xref: /openbmc/linux/fs/reiserfs/reiserfs.h (revision e6b9d8eddb1772d99a676a906d42865293934edd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for
4  * licensing and copyright details
5  */
6 
7 #include <linux/reiserfs_fs.h>
8 
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/sched.h>
12 #include <linux/bug.h>
13 #include <linux/workqueue.h>
14 #include <asm/unaligned.h>
15 #include <linux/bitops.h>
16 #include <linux/proc_fs.h>
17 #include <linux/buffer_head.h>
18 
19 /* the 32 bit compat definitions with int argument */
20 #define REISERFS_IOC32_UNPACK		_IOW(0xCD, 1, int)
21 #define REISERFS_IOC32_GETVERSION	FS_IOC32_GETVERSION
22 #define REISERFS_IOC32_SETVERSION	FS_IOC32_SETVERSION
23 
24 struct reiserfs_journal_list;
25 
26 /* bitmasks for i_flags field in reiserfs-specific part of inode */
27 typedef enum {
28 	/*
29 	 * this says what format of key do all items (but stat data) of
30 	 * an object have.  If this is set, that format is 3.6 otherwise - 3.5
31 	 */
32 	i_item_key_version_mask = 0x0001,
33 
34 	/*
35 	 * If this is unset, object has 3.5 stat data, otherwise,
36 	 * it has 3.6 stat data with 64bit size, 32bit nlink etc.
37 	 */
38 	i_stat_data_version_mask = 0x0002,
39 
40 	/* file might need tail packing on close */
41 	i_pack_on_close_mask = 0x0004,
42 
43 	/* don't pack tail of file */
44 	i_nopack_mask = 0x0008,
45 
46 	/*
47 	 * If either of these are set, "safe link" was created for this
48 	 * file during truncate or unlink. Safe link is used to avoid
49 	 * leakage of disk space on crash with some files open, but unlinked.
50 	 */
51 	i_link_saved_unlink_mask = 0x0010,
52 	i_link_saved_truncate_mask = 0x0020,
53 
54 	i_has_xattr_dir = 0x0040,
55 	i_data_log = 0x0080,
56 } reiserfs_inode_flags;
57 
58 struct reiserfs_inode_info {
59 	__u32 i_key[4];		/* key is still 4 32 bit integers */
60 
61 	/*
62 	 * transient inode flags that are never stored on disk. Bitmasks
63 	 * for this field are defined above.
64 	 */
65 	__u32 i_flags;
66 
67 	/* offset of first byte stored in direct item. */
68 	__u32 i_first_direct_byte;
69 
70 	/* copy of persistent inode flags read from sd_attrs. */
71 	__u32 i_attrs;
72 
73 	/* first unused block of a sequence of unused blocks */
74 	int i_prealloc_block;
75 	int i_prealloc_count;	/* length of that sequence */
76 
77 	/* per-transaction list of inodes which  have preallocated blocks */
78 	struct list_head i_prealloc_list;
79 
80 	/*
81 	 * new_packing_locality is created; new blocks for the contents
82 	 * of this directory should be displaced
83 	 */
84 	unsigned new_packing_locality:1;
85 
86 	/*
87 	 * we use these for fsync or O_SYNC to decide which transaction
88 	 * needs to be committed in order for this inode to be properly
89 	 * flushed
90 	 */
91 	unsigned int i_trans_id;
92 
93 	struct reiserfs_journal_list *i_jl;
94 	atomic_t openers;
95 	struct mutex tailpack;
96 #ifdef CONFIG_REISERFS_FS_XATTR
97 	struct rw_semaphore i_xattr_sem;
98 #endif
99 #ifdef CONFIG_QUOTA
100 	struct dquot *i_dquot[MAXQUOTAS];
101 #endif
102 
103 	struct inode vfs_inode;
104 };
105 
106 typedef enum {
107 	reiserfs_attrs_cleared = 0x00000001,
108 } reiserfs_super_block_flags;
109 
110 /*
111  * struct reiserfs_super_block accessors/mutators since this is a disk
112  * structure, it will always be in little endian format.
113  */
114 #define sb_block_count(sbp)         (le32_to_cpu((sbp)->s_v1.s_block_count))
115 #define set_sb_block_count(sbp,v)   ((sbp)->s_v1.s_block_count = cpu_to_le32(v))
116 #define sb_free_blocks(sbp)         (le32_to_cpu((sbp)->s_v1.s_free_blocks))
117 #define set_sb_free_blocks(sbp,v)   ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v))
118 #define sb_root_block(sbp)          (le32_to_cpu((sbp)->s_v1.s_root_block))
119 #define set_sb_root_block(sbp,v)    ((sbp)->s_v1.s_root_block = cpu_to_le32(v))
120 
121 #define sb_jp_journal_1st_block(sbp)  \
122               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block))
123 #define set_sb_jp_journal_1st_block(sbp,v) \
124               ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v))
125 #define sb_jp_journal_dev(sbp) \
126               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev))
127 #define set_sb_jp_journal_dev(sbp,v) \
128               ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v))
129 #define sb_jp_journal_size(sbp) \
130               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size))
131 #define set_sb_jp_journal_size(sbp,v) \
132               ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v))
133 #define sb_jp_journal_trans_max(sbp) \
134               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max))
135 #define set_sb_jp_journal_trans_max(sbp,v) \
136               ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v))
137 #define sb_jp_journal_magic(sbp) \
138               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic))
139 #define set_sb_jp_journal_magic(sbp,v) \
140               ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v))
141 #define sb_jp_journal_max_batch(sbp) \
142               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch))
143 #define set_sb_jp_journal_max_batch(sbp,v) \
144               ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v))
145 #define sb_jp_jourmal_max_commit_age(sbp) \
146               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age))
147 #define set_sb_jp_journal_max_commit_age(sbp,v) \
148               ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v))
149 
150 #define sb_blocksize(sbp)          (le16_to_cpu((sbp)->s_v1.s_blocksize))
151 #define set_sb_blocksize(sbp,v)    ((sbp)->s_v1.s_blocksize = cpu_to_le16(v))
152 #define sb_oid_maxsize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_maxsize))
153 #define set_sb_oid_maxsize(sbp,v)  ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v))
154 #define sb_oid_cursize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_cursize))
155 #define set_sb_oid_cursize(sbp,v)  ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v))
156 #define sb_umount_state(sbp)       (le16_to_cpu((sbp)->s_v1.s_umount_state))
157 #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v))
158 #define sb_fs_state(sbp)           (le16_to_cpu((sbp)->s_v1.s_fs_state))
159 #define set_sb_fs_state(sbp,v)     ((sbp)->s_v1.s_fs_state = cpu_to_le16(v))
160 #define sb_hash_function_code(sbp) \
161               (le32_to_cpu((sbp)->s_v1.s_hash_function_code))
162 #define set_sb_hash_function_code(sbp,v) \
163               ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v))
164 #define sb_tree_height(sbp)        (le16_to_cpu((sbp)->s_v1.s_tree_height))
165 #define set_sb_tree_height(sbp,v)  ((sbp)->s_v1.s_tree_height = cpu_to_le16(v))
166 #define sb_bmap_nr(sbp)            (le16_to_cpu((sbp)->s_v1.s_bmap_nr))
167 #define set_sb_bmap_nr(sbp,v)      ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v))
168 #define sb_version(sbp)            (le16_to_cpu((sbp)->s_v1.s_version))
169 #define set_sb_version(sbp,v)      ((sbp)->s_v1.s_version = cpu_to_le16(v))
170 
171 #define sb_mnt_count(sbp)	   (le16_to_cpu((sbp)->s_mnt_count))
172 #define set_sb_mnt_count(sbp, v)   ((sbp)->s_mnt_count = cpu_to_le16(v))
173 
174 #define sb_reserved_for_journal(sbp) \
175               (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal))
176 #define set_sb_reserved_for_journal(sbp,v) \
177               ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v))
178 
179 /* LOGGING -- */
180 
181 /*
182  * These all interelate for performance.
183  *
184  * If the journal block count is smaller than n transactions, you lose speed.
185  * I don't know what n is yet, I'm guessing 8-16.
186  *
187  * typical transaction size depends on the application, how often fsync is
188  * called, and how many metadata blocks you dirty in a 30 second period.
189  * The more small files (<16k) you use, the larger your transactions will
190  * be.
191  *
192  * If your journal fills faster than dirty buffers get flushed to disk, it
193  * must flush them before allowing the journal to wrap, which slows things
194  * down.  If you need high speed meta data updates, the journal should be
195  * big enough to prevent wrapping before dirty meta blocks get to disk.
196  *
197  * If the batch max is smaller than the transaction max, you'll waste space
198  * at the end of the journal because journal_end sets the next transaction
199  * to start at 0 if the next transaction has any chance of wrapping.
200  *
201  * The large the batch max age, the better the speed, and the more meta
202  * data changes you'll lose after a crash.
203  */
204 
205 /* don't mess with these for a while */
206 /* we have a node size define somewhere in reiserfs_fs.h. -Hans */
207 #define JOURNAL_BLOCK_SIZE  4096	/* BUG gotta get rid of this */
208 #define JOURNAL_MAX_CNODE   1500	/* max cnodes to allocate. */
209 #define JOURNAL_HASH_SIZE 8192
210 
211 /* number of copies of the bitmaps to have floating.  Must be >= 2 */
212 #define JOURNAL_NUM_BITMAPS 5
213 
214 /*
215  * One of these for every block in every transaction
216  * Each one is in two hash tables.  First, a hash of the current transaction,
217  * and after journal_end, a hash of all the in memory transactions.
218  * next and prev are used by the current transaction (journal_hash).
219  * hnext and hprev are used by journal_list_hash.  If a block is in more
220  * than one transaction, the journal_list_hash links it in multiple times.
221  * This allows flush_journal_list to remove just the cnode belonging to a
222  * given transaction.
223  */
224 struct reiserfs_journal_cnode {
225 	struct buffer_head *bh;	/* real buffer head */
226 	struct super_block *sb;	/* dev of real buffer head */
227 
228 	/* block number of real buffer head, == 0 when buffer on disk */
229 	__u32 blocknr;
230 
231 	unsigned long state;
232 
233 	/* journal list this cnode lives in */
234 	struct reiserfs_journal_list *jlist;
235 
236 	struct reiserfs_journal_cnode *next;	/* next in transaction list */
237 	struct reiserfs_journal_cnode *prev;	/* prev in transaction list */
238 	struct reiserfs_journal_cnode *hprev;	/* prev in hash list */
239 	struct reiserfs_journal_cnode *hnext;	/* next in hash list */
240 };
241 
242 struct reiserfs_bitmap_node {
243 	int id;
244 	char *data;
245 	struct list_head list;
246 };
247 
248 struct reiserfs_list_bitmap {
249 	struct reiserfs_journal_list *journal_list;
250 	struct reiserfs_bitmap_node **bitmaps;
251 };
252 
253 /*
254  * one of these for each transaction.  The most important part here is the
255  * j_realblock.  this list of cnodes is used to hash all the blocks in all
256  * the commits, to mark all the real buffer heads dirty once all the commits
257  * hit the disk, and to make sure every real block in a transaction is on
258  * disk before allowing the log area to be overwritten
259  */
260 struct reiserfs_journal_list {
261 	unsigned long j_start;
262 	unsigned long j_state;
263 	unsigned long j_len;
264 	atomic_t j_nonzerolen;
265 	atomic_t j_commit_left;
266 
267 	/* all commits older than this on disk */
268 	atomic_t j_older_commits_done;
269 
270 	struct mutex j_commit_mutex;
271 	unsigned int j_trans_id;
272 	time64_t j_timestamp; /* write-only but useful for crash dump analysis */
273 	struct reiserfs_list_bitmap *j_list_bitmap;
274 	struct buffer_head *j_commit_bh;	/* commit buffer head */
275 	struct reiserfs_journal_cnode *j_realblock;
276 	struct reiserfs_journal_cnode *j_freedlist;	/* list of buffers that were freed during this trans.  free each of these on flush */
277 	/* time ordered list of all active transactions */
278 	struct list_head j_list;
279 
280 	/*
281 	 * time ordered list of all transactions we haven't tried
282 	 * to flush yet
283 	 */
284 	struct list_head j_working_list;
285 
286 	/* list of tail conversion targets in need of flush before commit */
287 	struct list_head j_tail_bh_list;
288 
289 	/* list of data=ordered buffers in need of flush before commit */
290 	struct list_head j_bh_list;
291 	int j_refcount;
292 };
293 
294 struct reiserfs_journal {
295 	struct buffer_head **j_ap_blocks;	/* journal blocks on disk */
296 	/* newest journal block */
297 	struct reiserfs_journal_cnode *j_last;
298 
299 	/* oldest journal block.  start here for traverse */
300 	struct reiserfs_journal_cnode *j_first;
301 
302 	struct block_device *j_dev_bd;
303 	fmode_t j_dev_mode;
304 
305 	/* first block on s_dev of reserved area journal */
306 	int j_1st_reserved_block;
307 
308 	unsigned long j_state;
309 	unsigned int j_trans_id;
310 	unsigned long j_mount_id;
311 
312 	/* start of current waiting commit (index into j_ap_blocks) */
313 	unsigned long j_start;
314 	unsigned long j_len;	/* length of current waiting commit */
315 
316 	/* number of buffers requested by journal_begin() */
317 	unsigned long j_len_alloc;
318 
319 	atomic_t j_wcount;	/* count of writers for current commit */
320 
321 	/* batch count. allows turning X transactions into 1 */
322 	unsigned long j_bcount;
323 
324 	/* first unflushed transactions offset */
325 	unsigned long j_first_unflushed_offset;
326 
327 	/* last fully flushed journal timestamp */
328 	unsigned j_last_flush_trans_id;
329 
330 	struct buffer_head *j_header_bh;
331 
332 	time64_t j_trans_start_time;	/* time this transaction started */
333 	struct mutex j_mutex;
334 	struct mutex j_flush_mutex;
335 
336 	/* wait for current transaction to finish before starting new one */
337 	wait_queue_head_t j_join_wait;
338 
339 	atomic_t j_jlock;		/* lock for j_join_wait */
340 	int j_list_bitmap_index;	/* number of next list bitmap to use */
341 
342 	/* no more journal begins allowed. MUST sleep on j_join_wait */
343 	int j_must_wait;
344 
345 	/* next journal_end will flush all journal list */
346 	int j_next_full_flush;
347 
348 	/* next journal_end will flush all async commits */
349 	int j_next_async_flush;
350 
351 	int j_cnode_used;	/* number of cnodes on the used list */
352 	int j_cnode_free;	/* number of cnodes on the free list */
353 
354 	/* max number of blocks in a transaction.  */
355 	unsigned int j_trans_max;
356 
357 	/* max number of blocks to batch into a trans */
358 	unsigned int j_max_batch;
359 
360 	/* in seconds, how old can an async commit be */
361 	unsigned int j_max_commit_age;
362 
363 	/* in seconds, how old can a transaction be */
364 	unsigned int j_max_trans_age;
365 
366 	/* the default for the max commit age */
367 	unsigned int j_default_max_commit_age;
368 
369 	struct reiserfs_journal_cnode *j_cnode_free_list;
370 
371 	/* orig pointer returned from vmalloc */
372 	struct reiserfs_journal_cnode *j_cnode_free_orig;
373 
374 	struct reiserfs_journal_list *j_current_jl;
375 	int j_free_bitmap_nodes;
376 	int j_used_bitmap_nodes;
377 
378 	int j_num_lists;	/* total number of active transactions */
379 	int j_num_work_lists;	/* number that need attention from kreiserfsd */
380 
381 	/* debugging to make sure things are flushed in order */
382 	unsigned int j_last_flush_id;
383 
384 	/* debugging to make sure things are committed in order */
385 	unsigned int j_last_commit_id;
386 
387 	struct list_head j_bitmap_nodes;
388 	struct list_head j_dirty_buffers;
389 	spinlock_t j_dirty_buffers_lock;	/* protects j_dirty_buffers */
390 
391 	/* list of all active transactions */
392 	struct list_head j_journal_list;
393 
394 	/* lists that haven't been touched by writeback attempts */
395 	struct list_head j_working_list;
396 
397 	/* hash table for real buffer heads in current trans */
398 	struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE];
399 
400 	/* hash table for all the real buffer heads in all the transactions */
401 	struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE];
402 
403 	/* array of bitmaps to record the deleted blocks */
404 	struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS];
405 
406 	/* list of inodes which have preallocated blocks */
407 	struct list_head j_prealloc_list;
408 	int j_persistent_trans;
409 	unsigned long j_max_trans_size;
410 	unsigned long j_max_batch_size;
411 
412 	int j_errno;
413 
414 	/* when flushing ordered buffers, throttle new ordered writers */
415 	struct delayed_work j_work;
416 	struct super_block *j_work_sb;
417 	atomic_t j_async_throttle;
418 };
419 
420 enum journal_state_bits {
421 	J_WRITERS_BLOCKED = 1,	/* set when new writers not allowed */
422 	J_WRITERS_QUEUED,    /* set when log is full due to too many writers */
423 	J_ABORTED,           /* set when log is aborted */
424 };
425 
426 /* ick.  magic string to find desc blocks in the journal */
427 #define JOURNAL_DESC_MAGIC "ReIsErLB"
428 
429 typedef __u32(*hashf_t) (const signed char *, int);
430 
431 struct reiserfs_bitmap_info {
432 	__u32 free_count;
433 };
434 
435 struct proc_dir_entry;
436 
437 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
438 typedef unsigned long int stat_cnt_t;
439 typedef struct reiserfs_proc_info_data {
440 	spinlock_t lock;
441 	int exiting;
442 	int max_hash_collisions;
443 
444 	stat_cnt_t breads;
445 	stat_cnt_t bread_miss;
446 	stat_cnt_t search_by_key;
447 	stat_cnt_t search_by_key_fs_changed;
448 	stat_cnt_t search_by_key_restarted;
449 
450 	stat_cnt_t insert_item_restarted;
451 	stat_cnt_t paste_into_item_restarted;
452 	stat_cnt_t cut_from_item_restarted;
453 	stat_cnt_t delete_solid_item_restarted;
454 	stat_cnt_t delete_item_restarted;
455 
456 	stat_cnt_t leaked_oid;
457 	stat_cnt_t leaves_removable;
458 
459 	/*
460 	 * balances per level.
461 	 * Use explicit 5 as MAX_HEIGHT is not visible yet.
462 	 */
463 	stat_cnt_t balance_at[5];	/* XXX */
464 	/* sbk == search_by_key */
465 	stat_cnt_t sbk_read_at[5];	/* XXX */
466 	stat_cnt_t sbk_fs_changed[5];
467 	stat_cnt_t sbk_restarted[5];
468 	stat_cnt_t items_at[5];	/* XXX */
469 	stat_cnt_t free_at[5];	/* XXX */
470 	stat_cnt_t can_node_be_removed[5];	/* XXX */
471 	long int lnum[5];	/* XXX */
472 	long int rnum[5];	/* XXX */
473 	long int lbytes[5];	/* XXX */
474 	long int rbytes[5];	/* XXX */
475 	stat_cnt_t get_neighbors[5];
476 	stat_cnt_t get_neighbors_restart[5];
477 	stat_cnt_t need_l_neighbor[5];
478 	stat_cnt_t need_r_neighbor[5];
479 
480 	stat_cnt_t free_block;
481 	struct __scan_bitmap_stats {
482 		stat_cnt_t call;
483 		stat_cnt_t wait;
484 		stat_cnt_t bmap;
485 		stat_cnt_t retry;
486 		stat_cnt_t in_journal_hint;
487 		stat_cnt_t in_journal_nohint;
488 		stat_cnt_t stolen;
489 	} scan_bitmap;
490 	struct __journal_stats {
491 		stat_cnt_t in_journal;
492 		stat_cnt_t in_journal_bitmap;
493 		stat_cnt_t in_journal_reusable;
494 		stat_cnt_t lock_journal;
495 		stat_cnt_t lock_journal_wait;
496 		stat_cnt_t journal_being;
497 		stat_cnt_t journal_relock_writers;
498 		stat_cnt_t journal_relock_wcount;
499 		stat_cnt_t mark_dirty;
500 		stat_cnt_t mark_dirty_already;
501 		stat_cnt_t mark_dirty_notjournal;
502 		stat_cnt_t restore_prepared;
503 		stat_cnt_t prepare;
504 		stat_cnt_t prepare_retry;
505 	} journal;
506 } reiserfs_proc_info_data_t;
507 #else
508 typedef struct reiserfs_proc_info_data {
509 } reiserfs_proc_info_data_t;
510 #endif
511 
512 /* Number of quota types we support */
513 #define REISERFS_MAXQUOTAS 2
514 
515 /* reiserfs union of in-core super block data */
516 struct reiserfs_sb_info {
517 	/* Buffer containing the super block */
518 	struct buffer_head *s_sbh;
519 
520 	/* Pointer to the on-disk super block in the buffer */
521 	struct reiserfs_super_block *s_rs;
522 	struct reiserfs_bitmap_info *s_ap_bitmap;
523 
524 	/* pointer to journal information */
525 	struct reiserfs_journal *s_journal;
526 
527 	unsigned short s_mount_state;	/* reiserfs state (valid, invalid) */
528 
529 	/* Serialize writers access, replace the old bkl */
530 	struct mutex lock;
531 
532 	/* Owner of the lock (can be recursive) */
533 	struct task_struct *lock_owner;
534 
535 	/* Depth of the lock, start from -1 like the bkl */
536 	int lock_depth;
537 
538 	struct workqueue_struct *commit_wq;
539 
540 	/* Comment? -Hans */
541 	void (*end_io_handler) (struct buffer_head *, int);
542 
543 	/*
544 	 * pointer to function which is used to sort names in directory.
545 	 * Set on mount
546 	 */
547 	hashf_t s_hash_function;
548 
549 	/* reiserfs's mount options are set here */
550 	unsigned long s_mount_opt;
551 
552 	/* This is a structure that describes block allocator options */
553 	struct {
554 		/* Bitfield for enable/disable kind of options */
555 		unsigned long bits;
556 
557 		/*
558 		 * size started from which we consider file
559 		 * to be a large one (in blocks)
560 		 */
561 		unsigned long large_file_size;
562 
563 		int border;	/* percentage of disk, border takes */
564 
565 		/*
566 		 * Minimal file size (in blocks) starting
567 		 * from which we do preallocations
568 		 */
569 		int preallocmin;
570 
571 		/*
572 		 * Number of blocks we try to prealloc when file
573 		 * reaches preallocmin size (in blocks) or prealloc_list
574 		 is empty.
575 		 */
576 		int preallocsize;
577 	} s_alloc_options;
578 
579 	/* Comment? -Hans */
580 	wait_queue_head_t s_wait;
581 	/* increased by one every time the  tree gets re-balanced */
582 	atomic_t s_generation_counter;
583 
584 	/* File system properties. Currently holds on-disk FS format */
585 	unsigned long s_properties;
586 
587 	/* session statistics */
588 	int s_disk_reads;
589 	int s_disk_writes;
590 	int s_fix_nodes;
591 	int s_do_balance;
592 	int s_unneeded_left_neighbor;
593 	int s_good_search_by_key_reada;
594 	int s_bmaps;
595 	int s_bmaps_without_search;
596 	int s_direct2indirect;
597 	int s_indirect2direct;
598 
599 	/*
600 	 * set up when it's ok for reiserfs_read_inode2() to read from
601 	 * disk inode with nlink==0. Currently this is only used during
602 	 * finish_unfinished() processing at mount time
603 	 */
604 	int s_is_unlinked_ok;
605 
606 	reiserfs_proc_info_data_t s_proc_info_data;
607 	struct proc_dir_entry *procdir;
608 
609 	/* amount of blocks reserved for further allocations */
610 	int reserved_blocks;
611 
612 
613 	/* this lock on now only used to protect reserved_blocks variable */
614 	spinlock_t bitmap_lock;
615 	struct dentry *priv_root;	/* root of /.reiserfs_priv */
616 	struct dentry *xattr_root;	/* root of /.reiserfs_priv/xattrs */
617 	int j_errno;
618 
619 	int work_queued;              /* non-zero delayed work is queued */
620 	struct delayed_work old_work; /* old transactions flush delayed work */
621 	spinlock_t old_work_lock;     /* protects old_work and work_queued */
622 
623 #ifdef CONFIG_QUOTA
624 	char *s_qf_names[REISERFS_MAXQUOTAS];
625 	int s_jquota_fmt;
626 #endif
627 	char *s_jdev;		/* Stored jdev for mount option showing */
628 #ifdef CONFIG_REISERFS_CHECK
629 
630 	/*
631 	 * Detects whether more than one copy of tb exists per superblock
632 	 * as a means of checking whether do_balance is executing
633 	 * concurrently against another tree reader/writer on a same
634 	 * mount point.
635 	 */
636 	struct tree_balance *cur_tb;
637 #endif
638 };
639 
640 /* Definitions of reiserfs on-disk properties: */
641 #define REISERFS_3_5 0
642 #define REISERFS_3_6 1
643 #define REISERFS_OLD_FORMAT 2
644 
645 /* Mount options */
646 enum reiserfs_mount_options {
647 	/* large tails will be created in a session */
648 	REISERFS_LARGETAIL,
649 	/*
650 	 * small (for files less than block size) tails will
651 	 * be created in a session
652 	 */
653 	REISERFS_SMALLTAIL,
654 
655 	/* replay journal and return 0. Use by fsck */
656 	REPLAYONLY,
657 
658 	/*
659 	 * -o conv: causes conversion of old format super block to the
660 	 * new format. If not specified - old partition will be dealt
661 	 * with in a manner of 3.5.x
662 	 */
663 	REISERFS_CONVERT,
664 
665 	/*
666 	 * -o hash={tea, rupasov, r5, detect} is meant for properly mounting
667 	 * reiserfs disks from 3.5.19 or earlier.  99% of the time, this
668 	 * option is not required.  If the normal autodection code can't
669 	 * determine which hash to use (because both hashes had the same
670 	 * value for a file) use this option to force a specific hash.
671 	 * It won't allow you to override the existing hash on the FS, so
672 	 * if you have a tea hash disk, and mount with -o hash=rupasov,
673 	 * the mount will fail.
674 	 */
675 	FORCE_TEA_HASH,		/* try to force tea hash on mount */
676 	FORCE_RUPASOV_HASH,	/* try to force rupasov hash on mount */
677 	FORCE_R5_HASH,		/* try to force rupasov hash on mount */
678 	FORCE_HASH_DETECT,	/* try to detect hash function on mount */
679 
680 	REISERFS_DATA_LOG,
681 	REISERFS_DATA_ORDERED,
682 	REISERFS_DATA_WRITEBACK,
683 
684 	/*
685 	 * used for testing experimental features, makes benchmarking new
686 	 * features with and without more convenient, should never be used by
687 	 * users in any code shipped to users (ideally)
688 	 */
689 
690 	REISERFS_NO_BORDER,
691 	REISERFS_NO_UNHASHED_RELOCATION,
692 	REISERFS_HASHED_RELOCATION,
693 	REISERFS_ATTRS,
694 	REISERFS_XATTRS_USER,
695 	REISERFS_POSIXACL,
696 	REISERFS_EXPOSE_PRIVROOT,
697 	REISERFS_BARRIER_NONE,
698 	REISERFS_BARRIER_FLUSH,
699 
700 	/* Actions on error */
701 	REISERFS_ERROR_PANIC,
702 	REISERFS_ERROR_RO,
703 	REISERFS_ERROR_CONTINUE,
704 
705 	REISERFS_USRQUOTA,	/* User quota option specified */
706 	REISERFS_GRPQUOTA,	/* Group quota option specified */
707 
708 	REISERFS_TEST1,
709 	REISERFS_TEST2,
710 	REISERFS_TEST3,
711 	REISERFS_TEST4,
712 	REISERFS_UNSUPPORTED_OPT,
713 };
714 
715 #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH))
716 #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH))
717 #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH))
718 #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT))
719 #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER))
720 #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION))
721 #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION))
722 #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4))
723 
724 #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL))
725 #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL))
726 #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY))
727 #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS))
728 #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5))
729 #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT))
730 #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG))
731 #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED))
732 #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK))
733 #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER))
734 #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL))
735 #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT))
736 #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s))
737 #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE))
738 #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH))
739 
740 #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC))
741 #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO))
742 
743 void reiserfs_file_buffer(struct buffer_head *bh, int list);
744 extern struct file_system_type reiserfs_fs_type;
745 int reiserfs_resize(struct super_block *, unsigned long);
746 
747 #define CARRY_ON                0
748 #define SCHEDULE_OCCURRED       1
749 
750 #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh)
751 #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal)
752 #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block)
753 #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free)
754 #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap)
755 
756 #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->)
757 
758 #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal)))
759 static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal
760 						*journal)
761 {
762 	return test_bit(J_ABORTED, &journal->j_state);
763 }
764 
765 /*
766  * Locking primitives. The write lock is a per superblock
767  * special mutex that has properties close to the Big Kernel Lock
768  * which was used in the previous locking scheme.
769  */
770 void reiserfs_write_lock(struct super_block *s);
771 void reiserfs_write_unlock(struct super_block *s);
772 int __must_check reiserfs_write_unlock_nested(struct super_block *s);
773 void reiserfs_write_lock_nested(struct super_block *s, int depth);
774 
775 #ifdef CONFIG_REISERFS_CHECK
776 void reiserfs_lock_check_recursive(struct super_block *s);
777 #else
778 static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
779 #endif
780 
781 /*
782  * Several mutexes depend on the write lock.
783  * However sometimes we want to relax the write lock while we hold
784  * these mutexes, according to the release/reacquire on schedule()
785  * properties of the Bkl that were used.
786  * Reiserfs performances and locking were based on this scheme.
787  * Now that the write lock is a mutex and not the bkl anymore, doing so
788  * may result in a deadlock:
789  *
790  * A acquire write_lock
791  * A acquire j_commit_mutex
792  * A release write_lock and wait for something
793  * B acquire write_lock
794  * B can't acquire j_commit_mutex and sleep
795  * A can't acquire write lock anymore
796  * deadlock
797  *
798  * What we do here is avoiding such deadlock by playing the same game
799  * than the Bkl: if we can't acquire a mutex that depends on the write lock,
800  * we release the write lock, wait a bit and then retry.
801  *
802  * The mutexes concerned by this hack are:
803  * - The commit mutex of a journal list
804  * - The flush mutex
805  * - The journal lock
806  * - The inode mutex
807  */
808 static inline void reiserfs_mutex_lock_safe(struct mutex *m,
809 					    struct super_block *s)
810 {
811 	int depth;
812 
813 	depth = reiserfs_write_unlock_nested(s);
814 	mutex_lock(m);
815 	reiserfs_write_lock_nested(s, depth);
816 }
817 
818 static inline void
819 reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
820 				struct super_block *s)
821 {
822 	int depth;
823 
824 	depth = reiserfs_write_unlock_nested(s);
825 	mutex_lock_nested(m, subclass);
826 	reiserfs_write_lock_nested(s, depth);
827 }
828 
829 static inline void
830 reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
831 {
832        int depth;
833        depth = reiserfs_write_unlock_nested(s);
834        down_read(sem);
835        reiserfs_write_lock_nested(s, depth);
836 }
837 
838 /*
839  * When we schedule, we usually want to also release the write lock,
840  * according to the previous bkl based locking scheme of reiserfs.
841  */
842 static inline void reiserfs_cond_resched(struct super_block *s)
843 {
844 	if (need_resched()) {
845 		int depth;
846 
847 		depth = reiserfs_write_unlock_nested(s);
848 		schedule();
849 		reiserfs_write_lock_nested(s, depth);
850 	}
851 }
852 
853 struct fid;
854 
855 /*
856  * in reading the #defines, it may help to understand that they employ
857  *  the following abbreviations:
858  *
859  *  B = Buffer
860  *  I = Item header
861  *  H = Height within the tree (should be changed to LEV)
862  *  N = Number of the item in the node
863  *  STAT = stat data
864  *  DEH = Directory Entry Header
865  *  EC = Entry Count
866  *  E = Entry number
867  *  UL = Unsigned Long
868  *  BLKH = BLocK Header
869  *  UNFM = UNForMatted node
870  *  DC = Disk Child
871  *  P = Path
872  *
873  *  These #defines are named by concatenating these abbreviations,
874  *  where first comes the arguments, and last comes the return value,
875  *  of the macro.
876  */
877 
878 #define USE_INODE_GENERATION_COUNTER
879 
880 #define REISERFS_PREALLOCATE
881 #define DISPLACE_NEW_PACKING_LOCALITIES
882 #define PREALLOCATION_SIZE 9
883 
884 /* n must be power of 2 */
885 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
886 
887 /*
888  * to be ok for alpha and others we have to align structures to 8 byte
889  * boundary.
890  * FIXME: do not change 4 by anything else: there is code which relies on that
891  */
892 #define ROUND_UP(x) _ROUND_UP(x,8LL)
893 
894 /*
895  * debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
896  * messages.
897  */
898 #define REISERFS_DEBUG_CODE 5	/* extra messages to help find/debug errors */
899 
900 void __reiserfs_warning(struct super_block *s, const char *id,
901 			 const char *func, const char *fmt, ...);
902 #define reiserfs_warning(s, id, fmt, args...) \
903 	 __reiserfs_warning(s, id, __func__, fmt, ##args)
904 /* assertions handling */
905 
906 /* always check a condition and panic if it's false. */
907 #define __RASSERT(cond, scond, format, args...)			\
908 do {									\
909 	if (!(cond))							\
910 		reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
911 			       __FILE__ ":%i:%s: " format "\n",		\
912 			       __LINE__, __func__ , ##args);		\
913 } while (0)
914 
915 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
916 
917 #if defined( CONFIG_REISERFS_CHECK )
918 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
919 #else
920 #define RFALSE( cond, format, args... ) do {;} while( 0 )
921 #endif
922 
923 #define CONSTF __attribute_const__
924 /*
925  * Disk Data Structures
926  */
927 
928 /***************************************************************************
929  *                             SUPER BLOCK                                 *
930  ***************************************************************************/
931 
932 /*
933  * Structure of super block on disk, a version of which in RAM is often
934  * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger
935  * structure containing fields never written to disk.
936  */
937 #define UNSET_HASH 0	/* Detect hash on disk */
938 #define TEA_HASH  1
939 #define YURA_HASH 2
940 #define R5_HASH   3
941 #define DEFAULT_HASH R5_HASH
942 
943 struct journal_params {
944 	/* where does journal start from on its * device */
945 	__le32 jp_journal_1st_block;
946 
947 	/* journal device st_rdev */
948 	__le32 jp_journal_dev;
949 
950 	/* size of the journal */
951 	__le32 jp_journal_size;
952 
953 	/* max number of blocks in a transaction. */
954 	__le32 jp_journal_trans_max;
955 
956 	/*
957 	 * random value made on fs creation
958 	 * (this was sb_journal_block_count)
959 	 */
960 	__le32 jp_journal_magic;
961 
962 	/* max number of blocks to batch into a trans */
963 	__le32 jp_journal_max_batch;
964 
965 	/* in seconds, how old can an async  commit be */
966 	__le32 jp_journal_max_commit_age;
967 
968 	/* in seconds, how old can a transaction be */
969 	__le32 jp_journal_max_trans_age;
970 };
971 
972 /* this is the super from 3.5.X, where X >= 10 */
973 struct reiserfs_super_block_v1 {
974 	__le32 s_block_count;	/* blocks count         */
975 	__le32 s_free_blocks;	/* free blocks count    */
976 	__le32 s_root_block;	/* root block number    */
977 	struct journal_params s_journal;
978 	__le16 s_blocksize;	/* block size */
979 
980 	/* max size of object id array, see get_objectid() commentary  */
981 	__le16 s_oid_maxsize;
982 	__le16 s_oid_cursize;	/* current size of object id array */
983 
984 	/* this is set to 1 when filesystem was umounted, to 2 - when not */
985 	__le16 s_umount_state;
986 
987 	/*
988 	 * reiserfs magic string indicates that file system is reiserfs:
989 	 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs"
990 	 */
991 	char s_magic[10];
992 
993 	/*
994 	 * it is set to used by fsck to mark which
995 	 * phase of rebuilding is done
996 	 */
997 	__le16 s_fs_state;
998 	/*
999 	 * indicate, what hash function is being use
1000 	 * to sort names in a directory
1001 	 */
1002 	__le32 s_hash_function_code;
1003 	__le16 s_tree_height;	/* height of disk tree */
1004 
1005 	/*
1006 	 * amount of bitmap blocks needed to address
1007 	 * each block of file system
1008 	 */
1009 	__le16 s_bmap_nr;
1010 
1011 	/*
1012 	 * this field is only reliable on filesystem with non-standard journal
1013 	 */
1014 	__le16 s_version;
1015 
1016 	/*
1017 	 * size in blocks of journal area on main device, we need to
1018 	 * keep after making fs with non-standard journal
1019 	 */
1020 	__le16 s_reserved_for_journal;
1021 } __attribute__ ((__packed__));
1022 
1023 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
1024 
1025 /* this is the on disk super block */
1026 struct reiserfs_super_block {
1027 	struct reiserfs_super_block_v1 s_v1;
1028 	__le32 s_inode_generation;
1029 
1030 	/* Right now used only by inode-attributes, if enabled */
1031 	__le32 s_flags;
1032 
1033 	unsigned char s_uuid[16];	/* filesystem unique identifier */
1034 	unsigned char s_label[16];	/* filesystem volume label */
1035 	__le16 s_mnt_count;		/* Count of mounts since last fsck */
1036 	__le16 s_max_mnt_count;		/* Maximum mounts before check */
1037 	__le32 s_lastcheck;		/* Timestamp of last fsck */
1038 	__le32 s_check_interval;	/* Interval between checks */
1039 
1040 	/*
1041 	 * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1()
1042 	 * so any additions must be updated there as well. */
1043 	char s_unused[76];
1044 } __attribute__ ((__packed__));
1045 
1046 #define SB_SIZE (sizeof(struct reiserfs_super_block))
1047 
1048 #define REISERFS_VERSION_1 0
1049 #define REISERFS_VERSION_2 2
1050 
1051 /* on-disk super block fields converted to cpu form */
1052 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
1053 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
1054 #define SB_BLOCKSIZE(s) \
1055         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
1056 #define SB_BLOCK_COUNT(s) \
1057         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
1058 #define SB_FREE_BLOCKS(s) \
1059         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
1060 #define SB_REISERFS_MAGIC(s) \
1061         (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
1062 #define SB_ROOT_BLOCK(s) \
1063         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
1064 #define SB_TREE_HEIGHT(s) \
1065         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
1066 #define SB_REISERFS_STATE(s) \
1067         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
1068 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
1069 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
1070 
1071 #define PUT_SB_BLOCK_COUNT(s, val) \
1072    do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
1073 #define PUT_SB_FREE_BLOCKS(s, val) \
1074    do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
1075 #define PUT_SB_ROOT_BLOCK(s, val) \
1076    do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
1077 #define PUT_SB_TREE_HEIGHT(s, val) \
1078    do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
1079 #define PUT_SB_REISERFS_STATE(s, val) \
1080    do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
1081 #define PUT_SB_VERSION(s, val) \
1082    do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
1083 #define PUT_SB_BMAP_NR(s, val) \
1084    do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
1085 
1086 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
1087 #define SB_ONDISK_JOURNAL_SIZE(s) \
1088          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
1089 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
1090          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
1091 #define SB_ONDISK_JOURNAL_DEVICE(s) \
1092          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
1093 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
1094          le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
1095 
1096 #define is_block_in_log_or_reserved_area(s, block) \
1097          block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
1098          && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
1099          ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
1100          SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
1101 
1102 int is_reiserfs_3_5(struct reiserfs_super_block *rs);
1103 int is_reiserfs_3_6(struct reiserfs_super_block *rs);
1104 int is_reiserfs_jr(struct reiserfs_super_block *rs);
1105 
1106 /*
1107  * ReiserFS leaves the first 64k unused, so that partition labels have
1108  * enough space.  If someone wants to write a fancy bootloader that
1109  * needs more than 64k, let us know, and this will be increased in size.
1110  * This number must be larger than the largest block size on any
1111  * platform, or code will break.  -Hans
1112  */
1113 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
1114 #define REISERFS_FIRST_BLOCK unused_define
1115 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
1116 
1117 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
1118 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
1119 
1120 /* reiserfs internal error code (used by search_by_key and fix_nodes)) */
1121 #define CARRY_ON      0
1122 #define REPEAT_SEARCH -1
1123 #define IO_ERROR      -2
1124 #define NO_DISK_SPACE -3
1125 #define NO_BALANCING_NEEDED  (-4)
1126 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
1127 #define QUOTA_EXCEEDED -6
1128 
1129 typedef __u32 b_blocknr_t;
1130 typedef __le32 unp_t;
1131 
1132 struct unfm_nodeinfo {
1133 	unp_t unfm_nodenum;
1134 	unsigned short unfm_freespace;
1135 };
1136 
1137 /* there are two formats of keys: 3.5 and 3.6 */
1138 #define KEY_FORMAT_3_5 0
1139 #define KEY_FORMAT_3_6 1
1140 
1141 /* there are two stat datas */
1142 #define STAT_DATA_V1 0
1143 #define STAT_DATA_V2 1
1144 
1145 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
1146 {
1147 	return container_of(inode, struct reiserfs_inode_info, vfs_inode);
1148 }
1149 
1150 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
1151 {
1152 	return sb->s_fs_info;
1153 }
1154 
1155 /*
1156  * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
1157  * which overflows on large file systems.
1158  */
1159 static inline __u32 reiserfs_bmap_count(struct super_block *sb)
1160 {
1161 	return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
1162 }
1163 
1164 static inline int bmap_would_wrap(unsigned bmap_nr)
1165 {
1166 	return bmap_nr > ((1LL << 16) - 1);
1167 }
1168 
1169 extern const struct xattr_handler *reiserfs_xattr_handlers[];
1170 
1171 /*
1172  * this says about version of key of all items (but stat data) the
1173  * object consists of
1174  */
1175 #define get_inode_item_key_version( inode )                                    \
1176     ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
1177 
1178 #define set_inode_item_key_version( inode, version )                           \
1179          ({ if((version)==KEY_FORMAT_3_6)                                      \
1180                 REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
1181             else                                                               \
1182                 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
1183 
1184 #define get_inode_sd_version(inode)                                            \
1185     ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
1186 
1187 #define set_inode_sd_version(inode, version)                                   \
1188          ({ if((version)==STAT_DATA_V2)                                        \
1189                 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
1190             else                                                               \
1191                 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
1192 
1193 /*
1194  * This is an aggressive tail suppression policy, I am hoping it
1195  * improves our benchmarks. The principle behind it is that percentage
1196  * space saving is what matters, not absolute space saving.  This is
1197  * non-intuitive, but it helps to understand it if you consider that the
1198  * cost to access 4 blocks is not much more than the cost to access 1
1199  * block, if you have to do a seek and rotate.  A tail risks a
1200  * non-linear disk access that is significant as a percentage of total
1201  * time cost for a 4 block file and saves an amount of space that is
1202  * less significant as a percentage of space, or so goes the hypothesis.
1203  * -Hans
1204  */
1205 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
1206 (\
1207   (!(n_tail_size)) || \
1208   (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
1209    ( (n_file_size) >= (n_block_size) * 4 ) || \
1210    ( ( (n_file_size) >= (n_block_size) * 3 ) && \
1211      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
1212    ( ( (n_file_size) >= (n_block_size) * 2 ) && \
1213      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
1214    ( ( (n_file_size) >= (n_block_size) ) && \
1215      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
1216 )
1217 
1218 /*
1219  * Another strategy for tails, this one means only create a tail if all the
1220  * file would fit into one DIRECT item.
1221  * Primary intention for this one is to increase performance by decreasing
1222  * seeking.
1223 */
1224 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
1225 (\
1226   (!(n_tail_size)) || \
1227   (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
1228 )
1229 
1230 /*
1231  * values for s_umount_state field
1232  */
1233 #define REISERFS_VALID_FS    1
1234 #define REISERFS_ERROR_FS    2
1235 
1236 /*
1237  * there are 5 item types currently
1238  */
1239 #define TYPE_STAT_DATA 0
1240 #define TYPE_INDIRECT 1
1241 #define TYPE_DIRECT 2
1242 #define TYPE_DIRENTRY 3
1243 #define TYPE_MAXTYPE 3
1244 #define TYPE_ANY 15		/* FIXME: comment is required */
1245 
1246 /***************************************************************************
1247  *                       KEY & ITEM HEAD                                   *
1248  ***************************************************************************/
1249 
1250 /* * directories use this key as well as old files */
1251 struct offset_v1 {
1252 	__le32 k_offset;
1253 	__le32 k_uniqueness;
1254 } __attribute__ ((__packed__));
1255 
1256 struct offset_v2 {
1257 	__le64 v;
1258 } __attribute__ ((__packed__));
1259 
1260 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
1261 {
1262 	__u8 type = le64_to_cpu(v2->v) >> 60;
1263 	return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
1264 }
1265 
1266 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
1267 {
1268 	v2->v =
1269 	    (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
1270 }
1271 
1272 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
1273 {
1274 	return le64_to_cpu(v2->v) & (~0ULL >> 4);
1275 }
1276 
1277 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
1278 {
1279 	offset &= (~0ULL >> 4);
1280 	v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
1281 }
1282 
1283 /*
1284  * Key of an item determines its location in the S+tree, and
1285  * is composed of 4 components
1286  */
1287 struct reiserfs_key {
1288 	/* packing locality: by default parent directory object id */
1289 	__le32 k_dir_id;
1290 
1291 	__le32 k_objectid;	/* object identifier */
1292 	union {
1293 		struct offset_v1 k_offset_v1;
1294 		struct offset_v2 k_offset_v2;
1295 	} __attribute__ ((__packed__)) u;
1296 } __attribute__ ((__packed__));
1297 
1298 struct in_core_key {
1299 	/* packing locality: by default parent directory object id */
1300 	__u32 k_dir_id;
1301 	__u32 k_objectid;	/* object identifier */
1302 	__u64 k_offset;
1303 	__u8 k_type;
1304 };
1305 
1306 struct cpu_key {
1307 	struct in_core_key on_disk_key;
1308 	int version;
1309 	/* 3 in all cases but direct2indirect and indirect2direct conversion */
1310 	int key_length;
1311 };
1312 
1313 /*
1314  * Our function for comparing keys can compare keys of different
1315  * lengths.  It takes as a parameter the length of the keys it is to
1316  * compare.  These defines are used in determining what is to be passed
1317  * to it as that parameter.
1318  */
1319 #define REISERFS_FULL_KEY_LEN     4
1320 #define REISERFS_SHORT_KEY_LEN    2
1321 
1322 /* The result of the key compare */
1323 #define FIRST_GREATER 1
1324 #define SECOND_GREATER -1
1325 #define KEYS_IDENTICAL 0
1326 #define KEY_FOUND 1
1327 #define KEY_NOT_FOUND 0
1328 
1329 #define KEY_SIZE (sizeof(struct reiserfs_key))
1330 
1331 /* return values for search_by_key and clones */
1332 #define ITEM_FOUND 1
1333 #define ITEM_NOT_FOUND 0
1334 #define ENTRY_FOUND 1
1335 #define ENTRY_NOT_FOUND 0
1336 #define DIRECTORY_NOT_FOUND -1
1337 #define REGULAR_FILE_FOUND -2
1338 #define DIRECTORY_FOUND -3
1339 #define BYTE_FOUND 1
1340 #define BYTE_NOT_FOUND 0
1341 #define FILE_NOT_FOUND -1
1342 
1343 #define POSITION_FOUND 1
1344 #define POSITION_NOT_FOUND 0
1345 
1346 /* return values for reiserfs_find_entry and search_by_entry_key */
1347 #define NAME_FOUND 1
1348 #define NAME_NOT_FOUND 0
1349 #define GOTO_PREVIOUS_ITEM 2
1350 #define NAME_FOUND_INVISIBLE 3
1351 
1352 /*
1353  * Everything in the filesystem is stored as a set of items.  The
1354  * item head contains the key of the item, its free space (for
1355  * indirect items) and specifies the location of the item itself
1356  * within the block.
1357  */
1358 
1359 struct item_head {
1360 	/*
1361 	 * Everything in the tree is found by searching for it based on
1362 	 * its key.
1363 	 */
1364 	struct reiserfs_key ih_key;
1365 	union {
1366 		/*
1367 		 * The free space in the last unformatted node of an
1368 		 * indirect item if this is an indirect item.  This
1369 		 * equals 0xFFFF iff this is a direct item or stat data
1370 		 * item. Note that the key, not this field, is used to
1371 		 * determine the item type, and thus which field this
1372 		 * union contains.
1373 		 */
1374 		__le16 ih_free_space_reserved;
1375 
1376 		/*
1377 		 * Iff this is a directory item, this field equals the
1378 		 * number of directory entries in the directory item.
1379 		 */
1380 		__le16 ih_entry_count;
1381 	} __attribute__ ((__packed__)) u;
1382 	__le16 ih_item_len;	/* total size of the item body */
1383 
1384 	/* an offset to the item body within the block */
1385 	__le16 ih_item_location;
1386 
1387 	/*
1388 	 * 0 for all old items, 2 for new ones. Highest bit is set by fsck
1389 	 * temporary, cleaned after all done
1390 	 */
1391 	__le16 ih_version;
1392 } __attribute__ ((__packed__));
1393 /* size of item header     */
1394 #define IH_SIZE (sizeof(struct item_head))
1395 
1396 #define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
1397 #define ih_version(ih)               le16_to_cpu((ih)->ih_version)
1398 #define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
1399 #define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
1400 #define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
1401 
1402 #define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
1403 #define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
1404 #define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
1405 #define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
1406 #define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
1407 
1408 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
1409 
1410 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
1411 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
1412 
1413 /*
1414  * these operate on indirect items, where you've got an array of ints
1415  * at a possibly unaligned location.  These are a noop on ia32
1416  *
1417  * p is the array of __u32, i is the index into the array, v is the value
1418  * to store there.
1419  */
1420 #define get_block_num(p, i) get_unaligned_le32((p) + (i))
1421 #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
1422 
1423 /* * in old version uniqueness field shows key type */
1424 #define V1_SD_UNIQUENESS 0
1425 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
1426 #define V1_DIRECT_UNIQUENESS 0xffffffff
1427 #define V1_DIRENTRY_UNIQUENESS 500
1428 #define V1_ANY_UNIQUENESS 555	/* FIXME: comment is required */
1429 
1430 /* here are conversion routines */
1431 static inline int uniqueness2type(__u32 uniqueness) CONSTF;
1432 static inline int uniqueness2type(__u32 uniqueness)
1433 {
1434 	switch ((int)uniqueness) {
1435 	case V1_SD_UNIQUENESS:
1436 		return TYPE_STAT_DATA;
1437 	case V1_INDIRECT_UNIQUENESS:
1438 		return TYPE_INDIRECT;
1439 	case V1_DIRECT_UNIQUENESS:
1440 		return TYPE_DIRECT;
1441 	case V1_DIRENTRY_UNIQUENESS:
1442 		return TYPE_DIRENTRY;
1443 	case V1_ANY_UNIQUENESS:
1444 	default:
1445 		return TYPE_ANY;
1446 	}
1447 }
1448 
1449 static inline __u32 type2uniqueness(int type) CONSTF;
1450 static inline __u32 type2uniqueness(int type)
1451 {
1452 	switch (type) {
1453 	case TYPE_STAT_DATA:
1454 		return V1_SD_UNIQUENESS;
1455 	case TYPE_INDIRECT:
1456 		return V1_INDIRECT_UNIQUENESS;
1457 	case TYPE_DIRECT:
1458 		return V1_DIRECT_UNIQUENESS;
1459 	case TYPE_DIRENTRY:
1460 		return V1_DIRENTRY_UNIQUENESS;
1461 	case TYPE_ANY:
1462 	default:
1463 		return V1_ANY_UNIQUENESS;
1464 	}
1465 }
1466 
1467 /*
1468  * key is pointer to on disk key which is stored in le, result is cpu,
1469  * there is no way to get version of object from key, so, provide
1470  * version to these defines
1471  */
1472 static inline loff_t le_key_k_offset(int version,
1473 				     const struct reiserfs_key *key)
1474 {
1475 	return (version == KEY_FORMAT_3_5) ?
1476 	    le32_to_cpu(key->u.k_offset_v1.k_offset) :
1477 	    offset_v2_k_offset(&(key->u.k_offset_v2));
1478 }
1479 
1480 static inline loff_t le_ih_k_offset(const struct item_head *ih)
1481 {
1482 	return le_key_k_offset(ih_version(ih), &(ih->ih_key));
1483 }
1484 
1485 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
1486 {
1487 	if (version == KEY_FORMAT_3_5) {
1488 		loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness);
1489 		return uniqueness2type(val);
1490 	} else
1491 		return offset_v2_k_type(&(key->u.k_offset_v2));
1492 }
1493 
1494 static inline loff_t le_ih_k_type(const struct item_head *ih)
1495 {
1496 	return le_key_k_type(ih_version(ih), &(ih->ih_key));
1497 }
1498 
1499 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
1500 				       loff_t offset)
1501 {
1502 	if (version == KEY_FORMAT_3_5)
1503 		key->u.k_offset_v1.k_offset = cpu_to_le32(offset);
1504 	else
1505 		set_offset_v2_k_offset(&key->u.k_offset_v2, offset);
1506 }
1507 
1508 static inline void add_le_key_k_offset(int version, struct reiserfs_key *key,
1509 				       loff_t offset)
1510 {
1511 	set_le_key_k_offset(version, key,
1512 			    le_key_k_offset(version, key) + offset);
1513 }
1514 
1515 static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset)
1516 {
1517 	add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1518 }
1519 
1520 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
1521 {
1522 	set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1523 }
1524 
1525 static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
1526 				     int type)
1527 {
1528 	if (version == KEY_FORMAT_3_5) {
1529 		type = type2uniqueness(type);
1530 		key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type);
1531 	} else
1532 	       set_offset_v2_k_type(&key->u.k_offset_v2, type);
1533 }
1534 
1535 static inline void set_le_ih_k_type(struct item_head *ih, int type)
1536 {
1537 	set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
1538 }
1539 
1540 static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
1541 {
1542 	return le_key_k_type(version, key) == TYPE_DIRENTRY;
1543 }
1544 
1545 static inline int is_direct_le_key(int version, struct reiserfs_key *key)
1546 {
1547 	return le_key_k_type(version, key) == TYPE_DIRECT;
1548 }
1549 
1550 static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
1551 {
1552 	return le_key_k_type(version, key) == TYPE_INDIRECT;
1553 }
1554 
1555 static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
1556 {
1557 	return le_key_k_type(version, key) == TYPE_STAT_DATA;
1558 }
1559 
1560 /* item header has version.  */
1561 static inline int is_direntry_le_ih(struct item_head *ih)
1562 {
1563 	return is_direntry_le_key(ih_version(ih), &ih->ih_key);
1564 }
1565 
1566 static inline int is_direct_le_ih(struct item_head *ih)
1567 {
1568 	return is_direct_le_key(ih_version(ih), &ih->ih_key);
1569 }
1570 
1571 static inline int is_indirect_le_ih(struct item_head *ih)
1572 {
1573 	return is_indirect_le_key(ih_version(ih), &ih->ih_key);
1574 }
1575 
1576 static inline int is_statdata_le_ih(struct item_head *ih)
1577 {
1578 	return is_statdata_le_key(ih_version(ih), &ih->ih_key);
1579 }
1580 
1581 /* key is pointer to cpu key, result is cpu */
1582 static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
1583 {
1584 	return key->on_disk_key.k_offset;
1585 }
1586 
1587 static inline loff_t cpu_key_k_type(const struct cpu_key *key)
1588 {
1589 	return key->on_disk_key.k_type;
1590 }
1591 
1592 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
1593 {
1594 	key->on_disk_key.k_offset = offset;
1595 }
1596 
1597 static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
1598 {
1599 	key->on_disk_key.k_type = type;
1600 }
1601 
1602 static inline void cpu_key_k_offset_dec(struct cpu_key *key)
1603 {
1604 	key->on_disk_key.k_offset--;
1605 }
1606 
1607 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
1608 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
1609 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
1610 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
1611 
1612 /* are these used ? */
1613 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
1614 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
1615 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
1616 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
1617 
1618 #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
1619     (!COMP_SHORT_KEYS(ih, key) && \
1620 	  I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
1621 
1622 /* maximal length of item */
1623 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
1624 #define MIN_ITEM_LEN 1
1625 
1626 /* object identifier for root dir */
1627 #define REISERFS_ROOT_OBJECTID 2
1628 #define REISERFS_ROOT_PARENT_OBJECTID 1
1629 
1630 extern struct reiserfs_key root_key;
1631 
1632 /*
1633  * Picture represents a leaf of the S+tree
1634  *  ______________________________________________________
1635  * |      |  Array of     |                   |           |
1636  * |Block |  Object-Item  |      F r e e      |  Objects- |
1637  * | head |  Headers      |     S p a c e     |   Items   |
1638  * |______|_______________|___________________|___________|
1639  */
1640 
1641 /*
1642  * Header of a disk block.  More precisely, header of a formatted leaf
1643  * or internal node, and not the header of an unformatted node.
1644  */
1645 struct block_head {
1646 	__le16 blk_level;	/* Level of a block in the tree. */
1647 	__le16 blk_nr_item;	/* Number of keys/items in a block. */
1648 	__le16 blk_free_space;	/* Block free space in bytes. */
1649 	__le16 blk_reserved;
1650 	/* dump this in v4/planA */
1651 
1652 	/* kept only for compatibility */
1653 	struct reiserfs_key blk_right_delim_key;
1654 };
1655 
1656 #define BLKH_SIZE                     (sizeof(struct block_head))
1657 #define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
1658 #define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
1659 #define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
1660 #define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
1661 #define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
1662 #define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
1663 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
1664 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
1665 #define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
1666 #define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
1667 
1668 /* values for blk_level field of the struct block_head */
1669 
1670 /*
1671  * When node gets removed from the tree its blk_level is set to FREE_LEVEL.
1672  * It is then  used to see whether the node is still in the tree
1673  */
1674 #define FREE_LEVEL 0
1675 
1676 #define DISK_LEAF_NODE_LEVEL  1	/* Leaf node level. */
1677 
1678 /*
1679  * Given the buffer head of a formatted node, resolve to the
1680  * block head of that node.
1681  */
1682 #define B_BLK_HEAD(bh)			((struct block_head *)((bh)->b_data))
1683 /* Number of items that are in buffer. */
1684 #define B_NR_ITEMS(bh)			(blkh_nr_item(B_BLK_HEAD(bh)))
1685 #define B_LEVEL(bh)			(blkh_level(B_BLK_HEAD(bh)))
1686 #define B_FREE_SPACE(bh)		(blkh_free_space(B_BLK_HEAD(bh)))
1687 
1688 #define PUT_B_NR_ITEMS(bh, val)		do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
1689 #define PUT_B_LEVEL(bh, val)		do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
1690 #define PUT_B_FREE_SPACE(bh, val)	do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
1691 
1692 /* Get right delimiting key. -- little endian */
1693 #define B_PRIGHT_DELIM_KEY(bh)		(&(blk_right_delim_key(B_BLK_HEAD(bh))))
1694 
1695 /* Does the buffer contain a disk leaf. */
1696 #define B_IS_ITEMS_LEVEL(bh)		(B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
1697 
1698 /* Does the buffer contain a disk internal node */
1699 #define B_IS_KEYS_LEVEL(bh)      (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
1700 					    && B_LEVEL(bh) <= MAX_HEIGHT)
1701 
1702 /***************************************************************************
1703  *                             STAT DATA                                   *
1704  ***************************************************************************/
1705 
1706 /*
1707  * old stat data is 32 bytes long. We are going to distinguish new one by
1708  * different size
1709 */
1710 struct stat_data_v1 {
1711 	__le16 sd_mode;		/* file type, permissions */
1712 	__le16 sd_nlink;	/* number of hard links */
1713 	__le16 sd_uid;		/* owner */
1714 	__le16 sd_gid;		/* group */
1715 	__le32 sd_size;		/* file size */
1716 	__le32 sd_atime;	/* time of last access */
1717 	__le32 sd_mtime;	/* time file was last modified  */
1718 
1719 	/*
1720 	 * time inode (stat data) was last changed
1721 	 * (except changes to sd_atime and sd_mtime)
1722 	 */
1723 	__le32 sd_ctime;
1724 	union {
1725 		__le32 sd_rdev;
1726 		__le32 sd_blocks;	/* number of blocks file uses */
1727 	} __attribute__ ((__packed__)) u;
1728 
1729 	/*
1730 	 * first byte of file which is stored in a direct item: except that if
1731 	 * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no
1732 	 * direct item.  The existence of this field really grates on me.
1733 	 * Let's replace it with a macro based on sd_size and our tail
1734 	 * suppression policy.  Someday.  -Hans
1735 	 */
1736 	__le32 sd_first_direct_byte;
1737 } __attribute__ ((__packed__));
1738 
1739 #define SD_V1_SIZE              (sizeof(struct stat_data_v1))
1740 #define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
1741 #define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
1742 #define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
1743 #define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
1744 #define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
1745 #define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
1746 #define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
1747 #define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
1748 #define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
1749 #define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
1750 #define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
1751 #define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
1752 #define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
1753 #define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
1754 #define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
1755 #define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
1756 #define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
1757 #define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
1758 #define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
1759 #define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
1760 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
1761 #define sd_v1_first_direct_byte(sdp) \
1762                                 (le32_to_cpu((sdp)->sd_first_direct_byte))
1763 #define set_sd_v1_first_direct_byte(sdp,v) \
1764                                 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
1765 
1766 /* inode flags stored in sd_attrs (nee sd_reserved) */
1767 
1768 /*
1769  * we want common flags to have the same values as in ext2,
1770  * so chattr(1) will work without problems
1771  */
1772 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
1773 #define REISERFS_APPEND_FL    FS_APPEND_FL
1774 #define REISERFS_SYNC_FL      FS_SYNC_FL
1775 #define REISERFS_NOATIME_FL   FS_NOATIME_FL
1776 #define REISERFS_NODUMP_FL    FS_NODUMP_FL
1777 #define REISERFS_SECRM_FL     FS_SECRM_FL
1778 #define REISERFS_UNRM_FL      FS_UNRM_FL
1779 #define REISERFS_COMPR_FL     FS_COMPR_FL
1780 #define REISERFS_NOTAIL_FL    FS_NOTAIL_FL
1781 
1782 /* persistent flags that file inherits from the parent directory */
1783 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL |	\
1784 				REISERFS_SYNC_FL |	\
1785 				REISERFS_NOATIME_FL |	\
1786 				REISERFS_NODUMP_FL |	\
1787 				REISERFS_SECRM_FL |	\
1788 				REISERFS_COMPR_FL |	\
1789 				REISERFS_NOTAIL_FL )
1790 
1791 /*
1792  * Stat Data on disk (reiserfs version of UFS disk inode minus the
1793  * address blocks)
1794  */
1795 struct stat_data {
1796 	__le16 sd_mode;		/* file type, permissions */
1797 	__le16 sd_attrs;	/* persistent inode flags */
1798 	__le32 sd_nlink;	/* number of hard links */
1799 	__le64 sd_size;		/* file size */
1800 	__le32 sd_uid;		/* owner */
1801 	__le32 sd_gid;		/* group */
1802 	__le32 sd_atime;	/* time of last access */
1803 	__le32 sd_mtime;	/* time file was last modified  */
1804 
1805 	/*
1806 	 * time inode (stat data) was last changed
1807 	 * (except changes to sd_atime and sd_mtime)
1808 	 */
1809 	__le32 sd_ctime;
1810 	__le32 sd_blocks;
1811 	union {
1812 		__le32 sd_rdev;
1813 		__le32 sd_generation;
1814 	} __attribute__ ((__packed__)) u;
1815 } __attribute__ ((__packed__));
1816 
1817 /* this is 44 bytes long */
1818 #define SD_SIZE (sizeof(struct stat_data))
1819 #define SD_V2_SIZE              SD_SIZE
1820 #define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
1821 #define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
1822 #define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
1823 /* sd_reserved */
1824 /* set_sd_reserved */
1825 #define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
1826 #define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
1827 #define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
1828 #define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
1829 #define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
1830 #define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
1831 #define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
1832 #define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
1833 #define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
1834 #define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
1835 #define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
1836 #define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
1837 #define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
1838 #define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
1839 #define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
1840 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
1841 #define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
1842 #define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
1843 #define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
1844 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
1845 #define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
1846 #define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
1847 
1848 /***************************************************************************
1849  *                      DIRECTORY STRUCTURE                                *
1850  ***************************************************************************/
1851 /*
1852  * Picture represents the structure of directory items
1853  * ________________________________________________
1854  * |  Array of     |   |     |        |       |   |
1855  * | directory     |N-1| N-2 | ....   |   1st |0th|
1856  * | entry headers |   |     |        |       |   |
1857  * |_______________|___|_____|________|_______|___|
1858  *                  <----   directory entries         ------>
1859  *
1860  * First directory item has k_offset component 1. We store "." and ".."
1861  * in one item, always, we never split "." and ".." into differing
1862  * items.  This makes, among other things, the code for removing
1863  * directories simpler.
1864  */
1865 #define SD_OFFSET  0
1866 #define SD_UNIQUENESS 0
1867 #define DOT_OFFSET 1
1868 #define DOT_DOT_OFFSET 2
1869 #define DIRENTRY_UNIQUENESS 500
1870 
1871 #define FIRST_ITEM_OFFSET 1
1872 
1873 /*
1874  * Q: How to get key of object pointed to by entry from entry?
1875  *
1876  * A: Each directory entry has its header. This header has deh_dir_id
1877  *    and deh_objectid fields, those are key of object, entry points to
1878  */
1879 
1880 /*
1881  * NOT IMPLEMENTED:
1882  * Directory will someday contain stat data of object
1883  */
1884 
1885 struct reiserfs_de_head {
1886 	__le32 deh_offset;	/* third component of the directory entry key */
1887 
1888 	/*
1889 	 * objectid of the parent directory of the object, that is referenced
1890 	 * by directory entry
1891 	 */
1892 	__le32 deh_dir_id;
1893 
1894 	/* objectid of the object, that is referenced by directory entry */
1895 	__le32 deh_objectid;
1896 	__le16 deh_location;	/* offset of name in the whole item */
1897 
1898 	/*
1899 	 * whether 1) entry contains stat data (for future), and
1900 	 * 2) whether entry is hidden (unlinked)
1901 	 */
1902 	__le16 deh_state;
1903 } __attribute__ ((__packed__));
1904 #define DEH_SIZE                  sizeof(struct reiserfs_de_head)
1905 #define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
1906 #define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
1907 #define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
1908 #define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
1909 #define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
1910 
1911 #define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
1912 #define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1913 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1914 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1915 #define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
1916 
1917 /* empty directory contains two entries "." and ".." and their headers */
1918 #define EMPTY_DIR_SIZE \
1919 (DEH_SIZE * 2 + ROUND_UP (sizeof(".") - 1) + ROUND_UP (sizeof("..") - 1))
1920 
1921 /* old format directories have this size when empty */
1922 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1923 
1924 #define DEH_Statdata 0		/* not used now */
1925 #define DEH_Visible 2
1926 
1927 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1928 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1929 #   define ADDR_UNALIGNED_BITS  (3)
1930 #endif
1931 
1932 /*
1933  * These are only used to manipulate deh_state.
1934  * Because of this, we'll use the ext2_ bit routines,
1935  * since they are little endian
1936  */
1937 #ifdef ADDR_UNALIGNED_BITS
1938 
1939 #   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1940 #   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1941 
1942 #   define set_bit_unaligned(nr, addr)	\
1943 	__test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1944 #   define clear_bit_unaligned(nr, addr)	\
1945 	__test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1946 #   define test_bit_unaligned(nr, addr)	\
1947 	test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1948 
1949 #else
1950 
1951 #   define set_bit_unaligned(nr, addr)	__test_and_set_bit_le(nr, addr)
1952 #   define clear_bit_unaligned(nr, addr)	__test_and_clear_bit_le(nr, addr)
1953 #   define test_bit_unaligned(nr, addr)	test_bit_le(nr, addr)
1954 
1955 #endif
1956 
1957 #define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1958 #define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1959 #define mark_de_visible(deh)	    set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1960 #define mark_de_hidden(deh)	    clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1961 
1962 #define de_with_sd(deh)		    test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1963 #define de_visible(deh)	    	    test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1964 #define de_hidden(deh)	    	    !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1965 
1966 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1967 				   __le32 par_dirid, __le32 par_objid);
1968 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1969 				__le32 par_dirid, __le32 par_objid);
1970 
1971 /* two entries per block (at least) */
1972 #define REISERFS_MAX_NAME(block_size) 255
1973 
1974 /*
1975  * this structure is used for operations on directory entries. It is
1976  * not a disk structure.
1977  *
1978  * When reiserfs_find_entry or search_by_entry_key find directory
1979  * entry, they return filled reiserfs_dir_entry structure
1980  */
1981 struct reiserfs_dir_entry {
1982 	struct buffer_head *de_bh;
1983 	int de_item_num;
1984 	struct item_head *de_ih;
1985 	int de_entry_num;
1986 	struct reiserfs_de_head *de_deh;
1987 	int de_entrylen;
1988 	int de_namelen;
1989 	char *de_name;
1990 	unsigned long *de_gen_number_bit_string;
1991 
1992 	__u32 de_dir_id;
1993 	__u32 de_objectid;
1994 
1995 	struct cpu_key de_entry_key;
1996 };
1997 
1998 /*
1999  * these defines are useful when a particular member of
2000  * a reiserfs_dir_entry is needed
2001  */
2002 
2003 /* pointer to file name, stored in entry */
2004 #define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \
2005 				(ih_item_body(bh, ih) + deh_location(deh))
2006 
2007 /* length of name */
2008 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
2009 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
2010 
2011 /* hash value occupies bits from 7 up to 30 */
2012 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
2013 /* generation number occupies 7 bits starting from 0 up to 6 */
2014 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
2015 #define MAX_GENERATION_NUMBER  127
2016 
2017 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
2018 
2019 /*
2020  * Picture represents an internal node of the reiserfs tree
2021  *  ______________________________________________________
2022  * |      |  Array of     |  Array of         |  Free     |
2023  * |block |    keys       |  pointers         | space     |
2024  * | head |      N        |      N+1          |           |
2025  * |______|_______________|___________________|___________|
2026  */
2027 
2028 /***************************************************************************
2029  *                      DISK CHILD                                         *
2030  ***************************************************************************/
2031 /*
2032  * Disk child pointer:
2033  * The pointer from an internal node of the tree to a node that is on disk.
2034  */
2035 struct disk_child {
2036 	__le32 dc_block_number;	/* Disk child's block number. */
2037 	__le16 dc_size;		/* Disk child's used space.   */
2038 	__le16 dc_reserved;
2039 };
2040 
2041 #define DC_SIZE (sizeof(struct disk_child))
2042 #define dc_block_number(dc_p)	(le32_to_cpu((dc_p)->dc_block_number))
2043 #define dc_size(dc_p)		(le16_to_cpu((dc_p)->dc_size))
2044 #define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
2045 #define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
2046 
2047 /* Get disk child by buffer header and position in the tree node. */
2048 #define B_N_CHILD(bh, n_pos)  ((struct disk_child *)\
2049 ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
2050 
2051 /* Get disk child number by buffer header and position in the tree node. */
2052 #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
2053 #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
2054 				(put_dc_block_number(B_N_CHILD(bh, n_pos), val))
2055 
2056  /* maximal value of field child_size in structure disk_child */
2057  /* child size is the combined size of all items and their headers */
2058 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
2059 
2060 /* amount of used space in buffer (not including block head) */
2061 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
2062 
2063 /* max and min number of keys in internal node */
2064 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
2065 #define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
2066 
2067 /***************************************************************************
2068  *                      PATH STRUCTURES AND DEFINES                        *
2069  ***************************************************************************/
2070 
2071 /*
2072  * search_by_key fills up the path from the root to the leaf as it descends
2073  * the tree looking for the key.  It uses reiserfs_bread to try to find
2074  * buffers in the cache given their block number.  If it does not find
2075  * them in the cache it reads them from disk.  For each node search_by_key
2076  * finds using reiserfs_bread it then uses bin_search to look through that
2077  * node.  bin_search will find the position of the block_number of the next
2078  * node if it is looking through an internal node.  If it is looking through
2079  * a leaf node bin_search will find the position of the item which has key
2080  * either equal to given key, or which is the maximal key less than the
2081  * given key.
2082  */
2083 
2084 struct path_element {
2085 	/* Pointer to the buffer at the path in the tree. */
2086 	struct buffer_head *pe_buffer;
2087 	/* Position in the tree node which is placed in the buffer above. */
2088 	int pe_position;
2089 };
2090 
2091 /*
2092  * maximal height of a tree. don't change this without
2093  * changing JOURNAL_PER_BALANCE_CNT
2094  */
2095 #define MAX_HEIGHT 5
2096 
2097 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
2098 #define EXTENDED_MAX_HEIGHT         7
2099 
2100 /* Must be equal to at least 2. */
2101 #define FIRST_PATH_ELEMENT_OFFSET   2
2102 
2103 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
2104 #define ILLEGAL_PATH_ELEMENT_OFFSET 1
2105 
2106 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
2107 #define MAX_FEB_SIZE 6
2108 
2109 /*
2110  * We need to keep track of who the ancestors of nodes are.  When we
2111  * perform a search we record which nodes were visited while
2112  * descending the tree looking for the node we searched for. This list
2113  * of nodes is called the path.  This information is used while
2114  * performing balancing.  Note that this path information may become
2115  * invalid, and this means we must check it when using it to see if it
2116  * is still valid. You'll need to read search_by_key and the comments
2117  * in it, especially about decrement_counters_in_path(), to understand
2118  * this structure.
2119  *
2120  * Paths make the code so much harder to work with and debug.... An
2121  * enormous number of bugs are due to them, and trying to write or modify
2122  * code that uses them just makes my head hurt.  They are based on an
2123  * excessive effort to avoid disturbing the precious VFS code.:-( The
2124  * gods only know how we are going to SMP the code that uses them.
2125  * znodes are the way!
2126  */
2127 
2128 #define PATH_READA	0x1	/* do read ahead */
2129 #define PATH_READA_BACK 0x2	/* read backwards */
2130 
2131 struct treepath {
2132 	int path_length;	/* Length of the array above.   */
2133 	int reada;
2134 	/* Array of the path elements.  */
2135 	struct path_element path_elements[EXTENDED_MAX_HEIGHT];
2136 	int pos_in_item;
2137 };
2138 
2139 #define pos_in_item(path) ((path)->pos_in_item)
2140 
2141 #define INITIALIZE_PATH(var) \
2142 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
2143 
2144 /* Get path element by path and path position. */
2145 #define PATH_OFFSET_PELEMENT(path, n_offset)  ((path)->path_elements + (n_offset))
2146 
2147 /* Get buffer header at the path by path and path position. */
2148 #define PATH_OFFSET_PBUFFER(path, n_offset)   (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
2149 
2150 /* Get position in the element at the path by path and path position. */
2151 #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
2152 
2153 #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
2154 
2155 /*
2156  * you know, to the person who didn't write this the macro name does not
2157  * at first suggest what it does.  Maybe POSITION_FROM_PATH_END? Or
2158  * maybe we should just focus on dumping paths... -Hans
2159  */
2160 #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
2161 
2162 /*
2163  * in do_balance leaf has h == 0 in contrast with path structure,
2164  * where root has level == 0. That is why we need these defines
2165  */
2166 
2167 /* tb->S[h] */
2168 #define PATH_H_PBUFFER(path, h) \
2169 			PATH_OFFSET_PBUFFER(path, path->path_length - (h))
2170 
2171 /* tb->F[h] or tb->S[0]->b_parent */
2172 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1)
2173 
2174 #define PATH_H_POSITION(path, h) \
2175 			PATH_OFFSET_POSITION(path, path->path_length - (h))
2176 
2177 /* tb->S[h]->b_item_order */
2178 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)
2179 
2180 #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
2181 
2182 static inline void *reiserfs_node_data(const struct buffer_head *bh)
2183 {
2184 	return bh->b_data + sizeof(struct block_head);
2185 }
2186 
2187 /* get key from internal node */
2188 static inline struct reiserfs_key *internal_key(struct buffer_head *bh,
2189 						int item_num)
2190 {
2191 	struct reiserfs_key *key = reiserfs_node_data(bh);
2192 
2193 	return &key[item_num];
2194 }
2195 
2196 /* get the item header from leaf node */
2197 static inline struct item_head *item_head(const struct buffer_head *bh,
2198 					  int item_num)
2199 {
2200 	struct item_head *ih = reiserfs_node_data(bh);
2201 
2202 	return &ih[item_num];
2203 }
2204 
2205 /* get the key from leaf node */
2206 static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh,
2207 					    int item_num)
2208 {
2209 	return &item_head(bh, item_num)->ih_key;
2210 }
2211 
2212 static inline void *ih_item_body(const struct buffer_head *bh,
2213 				 const struct item_head *ih)
2214 {
2215 	return bh->b_data + ih_location(ih);
2216 }
2217 
2218 /* get item body from leaf node */
2219 static inline void *item_body(const struct buffer_head *bh, int item_num)
2220 {
2221 	return ih_item_body(bh, item_head(bh, item_num));
2222 }
2223 
2224 static inline struct item_head *tp_item_head(const struct treepath *path)
2225 {
2226 	return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
2227 }
2228 
2229 static inline void *tp_item_body(const struct treepath *path)
2230 {
2231 	return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
2232 }
2233 
2234 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
2235 #define get_item_pos(path) PATH_LAST_POSITION(path)
2236 #define item_moved(ih,path) comp_items(ih, path)
2237 #define path_changed(ih,path) comp_items (ih, path)
2238 
2239 /* array of the entry headers */
2240  /* get item body */
2241 #define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih)))
2242 
2243 /*
2244  * length of the directory entry in directory item. This define
2245  * calculates length of i-th directory entry using directory entry
2246  * locations from dir entry head. When it calculates length of 0-th
2247  * directory entry, it uses length of whole item in place of entry
2248  * location of the non-existent following entry in the calculation.
2249  * See picture above.
2250  */
2251 static inline int entry_length(const struct buffer_head *bh,
2252 			       const struct item_head *ih, int pos_in_item)
2253 {
2254 	struct reiserfs_de_head *deh;
2255 
2256 	deh = B_I_DEH(bh, ih) + pos_in_item;
2257 	if (pos_in_item)
2258 		return deh_location(deh - 1) - deh_location(deh);
2259 
2260 	return ih_item_len(ih) - deh_location(deh);
2261 }
2262 
2263 /***************************************************************************
2264  *                       MISC                                              *
2265  ***************************************************************************/
2266 
2267 /* Size of pointer to the unformatted node. */
2268 #define UNFM_P_SIZE (sizeof(unp_t))
2269 #define UNFM_P_SHIFT 2
2270 
2271 /* in in-core inode key is stored on le form */
2272 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
2273 
2274 #define MAX_UL_INT 0xffffffff
2275 #define MAX_INT    0x7ffffff
2276 #define MAX_US_INT 0xffff
2277 
2278 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
2279 static inline loff_t max_reiserfs_offset(struct inode *inode)
2280 {
2281 	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
2282 		return (loff_t) U32_MAX;
2283 
2284 	return (loff_t) ((~(__u64) 0) >> 4);
2285 }
2286 
2287 #define MAX_KEY_OBJECTID	MAX_UL_INT
2288 
2289 #define MAX_B_NUM  MAX_UL_INT
2290 #define MAX_FC_NUM MAX_US_INT
2291 
2292 /* the purpose is to detect overflow of an unsigned short */
2293 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
2294 
2295 /*
2296  * The following defines are used in reiserfs_insert_item
2297  * and reiserfs_append_item
2298  */
2299 #define REISERFS_KERNEL_MEM		0	/* kernel memory mode */
2300 #define REISERFS_USER_MEM		1	/* user memory mode */
2301 
2302 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
2303 #define get_generation(s) atomic_read (&fs_generation(s))
2304 #define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
2305 #define __fs_changed(gen,s) (gen != get_generation (s))
2306 #define fs_changed(gen,s)		\
2307 ({					\
2308 	reiserfs_cond_resched(s);	\
2309 	__fs_changed(gen, s);		\
2310 })
2311 
2312 /***************************************************************************
2313  *                  FIXATE NODES                                           *
2314  ***************************************************************************/
2315 
2316 #define VI_TYPE_LEFT_MERGEABLE 1
2317 #define VI_TYPE_RIGHT_MERGEABLE 2
2318 
2319 /*
2320  * To make any changes in the tree we always first find node, that
2321  * contains item to be changed/deleted or place to insert a new
2322  * item. We call this node S. To do balancing we need to decide what
2323  * we will shift to left/right neighbor, or to a new node, where new
2324  * item will be etc. To make this analysis simpler we build virtual
2325  * node. Virtual node is an array of items, that will replace items of
2326  * node S. (For instance if we are going to delete an item, virtual
2327  * node does not contain it). Virtual node keeps information about
2328  * item sizes and types, mergeability of first and last items, sizes
2329  * of all entries in directory item. We use this array of items when
2330  * calculating what we can shift to neighbors and how many nodes we
2331  * have to have if we do not any shiftings, if we shift to left/right
2332  * neighbor or to both.
2333  */
2334 struct virtual_item {
2335 	int vi_index;		/* index in the array of item operations */
2336 	unsigned short vi_type;	/* left/right mergeability */
2337 
2338 	/* length of item that it will have after balancing */
2339 	unsigned short vi_item_len;
2340 
2341 	struct item_head *vi_ih;
2342 	const char *vi_item;	/* body of item (old or new) */
2343 	const void *vi_new_data;	/* 0 always but paste mode */
2344 	void *vi_uarea;		/* item specific area */
2345 };
2346 
2347 struct virtual_node {
2348 	/* this is a pointer to the free space in the buffer */
2349 	char *vn_free_ptr;
2350 
2351 	unsigned short vn_nr_item;	/* number of items in virtual node */
2352 
2353 	/*
2354 	 * size of node , that node would have if it has
2355 	 * unlimited size and no balancing is performed
2356 	 */
2357 	short vn_size;
2358 
2359 	/* mode of balancing (paste, insert, delete, cut) */
2360 	short vn_mode;
2361 
2362 	short vn_affected_item_num;
2363 	short vn_pos_in_item;
2364 
2365 	/* item header of inserted item, 0 for other modes */
2366 	struct item_head *vn_ins_ih;
2367 	const void *vn_data;
2368 
2369 	/* array of items (including a new one, excluding item to be deleted) */
2370 	struct virtual_item *vn_vi;
2371 };
2372 
2373 /* used by directory items when creating virtual nodes */
2374 struct direntry_uarea {
2375 	int flags;
2376 	__u16 entry_count;
2377 	__u16 entry_sizes[1];
2378 } __attribute__ ((__packed__));
2379 
2380 /***************************************************************************
2381  *                  TREE BALANCE                                           *
2382  ***************************************************************************/
2383 
2384 /*
2385  * This temporary structure is used in tree balance algorithms, and
2386  * constructed as we go to the extent that its various parts are
2387  * needed.  It contains arrays of nodes that can potentially be
2388  * involved in the balancing of node S, and parameters that define how
2389  * each of the nodes must be balanced.  Note that in these algorithms
2390  * for balancing the worst case is to need to balance the current node
2391  * S and the left and right neighbors and all of their parents plus
2392  * create a new node.  We implement S1 balancing for the leaf nodes
2393  * and S0 balancing for the internal nodes (S1 and S0 are defined in
2394  * our papers.)
2395  */
2396 
2397 /* size of the array of buffers to free at end of do_balance */
2398 #define MAX_FREE_BLOCK 7
2399 
2400 /* maximum number of FEB blocknrs on a single level */
2401 #define MAX_AMOUNT_NEEDED 2
2402 
2403 /* someday somebody will prefix every field in this struct with tb_ */
2404 struct tree_balance {
2405 	int tb_mode;
2406 	int need_balance_dirty;
2407 	struct super_block *tb_sb;
2408 	struct reiserfs_transaction_handle *transaction_handle;
2409 	struct treepath *tb_path;
2410 
2411 	/* array of left neighbors of nodes in the path */
2412 	struct buffer_head *L[MAX_HEIGHT];
2413 
2414 	/* array of right neighbors of nodes in the path */
2415 	struct buffer_head *R[MAX_HEIGHT];
2416 
2417 	/* array of fathers of the left neighbors */
2418 	struct buffer_head *FL[MAX_HEIGHT];
2419 
2420 	/* array of fathers of the right neighbors */
2421 	struct buffer_head *FR[MAX_HEIGHT];
2422 	/* array of common parents of center node and its left neighbor */
2423 	struct buffer_head *CFL[MAX_HEIGHT];
2424 
2425 	/* array of common parents of center node and its right neighbor */
2426 	struct buffer_head *CFR[MAX_HEIGHT];
2427 
2428 	/*
2429 	 * array of empty buffers. Number of buffers in array equals
2430 	 * cur_blknum.
2431 	 */
2432 	struct buffer_head *FEB[MAX_FEB_SIZE];
2433 	struct buffer_head *used[MAX_FEB_SIZE];
2434 	struct buffer_head *thrown[MAX_FEB_SIZE];
2435 
2436 	/*
2437 	 * array of number of items which must be shifted to the left in
2438 	 * order to balance the current node; for leaves includes item that
2439 	 * will be partially shifted; for internal nodes, it is the number
2440 	 * of child pointers rather than items. It includes the new item
2441 	 * being created. The code sometimes subtracts one to get the
2442 	 * number of wholly shifted items for other purposes.
2443 	 */
2444 	int lnum[MAX_HEIGHT];
2445 
2446 	/* substitute right for left in comment above */
2447 	int rnum[MAX_HEIGHT];
2448 
2449 	/*
2450 	 * array indexed by height h mapping the key delimiting L[h] and
2451 	 * S[h] to its item number within the node CFL[h]
2452 	 */
2453 	int lkey[MAX_HEIGHT];
2454 
2455 	/* substitute r for l in comment above */
2456 	int rkey[MAX_HEIGHT];
2457 
2458 	/*
2459 	 * the number of bytes by we are trying to add or remove from
2460 	 * S[h]. A negative value means removing.
2461 	 */
2462 	int insert_size[MAX_HEIGHT];
2463 
2464 	/*
2465 	 * number of nodes that will replace node S[h] after balancing
2466 	 * on the level h of the tree.  If 0 then S is being deleted,
2467 	 * if 1 then S is remaining and no new nodes are being created,
2468 	 * if 2 or 3 then 1 or 2 new nodes is being created
2469 	 */
2470 	int blknum[MAX_HEIGHT];
2471 
2472 	/* fields that are used only for balancing leaves of the tree */
2473 
2474 	/* number of empty blocks having been already allocated */
2475 	int cur_blknum;
2476 
2477 	/* number of items that fall into left most node when S[0] splits */
2478 	int s0num;
2479 
2480 	/*
2481 	 * number of bytes which can flow to the left neighbor from the left
2482 	 * most liquid item that cannot be shifted from S[0] entirely
2483 	 * if -1 then nothing will be partially shifted
2484 	 */
2485 	int lbytes;
2486 
2487 	/*
2488 	 * number of bytes which will flow to the right neighbor from the right
2489 	 * most liquid item that cannot be shifted from S[0] entirely
2490 	 * if -1 then nothing will be partially shifted
2491 	 */
2492 	int rbytes;
2493 
2494 
2495 	/*
2496 	 * index into the array of item headers in
2497 	 * S[0] of the affected item
2498 	 */
2499 	int item_pos;
2500 
2501 	/* new nodes allocated to hold what could not fit into S */
2502 	struct buffer_head *S_new[2];
2503 
2504 	/*
2505 	 * number of items that will be placed into nodes in S_new
2506 	 * when S[0] splits
2507 	 */
2508 	int snum[2];
2509 
2510 	/*
2511 	 * number of bytes which flow to nodes in S_new when S[0] splits
2512 	 * note: if S[0] splits into 3 nodes, then items do not need to be cut
2513 	 */
2514 	int sbytes[2];
2515 
2516 	int pos_in_item;
2517 	int zeroes_num;
2518 
2519 	/*
2520 	 * buffers which are to be freed after do_balance finishes
2521 	 * by unfix_nodes
2522 	 */
2523 	struct buffer_head *buf_to_free[MAX_FREE_BLOCK];
2524 
2525 	/*
2526 	 * kmalloced memory. Used to create virtual node and keep
2527 	 * map of dirtied bitmap blocks
2528 	 */
2529 	char *vn_buf;
2530 
2531 	int vn_buf_size;	/* size of the vn_buf */
2532 
2533 	/* VN starts after bitmap of bitmap blocks */
2534 	struct virtual_node *tb_vn;
2535 
2536 	/*
2537 	 * saved value of `reiserfs_generation' counter see
2538 	 * FILESYSTEM_CHANGED() macro in reiserfs_fs.h
2539 	 */
2540 	int fs_gen;
2541 
2542 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2543 	/*
2544 	 * key pointer, to pass to block allocator or
2545 	 * another low-level subsystem
2546 	 */
2547 	struct in_core_key key;
2548 #endif
2549 };
2550 
2551 /* These are modes of balancing */
2552 
2553 /* When inserting an item. */
2554 #define M_INSERT	'i'
2555 /*
2556  * When inserting into (directories only) or appending onto an already
2557  * existent item.
2558  */
2559 #define M_PASTE		'p'
2560 /* When deleting an item. */
2561 #define M_DELETE	'd'
2562 /* When truncating an item or removing an entry from a (directory) item. */
2563 #define M_CUT		'c'
2564 
2565 /* used when balancing on leaf level skipped (in reiserfsck) */
2566 #define M_INTERNAL	'n'
2567 
2568 /*
2569  * When further balancing is not needed, then do_balance does not need
2570  * to be called.
2571  */
2572 #define M_SKIP_BALANCING		's'
2573 #define M_CONVERT	'v'
2574 
2575 /* modes of leaf_move_items */
2576 #define LEAF_FROM_S_TO_L 0
2577 #define LEAF_FROM_S_TO_R 1
2578 #define LEAF_FROM_R_TO_L 2
2579 #define LEAF_FROM_L_TO_R 3
2580 #define LEAF_FROM_S_TO_SNEW 4
2581 
2582 #define FIRST_TO_LAST 0
2583 #define LAST_TO_FIRST 1
2584 
2585 /*
2586  * used in do_balance for passing parent of node information that has
2587  * been gotten from tb struct
2588  */
2589 struct buffer_info {
2590 	struct tree_balance *tb;
2591 	struct buffer_head *bi_bh;
2592 	struct buffer_head *bi_parent;
2593 	int bi_position;
2594 };
2595 
2596 static inline struct super_block *sb_from_tb(struct tree_balance *tb)
2597 {
2598 	return tb ? tb->tb_sb : NULL;
2599 }
2600 
2601 static inline struct super_block *sb_from_bi(struct buffer_info *bi)
2602 {
2603 	return bi ? sb_from_tb(bi->tb) : NULL;
2604 }
2605 
2606 /*
2607  * there are 4 types of items: stat data, directory item, indirect, direct.
2608  * +-------------------+------------+--------------+------------+
2609  * |                   |  k_offset  | k_uniqueness | mergeable? |
2610  * +-------------------+------------+--------------+------------+
2611  * |     stat data     |     0      |      0       |   no       |
2612  * +-------------------+------------+--------------+------------+
2613  * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. |   no       |
2614  * | non 1st directory | hash value | UNIQUENESS   |   yes      |
2615  * |     item          |            |              |            |
2616  * +-------------------+------------+--------------+------------+
2617  * | indirect item     | offset + 1 |TYPE_INDIRECT |    [1]	|
2618  * +-------------------+------------+--------------+------------+
2619  * | direct item       | offset + 1 |TYPE_DIRECT   |    [2]     |
2620  * +-------------------+------------+--------------+------------+
2621  *
2622  * [1] if this is not the first indirect item of the object
2623  * [2] if this is not the first direct item of the object
2624 */
2625 
2626 struct item_operations {
2627 	int (*bytes_number) (struct item_head * ih, int block_size);
2628 	void (*decrement_key) (struct cpu_key *);
2629 	int (*is_left_mergeable) (struct reiserfs_key * ih,
2630 				  unsigned long bsize);
2631 	void (*print_item) (struct item_head *, char *item);
2632 	void (*check_item) (struct item_head *, char *item);
2633 
2634 	int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
2635 			  int is_affected, int insert_size);
2636 	int (*check_left) (struct virtual_item * vi, int free,
2637 			   int start_skip, int end_skip);
2638 	int (*check_right) (struct virtual_item * vi, int free);
2639 	int (*part_size) (struct virtual_item * vi, int from, int to);
2640 	int (*unit_num) (struct virtual_item * vi);
2641 	void (*print_vi) (struct virtual_item * vi);
2642 };
2643 
2644 extern struct item_operations *item_ops[TYPE_ANY + 1];
2645 
2646 #define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
2647 #define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
2648 #define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
2649 #define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
2650 #define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
2651 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
2652 #define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
2653 #define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
2654 #define op_unit_num(vi)				     item_ops[(vi)->vi_index]->unit_num (vi)
2655 #define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
2656 
2657 #define COMP_SHORT_KEYS comp_short_keys
2658 
2659 /* number of blocks pointed to by the indirect item */
2660 #define I_UNFM_NUM(ih)	(ih_item_len(ih) / UNFM_P_SIZE)
2661 
2662 /*
2663  * the used space within the unformatted node corresponding
2664  * to pos within the item pointed to by ih
2665  */
2666 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
2667 
2668 /*
2669  * number of bytes contained by the direct item or the
2670  * unformatted nodes the indirect item points to
2671  */
2672 
2673 /* following defines use reiserfs buffer header and item header */
2674 
2675 /* get stat-data */
2676 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
2677 
2678 /* this is 3976 for size==4096 */
2679 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
2680 
2681 /*
2682  * indirect items consist of entries which contain blocknrs, pos
2683  * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
2684  * blocknr contained by the entry pos points to
2685  */
2686 #define B_I_POS_UNFM_POINTER(bh, ih, pos)				\
2687 	le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos)))
2688 #define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val)			\
2689 	(*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val))
2690 
2691 struct reiserfs_iget_args {
2692 	__u32 objectid;
2693 	__u32 dirid;
2694 };
2695 
2696 /***************************************************************************
2697  *                    FUNCTION DECLARATIONS                                *
2698  ***************************************************************************/
2699 
2700 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
2701 
2702 #define journal_trans_half(blocksize) \
2703 	((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
2704 
2705 /* journal.c see journal.c for all the comments here */
2706 
2707 /* first block written in a commit.  */
2708 struct reiserfs_journal_desc {
2709 	__le32 j_trans_id;	/* id of commit */
2710 
2711 	/* length of commit. len +1 is the commit block */
2712 	__le32 j_len;
2713 
2714 	__le32 j_mount_id;	/* mount id of this trans */
2715 	__le32 j_realblock[1];	/* real locations for each block */
2716 };
2717 
2718 #define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
2719 #define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
2720 #define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
2721 
2722 #define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
2723 #define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
2724 #define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
2725 
2726 /* last block written in a commit */
2727 struct reiserfs_journal_commit {
2728 	__le32 j_trans_id;	/* must match j_trans_id from the desc block */
2729 	__le32 j_len;		/* ditto */
2730 	__le32 j_realblock[1];	/* real locations for each block */
2731 };
2732 
2733 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
2734 #define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
2735 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
2736 
2737 #define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
2738 #define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
2739 
2740 /*
2741  * this header block gets written whenever a transaction is considered
2742  * fully flushed, and is more recent than the last fully flushed transaction.
2743  * fully flushed means all the log blocks and all the real blocks are on
2744  * disk, and this transaction does not need to be replayed.
2745  */
2746 struct reiserfs_journal_header {
2747 	/* id of last fully flushed transaction */
2748 	__le32 j_last_flush_trans_id;
2749 
2750 	/* offset in the log of where to start replay after a crash */
2751 	__le32 j_first_unflushed_offset;
2752 
2753 	__le32 j_mount_id;
2754 	/* 12 */ struct journal_params jh_journal;
2755 };
2756 
2757 /* biggest tunable defines are right here */
2758 #define JOURNAL_BLOCK_COUNT 8192	/* number of blocks in the journal */
2759 
2760 /* biggest possible single transaction, don't change for now (8/3/99) */
2761 #define JOURNAL_TRANS_MAX_DEFAULT 1024
2762 #define JOURNAL_TRANS_MIN_DEFAULT 256
2763 
2764 /*
2765  * max blocks to batch into one transaction,
2766  * don't make this any bigger than 900
2767  */
2768 #define JOURNAL_MAX_BATCH_DEFAULT   900
2769 #define JOURNAL_MIN_RATIO 2
2770 #define JOURNAL_MAX_COMMIT_AGE 30
2771 #define JOURNAL_MAX_TRANS_AGE 30
2772 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
2773 #define JOURNAL_BLOCKS_PER_OBJECT(sb)  (JOURNAL_PER_BALANCE_CNT * 3 + \
2774 					 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
2775 					      REISERFS_QUOTA_TRANS_BLOCKS(sb)))
2776 
2777 #ifdef CONFIG_QUOTA
2778 #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA))
2779 /* We need to update data and inode (atime) */
2780 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0)
2781 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
2782 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2783 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
2784 /* same as with INIT */
2785 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2786 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
2787 #else
2788 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
2789 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0
2790 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0
2791 #endif
2792 
2793 /*
2794  * both of these can be as low as 1, or as high as you want.  The min is the
2795  * number of 4k bitmap nodes preallocated on mount. New nodes are allocated
2796  * as needed, and released when transactions are committed.  On release, if
2797  * the current number of nodes is > max, the node is freed, otherwise,
2798  * it is put on a free list for faster use later.
2799 */
2800 #define REISERFS_MIN_BITMAP_NODES 10
2801 #define REISERFS_MAX_BITMAP_NODES 100
2802 
2803 /* these are based on journal hash size of 8192 */
2804 #define JBH_HASH_SHIFT 13
2805 #define JBH_HASH_MASK 8191
2806 
2807 #define _jhashfn(sb,block)	\
2808 	(((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
2809 	 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
2810 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
2811 
2812 /* We need these to make journal.c code more readable */
2813 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2814 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2815 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2816 
2817 enum reiserfs_bh_state_bits {
2818 	BH_JDirty = BH_PrivateStart,	/* buffer is in current transaction */
2819 	BH_JDirty_wait,
2820 	/*
2821 	 * disk block was taken off free list before being in a
2822 	 * finished transaction, or written to disk. Can be reused immed.
2823 	 */
2824 	BH_JNew,
2825 	BH_JPrepared,
2826 	BH_JRestore_dirty,
2827 	BH_JTest,		/* debugging only will go away */
2828 };
2829 
2830 BUFFER_FNS(JDirty, journaled);
2831 TAS_BUFFER_FNS(JDirty, journaled);
2832 BUFFER_FNS(JDirty_wait, journal_dirty);
2833 TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
2834 BUFFER_FNS(JNew, journal_new);
2835 TAS_BUFFER_FNS(JNew, journal_new);
2836 BUFFER_FNS(JPrepared, journal_prepared);
2837 TAS_BUFFER_FNS(JPrepared, journal_prepared);
2838 BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2839 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2840 BUFFER_FNS(JTest, journal_test);
2841 TAS_BUFFER_FNS(JTest, journal_test);
2842 
2843 /* transaction handle which is passed around for all journal calls */
2844 struct reiserfs_transaction_handle {
2845 	/*
2846 	 * super for this FS when journal_begin was called. saves calls to
2847 	 * reiserfs_get_super also used by nested transactions to make
2848 	 * sure they are nesting on the right FS _must_ be first
2849 	 * in the handle
2850 	 */
2851 	struct super_block *t_super;
2852 
2853 	int t_refcount;
2854 	int t_blocks_logged;	/* number of blocks this writer has logged */
2855 	int t_blocks_allocated;	/* number of blocks this writer allocated */
2856 
2857 	/* sanity check, equals the current trans id */
2858 	unsigned int t_trans_id;
2859 
2860 	void *t_handle_save;	/* save existing current->journal_info */
2861 
2862 	/*
2863 	 * if new block allocation occurres, that block
2864 	 * should be displaced from others
2865 	 */
2866 	unsigned displace_new_blocks:1;
2867 
2868 	struct list_head t_list;
2869 };
2870 
2871 /*
2872  * used to keep track of ordered and tail writes, attached to the buffer
2873  * head through b_journal_head.
2874  */
2875 struct reiserfs_jh {
2876 	struct reiserfs_journal_list *jl;
2877 	struct buffer_head *bh;
2878 	struct list_head list;
2879 };
2880 
2881 void reiserfs_free_jh(struct buffer_head *bh);
2882 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
2883 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
2884 int journal_mark_dirty(struct reiserfs_transaction_handle *,
2885 		       struct buffer_head *bh);
2886 
2887 static inline int reiserfs_file_data_log(struct inode *inode)
2888 {
2889 	if (reiserfs_data_log(inode->i_sb) ||
2890 	    (REISERFS_I(inode)->i_flags & i_data_log))
2891 		return 1;
2892 	return 0;
2893 }
2894 
2895 static inline int reiserfs_transaction_running(struct super_block *s)
2896 {
2897 	struct reiserfs_transaction_handle *th = current->journal_info;
2898 	if (th && th->t_super == s)
2899 		return 1;
2900 	if (th && th->t_super == NULL)
2901 		BUG();
2902 	return 0;
2903 }
2904 
2905 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
2906 {
2907 	return th->t_blocks_allocated - th->t_blocks_logged;
2908 }
2909 
2910 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
2911 								    super_block
2912 								    *,
2913 								    int count);
2914 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
2915 void reiserfs_vfs_truncate_file(struct inode *inode);
2916 int reiserfs_commit_page(struct inode *inode, struct page *page,
2917 			 unsigned from, unsigned to);
2918 void reiserfs_flush_old_commits(struct super_block *);
2919 int reiserfs_commit_for_inode(struct inode *);
2920 int reiserfs_inode_needs_commit(struct inode *);
2921 void reiserfs_update_inode_transaction(struct inode *);
2922 void reiserfs_wait_on_write_block(struct super_block *s);
2923 void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
2924 void reiserfs_allow_writes(struct super_block *s);
2925 void reiserfs_check_lock_depth(struct super_block *s, char *caller);
2926 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
2927 				 int wait);
2928 void reiserfs_restore_prepared_buffer(struct super_block *,
2929 				      struct buffer_head *bh);
2930 int journal_init(struct super_block *, const char *j_dev_name, int old_format,
2931 		 unsigned int);
2932 int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
2933 int journal_release_error(struct reiserfs_transaction_handle *,
2934 			  struct super_block *);
2935 int journal_end(struct reiserfs_transaction_handle *);
2936 int journal_end_sync(struct reiserfs_transaction_handle *);
2937 int journal_mark_freed(struct reiserfs_transaction_handle *,
2938 		       struct super_block *, b_blocknr_t blocknr);
2939 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
2940 int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
2941 			 int bit_nr, int searchall, b_blocknr_t *next);
2942 int journal_begin(struct reiserfs_transaction_handle *,
2943 		  struct super_block *sb, unsigned long);
2944 int journal_join_abort(struct reiserfs_transaction_handle *,
2945 		       struct super_block *sb);
2946 void reiserfs_abort_journal(struct super_block *sb, int errno);
2947 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
2948 int reiserfs_allocate_list_bitmaps(struct super_block *s,
2949 				   struct reiserfs_list_bitmap *, unsigned int);
2950 
2951 void reiserfs_schedule_old_flush(struct super_block *s);
2952 void reiserfs_cancel_old_flush(struct super_block *s);
2953 void add_save_link(struct reiserfs_transaction_handle *th,
2954 		   struct inode *inode, int truncate);
2955 int remove_save_link(struct inode *inode, int truncate);
2956 
2957 /* objectid.c */
2958 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
2959 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
2960 			       __u32 objectid_to_release);
2961 int reiserfs_convert_objectid_map_v1(struct super_block *);
2962 
2963 /* stree.c */
2964 int B_IS_IN_TREE(const struct buffer_head *);
2965 extern void copy_item_head(struct item_head *to,
2966 			   const struct item_head *from);
2967 
2968 /* first key is in cpu form, second - le */
2969 extern int comp_short_keys(const struct reiserfs_key *le_key,
2970 			   const struct cpu_key *cpu_key);
2971 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
2972 
2973 /* both are in le form */
2974 extern int comp_le_keys(const struct reiserfs_key *,
2975 			const struct reiserfs_key *);
2976 extern int comp_short_le_keys(const struct reiserfs_key *,
2977 			      const struct reiserfs_key *);
2978 
2979 /* * get key version from on disk key - kludge */
2980 static inline int le_key_version(const struct reiserfs_key *key)
2981 {
2982 	int type;
2983 
2984 	type = offset_v2_k_type(&(key->u.k_offset_v2));
2985 	if (type != TYPE_DIRECT && type != TYPE_INDIRECT
2986 	    && type != TYPE_DIRENTRY)
2987 		return KEY_FORMAT_3_5;
2988 
2989 	return KEY_FORMAT_3_6;
2990 
2991 }
2992 
2993 static inline void copy_key(struct reiserfs_key *to,
2994 			    const struct reiserfs_key *from)
2995 {
2996 	memcpy(to, from, KEY_SIZE);
2997 }
2998 
2999 int comp_items(const struct item_head *stored_ih, const struct treepath *path);
3000 const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
3001 				    const struct super_block *sb);
3002 int search_by_key(struct super_block *, const struct cpu_key *,
3003 		  struct treepath *, int);
3004 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
3005 int search_for_position_by_key(struct super_block *sb,
3006 			       const struct cpu_key *cpu_key,
3007 			       struct treepath *search_path);
3008 extern void decrement_bcount(struct buffer_head *bh);
3009 void decrement_counters_in_path(struct treepath *search_path);
3010 void pathrelse(struct treepath *search_path);
3011 int reiserfs_check_path(struct treepath *p);
3012 void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
3013 
3014 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
3015 			 struct treepath *path,
3016 			 const struct cpu_key *key,
3017 			 struct item_head *ih,
3018 			 struct inode *inode, const char *body);
3019 
3020 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
3021 			     struct treepath *path,
3022 			     const struct cpu_key *key,
3023 			     struct inode *inode,
3024 			     const char *body, int paste_size);
3025 
3026 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
3027 			   struct treepath *path,
3028 			   struct cpu_key *key,
3029 			   struct inode *inode,
3030 			   struct page *page, loff_t new_file_size);
3031 
3032 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
3033 			 struct treepath *path,
3034 			 const struct cpu_key *key,
3035 			 struct inode *inode, struct buffer_head *un_bh);
3036 
3037 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
3038 				struct inode *inode, struct reiserfs_key *key);
3039 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
3040 			   struct inode *inode);
3041 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
3042 			 struct inode *inode, struct page *,
3043 			 int update_timestamps);
3044 
3045 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
3046 #define file_size(inode) ((inode)->i_size)
3047 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
3048 
3049 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
3050 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
3051 
3052 void padd_item(char *item, int total_length, int length);
3053 
3054 /* inode.c */
3055 /* args for the create parameter of reiserfs_get_block */
3056 #define GET_BLOCK_NO_CREATE 0	 /* don't create new blocks or convert tails */
3057 #define GET_BLOCK_CREATE 1	 /* add anything you need to find block */
3058 #define GET_BLOCK_NO_HOLE 2	 /* return -ENOENT for file holes */
3059 #define GET_BLOCK_READ_DIRECT 4	 /* read the tail if indirect item not found */
3060 #define GET_BLOCK_NO_IMUX     8	 /* i_mutex is not held, don't preallocate */
3061 #define GET_BLOCK_NO_DANGLE   16 /* don't leave any transactions running */
3062 
3063 void reiserfs_read_locked_inode(struct inode *inode,
3064 				struct reiserfs_iget_args *args);
3065 int reiserfs_find_actor(struct inode *inode, void *p);
3066 int reiserfs_init_locked_inode(struct inode *inode, void *p);
3067 void reiserfs_evict_inode(struct inode *inode);
3068 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3069 int reiserfs_get_block(struct inode *inode, sector_t block,
3070 		       struct buffer_head *bh_result, int create);
3071 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3072 				     int fh_len, int fh_type);
3073 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
3074 				     int fh_len, int fh_type);
3075 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
3076 		       struct inode *parent);
3077 
3078 int reiserfs_truncate_file(struct inode *, int update_timestamps);
3079 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
3080 		  int type, int key_length);
3081 void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
3082 		       int version,
3083 		       loff_t offset, int type, int length, int entry_count);
3084 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
3085 
3086 struct reiserfs_security_handle;
3087 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
3088 		       struct inode *dir, umode_t mode,
3089 		       const char *symname, loff_t i_size,
3090 		       struct dentry *dentry, struct inode *inode,
3091 		       struct reiserfs_security_handle *security);
3092 
3093 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
3094 			     struct inode *inode, loff_t size);
3095 
3096 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
3097 				      struct inode *inode)
3098 {
3099 	reiserfs_update_sd_size(th, inode, inode->i_size);
3100 }
3101 
3102 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
3103 int reiserfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3104 		     struct iattr *attr);
3105 
3106 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);
3107 
3108 /* namei.c */
3109 void reiserfs_init_priv_inode(struct inode *inode);
3110 void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
3111 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
3112 			struct treepath *path, struct reiserfs_dir_entry *de);
3113 struct dentry *reiserfs_get_parent(struct dentry *);
3114 
3115 #ifdef CONFIG_REISERFS_PROC_INFO
3116 int reiserfs_proc_info_init(struct super_block *sb);
3117 int reiserfs_proc_info_done(struct super_block *sb);
3118 int reiserfs_proc_info_global_init(void);
3119 int reiserfs_proc_info_global_done(void);
3120 
3121 #define PROC_EXP( e )   e
3122 
3123 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
3124 #define PROC_INFO_MAX( sb, field, value )								\
3125     __PINFO( sb ).field =												\
3126         max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
3127 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
3128 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
3129 #define PROC_INFO_BH_STAT( sb, bh, level )							\
3130     PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );						\
3131     PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );	\
3132     PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
3133 #else
3134 static inline int reiserfs_proc_info_init(struct super_block *sb)
3135 {
3136 	return 0;
3137 }
3138 
3139 static inline int reiserfs_proc_info_done(struct super_block *sb)
3140 {
3141 	return 0;
3142 }
3143 
3144 static inline int reiserfs_proc_info_global_init(void)
3145 {
3146 	return 0;
3147 }
3148 
3149 static inline int reiserfs_proc_info_global_done(void)
3150 {
3151 	return 0;
3152 }
3153 
3154 #define PROC_EXP( e )
3155 #define VOID_V ( ( void ) 0 )
3156 #define PROC_INFO_MAX( sb, field, value ) VOID_V
3157 #define PROC_INFO_INC( sb, field ) VOID_V
3158 #define PROC_INFO_ADD( sb, field, val ) VOID_V
3159 #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
3160 #endif
3161 
3162 /* dir.c */
3163 extern const struct inode_operations reiserfs_dir_inode_operations;
3164 extern const struct inode_operations reiserfs_symlink_inode_operations;
3165 extern const struct inode_operations reiserfs_special_inode_operations;
3166 extern const struct file_operations reiserfs_dir_operations;
3167 int reiserfs_readdir_inode(struct inode *, struct dir_context *);
3168 
3169 /* tail_conversion.c */
3170 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
3171 		    struct treepath *, struct buffer_head *, loff_t);
3172 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
3173 		    struct page *, struct treepath *, const struct cpu_key *,
3174 		    loff_t, char *);
3175 void reiserfs_unmap_buffer(struct buffer_head *);
3176 
3177 /* file.c */
3178 extern const struct inode_operations reiserfs_file_inode_operations;
3179 extern const struct inode_operations reiserfs_priv_file_inode_operations;
3180 extern const struct file_operations reiserfs_file_operations;
3181 extern const struct address_space_operations reiserfs_address_space_operations;
3182 
3183 /* fix_nodes.c */
3184 
3185 int fix_nodes(int n_op_mode, struct tree_balance *tb,
3186 	      struct item_head *ins_ih, const void *);
3187 void unfix_nodes(struct tree_balance *);
3188 
3189 /* prints.c */
3190 void __reiserfs_panic(struct super_block *s, const char *id,
3191 		      const char *function, const char *fmt, ...)
3192     __attribute__ ((noreturn));
3193 #define reiserfs_panic(s, id, fmt, args...) \
3194 	__reiserfs_panic(s, id, __func__, fmt, ##args)
3195 void __reiserfs_error(struct super_block *s, const char *id,
3196 		      const char *function, const char *fmt, ...);
3197 #define reiserfs_error(s, id, fmt, args...) \
3198 	 __reiserfs_error(s, id, __func__, fmt, ##args)
3199 void reiserfs_info(struct super_block *s, const char *fmt, ...);
3200 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
3201 void print_indirect_item(struct buffer_head *bh, int item_num);
3202 void store_print_tb(struct tree_balance *tb);
3203 void print_cur_tb(char *mes);
3204 void print_de(struct reiserfs_dir_entry *de);
3205 void print_bi(struct buffer_info *bi, char *mes);
3206 #define PRINT_LEAF_ITEMS 1	/* print all items */
3207 #define PRINT_DIRECTORY_ITEMS 2	/* print directory items */
3208 #define PRINT_DIRECT_ITEMS 4	/* print contents of direct items */
3209 void print_block(struct buffer_head *bh, ...);
3210 void print_bmap(struct super_block *s, int silent);
3211 void print_bmap_block(int i, char *data, int size, int silent);
3212 /*void print_super_block (struct super_block * s, char * mes);*/
3213 void print_objectid_map(struct super_block *s);
3214 void print_block_head(struct buffer_head *bh, char *mes);
3215 void check_leaf(struct buffer_head *bh);
3216 void check_internal(struct buffer_head *bh);
3217 void print_statistics(struct super_block *s);
3218 char *reiserfs_hashname(int code);
3219 
3220 /* lbalance.c */
3221 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
3222 		    int mov_bytes, struct buffer_head *Snew);
3223 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
3224 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
3225 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
3226 		       int del_num, int del_bytes);
3227 void leaf_insert_into_buf(struct buffer_info *bi, int before,
3228 			  struct item_head * const inserted_item_ih,
3229 			  const char * const inserted_item_body,
3230 			  int zeros_number);
3231 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
3232 			  int pos_in_item, int paste_size,
3233 			  const char * const body, int zeros_number);
3234 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
3235 			  int pos_in_item, int cut_size);
3236 void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
3237 			int new_entry_count, struct reiserfs_de_head *new_dehs,
3238 			const char *records, int paste_size);
3239 /* ibalance.c */
3240 int balance_internal(struct tree_balance *, int, int, struct item_head *,
3241 		     struct buffer_head **);
3242 
3243 /* do_balance.c */
3244 void do_balance_mark_leaf_dirty(struct tree_balance *tb,
3245 				struct buffer_head *bh, int flag);
3246 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
3247 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
3248 
3249 void do_balance(struct tree_balance *tb, struct item_head *ih,
3250 		const char *body, int flag);
3251 void reiserfs_invalidate_buffer(struct tree_balance *tb,
3252 				struct buffer_head *bh);
3253 
3254 int get_left_neighbor_position(struct tree_balance *tb, int h);
3255 int get_right_neighbor_position(struct tree_balance *tb, int h);
3256 void replace_key(struct tree_balance *tb, struct buffer_head *, int,
3257 		 struct buffer_head *, int);
3258 void make_empty_node(struct buffer_info *);
3259 struct buffer_head *get_FEB(struct tree_balance *);
3260 
3261 /* bitmap.c */
3262 
3263 /*
3264  * structure contains hints for block allocator, and it is a container for
3265  * arguments, such as node, search path, transaction_handle, etc.
3266  */
3267 struct __reiserfs_blocknr_hint {
3268 	/* inode passed to allocator, if we allocate unf. nodes */
3269 	struct inode *inode;
3270 
3271 	sector_t block;		/* file offset, in blocks */
3272 	struct in_core_key key;
3273 
3274 	/*
3275 	 * search path, used by allocator to deternine search_start by
3276 	 * various ways
3277 	 */
3278 	struct treepath *path;
3279 
3280 	/*
3281 	 * transaction handle is needed to log super blocks
3282 	 * and bitmap blocks changes
3283 	 */
3284 	struct reiserfs_transaction_handle *th;
3285 
3286 	b_blocknr_t beg, end;
3287 
3288 	/*
3289 	 * a field used to transfer search start value (block number)
3290 	 * between different block allocator procedures
3291 	 * (determine_search_start() and others)
3292 	 */
3293 	b_blocknr_t search_start;
3294 
3295 	/*
3296 	 * is set in determine_prealloc_size() function,
3297 	 * used by underlayed function that do actual allocation
3298 	 */
3299 	int prealloc_size;
3300 
3301 	/*
3302 	 * the allocator uses different polices for getting disk
3303 	 * space for formatted/unformatted blocks with/without preallocation
3304 	 */
3305 	unsigned formatted_node:1;
3306 	unsigned preallocate:1;
3307 };
3308 
3309 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
3310 
3311 int reiserfs_parse_alloc_options(struct super_block *, char *);
3312 void reiserfs_init_alloc_options(struct super_block *s);
3313 
3314 /*
3315  * given a directory, this will tell you what packing locality
3316  * to use for a new object underneat it.  The locality is returned
3317  * in disk byte order (le).
3318  */
3319 __le32 reiserfs_choose_packing(struct inode *dir);
3320 
3321 void show_alloc_options(struct seq_file *seq, struct super_block *s);
3322 int reiserfs_init_bitmap_cache(struct super_block *sb);
3323 void reiserfs_free_bitmap_cache(struct super_block *sb);
3324 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
3325 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
3326 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
3327 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
3328 			 b_blocknr_t, int for_unformatted);
3329 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
3330 			       int);
3331 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
3332 					     b_blocknr_t * new_blocknrs,
3333 					     int amount_needed)
3334 {
3335 	reiserfs_blocknr_hint_t hint = {
3336 		.th = tb->transaction_handle,
3337 		.path = tb->tb_path,
3338 		.inode = NULL,
3339 		.key = tb->key,
3340 		.block = 0,
3341 		.formatted_node = 1
3342 	};
3343 	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
3344 					  0);
3345 }
3346 
3347 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
3348 					    *th, struct inode *inode,
3349 					    b_blocknr_t * new_blocknrs,
3350 					    struct treepath *path,
3351 					    sector_t block)
3352 {
3353 	reiserfs_blocknr_hint_t hint = {
3354 		.th = th,
3355 		.path = path,
3356 		.inode = inode,
3357 		.block = block,
3358 		.formatted_node = 0,
3359 		.preallocate = 0
3360 	};
3361 	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
3362 }
3363 
3364 #ifdef REISERFS_PREALLOCATE
3365 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
3366 					     *th, struct inode *inode,
3367 					     b_blocknr_t * new_blocknrs,
3368 					     struct treepath *path,
3369 					     sector_t block)
3370 {
3371 	reiserfs_blocknr_hint_t hint = {
3372 		.th = th,
3373 		.path = path,
3374 		.inode = inode,
3375 		.block = block,
3376 		.formatted_node = 0,
3377 		.preallocate = 1
3378 	};
3379 	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
3380 }
3381 
3382 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
3383 			       struct inode *inode);
3384 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
3385 #endif
3386 
3387 /* hashes.c */
3388 __u32 keyed_hash(const signed char *msg, int len);
3389 __u32 yura_hash(const signed char *msg, int len);
3390 __u32 r5_hash(const signed char *msg, int len);
3391 
3392 #define reiserfs_set_le_bit		__set_bit_le
3393 #define reiserfs_test_and_set_le_bit	__test_and_set_bit_le
3394 #define reiserfs_clear_le_bit		__clear_bit_le
3395 #define reiserfs_test_and_clear_le_bit	__test_and_clear_bit_le
3396 #define reiserfs_test_le_bit		test_bit_le
3397 #define reiserfs_find_next_zero_le_bit	find_next_zero_bit_le
3398 
3399 /*
3400  * sometimes reiserfs_truncate may require to allocate few new blocks
3401  * to perform indirect2direct conversion. People probably used to
3402  * think, that truncate should work without problems on a filesystem
3403  * without free disk space. They may complain that they can not
3404  * truncate due to lack of free disk space. This spare space allows us
3405  * to not worry about it. 500 is probably too much, but it should be
3406  * absolutely safe
3407  */
3408 #define SPARE_SPACE 500
3409 
3410 /* prototypes from ioctl.c */
3411 int reiserfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3412 int reiserfs_fileattr_set(struct mnt_idmap *idmap,
3413 			  struct dentry *dentry, struct fileattr *fa);
3414 long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3415 long reiserfs_compat_ioctl(struct file *filp,
3416 		   unsigned int cmd, unsigned long arg);
3417 int reiserfs_unpack(struct inode *inode);
3418