_INFO_INC(sb, search_by_key_restarted); 688 PROC_INFO_INC(sb, 689 sbk_restarted[expected_level - 1]); 690 pathrelse(search_path); 691 692 /* Get the root block number so that we can repeat the search 693 starting from the root. */ 694 block_number = SB_ROOT_BLOCK(sb); 695 expected_level = -1; 696 right_neighbor_of_leaf_node = 0; 697 698 /* repeat search from the root */ 699 continue; 700 } 701 702 /* only check that the key is in the buffer if key is not 703 equal to the MAX_KEY. Latter case is only possible in 704 "finish_unfinished()" processing during mount. */ 705 RFALSE(comp_keys(&MAX_KEY, key) && 706 !key_in_buffer(search_path, key, sb), 707 "PAP-5130: key is not in the buffer"); 708 #ifdef CONFIG_REISERFS_CHECK 709 if (REISERFS_SB(sb)->cur_tb) { 710 print_cur_tb("5140"); 711 reiserfs_panic(sb, "PAP-5140", 712 "schedule occurred in do_balance!"); 713 } 714 #endif 715 716 // make sure, that the node contents look like a node of 717 // certain level 718 if (!is_tree_node(bh, expected_level)) { 719 reiserfs_error(sb, "vs-5150", 720 "invalid format found in block %ld. " 721 "Fsck?", bh->b_blocknr); 722 pathrelse(search_path); 723 return IO_ERROR; 724 } 725 726 /* ok, we have acquired next formatted node in the tree */ 727 node_level = B_LEVEL(bh); 728 729 PROC_INFO_BH_STAT(sb, bh, node_level - 1); 730 731 RFALSE(node_level < stop_level, 732 "vs-5152: tree level (%d) is less than stop level (%d)", 733 node_level, stop_level); 734 735 retval = bin_search(key, B_N_PITEM_HEAD(bh, 0), 736 B_NR_ITEMS(bh), 737 (node_level == 738 DISK_LEAF_NODE_LEVEL) ? IH_SIZE : 739 KEY_SIZE, 740 &(last_element->pe_position)); 741 if (node_level == stop_level) { 742 return retval; 743 } 744 745 /* we are not in the stop level */ 746 if (retval == ITEM_FOUND) 747 /* item has been found, so we choose the pointer which is to the right of the found one */ 748 last_element->pe_position++; 749 750 /* if item was not found we choose the position which is to 751 the left of the found item. This requires no code, 752 bin_search did it already. */ 753 754 /* So we have chosen a position in the current node which is 755 an internal node. Now we calculate child block number by 756 position in the node. */ 757 block_number = 758 B_N_CHILD_NUM(bh, last_element->pe_position); 759 760 /* if we are going to read leaf nodes, try for read ahead as well */ 761 if ((search_path->reada & PATH_READA) && 762 node_level == DISK_LEAF_NODE_LEVEL + 1) { 763 int pos = last_element->pe_position; 764 int limit = B_NR_ITEMS(bh); 765 struct reiserfs_key *le_key; 766 767 if (search_path->reada & PATH_READA_BACK) 768 limit = 0; 769 while (reada_count < SEARCH_BY_KEY_READA) { 770 if (pos == limit) 771 break; 772 reada_blocks[reada_count++] = 773 B_N_CHILD_NUM(bh, pos); 774 if (search_path->reada & PATH_READA_BACK) 775 pos--; 776 else 777 pos++; 778 779 /* 780 * check to make sure we're in the same object 781 */ 782 le_key = B_N_PDELIM_KEY(bh, pos); 783 if (le32_to_cpu(le_key->k_objectid) != 784 key->on_disk_key.k_objectid) { 785 break; 786 } 787 } 788 } 789 } 790 } 791 792 /* Form the path to an item and position in this item which contains 793 file byte defined by key. If there is no such item 794 corresponding to the key, we point the path to the item with 795 maximal key less than key, and *pos_in_item is set to one 796 past the last entry/byte in the item. If searching for entry in a 797 directory item, and it is not found, *pos_in_item is set to one 798 entry more than the entry with maximal key which is less than the 799 sought key. 800 801 Note that if there is no entry in this same node which is one more, 802 then we point to an imaginary entry. for direct items, the 803 position is in units of bytes, for indirect items the position is 804 in units of blocknr entries, for directory items the position is in 805 units of directory entries. */ 806 807 /* The function is NOT SCHEDULE-SAFE! */ 808 int search_for_position_by_key(struct super_block *sb, /* Pointer to the super block. */ 809 const struct cpu_key *p_cpu_key, /* Key to search (cpu variable) */ 810 struct treepath *search_path /* Filled up by this function. */ 811 ) 812 { 813 struct item_head *p_le_ih; /* pointer to on-disk structure */ 814 int blk_size; 815 loff_t item_offset, offset; 816 struct reiserfs_dir_entry de; 817 int retval; 818 819 /* If searching for directory entry. */ 820 if (is_direntry_cpu_key(p_cpu_key)) 821 return search_by_entry_key(sb, p_cpu_key, search_path, 822 &de); 823 824 /* If not searching for directory entry. */ 825 826 /* If item is found. */ 827 retval = search_item(sb, p_cpu_key, search_path); 828 if (retval == IO_ERROR) 829 return retval; 830 if (retval == ITEM_FOUND) { 831 832 RFALSE(!ih_item_len 833 (B_N_PITEM_HEAD 834 (PATH_PLAST_BUFFER(search_path), 835 PATH_LAST_POSITION(search_path))), 836 "PAP-5165: item length equals zero"); 837 838 pos_in_item(search_path) = 0; 839 return POSITION_FOUND; 840 } 841 842 RFALSE(!PATH_LAST_POSITION(search_path), 843 "PAP-5170: position equals zero"); 844 845 /* Item is not found. Set path to the previous item. */ 846 p_le_ih = 847 B_N_PITEM_HEAD(PATH_PLAST_BUFFER(search_path), 848 --PATH_LAST_POSITION(search_path)); 849 blk_size = sb->s_blocksize; 850 851 if (comp_short_keys(&(p_le_ih->ih_key), p_cpu_key)) { 852 return FILE_NOT_FOUND; 853 } 854 // FIXME: quite ugly this far 855 856 item_offset = le_ih_k_offset(p_le_ih); 857 offset = cpu_key_k_offset(p_cpu_key); 858 859 /* Needed byte is contained in the item pointed to by the path. */ 860 if (item_offset <= offset && 861 item_offset + op_bytes_number(p_le_ih, blk_size) > offset) { 862 pos_in_item(search_path) = offset - item_offset; 863 if (is_indirect_le_ih(p_le_ih)) { 864 pos_in_item(search_path) /= blk_size; 865 } 866 return POSITION_FOUND; 867 } 868 869 /* Needed byte is not contained in the item pointed to by the 870 path. Set pos_in_item out of the item. */ 871 if (is_indirect_le_ih(p_le_ih)) 872 pos_in_item(search_path) = 873 ih_item_len(p_le_ih) / UNFM_P_SIZE; 874 else 875 pos_in_item(search_path) = ih_item_len(p_le_ih); 876 877 return POSITION_NOT_FOUND; 878 } 879 880 /* Compare given item and item pointed to by the path. */ 881 int comp_items(const struct item_head *stored_ih, const struct treepath *path) 882 { 883 struct buffer_head *bh = PATH_PLAST_BUFFER(path); 884 struct item_head *ih; 885 886 /* Last buffer at the path is not in the tree. */ 887 if (!B_IS_IN_TREE(bh)) 888 return 1; 889 890 /* Last path position is invalid. */ 891 if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh)) 892 return 1; 893 894 /* we need only to know, whether it is the same item */ 895 ih = get_ih(path); 896 return memcmp(stored_ih, ih, IH_SIZE); 897 } 898 899 /* unformatted nodes are not logged anymore, ever. This is safe 900 ** now 901 */ 902 #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1) 903 904 // block can not be forgotten as it is in I/O or held by someone 905 #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh))) 906 907 // prepare for delete or cut of direct item 908 static inline int prepare_for_direct_item(struct treepath *path, 909 struct item_head *le_ih, 910 struct inode *inode, 911 loff_t new_file_length, int *cut_size) 912 { 913 loff_t round_len; 914 915 if (new_file_length == max_reiserfs_offset(inode)) { 916 /* item has to be deleted */ 917 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 918 return M_DELETE; 919 } 920 // new file gets truncated 921 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) { 922 // 923 round_len = ROUND_UP(new_file_length); 924 /* this was new_file_length < le_ih ... */ 925 if (round_len < le_ih_k_offset(le_ih)) { 926 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 927 return M_DELETE; /* Delete this item. */ 928 } 929 /* Calculate first position and size for cutting from item. */ 930 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1); 931 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path)); 932 933 return M_CUT; /* Cut from this item. */ 934 } 935 936 // old file: items may have any length 937 938 if (new_file_length < le_ih_k_offset(le_ih)) { 939 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 940 return M_DELETE; /* Delete this item. */ 941 } 942 /* Calculate first position and size for cutting from item. */ 943 *cut_size = -(ih_item_len(le_ih) - 944 (pos_in_item(path) = 945 new_file_length + 1 - le_ih_k_offset(le_ih))); 946 return M_CUT; /* Cut from this item. */ 947 } 948 949 static inline int prepare_for_direntry_item(struct treepath *path, 950 struct item_head *le_ih, 951 struct inode *inode, 952 loff_t new_file_length, 953 int *cut_size) 954 { 955 if (le_ih_k_offset(le_ih) == DOT_OFFSET && 956 new_file_length == max_reiserfs_offset(inode)) { 957 RFALSE(ih_entry_count(le_ih) != 2, 958 "PAP-5220: incorrect empty directory item (%h)", le_ih); 959 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 960 return M_DELETE; /* Delete the directory item containing "." and ".." entry. */ 961 } 962 963 if (ih_entry_count(le_ih) == 1) { 964 /* Delete the directory item such as there is one record only 965 in this item */ 966 *cut_size = -(IH_SIZE + ih_item_len(le_ih)); 967 return M_DELETE; 968 } 969 970 /* Cut one record from the directory item. */ 971 *cut_size = 972 -(DEH_SIZE + 973 entry_length(get_last_bh(path), le_ih, pos_in_item(path))); 974 return M_CUT; 975 } 976 977 #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1) 978 979 /* If the path points to a directory or direct item, calculate mode and the size cut, for balance. 980 If the path points to an indirect item, remove some number of its unformatted nodes. 981 In case of file truncate calculate whether this item must be deleted/truncated or last 982 unformatted node of this item will be converted to a direct item. 983 This function returns a determination of what balance mode the calling function should employ. */ 984 static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, struct inode *inode, struct treepath *path, const struct cpu_key *item_key, int *removed, /* Number of unformatted nodes which were removed 985 from end of the file. */ 986 int *cut_size, unsigned long long new_file_length /* MAX_KEY_OFFSET in case of delete. */ 987 ) 988 { 989 struct super_block *sb = inode->i_sb; 990 struct item_head *p_le_ih = PATH_PITEM_HEAD(path); 991 struct buffer_head *bh = PATH_PLAST_BUFFER(path); 992 993 BUG_ON(!th->t_trans_id); 994 995 /* Stat_data item. */ 996 if (is_statdata_le_ih(p_le_ih)) { 997 998 RFALSE(new_file_length != max_reiserfs_offset(inode), 999 "PAP-5210: mode must be M_DELETE"); 1000 1001 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih)); 1002 return M_DELETE; 1003 } 1004 1005 /* Directory item. */ 1006 if (is_direntry_le_ih(p_le_ih)) 1007 return prepare_for_direntry_item(path, p_le_ih, inode, 1008 new_file_length, 1009 cut_size); 1010 1011 /* Direct item. */ 1012 if (is_direct_le_ih(p_le_ih)) 1013 return prepare_for_direct_item(path, p_le_ih, inode, 1014 new_file_length, cut_size); 1015 1016 /* Case of an indirect item. */ 1017 { 1018 int blk_size = sb->s_blocksize; 1019 struct item_head s_ih; 1020 int need_re_search; 1021 int delete = 0; 1022 int result = M_CUT; 1023 int pos = 0; 1024 1025 if ( new_file_length == max_reiserfs_offset (inode) ) { 1026 /* prepare_for_delete_or_cut() is called by 1027 * reiserfs_delete_item() */ 1028 new_file_length = 0; 1029 delete = 1; 1030 } 1031 1032 do { 1033 need_re_search = 0; 1034 *cut_size = 0; 1035 bh = PATH_PLAST_BUFFER(path); 1036 copy_item_head(&s_ih, PATH_PITEM_HEAD(path)); 1037 pos = I_UNFM_NUM(&s_ih); 1038 1039 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) { 1040 __le32 *unfm; 1041 __u32 block; 1042 1043 /* Each unformatted block deletion may involve one additional 1044 * bitmap block into the transaction, thereby the initial 1045 * journal space reservation might not be enough. */ 1046 if (!delete && (*cut_size) != 0 && 1047 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) 1048 break; 1049 1050 unfm = (__le32 *)B_I_PITEM(bh, &s_ih) + pos - 1; 1051 block = get_block_num(unfm, 0); 1052 1053 if (block != 0) { 1054 reiserfs_prepare_for_journal(sb, bh, 1); 1055 put_block_num(unfm, 0, 0); 1056 journal_mark_dirty(th, sb, bh); 1057 reiserfs_free_block(th, inode, block, 1); 1058 } 1059 1060 reiserfs_cond_resched(sb); 1061 1062 if (item_moved (&s_ih, path)) { 1063 need_re_search = 1; 1064 break; 1065 } 1066 1067 pos --; 1068 (*removed)++; 1069 (*cut_size) -= UNFM_P_SIZE; 1070 1071 if (pos == 0) { 1072 (*cut_size) -= IH_SIZE; 1073 result = M_DELETE; 1074 break; 1075 } 1076 } 1077 /* a trick. If the buffer has been logged, this will do nothing. If 1078 ** we've broken the loop without logging it, it will restore the 1079 ** buffer */ 1080 reiserfs_restore_prepared_buffer(sb, bh); 1081 } while (need_re_search && 1082 search_for_position_by_key(sb, item_key, path) == POSITION_FOUND); 1083 pos_in_item(path) = pos * UNFM_P_SIZE; 1084 1085 if (*cut_size == 0) { 1086 /* Nothing were cut. maybe convert last unformatted node to the 1087 * direct item? */ 1088 result = M_CONVERT; 1089 } 1090 return result; 1091 } 1092 } 1093 1094 /* Calculate number of bytes which will be deleted or cut during balance */ 1095 static int calc_deleted_bytes_number(struct tree_balance *tb, char mode) 1096 { 1097 int del_size; 1098 struct item_head *p_le_ih = PATH_PITEM_HEAD(tb->tb_path); 1099 1100 if (is_statdata_le_ih(p_le_ih)) 1101 return 0; 1102 1103 del_size = 1104 (mode == 1105 M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0]; 1106 if (is_direntry_le_ih(p_le_ih)) { 1107 /* return EMPTY_DIR_SIZE; We delete emty directoris only. 1108 * we can't use EMPTY_DIR_SIZE, as old format dirs have a different 1109 * empty size. ick. FIXME, is this right? */ 1110 return del_size; 1111 } 1112 1113 if (is_indirect_le_ih(p_le_ih)) 1114 del_size = (del_size / UNFM_P_SIZE) * 1115 (PATH_PLAST_BUFFER(tb->tb_path)->b_size); 1116 return del_size; 1117 } 1118 1119 static void init_tb_struct(struct reiserfs_transaction_handle *th, 1120 struct tree_balance *tb, 1121 struct super_block *sb, 1122 struct treepath *path, int size) 1123 { 1124 1125 BUG_ON(!th->t_trans_id); 1126 1127 memset(tb, '\0', sizeof(struct tree_balance)); 1128 tb->transaction_handle = th; 1129 tb->tb_sb = sb; 1130 tb->tb_path = path; 1131 PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL; 1132 PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0; 1133 tb->insert_size[0] = size; 1134 } 1135 1136 void padd_item(char *item, int total_length, int length) 1137 { 1138 int i; 1139 1140 for (i = total_length; i > length;) 1141 item[--i] = 0; 1142 } 1143 1144 #ifdef REISERQUOTA_DEBUG 1145 char key2type(struct reiserfs_key *ih) 1146 { 1147 if (is_direntry_le_key(2, ih)) 1148 return 'd'; 1149 if (is_direct_le_key(2, ih)) 1150 return 'D'; 1151 if (is_indirect_le_key(2, ih)) 1152 return 'i'; 1153 if (is_statdata_le_key(2, ih)) 1154 return 's'; 1155 return 'u'; 1156 } 1157 1158 char head2type(struct item_head *ih) 1159 { 1160 if (is_direntry_le_ih(ih)) 1161 return 'd'; 1162 if (is_direct_le_ih(ih)) 1163 return 'D'; 1164 if (is_indirect_le_ih(ih)) 1165 return 'i'; 1166 if (is_statdata_le_ih(ih)) 1167 return 's'; 1168 return 'u'; 1169 } 1170 #endif 1171 1172 /* Delete object item. 1173 * th - active transaction handle 1174 * path - path to the deleted item 1175 * item_key - key to search for the deleted item 1176 * indode - used for updating i_blocks and quotas 1177 * un_bh - NULL or unformatted node pointer 1178 */ 1179 int reiserfs_delete_item(struct reiserfs_transaction_handle *th, 1180 struct treepath *path, const struct cpu_key *item_key, 1181 struct inode *inode, struct buffer_head *un_bh) 1182 { 1183 struct super_block *sb = inode->i_sb; 1184 struct tree_balance s_del_balance; 1185 struct item_head s_ih; 1186 struct item_head *q_ih; 1187 int quota_cut_bytes; 1188 int ret_value, del_size, removed; 1189 int depth; 1190 1191 #ifdef CONFIG_REISERFS_CHECK 1192 char mode; 1193 int iter = 0; 1194 #endif 1195 1196 BUG_ON(!th->t_trans_id); 1197 1198 init_tb_struct(th, &s_del_balance, sb, path, 1199 0 /*size is unknown */ ); 1200 1201 while (1) { 1202 removed = 0; 1203 1204 #ifdef CONFIG_REISERFS_CHECK 1205 iter++; 1206 mode = 1207 #endif 1208 prepare_for_delete_or_cut(th, inode, path, 1209 item_key, &removed, 1210 &del_size, 1211 max_reiserfs_offset(inode)); 1212 1213 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE"); 1214 1215 copy_item_head(&s_ih, PATH_PITEM_HEAD(path)); 1216 s_del_balance.insert_size[0] = del_size; 1217 1218 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL); 1219 if (ret_value != REPEAT_SEARCH) 1220 break; 1221 1222 PROC_INFO_INC(sb, delete_item_restarted); 1223 1224 // file system changed, repeat search 1225 ret_value = 1226 search_for_position_by_key(sb, item_key, path); 1227 if (ret_value == IO_ERROR) 1228 break; 1229 if (ret_value == FILE_NOT_FOUND) { 1230 reiserfs_warning(sb, "vs-5340", 1231 "no items of the file %K found", 1232 item_key); 1233 break; 1234 } 1235 } /* while (1) */ 1236 1237 if (ret_value != CARRY_ON) { 1238 unfix_nodes(&s_del_balance); 1239 return 0; 1240 } 1241 // reiserfs_delete_item returns item length when success 1242 ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE); 1243 q_ih = get_ih(path); 1244 quota_cut_bytes = ih_item_len(q_ih); 1245 1246 /* hack so the quota code doesn't have to guess if the file 1247 ** has a tail. On tail insert, we allocate quota for 1 unformatted node. 1248 ** We test the offset because the tail might have been 1249 ** split into multiple items, and we only want to decrement for 1250 ** the unfm node once 1251 */ 1252 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) { 1253 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) { 1254 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE; 1255 } else { 1256 quota_cut_bytes = 0; 1257 } 1258 } 1259 1260 if (un_bh) { 1261 int off; 1262 char *data; 1263 1264 /* We are in direct2indirect conversion, so move tail contents 1265 to the unformatted node */ 1266 /* note, we do the copy before preparing the buffer because we 1267 ** don't care about the contents of the unformatted node yet. 1268 ** the only thing we really care about is the direct item's data 1269 ** is in the unformatted node. 1270 ** 1271 ** Otherwise, we would have to call reiserfs_prepare_for_journal on 1272 ** the unformatted node, which might schedule, meaning we'd have to 1273 ** loop all the way back up to the start of the while loop. 1274 ** 1275 ** The unformatted node must be dirtied later on. We can't be 1276 ** sure here if the entire tail has been deleted yet. 1277 ** 1278 ** un_bh is from the page cache (all unformatted nodes are 1279 ** from the page cache) and might be a highmem page. So, we 1280 ** can't use un_bh->b_data. 1281 ** -clm 1282 */ 1283 1284 data = kmap_atomic(un_bh->b_page); 1285 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_CACHE_SIZE - 1)); 1286 memcpy(data + off, 1287 B_I_PITEM(PATH_PLAST_BUFFER(path), &s_ih), 1288 ret_value); 1289 kunmap_atomic(data); 1290 } 1291 /* Perform balancing after all resources have been collected at once. */ 1292 do_balance(&s_del_balance, NULL, NULL, M_DELETE); 1293 1294 #ifdef REISERQUOTA_DEBUG 1295 reiserfs_debug(sb, REISERFS_DEBUG_CODE, 1296 "reiserquota delete_item(): freeing %u, id=%u type=%c", 1297 quota_cut_bytes, inode->i_uid, head2type(&s_ih)); 1298 #endif 1299 depth = reiserfs_write_unlock_nested(inode->i_sb); 1300 dquot_free_space_nodirty(inode, quota_cut_bytes); 1301 reiserfs_write_lock_nested(inode->i_sb, depth); 1302 1303 /* Return deleted body length */ 1304 return ret_value; 1305 } 1306 1307 /* Summary Of Mechanisms For Handling Collisions Between Processes: 1308 1309 deletion of the body of the object is performed by iput(), with the 1310 result that if multiple processes are operating on a file, the 1311 deletion of the body of the file is deferred until the last process 1312 that has an open inode performs its iput(). 1313 1314 writes and truncates are protected from collisions by use of 1315 semaphores. 1316 1317 creates, linking, and mknod are protected from collisions with other 1318 processes by making the reiserfs_add_entry() the last step in the 1319 creation, and then rolling back all changes if there was a collision. 1320 - Hans 1321 */ 1322 1323 /* this deletes item which never gets split */ 1324 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, 1325 struct inode *inode, struct reiserfs_key *key) 1326 { 1327 struct super_block *sb = th->t_super; 1328 struct tree_balance tb; 1329 INITIALIZE_PATH(path); 1330 int item_len = 0; 1331 int tb_init = 0; 1332 struct cpu_key cpu_key; 1333 int retval; 1334 int quota_cut_bytes = 0; 1335 1336 BUG_ON(!th->t_trans_id); 1337 1338 le_key2cpu_key(&cpu_key, key); 1339 1340 while (1) { 1341 retval = search_item(th->t_super, &cpu_key, &path); 1342 if (retval == IO_ERROR) { 1343 reiserfs_error(th->t_super, "vs-5350", 1344 "i/o failure occurred trying " 1345 "to delete %K", &cpu_key); 1346 break; 1347 } 1348 if (retval != ITEM_FOUND) { 1349 pathrelse(&path); 1350 // No need for a warning, if there is just no free space to insert '..' item into the newly-created subdir 1351 if (! 1352 ((unsigned long long) 1353 GET_HASH_VALUE(le_key_k_offset 1354 (le_key_version(key), key)) == 0 1355 && (unsigned long long) 1356 GET_GENERATION_NUMBER(le_key_k_offset 1357 (le_key_version(key), 1358 key)) == 1)) 1359 reiserfs_warning(th->t_super, "vs-5355", 1360 "%k not found", key); 1361 break; 1362 } 1363 if (!tb_init) { 1364 tb_init = 1; 1365 item_len = ih_item_len(PATH_PITEM_HEAD(&path)); 1366 init_tb_struct(th, &tb, th->t_super, &path, 1367 -(IH_SIZE + item_len)); 1368 } 1369 quota_cut_bytes = ih_item_len(PATH_PITEM_HEAD(&path)); 1370 1371 retval = fix_nodes(M_DELETE, &tb, NULL, NULL); 1372 if (retval == REPEAT_SEARCH) { 1373 PROC_INFO_INC(th->t_super, delete_solid_item_restarted); 1374 continue; 1375 } 1376 1377 if (retval == CARRY_ON) { 1378 do_balance(&tb, NULL, NULL, M_DELETE); 1379 if (inode) { /* Should we count quota for item? (we don't count quotas for save-links) */ 1380 int depth; 1381 #ifdef REISERQUOTA_DEBUG 1382 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, 1383 "reiserquota delete_solid_item(): freeing %u id=%u type=%c", 1384 quota_cut_bytes, inode->i_uid, 1385 key2type(key)); 1386 #endif 1387 depth = reiserfs_write_unlock_nested(sb); 1388 dquot_free_space_nodirty(inode, 1389 quota_cut_bytes); 1390 reiserfs_write_lock_nested(sb, depth); 1391 } 1392 break; 1393 } 1394 // IO_ERROR, NO_DISK_SPACE, etc 1395 reiserfs_warning(th->t_super, "vs-5360", 1396 "could not delete %K due to fix_nodes failure", 1397 &cpu_key); 1398 unfix_nodes(&tb); 1399 break; 1400 } 1401 1402 reiserfs_check_path(&path); 1403 } 1404 1405 int reiserfs_delete_object(struct reiserfs_transaction_handle *th, 1406 struct inode *inode) 1407 { 1408 int err; 1409 inode->i_size = 0; 1410 BUG_ON(!th->t_trans_id); 1411 1412 /* for directory this deletes item containing "." and ".." */ 1413 err = 1414 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ ); 1415 if (err) 1416 return err; 1417 1418 #if defined( USE_INODE_GENERATION_COUNTER ) 1419 if (!old_format_only(th->t_super)) { 1420 __le32 *inode_generation; 1421 1422 inode_generation = 1423 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation; 1424 le32_add_cpu(inode_generation, 1); 1425 } 1426 /* USE_INODE_GENERATION_COUNTER */ 1427 #endif 1428 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); 1429 1430 return err; 1431 } 1432 1433 static void unmap_buffers(struct page *page, loff_t pos) 1434 { 1435 struct buffer_head *bh; 1436 struct buffer_head *head; 1437 struct buffer_head *next; 1438 unsigned long tail_index; 1439 unsigned long cur_index; 1440 1441 if (page) { 1442 if (page_has_buffers(page)) { 1443 tail_index = pos & (PAGE_CACHE_SIZE - 1); 1444 cur_index = 0; 1445 head = page_buffers(page); 1446 bh = head; 1447 do { 1448 next = bh->b_this_page; 1449 1450 /* we want to unmap the buffers that contain the tail, and 1451 ** all the buffers after it (since the tail must be at the 1452 ** end of the file). We don't want to unmap file data 1453 ** before the tail, since it might be dirty and waiting to 1454 ** reach disk 1455 */ 1456 cur_index += bh->b_size; 1457 if (cur_index > tail_index) { 1458 reiserfs_unmap_buffer(bh); 1459 } 1460 bh = next; 1461 } while (bh != head); 1462 } 1463 } 1464 } 1465 1466 static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th, 1467 struct inode *inode, 1468 struct page *page, 1469 struct treepath *path, 1470 const struct cpu_key *item_key, 1471 loff_t new_file_size, char *mode) 1472 { 1473 struct super_block *sb = inode->i_sb; 1474 int block_size = sb->s_blocksize; 1475 int cut_bytes; 1476 BUG_ON(!th->t_trans_id); 1477 BUG_ON(new_file_size != inode->i_size); 1478 1479 /* the page being sent in could be NULL if there was an i/o error 1480 ** reading in the last block. The user will hit problems trying to 1481 ** read the file, but for now we just skip the indirect2direct 1482 */ 1483 if (atomic_read(&inode->i_count) > 1 || 1484 !tail_has_to_be_packed(inode) || 1485 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) { 1486 /* leave tail in an unformatted node */ 1487 *mode = M_SKIP_BALANCING; 1488 cut_bytes = 1489 block_size - (new_file_size & (block_size - 1)); 1490 pathrelse(path); 1491 return cut_bytes; 1492 } 1493 /* Perform the conversion to a direct_item. */ 1494 /* return indirect_to_direct(inode, path, item_key, 1495 new_file_size, mode); */ 1496 return indirect2direct(th, inode, page, path, item_key, 1497 new_file_size, mode); 1498 } 1499 1500 /* we did indirect_to_direct conversion. And we have inserted direct 1501 item successesfully, but there were no disk space to cut unfm 1502 pointer being converted. Therefore we have to delete inserted 1503 direct item(s) */ 1504 static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th, 1505 struct inode *inode, struct treepath *path) 1506 { 1507 struct cpu_key tail_key; 1508 int tail_len; 1509 int removed; 1510 BUG_ON(!th->t_trans_id); 1511 1512 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4); // !!!! 1513 tail_key.key_length = 4; 1514 1515 tail_len = 1516 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1; 1517 while (tail_len) { 1518 /* look for the last byte of the tail */ 1519 if (search_for_position_by_key(inode->i_sb, &tail_key, path) == 1520 POSITION_NOT_FOUND) 1521 reiserfs_panic(inode->i_sb, "vs-5615", 1522 "found invalid item"); 1523 RFALSE(path->pos_in_item != 1524 ih_item_len(PATH_PITEM_HEAD(path)) - 1, 1525 "vs-5616: appended bytes found"); 1526 PATH_LAST_POSITION(path)--; 1527 1528 removed = 1529 reiserfs_delete_item(th, path, &tail_key, inode, 1530 NULL /*unbh not needed */ ); 1531 RFALSE(removed <= 0 1532 || removed > tail_len, 1533 "vs-5617: there was tail %d bytes, removed item length %d bytes", 1534 tail_len, removed); 1535 tail_len -= removed; 1536 set_cpu_key_k_offset(&tail_key, 1537 cpu_key_k_offset(&tail_key) - removed); 1538 } 1539 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct " 1540 "conversion has been rolled back due to " 1541 "lack of disk space"); 1542 //mark_file_without_tail (inode); 1543 mark_inode_dirty(inode); 1544 } 1545 1546 /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */ 1547 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, 1548 struct treepath *path, 1549 struct cpu_key *item_key, 1550 struct inode *inode, 1551 struct page *page, loff_t new_file_size) 1552 { 1553 struct super_block *sb = inode->i_sb; 1554 /* Every function which is going to call do_balance must first 1555 create a tree_balance structure. Then it must fill up this 1556 structure by using the init_tb_struct and fix_nodes functions. 1557 After that we can make tree balancing. */ 1558 struct tree_balance s_cut_balance; 1559 struct item_head *p_le_ih; 1560 int cut_size = 0, /* Amount to be cut. */ 1561 ret_value = CARRY_ON, removed = 0, /* Number of the removed unformatted nodes. */ 1562 is_inode_locked = 0; 1563 char mode; /* Mode of the balance. */ 1564 int retval2 = -1; 1565 int quota_cut_bytes; 1566 loff_t tail_pos = 0; 1567 int depth; 1568 1569 BUG_ON(!th->t_trans_id); 1570 1571 init_tb_struct(th, &s_cut_balance, inode->i_sb, path, 1572 cut_size); 1573 1574 /* Repeat this loop until we either cut the item without needing 1575 to balance, or we fix_nodes without schedule occurring */ 1576 while (1) { 1577 /* Determine the balance mode, position of the first byte to 1578 be cut, and size to be cut. In case of the indirect item 1579 free unformatted nodes which are pointed to by the cut 1580 pointers. */ 1581 1582 mode = 1583 prepare_for_delete_or_cut(th, inode, path, 1584 item_key, &removed, 1585 &cut_size, new_file_size); 1586 if (mode == M_CONVERT) { 1587 /* convert last unformatted node to direct item or leave 1588 tail in the unformatted node */ 1589 RFALSE(ret_value != CARRY_ON, 1590 "PAP-5570: can not convert twice"); 1591 1592 ret_value = 1593 maybe_indirect_to_direct(th, inode, page, 1594 path, item_key, 1595 new_file_size, &mode); 1596 if (mode == M_SKIP_BALANCING) 1597 /* tail has been left in the unformatted node */ 1598 return ret_value; 1599 1600 is_inode_locked = 1; 1601 1602 /* removing of last unformatted node will change value we 1603 have to return to truncate. Save it */ 1604 retval2 = ret_value; 1605 /*retval2 = sb->s_blocksize - (new_file_size & (sb->s_blocksize - 1)); */ 1606 1607 /* So, we have performed the first part of the conversion: 1608 inserting the new direct item. Now we are removing the 1609 last unformatted node pointer. Set key to search for 1610 it. */ 1611 set_cpu_key_k_type(item_key, TYPE_INDIRECT); 1612 item_key->key_length = 4; 1613 new_file_size -= 1614 (new_file_size & (sb->s_blocksize - 1)); 1615 tail_pos = new_file_size; 1616 set_cpu_key_k_offset(item_key, new_file_size + 1); 1617 if (search_for_position_by_key 1618 (sb, item_key, 1619 path) == POSITION_NOT_FOUND) { 1620 print_block(PATH_PLAST_BUFFER(path), 3, 1621 PATH_LAST_POSITION(path) - 1, 1622 PATH_LAST_POSITION(path) + 1); 1623 reiserfs_panic(sb, "PAP-5580", "item to " 1624 "convert does not exist (%K)", 1625 item_key); 1626 } 1627 continue; 1628 } 1629 if (cut_size == 0) { 1630 pathrelse(path); 1631 return 0; 1632 } 1633 1634 s_cut_balance.insert_size[0] = cut_size; 1635 1636 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL); 1637 if (ret_value != REPEAT_SEARCH) 1638 break; 1639 1640 PROC_INFO_INC(sb, cut_from_item_restarted); 1641 1642 ret_value = 1643 search_for_position_by_key(sb, item_key, path); 1644 if (ret_value == POSITION_FOUND) 1645 continue; 1646 1647 reiserfs_warning(sb, "PAP-5610", "item %K not found", 1648 item_key); 1649 unfix_nodes(&s_cut_balance); 1650 return (ret_value == IO_ERROR) ? -EIO : -ENOENT; 1651 } /* while */ 1652 1653 // check fix_nodes results (IO_ERROR or NO_DISK_SPACE) 1654 if (ret_value != CARRY_ON) { 1655 if (is_inode_locked) { 1656 // FIXME: this seems to be not needed: we are always able 1657 // to cut item 1658 indirect_to_direct_roll_back(th, inode, path); 1659 } 1660 if (ret_value == NO_DISK_SPACE) 1661 reiserfs_warning(sb, "reiserfs-5092", 1662 "NO_DISK_SPACE"); 1663 unfix_nodes(&s_cut_balance); 1664 return -EIO; 1665 } 1666 1667 /* go ahead and perform balancing */ 1668 1669 RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode"); 1670 1671 /* Calculate number of bytes that need to be cut from the item. */ 1672 quota_cut_bytes = 1673 (mode == 1674 M_DELETE) ? ih_item_len(get_ih(path)) : -s_cut_balance. 1675 insert_size[0]; 1676 if (retval2 == -1) 1677 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode); 1678 else 1679 ret_value = retval2; 1680 1681 /* For direct items, we only change the quota when deleting the last 1682 ** item. 1683 */ 1684 p_le_ih = PATH_PITEM_HEAD(s_cut_balance.tb_path); 1685 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) { 1686 if (mode == M_DELETE && 1687 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) == 1688 1) { 1689 // FIXME: this is to keep 3.5 happy 1690 REISERFS_I(inode)->i_first_direct_byte = U32_MAX; 1691 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE; 1692 } else { 1693 quota_cut_bytes = 0; 1694 } 1695 } 1696 #ifdef CONFIG_REISERFS_CHECK 1697 if (is_inode_locked) { 1698 struct item_head *le_ih = 1699 PATH_PITEM_HEAD(s_cut_balance.tb_path); 1700 /* we are going to complete indirect2direct conversion. Make 1701 sure, that we exactly remove last unformatted node pointer 1702 of the item */ 1703 if (!is_indirect_le_ih(le_ih)) 1704 reiserfs_panic(sb, "vs-5652", 1705 "item must be indirect %h", le_ih); 1706 1707 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE) 1708 reiserfs_panic(sb, "vs-5653", "completing " 1709 "indirect2direct conversion indirect " 1710 "item %h being deleted must be of " 1711 "4 byte long", le_ih); 1712 1713 if (mode == M_CUT 1714 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) { 1715 reiserfs_panic(sb, "vs-5654", "can not complete " 1716 "indirect2direct conversion of %h " 1717 "(CUT, insert_size==%d)", 1718 le_ih, s_cut_balance.insert_size[0]); 1719 } 1720 /* it would be useful to make sure, that right neighboring 1721 item is direct item of this file */ 1722 } 1723 #endif 1724 1725 do_balance(&s_cut_balance, NULL, NULL, mode); 1726 if (is_inode_locked) { 1727 /* we've done an indirect->direct conversion. when the data block 1728 ** was freed, it was removed from the list of blocks that must 1729 ** be flushed before the transaction commits, make sure to 1730 ** unmap and invalidate it 1731 */ 1732 unmap_buffers(page, tail_pos); 1733 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 1734 } 1735 #ifdef REISERQUOTA_DEBUG 1736 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 1737 "reiserquota cut_from_item(): freeing %u id=%u type=%c", 1738 quota_cut_bytes, inode->i_uid, '?'); 1739 #endif 1740 depth = reiserfs_write_unlock_nested(sb); 1741 dquot_free_space_nodirty(inode, quota_cut_bytes); 1742 reiserfs_write_lock_nested(sb, depth); 1743 return ret_value; 1744 } 1745 1746 static void truncate_directory(struct reiserfs_transaction_handle *th, 1747 struct inode *inode) 1748 { 1749 BUG_ON(!th->t_trans_id); 1750 if (inode->i_nlink) 1751 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0"); 1752 1753 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET); 1754 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY); 1755 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); 1756 reiserfs_update_sd(th, inode); 1757 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET); 1758 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA); 1759 } 1760 1761 /* Truncate file to the new size. Note, this must be called with a transaction 1762 already started */ 1763 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, 1764 struct inode *inode, /* ->i_size contains new size */ 1765 struct page *page, /* up to date for last block */ 1766 int update_timestamps /* when it is called by 1767 file_release to convert 1768 the tail - no timestamps 1769 should be updated */ 1770 ) 1771 { 1772 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */ 1773 struct item_head *p_le_ih; /* Pointer to an item header. */ 1774 struct cpu_key s_item_key; /* Key to search for a previous file item. */ 1775 loff_t file_size, /* Old file size. */ 1776 new_file_size; /* New file size. */ 1777 int deleted; /* Number of deleted or truncated bytes. */ 1778 int retval; 1779 int err = 0; 1780 1781 BUG_ON(!th->t_trans_id); 1782 if (! 1783 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) 1784 || S_ISLNK(inode->i_mode))) 1785 return 0; 1786 1787 if (S_ISDIR(inode->i_mode)) { 1788 // deletion of directory - no need to update timestamps 1789 truncate_directory(th, inode); 1790 return 0; 1791 } 1792 1793 /* Get new file size. */ 1794 new_file_size = inode->i_size; 1795 1796 // FIXME: note, that key type is unimportant here 1797 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode), 1798 TYPE_DIRECT, 3); 1799 1800 retval = 1801 search_for_position_by_key(inode->i_sb, &s_item_key, 1802 &s_search_path); 1803 if (retval == IO_ERROR) { 1804 reiserfs_error(inode->i_sb, "vs-5657", 1805 "i/o failure occurred trying to truncate %K", 1806 &s_item_key); 1807 err = -EIO; 1808 goto out; 1809 } 1810 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) { 1811 reiserfs_error(inode->i_sb, "PAP-5660", 1812 "wrong result %d of search for %K", retval, 1813 &s_item_key); 1814 1815 err = -EIO; 1816 goto out; 1817 } 1818 1819 s_search_path.pos_in_item--; 1820 1821 /* Get real file size (total length of all file items) */ 1822 p_le_ih = PATH_PITEM_HEAD(&s_search_path); 1823 if (is_statdata_le_ih(p_le_ih)) 1824 file_size = 0; 1825 else { 1826 loff_t offset = le_ih_k_offset(p_le_ih); 1827 int bytes = 1828 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize); 1829 1830 /* this may mismatch with real file size: if last direct item 1831 had no padding zeros and last unformatted node had no free 1832 space, this file would have this file size */ 1833 file_size = offset + bytes - 1; 1834 } 1835 /* 1836 * are we doing a full truncate or delete, if so 1837 * kick in the reada code 1838 */ 1839 if (new_file_size == 0) 1840 s_search_path.reada = PATH_READA | PATH_READA_BACK; 1841 1842 if (file_size == 0 || file_size < new_file_size) { 1843 goto update_and_out; 1844 } 1845 1846 /* Update key to search for the last file item. */ 1847 set_cpu_key_k_offset(&s_item_key, file_size); 1848 1849 do { 1850 /* Cut or delete file item. */ 1851 deleted = 1852 reiserfs_cut_from_item(th, &s_search_path, &s_item_key, 1853 inode, page, new_file_size); 1854 if (deleted < 0) { 1855 reiserfs_warning(inode->i_sb, "vs-5665", 1856 "reiserfs_cut_from_item failed"); 1857 reiserfs_check_path(&s_search_path); 1858 return 0; 1859 } 1860 1861 RFALSE(deleted > file_size, 1862 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K", 1863 deleted, file_size, &s_item_key); 1864 1865 /* Change key to search the last file item. */ 1866 file_size -= deleted; 1867 1868 set_cpu_key_k_offset(&s_item_key, file_size); 1869 1870 /* While there are bytes to truncate and previous file item is presented in the tree. */ 1871 1872 /* 1873 ** This loop could take a really long time, and could log 1874 ** many more blocks than a transaction can hold. So, we do a polite 1875 ** journal end here, and if the transaction needs ending, we make 1876 ** sure the file is consistent before ending the current trans 1877 ** and starting a new one 1878 */ 1879 if (journal_transaction_should_end(th, 0) || 1880 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) { 1881 int orig_len_alloc = th->t_blocks_allocated; 1882 pathrelse(&s_search_path); 1883 1884 if (update_timestamps) { 1885 inode->i_mtime = CURRENT_TIME_SEC; 1886 inode->i_ctime = CURRENT_TIME_SEC; 1887 } 1888 reiserfs_update_sd(th, inode); 1889 1890 err = journal_end(th, inode->i_sb, orig_len_alloc); 1891 if (err) 1892 goto out; 1893 err = journal_begin(th, inode->i_sb, 1894 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ; 1895 if (err) 1896 goto out; 1897 reiserfs_update_inode_transaction(inode); 1898 } 1899 } while (file_size > ROUND_UP(new_file_size) && 1900 search_for_position_by_key(inode->i_sb, &s_item_key, 1901 &s_search_path) == POSITION_FOUND); 1902 1903 RFALSE(file_size > ROUND_UP(new_file_size), 1904 "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d", 1905 new_file_size, file_size, s_item_key.on_disk_key.k_objectid); 1906 1907 update_and_out: 1908 if (update_timestamps) { 1909 // this is truncate, not file closing 1910 inode->i_mtime = CURRENT_TIME_SEC; 1911 inode->i_ctime = CURRENT_TIME_SEC; 1912 } 1913 reiserfs_update_sd(th, inode); 1914 1915 out: 1916 pathrelse(&s_search_path); 1917 return err; 1918 } 1919 1920 #ifdef CONFIG_REISERFS_CHECK 1921 // this makes sure, that we __append__, not overwrite or add holes 1922 static void check_research_for_paste(struct treepath *path, 1923 const struct cpu_key *key) 1924 { 1925 struct item_head *found_ih = get_ih(path); 1926 1927 if (is_direct_le_ih(found_ih)) { 1928 if (le_ih_k_offset(found_ih) + 1929 op_bytes_number(found_ih, 1930 get_last_bh(path)->b_size) != 1931 cpu_key_k_offset(key) 1932 || op_bytes_number(found_ih, 1933 get_last_bh(path)->b_size) != 1934 pos_in_item(path)) 1935 reiserfs_panic(NULL, "PAP-5720", "found direct item " 1936 "%h or position (%d) does not match " 1937 "to key %K", found_ih, 1938 pos_in_item(path), key); 1939 } 1940 if (is_indirect_le_ih(found_ih)) { 1941 if (le_ih_k_offset(found_ih) + 1942 op_bytes_number(found_ih, 1943 get_last_bh(path)->b_size) != 1944 cpu_key_k_offset(key) 1945 || I_UNFM_NUM(found_ih) != pos_in_item(path) 1946 || get_ih_free_space(found_ih) != 0) 1947 reiserfs_panic(NULL, "PAP-5730", "found indirect " 1948 "item (%h) or position (%d) does not " 1949 "match to key (%K)", 1950 found_ih, pos_in_item(path), key); 1951 } 1952 } 1953 #endif /* config reiserfs check */ 1954 1955 /* Paste bytes to the existing item. Returns bytes number pasted into the item. */ 1956 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, struct treepath *search_path, /* Path to the pasted item. */ 1957 const struct cpu_key *key, /* Key to search for the needed item. */ 1958 struct inode *inode, /* Inode item belongs to */ 1959 const char *body, /* Pointer to the bytes to paste. */ 1960 int pasted_size) 1961 { /* Size of pasted bytes. */ 1962 struct super_block *sb = inode->i_sb; 1963 struct tree_balance s_paste_balance; 1964 int retval; 1965 int fs_gen; 1966 int depth; 1967 1968 BUG_ON(!th->t_trans_id); 1969 1970 fs_gen = get_generation(inode->i_sb); 1971 1972 #ifdef REISERQUOTA_DEBUG 1973 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 1974 "reiserquota paste_into_item(): allocating %u id=%u type=%c", 1975 pasted_size, inode->i_uid, 1976 key2type(&(key->on_disk_key))); 1977 #endif 1978 1979 depth = reiserfs_write_unlock_nested(sb); 1980 retval = dquot_alloc_space_nodirty(inode, pasted_size); 1981 reiserfs_write_lock_nested(sb, depth); 1982 if (retval) { 1983 pathrelse(search_path); 1984 return retval; 1985 } 1986 init_tb_struct(th, &s_paste_balance, th->t_super, search_path, 1987 pasted_size); 1988 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 1989 s_paste_balance.key = key->on_disk_key; 1990 #endif 1991 1992 /* DQUOT_* can schedule, must check before the fix_nodes */ 1993 if (fs_changed(fs_gen, inode->i_sb)) { 1994 goto search_again; 1995 } 1996 1997 while ((retval = 1998 fix_nodes(M_PASTE, &s_paste_balance, NULL, 1999 body)) == REPEAT_SEARCH) { 2000 search_again: 2001 /* file system changed while we were in the fix_nodes */ 2002 PROC_INFO_INC(th->t_super, paste_into_item_restarted); 2003 retval = 2004 search_for_position_by_key(th->t_super, key, 2005 search_path); 2006 if (retval == IO_ERROR) { 2007 retval = -EIO; 2008 goto error_out; 2009 } 2010 if (retval == POSITION_FOUND) { 2011 reiserfs_warning(inode->i_sb, "PAP-5710", 2012 "entry or pasted byte (%K) exists", 2013 key); 2014 retval = -EEXIST; 2015 goto error_out; 2016 } 2017 #ifdef CONFIG_REISERFS_CHECK 2018 check_research_for_paste(search_path, key); 2019 #endif 2020 } 2021 2022 /* Perform balancing after all resources are collected by fix_nodes, and 2023 accessing them will not risk triggering schedule. */ 2024 if (retval == CARRY_ON) { 2025 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE); 2026 return 0; 2027 } 2028 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; 2029 error_out: 2030 /* this also releases the path */ 2031 unfix_nodes(&s_paste_balance); 2032 #ifdef REISERQUOTA_DEBUG 2033 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 2034 "reiserquota paste_into_item(): freeing %u id=%u type=%c", 2035 pasted_size, inode->i_uid, 2036 key2type(&(key->on_disk_key))); 2037 #endif 2038 depth = reiserfs_write_unlock_nested(sb); 2039 dquot_free_space_nodirty(inode, pasted_size); 2040 reiserfs_write_lock_nested(sb, depth); 2041 return retval; 2042 } 2043 2044 /* Insert new item into the buffer at the path. 2045 * th - active transaction handle 2046 * path - path to the inserted item 2047 * ih - pointer to the item header to insert 2048 * body - pointer to the bytes to insert 2049 */ 2050 int reiserfs_insert_item(struct reiserfs_transaction_handle *th, 2051 struct treepath *path, const struct cpu_key *key, 2052 struct item_head *ih, struct inode *inode, 2053 const char *body) 2054 { 2055 struct tree_balance s_ins_balance; 2056 int retval; 2057 int fs_gen = 0; 2058 int quota_bytes = 0; 2059 2060 BUG_ON(!th->t_trans_id); 2061 2062 if (inode) { /* Do we count quotas for item? */ 2063 int depth; 2064 fs_gen = get_generation(inode->i_sb); 2065 quota_bytes = ih_item_len(ih); 2066 2067 /* hack so the quota code doesn't have to guess if the file has 2068 ** a tail, links are always tails, so there's no guessing needed 2069 */ 2070 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih)) 2071 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE; 2072 #ifdef REISERQUOTA_DEBUG 2073 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, 2074 "reiserquota insert_item(): allocating %u id=%u type=%c", 2075 quota_bytes, inode->i_uid, head2type(ih)); 2076 #endif 2077 /* We can't dirty inode here. It would be immediately written but 2078 * appropriate stat item isn't inserted yet... */ 2079 depth = reiserfs_write_unlock_nested(inode->i_sb); 2080 retval = dquot_alloc_space_nodirty(inode, quota_bytes); 2081 reiserfs_write_lock_nested(inode->i_sb, depth); 2082 if (retval) { 2083 pathrelse(path); 2084 return retval; 2085 } 2086 } 2087 init_tb_struct(th, &s_ins_balance, th->t_super, path, 2088 IH_SIZE + ih_item_len(ih)); 2089 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2090 s_ins_balance.key = key->on_disk_key; 2091 #endif 2092 /* DQUOT_* can schedule, must check to be sure calling fix_nodes is safe */ 2093 if (inode && fs_changed(fs_gen, inode->i_sb)) { 2094 goto search_again; 2095 } 2096 2097 while ((retval = 2098 fix_nodes(M_INSERT, &s_ins_balance, ih, 2099 body)) == REPEAT_SEARCH) { 2100 search_again: 2101 /* file system changed while we were in the fix_nodes */ 2102 PROC_INFO_INC(th->t_super, insert_item_restarted); 2103 retval = search_item(th->t_super, key, path); 2104 if (retval == IO_ERROR) { 2105 retval = -EIO; 2106 goto error_out; 2107 } 2108 if (retval == ITEM_FOUND) { 2109 reiserfs_warning(th->t_super, "PAP-5760", 2110 "key %K already exists in the tree", 2111 key); 2112 retval = -EEXIST; 2113 goto error_out; 2114 } 2115 } 2116 2117 /* make balancing after all resources will be collected at a time */ 2118 if (retval == CARRY_ON) { 2119 do_balance(&s_ins_balance, ih, body, M_INSERT); 2120 return 0; 2121 } 2122 2123 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; 2124 error_out: 2125 /* also releases the path */ 2126 unfix_nodes(&s_ins_balance); 2127 #ifdef REISERQUOTA_DEBUG 2128 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, 2129 "reiserquota insert_item(): freeing %u id=%u type=%c", 2130 quota_bytes, inode->i_uid, head2type(ih)); 2131 #endif 2132 if (inode) { 2133 int depth = reiserfs_write_unlock_nested(inode->i_sb); 2134 dquot_free_space_nodirty(inode, quota_bytes); 2135 reiserfs_write_lock_nested(inode->i_sb, depth); 2136 } 2137 return retval; 2138 } 2139