1 /* 2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details 3 */ 4 5 #include <linux/reiserfs_fs.h> 6 7 #include <linux/slab.h> 8 #include <linux/interrupt.h> 9 #include <linux/sched.h> 10 #include <linux/bug.h> 11 #include <linux/workqueue.h> 12 #include <asm/unaligned.h> 13 #include <linux/bitops.h> 14 #include <linux/proc_fs.h> 15 #include <linux/buffer_head.h> 16 17 /* the 32 bit compat definitions with int argument */ 18 #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int) 19 #define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 20 #define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 21 #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION 22 #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION 23 24 struct reiserfs_journal_list; 25 26 /** bitmasks for i_flags field in reiserfs-specific part of inode */ 27 typedef enum { 28 /** this says what format of key do all items (but stat data) of 29 an object have. If this is set, that format is 3.6 otherwise 30 - 3.5 */ 31 i_item_key_version_mask = 0x0001, 32 /** If this is unset, object has 3.5 stat data, otherwise, it has 33 3.6 stat data with 64bit size, 32bit nlink etc. */ 34 i_stat_data_version_mask = 0x0002, 35 /** file might need tail packing on close */ 36 i_pack_on_close_mask = 0x0004, 37 /** don't pack tail of file */ 38 i_nopack_mask = 0x0008, 39 /** If those is set, "safe link" was created for this file during 40 truncate or unlink. Safe link is used to avoid leakage of disk 41 space on crash with some files open, but unlinked. */ 42 i_link_saved_unlink_mask = 0x0010, 43 i_link_saved_truncate_mask = 0x0020, 44 i_has_xattr_dir = 0x0040, 45 i_data_log = 0x0080, 46 } reiserfs_inode_flags; 47 48 struct reiserfs_inode_info { 49 __u32 i_key[4]; /* key is still 4 32 bit integers */ 50 /** transient inode flags that are never stored on disk. Bitmasks 51 for this field are defined above. */ 52 __u32 i_flags; 53 54 __u32 i_first_direct_byte; // offset of first byte stored in direct item. 55 56 /* copy of persistent inode flags read from sd_attrs. */ 57 __u32 i_attrs; 58 59 int i_prealloc_block; /* first unused block of a sequence of unused blocks */ 60 int i_prealloc_count; /* length of that sequence */ 61 struct list_head i_prealloc_list; /* per-transaction list of inodes which 62 * have preallocated blocks */ 63 64 unsigned new_packing_locality:1; /* new_packig_locality is created; new blocks 65 * for the contents of this directory should be 66 * displaced */ 67 68 /* we use these for fsync or O_SYNC to decide which transaction 69 ** needs to be committed in order for this inode to be properly 70 ** flushed */ 71 unsigned int i_trans_id; 72 struct reiserfs_journal_list *i_jl; 73 atomic_t openers; 74 struct mutex tailpack; 75 #ifdef CONFIG_REISERFS_FS_XATTR 76 struct rw_semaphore i_xattr_sem; 77 #endif 78 struct inode vfs_inode; 79 }; 80 81 typedef enum { 82 reiserfs_attrs_cleared = 0x00000001, 83 } reiserfs_super_block_flags; 84 85 /* struct reiserfs_super_block accessors/mutators 86 * since this is a disk structure, it will always be in 87 * little endian format. */ 88 #define sb_block_count(sbp) (le32_to_cpu((sbp)->s_v1.s_block_count)) 89 #define set_sb_block_count(sbp,v) ((sbp)->s_v1.s_block_count = cpu_to_le32(v)) 90 #define sb_free_blocks(sbp) (le32_to_cpu((sbp)->s_v1.s_free_blocks)) 91 #define set_sb_free_blocks(sbp,v) ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v)) 92 #define sb_root_block(sbp) (le32_to_cpu((sbp)->s_v1.s_root_block)) 93 #define set_sb_root_block(sbp,v) ((sbp)->s_v1.s_root_block = cpu_to_le32(v)) 94 95 #define sb_jp_journal_1st_block(sbp) \ 96 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block)) 97 #define set_sb_jp_journal_1st_block(sbp,v) \ 98 ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v)) 99 #define sb_jp_journal_dev(sbp) \ 100 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev)) 101 #define set_sb_jp_journal_dev(sbp,v) \ 102 ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v)) 103 #define sb_jp_journal_size(sbp) \ 104 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size)) 105 #define set_sb_jp_journal_size(sbp,v) \ 106 ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v)) 107 #define sb_jp_journal_trans_max(sbp) \ 108 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max)) 109 #define set_sb_jp_journal_trans_max(sbp,v) \ 110 ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v)) 111 #define sb_jp_journal_magic(sbp) \ 112 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic)) 113 #define set_sb_jp_journal_magic(sbp,v) \ 114 ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v)) 115 #define sb_jp_journal_max_batch(sbp) \ 116 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch)) 117 #define set_sb_jp_journal_max_batch(sbp,v) \ 118 ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v)) 119 #define sb_jp_jourmal_max_commit_age(sbp) \ 120 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age)) 121 #define set_sb_jp_journal_max_commit_age(sbp,v) \ 122 ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v)) 123 124 #define sb_blocksize(sbp) (le16_to_cpu((sbp)->s_v1.s_blocksize)) 125 #define set_sb_blocksize(sbp,v) ((sbp)->s_v1.s_blocksize = cpu_to_le16(v)) 126 #define sb_oid_maxsize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_maxsize)) 127 #define set_sb_oid_maxsize(sbp,v) ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v)) 128 #define sb_oid_cursize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_cursize)) 129 #define set_sb_oid_cursize(sbp,v) ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v)) 130 #define sb_umount_state(sbp) (le16_to_cpu((sbp)->s_v1.s_umount_state)) 131 #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v)) 132 #define sb_fs_state(sbp) (le16_to_cpu((sbp)->s_v1.s_fs_state)) 133 #define set_sb_fs_state(sbp,v) ((sbp)->s_v1.s_fs_state = cpu_to_le16(v)) 134 #define sb_hash_function_code(sbp) \ 135 (le32_to_cpu((sbp)->s_v1.s_hash_function_code)) 136 #define set_sb_hash_function_code(sbp,v) \ 137 ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v)) 138 #define sb_tree_height(sbp) (le16_to_cpu((sbp)->s_v1.s_tree_height)) 139 #define set_sb_tree_height(sbp,v) ((sbp)->s_v1.s_tree_height = cpu_to_le16(v)) 140 #define sb_bmap_nr(sbp) (le16_to_cpu((sbp)->s_v1.s_bmap_nr)) 141 #define set_sb_bmap_nr(sbp,v) ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v)) 142 #define sb_version(sbp) (le16_to_cpu((sbp)->s_v1.s_version)) 143 #define set_sb_version(sbp,v) ((sbp)->s_v1.s_version = cpu_to_le16(v)) 144 145 #define sb_mnt_count(sbp) (le16_to_cpu((sbp)->s_mnt_count)) 146 #define set_sb_mnt_count(sbp, v) ((sbp)->s_mnt_count = cpu_to_le16(v)) 147 148 #define sb_reserved_for_journal(sbp) \ 149 (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal)) 150 #define set_sb_reserved_for_journal(sbp,v) \ 151 ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v)) 152 153 /* LOGGING -- */ 154 155 /* These all interelate for performance. 156 ** 157 ** If the journal block count is smaller than n transactions, you lose speed. 158 ** I don't know what n is yet, I'm guessing 8-16. 159 ** 160 ** typical transaction size depends on the application, how often fsync is 161 ** called, and how many metadata blocks you dirty in a 30 second period. 162 ** The more small files (<16k) you use, the larger your transactions will 163 ** be. 164 ** 165 ** If your journal fills faster than dirty buffers get flushed to disk, it must flush them before allowing the journal 166 ** to wrap, which slows things down. If you need high speed meta data updates, the journal should be big enough 167 ** to prevent wrapping before dirty meta blocks get to disk. 168 ** 169 ** If the batch max is smaller than the transaction max, you'll waste space at the end of the journal 170 ** because journal_end sets the next transaction to start at 0 if the next transaction has any chance of wrapping. 171 ** 172 ** The large the batch max age, the better the speed, and the more meta data changes you'll lose after a crash. 173 ** 174 */ 175 176 /* don't mess with these for a while */ 177 /* we have a node size define somewhere in reiserfs_fs.h. -Hans */ 178 #define JOURNAL_BLOCK_SIZE 4096 /* BUG gotta get rid of this */ 179 #define JOURNAL_MAX_CNODE 1500 /* max cnodes to allocate. */ 180 #define JOURNAL_HASH_SIZE 8192 181 #define JOURNAL_NUM_BITMAPS 5 /* number of copies of the bitmaps to have floating. Must be >= 2 */ 182 183 /* One of these for every block in every transaction 184 ** Each one is in two hash tables. First, a hash of the current transaction, and after journal_end, a 185 ** hash of all the in memory transactions. 186 ** next and prev are used by the current transaction (journal_hash). 187 ** hnext and hprev are used by journal_list_hash. If a block is in more than one transaction, the journal_list_hash 188 ** links it in multiple times. This allows flush_journal_list to remove just the cnode belonging 189 ** to a given transaction. 190 */ 191 struct reiserfs_journal_cnode { 192 struct buffer_head *bh; /* real buffer head */ 193 struct super_block *sb; /* dev of real buffer head */ 194 __u32 blocknr; /* block number of real buffer head, == 0 when buffer on disk */ 195 unsigned long state; 196 struct reiserfs_journal_list *jlist; /* journal list this cnode lives in */ 197 struct reiserfs_journal_cnode *next; /* next in transaction list */ 198 struct reiserfs_journal_cnode *prev; /* prev in transaction list */ 199 struct reiserfs_journal_cnode *hprev; /* prev in hash list */ 200 struct reiserfs_journal_cnode *hnext; /* next in hash list */ 201 }; 202 203 struct reiserfs_bitmap_node { 204 int id; 205 char *data; 206 struct list_head list; 207 }; 208 209 struct reiserfs_list_bitmap { 210 struct reiserfs_journal_list *journal_list; 211 struct reiserfs_bitmap_node **bitmaps; 212 }; 213 214 /* 215 ** one of these for each transaction. The most important part here is the j_realblock. 216 ** this list of cnodes is used to hash all the blocks in all the commits, to mark all the 217 ** real buffer heads dirty once all the commits hit the disk, 218 ** and to make sure every real block in a transaction is on disk before allowing the log area 219 ** to be overwritten */ 220 struct reiserfs_journal_list { 221 unsigned long j_start; 222 unsigned long j_state; 223 unsigned long j_len; 224 atomic_t j_nonzerolen; 225 atomic_t j_commit_left; 226 atomic_t j_older_commits_done; /* all commits older than this on disk */ 227 struct mutex j_commit_mutex; 228 unsigned int j_trans_id; 229 time_t j_timestamp; 230 struct reiserfs_list_bitmap *j_list_bitmap; 231 struct buffer_head *j_commit_bh; /* commit buffer head */ 232 struct reiserfs_journal_cnode *j_realblock; 233 struct reiserfs_journal_cnode *j_freedlist; /* list of buffers that were freed during this trans. free each of these on flush */ 234 /* time ordered list of all active transactions */ 235 struct list_head j_list; 236 237 /* time ordered list of all transactions we haven't tried to flush yet */ 238 struct list_head j_working_list; 239 240 /* list of tail conversion targets in need of flush before commit */ 241 struct list_head j_tail_bh_list; 242 /* list of data=ordered buffers in need of flush before commit */ 243 struct list_head j_bh_list; 244 int j_refcount; 245 }; 246 247 struct reiserfs_journal { 248 struct buffer_head **j_ap_blocks; /* journal blocks on disk */ 249 struct reiserfs_journal_cnode *j_last; /* newest journal block */ 250 struct reiserfs_journal_cnode *j_first; /* oldest journal block. start here for traverse */ 251 252 struct block_device *j_dev_bd; 253 fmode_t j_dev_mode; 254 int j_1st_reserved_block; /* first block on s_dev of reserved area journal */ 255 256 unsigned long j_state; 257 unsigned int j_trans_id; 258 unsigned long j_mount_id; 259 unsigned long j_start; /* start of current waiting commit (index into j_ap_blocks) */ 260 unsigned long j_len; /* length of current waiting commit */ 261 unsigned long j_len_alloc; /* number of buffers requested by journal_begin() */ 262 atomic_t j_wcount; /* count of writers for current commit */ 263 unsigned long j_bcount; /* batch count. allows turning X transactions into 1 */ 264 unsigned long j_first_unflushed_offset; /* first unflushed transactions offset */ 265 unsigned j_last_flush_trans_id; /* last fully flushed journal timestamp */ 266 struct buffer_head *j_header_bh; 267 268 time_t j_trans_start_time; /* time this transaction started */ 269 struct mutex j_mutex; 270 struct mutex j_flush_mutex; 271 wait_queue_head_t j_join_wait; /* wait for current transaction to finish before starting new one */ 272 atomic_t j_jlock; /* lock for j_join_wait */ 273 int j_list_bitmap_index; /* number of next list bitmap to use */ 274 int j_must_wait; /* no more journal begins allowed. MUST sleep on j_join_wait */ 275 int j_next_full_flush; /* next journal_end will flush all journal list */ 276 int j_next_async_flush; /* next journal_end will flush all async commits */ 277 278 int j_cnode_used; /* number of cnodes on the used list */ 279 int j_cnode_free; /* number of cnodes on the free list */ 280 281 unsigned int j_trans_max; /* max number of blocks in a transaction. */ 282 unsigned int j_max_batch; /* max number of blocks to batch into a trans */ 283 unsigned int j_max_commit_age; /* in seconds, how old can an async commit be */ 284 unsigned int j_max_trans_age; /* in seconds, how old can a transaction be */ 285 unsigned int j_default_max_commit_age; /* the default for the max commit age */ 286 287 struct reiserfs_journal_cnode *j_cnode_free_list; 288 struct reiserfs_journal_cnode *j_cnode_free_orig; /* orig pointer returned from vmalloc */ 289 290 struct reiserfs_journal_list *j_current_jl; 291 int j_free_bitmap_nodes; 292 int j_used_bitmap_nodes; 293 294 int j_num_lists; /* total number of active transactions */ 295 int j_num_work_lists; /* number that need attention from kreiserfsd */ 296 297 /* debugging to make sure things are flushed in order */ 298 unsigned int j_last_flush_id; 299 300 /* debugging to make sure things are committed in order */ 301 unsigned int j_last_commit_id; 302 303 struct list_head j_bitmap_nodes; 304 struct list_head j_dirty_buffers; 305 spinlock_t j_dirty_buffers_lock; /* protects j_dirty_buffers */ 306 307 /* list of all active transactions */ 308 struct list_head j_journal_list; 309 /* lists that haven't been touched by writeback attempts */ 310 struct list_head j_working_list; 311 312 struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS]; /* array of bitmaps to record the deleted blocks */ 313 struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE]; /* hash table for real buffer heads in current trans */ 314 struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE]; /* hash table for all the real buffer heads in all 315 the transactions */ 316 struct list_head j_prealloc_list; /* list of inodes which have preallocated blocks */ 317 int j_persistent_trans; 318 unsigned long j_max_trans_size; 319 unsigned long j_max_batch_size; 320 321 int j_errno; 322 323 /* when flushing ordered buffers, throttle new ordered writers */ 324 struct delayed_work j_work; 325 struct super_block *j_work_sb; 326 atomic_t j_async_throttle; 327 }; 328 329 enum journal_state_bits { 330 J_WRITERS_BLOCKED = 1, /* set when new writers not allowed */ 331 J_WRITERS_QUEUED, /* set when log is full due to too many writers */ 332 J_ABORTED, /* set when log is aborted */ 333 }; 334 335 #define JOURNAL_DESC_MAGIC "ReIsErLB" /* ick. magic string to find desc blocks in the journal */ 336 337 typedef __u32(*hashf_t) (const signed char *, int); 338 339 struct reiserfs_bitmap_info { 340 __u32 free_count; 341 }; 342 343 struct proc_dir_entry; 344 345 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO ) 346 typedef unsigned long int stat_cnt_t; 347 typedef struct reiserfs_proc_info_data { 348 spinlock_t lock; 349 int exiting; 350 int max_hash_collisions; 351 352 stat_cnt_t breads; 353 stat_cnt_t bread_miss; 354 stat_cnt_t search_by_key; 355 stat_cnt_t search_by_key_fs_changed; 356 stat_cnt_t search_by_key_restarted; 357 358 stat_cnt_t insert_item_restarted; 359 stat_cnt_t paste_into_item_restarted; 360 stat_cnt_t cut_from_item_restarted; 361 stat_cnt_t delete_solid_item_restarted; 362 stat_cnt_t delete_item_restarted; 363 364 stat_cnt_t leaked_oid; 365 stat_cnt_t leaves_removable; 366 367 /* balances per level. Use explicit 5 as MAX_HEIGHT is not visible yet. */ 368 stat_cnt_t balance_at[5]; /* XXX */ 369 /* sbk == search_by_key */ 370 stat_cnt_t sbk_read_at[5]; /* XXX */ 371 stat_cnt_t sbk_fs_changed[5]; 372 stat_cnt_t sbk_restarted[5]; 373 stat_cnt_t items_at[5]; /* XXX */ 374 stat_cnt_t free_at[5]; /* XXX */ 375 stat_cnt_t can_node_be_removed[5]; /* XXX */ 376 long int lnum[5]; /* XXX */ 377 long int rnum[5]; /* XXX */ 378 long int lbytes[5]; /* XXX */ 379 long int rbytes[5]; /* XXX */ 380 stat_cnt_t get_neighbors[5]; 381 stat_cnt_t get_neighbors_restart[5]; 382 stat_cnt_t need_l_neighbor[5]; 383 stat_cnt_t need_r_neighbor[5]; 384 385 stat_cnt_t free_block; 386 struct __scan_bitmap_stats { 387 stat_cnt_t call; 388 stat_cnt_t wait; 389 stat_cnt_t bmap; 390 stat_cnt_t retry; 391 stat_cnt_t in_journal_hint; 392 stat_cnt_t in_journal_nohint; 393 stat_cnt_t stolen; 394 } scan_bitmap; 395 struct __journal_stats { 396 stat_cnt_t in_journal; 397 stat_cnt_t in_journal_bitmap; 398 stat_cnt_t in_journal_reusable; 399 stat_cnt_t lock_journal; 400 stat_cnt_t lock_journal_wait; 401 stat_cnt_t journal_being; 402 stat_cnt_t journal_relock_writers; 403 stat_cnt_t journal_relock_wcount; 404 stat_cnt_t mark_dirty; 405 stat_cnt_t mark_dirty_already; 406 stat_cnt_t mark_dirty_notjournal; 407 stat_cnt_t restore_prepared; 408 stat_cnt_t prepare; 409 stat_cnt_t prepare_retry; 410 } journal; 411 } reiserfs_proc_info_data_t; 412 #else 413 typedef struct reiserfs_proc_info_data { 414 } reiserfs_proc_info_data_t; 415 #endif 416 417 /* reiserfs union of in-core super block data */ 418 struct reiserfs_sb_info { 419 struct buffer_head *s_sbh; /* Buffer containing the super block */ 420 /* both the comment and the choice of 421 name are unclear for s_rs -Hans */ 422 struct reiserfs_super_block *s_rs; /* Pointer to the super block in the buffer */ 423 struct reiserfs_bitmap_info *s_ap_bitmap; 424 struct reiserfs_journal *s_journal; /* pointer to journal information */ 425 unsigned short s_mount_state; /* reiserfs state (valid, invalid) */ 426 427 /* Serialize writers access, replace the old bkl */ 428 struct mutex lock; 429 /* Owner of the lock (can be recursive) */ 430 struct task_struct *lock_owner; 431 /* Depth of the lock, start from -1 like the bkl */ 432 int lock_depth; 433 434 /* Comment? -Hans */ 435 void (*end_io_handler) (struct buffer_head *, int); 436 hashf_t s_hash_function; /* pointer to function which is used 437 to sort names in directory. Set on 438 mount */ 439 unsigned long s_mount_opt; /* reiserfs's mount options are set 440 here (currently - NOTAIL, NOLOG, 441 REPLAYONLY) */ 442 443 struct { /* This is a structure that describes block allocator options */ 444 unsigned long bits; /* Bitfield for enable/disable kind of options */ 445 unsigned long large_file_size; /* size started from which we consider file to be a large one(in blocks) */ 446 int border; /* percentage of disk, border takes */ 447 int preallocmin; /* Minimal file size (in blocks) starting from which we do preallocations */ 448 int preallocsize; /* Number of blocks we try to prealloc when file 449 reaches preallocmin size (in blocks) or 450 prealloc_list is empty. */ 451 } s_alloc_options; 452 453 /* Comment? -Hans */ 454 wait_queue_head_t s_wait; 455 /* To be obsoleted soon by per buffer seals.. -Hans */ 456 atomic_t s_generation_counter; // increased by one every time the 457 // tree gets re-balanced 458 unsigned long s_properties; /* File system properties. Currently holds 459 on-disk FS format */ 460 461 /* session statistics */ 462 int s_disk_reads; 463 int s_disk_writes; 464 int s_fix_nodes; 465 int s_do_balance; 466 int s_unneeded_left_neighbor; 467 int s_good_search_by_key_reada; 468 int s_bmaps; 469 int s_bmaps_without_search; 470 int s_direct2indirect; 471 int s_indirect2direct; 472 /* set up when it's ok for reiserfs_read_inode2() to read from 473 disk inode with nlink==0. Currently this is only used during 474 finish_unfinished() processing at mount time */ 475 int s_is_unlinked_ok; 476 reiserfs_proc_info_data_t s_proc_info_data; 477 struct proc_dir_entry *procdir; 478 int reserved_blocks; /* amount of blocks reserved for further allocations */ 479 spinlock_t bitmap_lock; /* this lock on now only used to protect reserved_blocks variable */ 480 struct dentry *priv_root; /* root of /.reiserfs_priv */ 481 struct dentry *xattr_root; /* root of /.reiserfs_priv/xattrs */ 482 int j_errno; 483 484 int work_queued; /* non-zero delayed work is queued */ 485 struct delayed_work old_work; /* old transactions flush delayed work */ 486 spinlock_t old_work_lock; /* protects old_work and work_queued */ 487 488 #ifdef CONFIG_QUOTA 489 char *s_qf_names[MAXQUOTAS]; 490 int s_jquota_fmt; 491 #endif 492 char *s_jdev; /* Stored jdev for mount option showing */ 493 #ifdef CONFIG_REISERFS_CHECK 494 495 struct tree_balance *cur_tb; /* 496 * Detects whether more than one 497 * copy of tb exists per superblock 498 * as a means of checking whether 499 * do_balance is executing concurrently 500 * against another tree reader/writer 501 * on a same mount point. 502 */ 503 #endif 504 }; 505 506 /* Definitions of reiserfs on-disk properties: */ 507 #define REISERFS_3_5 0 508 #define REISERFS_3_6 1 509 #define REISERFS_OLD_FORMAT 2 510 511 enum reiserfs_mount_options { 512 /* Mount options */ 513 REISERFS_LARGETAIL, /* large tails will be created in a session */ 514 REISERFS_SMALLTAIL, /* small (for files less than block size) tails will be created in a session */ 515 REPLAYONLY, /* replay journal and return 0. Use by fsck */ 516 REISERFS_CONVERT, /* -o conv: causes conversion of old 517 format super block to the new 518 format. If not specified - old 519 partition will be dealt with in a 520 manner of 3.5.x */ 521 522 /* -o hash={tea, rupasov, r5, detect} is meant for properly mounting 523 ** reiserfs disks from 3.5.19 or earlier. 99% of the time, this option 524 ** is not required. If the normal autodection code can't determine which 525 ** hash to use (because both hashes had the same value for a file) 526 ** use this option to force a specific hash. It won't allow you to override 527 ** the existing hash on the FS, so if you have a tea hash disk, and mount 528 ** with -o hash=rupasov, the mount will fail. 529 */ 530 FORCE_TEA_HASH, /* try to force tea hash on mount */ 531 FORCE_RUPASOV_HASH, /* try to force rupasov hash on mount */ 532 FORCE_R5_HASH, /* try to force rupasov hash on mount */ 533 FORCE_HASH_DETECT, /* try to detect hash function on mount */ 534 535 REISERFS_DATA_LOG, 536 REISERFS_DATA_ORDERED, 537 REISERFS_DATA_WRITEBACK, 538 539 /* used for testing experimental features, makes benchmarking new 540 features with and without more convenient, should never be used by 541 users in any code shipped to users (ideally) */ 542 543 REISERFS_NO_BORDER, 544 REISERFS_NO_UNHASHED_RELOCATION, 545 REISERFS_HASHED_RELOCATION, 546 REISERFS_ATTRS, 547 REISERFS_XATTRS_USER, 548 REISERFS_POSIXACL, 549 REISERFS_EXPOSE_PRIVROOT, 550 REISERFS_BARRIER_NONE, 551 REISERFS_BARRIER_FLUSH, 552 553 /* Actions on error */ 554 REISERFS_ERROR_PANIC, 555 REISERFS_ERROR_RO, 556 REISERFS_ERROR_CONTINUE, 557 558 REISERFS_USRQUOTA, /* User quota option specified */ 559 REISERFS_GRPQUOTA, /* Group quota option specified */ 560 561 REISERFS_TEST1, 562 REISERFS_TEST2, 563 REISERFS_TEST3, 564 REISERFS_TEST4, 565 REISERFS_UNSUPPORTED_OPT, 566 }; 567 568 #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH)) 569 #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH)) 570 #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH)) 571 #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT)) 572 #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER)) 573 #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION)) 574 #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION)) 575 #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4)) 576 577 #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL)) 578 #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL)) 579 #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY)) 580 #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS)) 581 #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5)) 582 #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT)) 583 #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG)) 584 #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED)) 585 #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK)) 586 #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER)) 587 #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL)) 588 #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT)) 589 #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s)) 590 #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE)) 591 #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH)) 592 593 #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC)) 594 #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO)) 595 596 void reiserfs_file_buffer(struct buffer_head *bh, int list); 597 extern struct file_system_type reiserfs_fs_type; 598 int reiserfs_resize(struct super_block *, unsigned long); 599 600 #define CARRY_ON 0 601 #define SCHEDULE_OCCURRED 1 602 603 #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh) 604 #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal) 605 #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block) 606 #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free) 607 #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap) 608 609 #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->) 610 611 /* A safe version of the "bdevname", which returns the "s_id" field of 612 * a superblock or else "Null superblock" if the super block is NULL. 613 */ 614 static inline char *reiserfs_bdevname(struct super_block *s) 615 { 616 return (s == NULL) ? "Null superblock" : s->s_id; 617 } 618 619 #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal))) 620 static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal 621 *journal) 622 { 623 return test_bit(J_ABORTED, &journal->j_state); 624 } 625 626 /* 627 * Locking primitives. The write lock is a per superblock 628 * special mutex that has properties close to the Big Kernel Lock 629 * which was used in the previous locking scheme. 630 */ 631 void reiserfs_write_lock(struct super_block *s); 632 void reiserfs_write_unlock(struct super_block *s); 633 int __must_check reiserfs_write_unlock_nested(struct super_block *s); 634 void reiserfs_write_lock_nested(struct super_block *s, int depth); 635 636 #ifdef CONFIG_REISERFS_CHECK 637 void reiserfs_lock_check_recursive(struct super_block *s); 638 #else 639 static inline void reiserfs_lock_check_recursive(struct super_block *s) { } 640 #endif 641 642 /* 643 * Several mutexes depend on the write lock. 644 * However sometimes we want to relax the write lock while we hold 645 * these mutexes, according to the release/reacquire on schedule() 646 * properties of the Bkl that were used. 647 * Reiserfs performances and locking were based on this scheme. 648 * Now that the write lock is a mutex and not the bkl anymore, doing so 649 * may result in a deadlock: 650 * 651 * A acquire write_lock 652 * A acquire j_commit_mutex 653 * A release write_lock and wait for something 654 * B acquire write_lock 655 * B can't acquire j_commit_mutex and sleep 656 * A can't acquire write lock anymore 657 * deadlock 658 * 659 * What we do here is avoiding such deadlock by playing the same game 660 * than the Bkl: if we can't acquire a mutex that depends on the write lock, 661 * we release the write lock, wait a bit and then retry. 662 * 663 * The mutexes concerned by this hack are: 664 * - The commit mutex of a journal list 665 * - The flush mutex 666 * - The journal lock 667 * - The inode mutex 668 */ 669 static inline void reiserfs_mutex_lock_safe(struct mutex *m, 670 struct super_block *s) 671 { 672 int depth; 673 674 depth = reiserfs_write_unlock_nested(s); 675 mutex_lock(m); 676 reiserfs_write_lock_nested(s, depth); 677 } 678 679 static inline void 680 reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass, 681 struct super_block *s) 682 { 683 int depth; 684 685 depth = reiserfs_write_unlock_nested(s); 686 mutex_lock_nested(m, subclass); 687 reiserfs_write_lock_nested(s, depth); 688 } 689 690 static inline void 691 reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s) 692 { 693 int depth; 694 depth = reiserfs_write_unlock_nested(s); 695 down_read(sem); 696 reiserfs_write_lock_nested(s, depth); 697 } 698 699 /* 700 * When we schedule, we usually want to also release the write lock, 701 * according to the previous bkl based locking scheme of reiserfs. 702 */ 703 static inline void reiserfs_cond_resched(struct super_block *s) 704 { 705 if (need_resched()) { 706 int depth; 707 708 depth = reiserfs_write_unlock_nested(s); 709 schedule(); 710 reiserfs_write_lock_nested(s, depth); 711 } 712 } 713 714 struct fid; 715 716 /* in reading the #defines, it may help to understand that they employ 717 the following abbreviations: 718 719 B = Buffer 720 I = Item header 721 H = Height within the tree (should be changed to LEV) 722 N = Number of the item in the node 723 STAT = stat data 724 DEH = Directory Entry Header 725 EC = Entry Count 726 E = Entry number 727 UL = Unsigned Long 728 BLKH = BLocK Header 729 UNFM = UNForMatted node 730 DC = Disk Child 731 P = Path 732 733 These #defines are named by concatenating these abbreviations, 734 where first comes the arguments, and last comes the return value, 735 of the macro. 736 737 */ 738 739 #define USE_INODE_GENERATION_COUNTER 740 741 #define REISERFS_PREALLOCATE 742 #define DISPLACE_NEW_PACKING_LOCALITIES 743 #define PREALLOCATION_SIZE 9 744 745 /* n must be power of 2 */ 746 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u)) 747 748 // to be ok for alpha and others we have to align structures to 8 byte 749 // boundary. 750 // FIXME: do not change 4 by anything else: there is code which relies on that 751 #define ROUND_UP(x) _ROUND_UP(x,8LL) 752 753 /* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug 754 ** messages. 755 */ 756 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ 757 758 void __reiserfs_warning(struct super_block *s, const char *id, 759 const char *func, const char *fmt, ...); 760 #define reiserfs_warning(s, id, fmt, args...) \ 761 __reiserfs_warning(s, id, __func__, fmt, ##args) 762 /* assertions handling */ 763 764 /** always check a condition and panic if it's false. */ 765 #define __RASSERT(cond, scond, format, args...) \ 766 do { \ 767 if (!(cond)) \ 768 reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \ 769 __FILE__ ":%i:%s: " format "\n", \ 770 in_interrupt() ? -1 : task_pid_nr(current), \ 771 __LINE__, __func__ , ##args); \ 772 } while (0) 773 774 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args) 775 776 #if defined( CONFIG_REISERFS_CHECK ) 777 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args) 778 #else 779 #define RFALSE( cond, format, args... ) do {;} while( 0 ) 780 #endif 781 782 #define CONSTF __attribute_const__ 783 /* 784 * Disk Data Structures 785 */ 786 787 /***************************************************************************/ 788 /* SUPER BLOCK */ 789 /***************************************************************************/ 790 791 /* 792 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs 793 * the version in RAM is part of a larger structure containing fields never written to disk. 794 */ 795 #define UNSET_HASH 0 // read_super will guess about, what hash names 796 // in directories were sorted with 797 #define TEA_HASH 1 798 #define YURA_HASH 2 799 #define R5_HASH 3 800 #define DEFAULT_HASH R5_HASH 801 802 struct journal_params { 803 __le32 jp_journal_1st_block; /* where does journal start from on its 804 * device */ 805 __le32 jp_journal_dev; /* journal device st_rdev */ 806 __le32 jp_journal_size; /* size of the journal */ 807 __le32 jp_journal_trans_max; /* max number of blocks in a transaction. */ 808 __le32 jp_journal_magic; /* random value made on fs creation (this 809 * was sb_journal_block_count) */ 810 __le32 jp_journal_max_batch; /* max number of blocks to batch into a 811 * trans */ 812 __le32 jp_journal_max_commit_age; /* in seconds, how old can an async 813 * commit be */ 814 __le32 jp_journal_max_trans_age; /* in seconds, how old can a transaction 815 * be */ 816 }; 817 818 /* this is the super from 3.5.X, where X >= 10 */ 819 struct reiserfs_super_block_v1 { 820 __le32 s_block_count; /* blocks count */ 821 __le32 s_free_blocks; /* free blocks count */ 822 __le32 s_root_block; /* root block number */ 823 struct journal_params s_journal; 824 __le16 s_blocksize; /* block size */ 825 __le16 s_oid_maxsize; /* max size of object id array, see 826 * get_objectid() commentary */ 827 __le16 s_oid_cursize; /* current size of object id array */ 828 __le16 s_umount_state; /* this is set to 1 when filesystem was 829 * umounted, to 2 - when not */ 830 char s_magic[10]; /* reiserfs magic string indicates that 831 * file system is reiserfs: 832 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */ 833 __le16 s_fs_state; /* it is set to used by fsck to mark which 834 * phase of rebuilding is done */ 835 __le32 s_hash_function_code; /* indicate, what hash function is being use 836 * to sort names in a directory*/ 837 __le16 s_tree_height; /* height of disk tree */ 838 __le16 s_bmap_nr; /* amount of bitmap blocks needed to address 839 * each block of file system */ 840 __le16 s_version; /* this field is only reliable on filesystem 841 * with non-standard journal */ 842 __le16 s_reserved_for_journal; /* size in blocks of journal area on main 843 * device, we need to keep after 844 * making fs with non-standard journal */ 845 } __attribute__ ((__packed__)); 846 847 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1)) 848 849 /* this is the on disk super block */ 850 struct reiserfs_super_block { 851 struct reiserfs_super_block_v1 s_v1; 852 __le32 s_inode_generation; 853 __le32 s_flags; /* Right now used only by inode-attributes, if enabled */ 854 unsigned char s_uuid[16]; /* filesystem unique identifier */ 855 unsigned char s_label[16]; /* filesystem volume label */ 856 __le16 s_mnt_count; /* Count of mounts since last fsck */ 857 __le16 s_max_mnt_count; /* Maximum mounts before check */ 858 __le32 s_lastcheck; /* Timestamp of last fsck */ 859 __le32 s_check_interval; /* Interval between checks */ 860 char s_unused[76]; /* zero filled by mkreiserfs and 861 * reiserfs_convert_objectid_map_v1() 862 * so any additions must be updated 863 * there as well. */ 864 } __attribute__ ((__packed__)); 865 866 #define SB_SIZE (sizeof(struct reiserfs_super_block)) 867 868 #define REISERFS_VERSION_1 0 869 #define REISERFS_VERSION_2 2 870 871 // on-disk super block fields converted to cpu form 872 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs) 873 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1)) 874 #define SB_BLOCKSIZE(s) \ 875 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize)) 876 #define SB_BLOCK_COUNT(s) \ 877 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count)) 878 #define SB_FREE_BLOCKS(s) \ 879 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks)) 880 #define SB_REISERFS_MAGIC(s) \ 881 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic) 882 #define SB_ROOT_BLOCK(s) \ 883 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block)) 884 #define SB_TREE_HEIGHT(s) \ 885 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height)) 886 #define SB_REISERFS_STATE(s) \ 887 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state)) 888 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version)) 889 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr)) 890 891 #define PUT_SB_BLOCK_COUNT(s, val) \ 892 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0) 893 #define PUT_SB_FREE_BLOCKS(s, val) \ 894 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0) 895 #define PUT_SB_ROOT_BLOCK(s, val) \ 896 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0) 897 #define PUT_SB_TREE_HEIGHT(s, val) \ 898 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0) 899 #define PUT_SB_REISERFS_STATE(s, val) \ 900 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) 901 #define PUT_SB_VERSION(s, val) \ 902 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0) 903 #define PUT_SB_BMAP_NR(s, val) \ 904 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0) 905 906 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal) 907 #define SB_ONDISK_JOURNAL_SIZE(s) \ 908 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size)) 909 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \ 910 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block)) 911 #define SB_ONDISK_JOURNAL_DEVICE(s) \ 912 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev)) 913 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \ 914 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal)) 915 916 #define is_block_in_log_or_reserved_area(s, block) \ 917 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \ 918 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \ 919 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \ 920 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) 921 922 int is_reiserfs_3_5(struct reiserfs_super_block *rs); 923 int is_reiserfs_3_6(struct reiserfs_super_block *rs); 924 int is_reiserfs_jr(struct reiserfs_super_block *rs); 925 926 /* ReiserFS leaves the first 64k unused, so that partition labels have 927 enough space. If someone wants to write a fancy bootloader that 928 needs more than 64k, let us know, and this will be increased in size. 929 This number must be larger than than the largest block size on any 930 platform, or code will break. -Hans */ 931 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024) 932 #define REISERFS_FIRST_BLOCK unused_define 933 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES 934 935 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */ 936 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024) 937 938 /* reiserfs internal error code (used by search_by_key and fix_nodes)) */ 939 #define CARRY_ON 0 940 #define REPEAT_SEARCH -1 941 #define IO_ERROR -2 942 #define NO_DISK_SPACE -3 943 #define NO_BALANCING_NEEDED (-4) 944 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5) 945 #define QUOTA_EXCEEDED -6 946 947 typedef __u32 b_blocknr_t; 948 typedef __le32 unp_t; 949 950 struct unfm_nodeinfo { 951 unp_t unfm_nodenum; 952 unsigned short unfm_freespace; 953 }; 954 955 /* there are two formats of keys: 3.5 and 3.6 956 */ 957 #define KEY_FORMAT_3_5 0 958 #define KEY_FORMAT_3_6 1 959 960 /* there are two stat datas */ 961 #define STAT_DATA_V1 0 962 #define STAT_DATA_V2 1 963 964 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode) 965 { 966 return container_of(inode, struct reiserfs_inode_info, vfs_inode); 967 } 968 969 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb) 970 { 971 return sb->s_fs_info; 972 } 973 974 /* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16 975 * which overflows on large file systems. */ 976 static inline __u32 reiserfs_bmap_count(struct super_block *sb) 977 { 978 return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1; 979 } 980 981 static inline int bmap_would_wrap(unsigned bmap_nr) 982 { 983 return bmap_nr > ((1LL << 16) - 1); 984 } 985 986 /** this says about version of key of all items (but stat data) the 987 object consists of */ 988 #define get_inode_item_key_version( inode ) \ 989 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5) 990 991 #define set_inode_item_key_version( inode, version ) \ 992 ({ if((version)==KEY_FORMAT_3_6) \ 993 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \ 994 else \ 995 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; }) 996 997 #define get_inode_sd_version(inode) \ 998 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1) 999 1000 #define set_inode_sd_version(inode, version) \ 1001 ({ if((version)==STAT_DATA_V2) \ 1002 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \ 1003 else \ 1004 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; }) 1005 1006 /* This is an aggressive tail suppression policy, I am hoping it 1007 improves our benchmarks. The principle behind it is that percentage 1008 space saving is what matters, not absolute space saving. This is 1009 non-intuitive, but it helps to understand it if you consider that the 1010 cost to access 4 blocks is not much more than the cost to access 1 1011 block, if you have to do a seek and rotate. A tail risks a 1012 non-linear disk access that is significant as a percentage of total 1013 time cost for a 4 block file and saves an amount of space that is 1014 less significant as a percentage of space, or so goes the hypothesis. 1015 -Hans */ 1016 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \ 1017 (\ 1018 (!(n_tail_size)) || \ 1019 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \ 1020 ( (n_file_size) >= (n_block_size) * 4 ) || \ 1021 ( ( (n_file_size) >= (n_block_size) * 3 ) && \ 1022 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \ 1023 ( ( (n_file_size) >= (n_block_size) * 2 ) && \ 1024 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \ 1025 ( ( (n_file_size) >= (n_block_size) ) && \ 1026 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \ 1027 ) 1028 1029 /* Another strategy for tails, this one means only create a tail if all the 1030 file would fit into one DIRECT item. 1031 Primary intention for this one is to increase performance by decreasing 1032 seeking. 1033 */ 1034 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \ 1035 (\ 1036 (!(n_tail_size)) || \ 1037 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \ 1038 ) 1039 1040 /* 1041 * values for s_umount_state field 1042 */ 1043 #define REISERFS_VALID_FS 1 1044 #define REISERFS_ERROR_FS 2 1045 1046 // 1047 // there are 5 item types currently 1048 // 1049 #define TYPE_STAT_DATA 0 1050 #define TYPE_INDIRECT 1 1051 #define TYPE_DIRECT 2 1052 #define TYPE_DIRENTRY 3 1053 #define TYPE_MAXTYPE 3 1054 #define TYPE_ANY 15 // FIXME: comment is required 1055 1056 /***************************************************************************/ 1057 /* KEY & ITEM HEAD */ 1058 /***************************************************************************/ 1059 1060 // 1061 // directories use this key as well as old files 1062 // 1063 struct offset_v1 { 1064 __le32 k_offset; 1065 __le32 k_uniqueness; 1066 } __attribute__ ((__packed__)); 1067 1068 struct offset_v2 { 1069 __le64 v; 1070 } __attribute__ ((__packed__)); 1071 1072 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2) 1073 { 1074 __u8 type = le64_to_cpu(v2->v) >> 60; 1075 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY; 1076 } 1077 1078 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type) 1079 { 1080 v2->v = 1081 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60); 1082 } 1083 1084 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2) 1085 { 1086 return le64_to_cpu(v2->v) & (~0ULL >> 4); 1087 } 1088 1089 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset) 1090 { 1091 offset &= (~0ULL >> 4); 1092 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset); 1093 } 1094 1095 /* Key of an item determines its location in the S+tree, and 1096 is composed of 4 components */ 1097 struct reiserfs_key { 1098 __le32 k_dir_id; /* packing locality: by default parent 1099 directory object id */ 1100 __le32 k_objectid; /* object identifier */ 1101 union { 1102 struct offset_v1 k_offset_v1; 1103 struct offset_v2 k_offset_v2; 1104 } __attribute__ ((__packed__)) u; 1105 } __attribute__ ((__packed__)); 1106 1107 struct in_core_key { 1108 __u32 k_dir_id; /* packing locality: by default parent 1109 directory object id */ 1110 __u32 k_objectid; /* object identifier */ 1111 __u64 k_offset; 1112 __u8 k_type; 1113 }; 1114 1115 struct cpu_key { 1116 struct in_core_key on_disk_key; 1117 int version; 1118 int key_length; /* 3 in all cases but direct2indirect and 1119 indirect2direct conversion */ 1120 }; 1121 1122 /* Our function for comparing keys can compare keys of different 1123 lengths. It takes as a parameter the length of the keys it is to 1124 compare. These defines are used in determining what is to be passed 1125 to it as that parameter. */ 1126 #define REISERFS_FULL_KEY_LEN 4 1127 #define REISERFS_SHORT_KEY_LEN 2 1128 1129 /* The result of the key compare */ 1130 #define FIRST_GREATER 1 1131 #define SECOND_GREATER -1 1132 #define KEYS_IDENTICAL 0 1133 #define KEY_FOUND 1 1134 #define KEY_NOT_FOUND 0 1135 1136 #define KEY_SIZE (sizeof(struct reiserfs_key)) 1137 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32)) 1138 1139 /* return values for search_by_key and clones */ 1140 #define ITEM_FOUND 1 1141 #define ITEM_NOT_FOUND 0 1142 #define ENTRY_FOUND 1 1143 #define ENTRY_NOT_FOUND 0 1144 #define DIRECTORY_NOT_FOUND -1 1145 #define REGULAR_FILE_FOUND -2 1146 #define DIRECTORY_FOUND -3 1147 #define BYTE_FOUND 1 1148 #define BYTE_NOT_FOUND 0 1149 #define FILE_NOT_FOUND -1 1150 1151 #define POSITION_FOUND 1 1152 #define POSITION_NOT_FOUND 0 1153 1154 // return values for reiserfs_find_entry and search_by_entry_key 1155 #define NAME_FOUND 1 1156 #define NAME_NOT_FOUND 0 1157 #define GOTO_PREVIOUS_ITEM 2 1158 #define NAME_FOUND_INVISIBLE 3 1159 1160 /* Everything in the filesystem is stored as a set of items. The 1161 item head contains the key of the item, its free space (for 1162 indirect items) and specifies the location of the item itself 1163 within the block. */ 1164 1165 struct item_head { 1166 /* Everything in the tree is found by searching for it based on 1167 * its key.*/ 1168 struct reiserfs_key ih_key; 1169 union { 1170 /* The free space in the last unformatted node of an 1171 indirect item if this is an indirect item. This 1172 equals 0xFFFF iff this is a direct item or stat data 1173 item. Note that the key, not this field, is used to 1174 determine the item type, and thus which field this 1175 union contains. */ 1176 __le16 ih_free_space_reserved; 1177 /* Iff this is a directory item, this field equals the 1178 number of directory entries in the directory item. */ 1179 __le16 ih_entry_count; 1180 } __attribute__ ((__packed__)) u; 1181 __le16 ih_item_len; /* total size of the item body */ 1182 __le16 ih_item_location; /* an offset to the item body 1183 * within the block */ 1184 __le16 ih_version; /* 0 for all old items, 2 for new 1185 ones. Highest bit is set by fsck 1186 temporary, cleaned after all 1187 done */ 1188 } __attribute__ ((__packed__)); 1189 /* size of item header */ 1190 #define IH_SIZE (sizeof(struct item_head)) 1191 1192 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved) 1193 #define ih_version(ih) le16_to_cpu((ih)->ih_version) 1194 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count) 1195 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location) 1196 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len) 1197 1198 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0) 1199 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0) 1200 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0) 1201 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0) 1202 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0) 1203 1204 #define unreachable_item(ih) (ih_version(ih) & (1 << 15)) 1205 1206 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih)) 1207 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val))) 1208 1209 /* these operate on indirect items, where you've got an array of ints 1210 ** at a possibly unaligned location. These are a noop on ia32 1211 ** 1212 ** p is the array of __u32, i is the index into the array, v is the value 1213 ** to store there. 1214 */ 1215 #define get_block_num(p, i) get_unaligned_le32((p) + (i)) 1216 #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i)) 1217 1218 // 1219 // in old version uniqueness field shows key type 1220 // 1221 #define V1_SD_UNIQUENESS 0 1222 #define V1_INDIRECT_UNIQUENESS 0xfffffffe 1223 #define V1_DIRECT_UNIQUENESS 0xffffffff 1224 #define V1_DIRENTRY_UNIQUENESS 500 1225 #define V1_ANY_UNIQUENESS 555 // FIXME: comment is required 1226 1227 // 1228 // here are conversion routines 1229 // 1230 static inline int uniqueness2type(__u32 uniqueness) CONSTF; 1231 static inline int uniqueness2type(__u32 uniqueness) 1232 { 1233 switch ((int)uniqueness) { 1234 case V1_SD_UNIQUENESS: 1235 return TYPE_STAT_DATA; 1236 case V1_INDIRECT_UNIQUENESS: 1237 return TYPE_INDIRECT; 1238 case V1_DIRECT_UNIQUENESS: 1239 return TYPE_DIRECT; 1240 case V1_DIRENTRY_UNIQUENESS: 1241 return TYPE_DIRENTRY; 1242 case V1_ANY_UNIQUENESS: 1243 default: 1244 return TYPE_ANY; 1245 } 1246 } 1247 1248 static inline __u32 type2uniqueness(int type) CONSTF; 1249 static inline __u32 type2uniqueness(int type) 1250 { 1251 switch (type) { 1252 case TYPE_STAT_DATA: 1253 return V1_SD_UNIQUENESS; 1254 case TYPE_INDIRECT: 1255 return V1_INDIRECT_UNIQUENESS; 1256 case TYPE_DIRECT: 1257 return V1_DIRECT_UNIQUENESS; 1258 case TYPE_DIRENTRY: 1259 return V1_DIRENTRY_UNIQUENESS; 1260 case TYPE_ANY: 1261 default: 1262 return V1_ANY_UNIQUENESS; 1263 } 1264 } 1265 1266 // 1267 // key is pointer to on disk key which is stored in le, result is cpu, 1268 // there is no way to get version of object from key, so, provide 1269 // version to these defines 1270 // 1271 static inline loff_t le_key_k_offset(int version, 1272 const struct reiserfs_key *key) 1273 { 1274 return (version == KEY_FORMAT_3_5) ? 1275 le32_to_cpu(key->u.k_offset_v1.k_offset) : 1276 offset_v2_k_offset(&(key->u.k_offset_v2)); 1277 } 1278 1279 static inline loff_t le_ih_k_offset(const struct item_head *ih) 1280 { 1281 return le_key_k_offset(ih_version(ih), &(ih->ih_key)); 1282 } 1283 1284 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key) 1285 { 1286 return (version == KEY_FORMAT_3_5) ? 1287 uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) : 1288 offset_v2_k_type(&(key->u.k_offset_v2)); 1289 } 1290 1291 static inline loff_t le_ih_k_type(const struct item_head *ih) 1292 { 1293 return le_key_k_type(ih_version(ih), &(ih->ih_key)); 1294 } 1295 1296 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key, 1297 loff_t offset) 1298 { 1299 (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) : /* jdm check */ 1300 (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset)); 1301 } 1302 1303 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset) 1304 { 1305 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); 1306 } 1307 1308 static inline void set_le_key_k_type(int version, struct reiserfs_key *key, 1309 int type) 1310 { 1311 (version == KEY_FORMAT_3_5) ? 1312 (void)(key->u.k_offset_v1.k_uniqueness = 1313 cpu_to_le32(type2uniqueness(type))) 1314 : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type)); 1315 } 1316 1317 static inline void set_le_ih_k_type(struct item_head *ih, int type) 1318 { 1319 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type); 1320 } 1321 1322 static inline int is_direntry_le_key(int version, struct reiserfs_key *key) 1323 { 1324 return le_key_k_type(version, key) == TYPE_DIRENTRY; 1325 } 1326 1327 static inline int is_direct_le_key(int version, struct reiserfs_key *key) 1328 { 1329 return le_key_k_type(version, key) == TYPE_DIRECT; 1330 } 1331 1332 static inline int is_indirect_le_key(int version, struct reiserfs_key *key) 1333 { 1334 return le_key_k_type(version, key) == TYPE_INDIRECT; 1335 } 1336 1337 static inline int is_statdata_le_key(int version, struct reiserfs_key *key) 1338 { 1339 return le_key_k_type(version, key) == TYPE_STAT_DATA; 1340 } 1341 1342 // 1343 // item header has version. 1344 // 1345 static inline int is_direntry_le_ih(struct item_head *ih) 1346 { 1347 return is_direntry_le_key(ih_version(ih), &ih->ih_key); 1348 } 1349 1350 static inline int is_direct_le_ih(struct item_head *ih) 1351 { 1352 return is_direct_le_key(ih_version(ih), &ih->ih_key); 1353 } 1354 1355 static inline int is_indirect_le_ih(struct item_head *ih) 1356 { 1357 return is_indirect_le_key(ih_version(ih), &ih->ih_key); 1358 } 1359 1360 static inline int is_statdata_le_ih(struct item_head *ih) 1361 { 1362 return is_statdata_le_key(ih_version(ih), &ih->ih_key); 1363 } 1364 1365 // 1366 // key is pointer to cpu key, result is cpu 1367 // 1368 static inline loff_t cpu_key_k_offset(const struct cpu_key *key) 1369 { 1370 return key->on_disk_key.k_offset; 1371 } 1372 1373 static inline loff_t cpu_key_k_type(const struct cpu_key *key) 1374 { 1375 return key->on_disk_key.k_type; 1376 } 1377 1378 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset) 1379 { 1380 key->on_disk_key.k_offset = offset; 1381 } 1382 1383 static inline void set_cpu_key_k_type(struct cpu_key *key, int type) 1384 { 1385 key->on_disk_key.k_type = type; 1386 } 1387 1388 static inline void cpu_key_k_offset_dec(struct cpu_key *key) 1389 { 1390 key->on_disk_key.k_offset--; 1391 } 1392 1393 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY) 1394 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT) 1395 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT) 1396 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA) 1397 1398 /* are these used ? */ 1399 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key))) 1400 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key))) 1401 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key))) 1402 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key))) 1403 1404 #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \ 1405 (!COMP_SHORT_KEYS(ih, key) && \ 1406 I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize)) 1407 1408 /* maximal length of item */ 1409 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE) 1410 #define MIN_ITEM_LEN 1 1411 1412 /* object identifier for root dir */ 1413 #define REISERFS_ROOT_OBJECTID 2 1414 #define REISERFS_ROOT_PARENT_OBJECTID 1 1415 1416 extern struct reiserfs_key root_key; 1417 1418 /* 1419 * Picture represents a leaf of the S+tree 1420 * ______________________________________________________ 1421 * | | Array of | | | 1422 * |Block | Object-Item | F r e e | Objects- | 1423 * | head | Headers | S p a c e | Items | 1424 * |______|_______________|___________________|___________| 1425 */ 1426 1427 /* Header of a disk block. More precisely, header of a formatted leaf 1428 or internal node, and not the header of an unformatted node. */ 1429 struct block_head { 1430 __le16 blk_level; /* Level of a block in the tree. */ 1431 __le16 blk_nr_item; /* Number of keys/items in a block. */ 1432 __le16 blk_free_space; /* Block free space in bytes. */ 1433 __le16 blk_reserved; 1434 /* dump this in v4/planA */ 1435 struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */ 1436 }; 1437 1438 #define BLKH_SIZE (sizeof(struct block_head)) 1439 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level)) 1440 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item)) 1441 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space)) 1442 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved)) 1443 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val)) 1444 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val)) 1445 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val)) 1446 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val)) 1447 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key) 1448 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val) 1449 1450 /* 1451 * values for blk_level field of the struct block_head 1452 */ 1453 1454 #define FREE_LEVEL 0 /* when node gets removed from the tree its 1455 blk_level is set to FREE_LEVEL. It is then 1456 used to see whether the node is still in the 1457 tree */ 1458 1459 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */ 1460 1461 /* Given the buffer head of a formatted node, resolve to the block head of that node. */ 1462 #define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data)) 1463 /* Number of items that are in buffer. */ 1464 #define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh))) 1465 #define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh))) 1466 #define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh))) 1467 1468 #define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0) 1469 #define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0) 1470 #define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0) 1471 1472 /* Get right delimiting key. -- little endian */ 1473 #define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh)))) 1474 1475 /* Does the buffer contain a disk leaf. */ 1476 #define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL) 1477 1478 /* Does the buffer contain a disk internal node */ 1479 #define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \ 1480 && B_LEVEL(bh) <= MAX_HEIGHT) 1481 1482 /***************************************************************************/ 1483 /* STAT DATA */ 1484 /***************************************************************************/ 1485 1486 // 1487 // old stat data is 32 bytes long. We are going to distinguish new one by 1488 // different size 1489 // 1490 struct stat_data_v1 { 1491 __le16 sd_mode; /* file type, permissions */ 1492 __le16 sd_nlink; /* number of hard links */ 1493 __le16 sd_uid; /* owner */ 1494 __le16 sd_gid; /* group */ 1495 __le32 sd_size; /* file size */ 1496 __le32 sd_atime; /* time of last access */ 1497 __le32 sd_mtime; /* time file was last modified */ 1498 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */ 1499 union { 1500 __le32 sd_rdev; 1501 __le32 sd_blocks; /* number of blocks file uses */ 1502 } __attribute__ ((__packed__)) u; 1503 __le32 sd_first_direct_byte; /* first byte of file which is stored 1504 in a direct item: except that if it 1505 equals 1 it is a symlink and if it 1506 equals ~(__u32)0 there is no 1507 direct item. The existence of this 1508 field really grates on me. Let's 1509 replace it with a macro based on 1510 sd_size and our tail suppression 1511 policy. Someday. -Hans */ 1512 } __attribute__ ((__packed__)); 1513 1514 #define SD_V1_SIZE (sizeof(struct stat_data_v1)) 1515 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5) 1516 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) 1517 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) 1518 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink)) 1519 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v)) 1520 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid)) 1521 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v)) 1522 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid)) 1523 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v)) 1524 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size)) 1525 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v)) 1526 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) 1527 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) 1528 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) 1529 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) 1530 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) 1531 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) 1532 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) 1533 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) 1534 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks)) 1535 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v)) 1536 #define sd_v1_first_direct_byte(sdp) \ 1537 (le32_to_cpu((sdp)->sd_first_direct_byte)) 1538 #define set_sd_v1_first_direct_byte(sdp,v) \ 1539 ((sdp)->sd_first_direct_byte = cpu_to_le32(v)) 1540 1541 /* inode flags stored in sd_attrs (nee sd_reserved) */ 1542 1543 /* we want common flags to have the same values as in ext2, 1544 so chattr(1) will work without problems */ 1545 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL 1546 #define REISERFS_APPEND_FL FS_APPEND_FL 1547 #define REISERFS_SYNC_FL FS_SYNC_FL 1548 #define REISERFS_NOATIME_FL FS_NOATIME_FL 1549 #define REISERFS_NODUMP_FL FS_NODUMP_FL 1550 #define REISERFS_SECRM_FL FS_SECRM_FL 1551 #define REISERFS_UNRM_FL FS_UNRM_FL 1552 #define REISERFS_COMPR_FL FS_COMPR_FL 1553 #define REISERFS_NOTAIL_FL FS_NOTAIL_FL 1554 1555 /* persistent flags that file inherits from the parent directory */ 1556 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \ 1557 REISERFS_SYNC_FL | \ 1558 REISERFS_NOATIME_FL | \ 1559 REISERFS_NODUMP_FL | \ 1560 REISERFS_SECRM_FL | \ 1561 REISERFS_COMPR_FL | \ 1562 REISERFS_NOTAIL_FL ) 1563 1564 /* Stat Data on disk (reiserfs version of UFS disk inode minus the 1565 address blocks) */ 1566 struct stat_data { 1567 __le16 sd_mode; /* file type, permissions */ 1568 __le16 sd_attrs; /* persistent inode flags */ 1569 __le32 sd_nlink; /* number of hard links */ 1570 __le64 sd_size; /* file size */ 1571 __le32 sd_uid; /* owner */ 1572 __le32 sd_gid; /* group */ 1573 __le32 sd_atime; /* time of last access */ 1574 __le32 sd_mtime; /* time file was last modified */ 1575 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */ 1576 __le32 sd_blocks; 1577 union { 1578 __le32 sd_rdev; 1579 __le32 sd_generation; 1580 //__le32 sd_first_direct_byte; 1581 /* first byte of file which is stored in a 1582 direct item: except that if it equals 1 1583 it is a symlink and if it equals 1584 ~(__u32)0 there is no direct item. The 1585 existence of this field really grates 1586 on me. Let's replace it with a macro 1587 based on sd_size and our tail 1588 suppression policy? */ 1589 } __attribute__ ((__packed__)) u; 1590 } __attribute__ ((__packed__)); 1591 // 1592 // this is 44 bytes long 1593 // 1594 #define SD_SIZE (sizeof(struct stat_data)) 1595 #define SD_V2_SIZE SD_SIZE 1596 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6) 1597 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) 1598 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) 1599 /* sd_reserved */ 1600 /* set_sd_reserved */ 1601 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink)) 1602 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v)) 1603 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size)) 1604 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v)) 1605 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid)) 1606 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v)) 1607 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid)) 1608 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v)) 1609 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) 1610 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) 1611 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) 1612 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) 1613 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) 1614 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) 1615 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks)) 1616 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v)) 1617 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) 1618 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) 1619 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation)) 1620 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v)) 1621 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs)) 1622 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v)) 1623 1624 /***************************************************************************/ 1625 /* DIRECTORY STRUCTURE */ 1626 /***************************************************************************/ 1627 /* 1628 Picture represents the structure of directory items 1629 ________________________________________________ 1630 | Array of | | | | | | 1631 | directory |N-1| N-2 | .... | 1st |0th| 1632 | entry headers | | | | | | 1633 |_______________|___|_____|________|_______|___| 1634 <---- directory entries ------> 1635 1636 First directory item has k_offset component 1. We store "." and ".." 1637 in one item, always, we never split "." and ".." into differing 1638 items. This makes, among other things, the code for removing 1639 directories simpler. */ 1640 #define SD_OFFSET 0 1641 #define SD_UNIQUENESS 0 1642 #define DOT_OFFSET 1 1643 #define DOT_DOT_OFFSET 2 1644 #define DIRENTRY_UNIQUENESS 500 1645 1646 /* */ 1647 #define FIRST_ITEM_OFFSET 1 1648 1649 /* 1650 Q: How to get key of object pointed to by entry from entry? 1651 1652 A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key 1653 of object, entry points to */ 1654 1655 /* NOT IMPLEMENTED: 1656 Directory will someday contain stat data of object */ 1657 1658 struct reiserfs_de_head { 1659 __le32 deh_offset; /* third component of the directory entry key */ 1660 __le32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced 1661 by directory entry */ 1662 __le32 deh_objectid; /* objectid of the object, that is referenced by directory entry */ 1663 __le16 deh_location; /* offset of name in the whole item */ 1664 __le16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether 1665 entry is hidden (unlinked) */ 1666 } __attribute__ ((__packed__)); 1667 #define DEH_SIZE sizeof(struct reiserfs_de_head) 1668 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset)) 1669 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id)) 1670 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid)) 1671 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location)) 1672 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state)) 1673 1674 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v))) 1675 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v))) 1676 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v))) 1677 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v))) 1678 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v))) 1679 1680 /* empty directory contains two entries "." and ".." and their headers */ 1681 #define EMPTY_DIR_SIZE \ 1682 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen (".."))) 1683 1684 /* old format directories have this size when empty */ 1685 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3) 1686 1687 #define DEH_Statdata 0 /* not used now */ 1688 #define DEH_Visible 2 1689 1690 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */ 1691 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__) 1692 # define ADDR_UNALIGNED_BITS (3) 1693 #endif 1694 1695 /* These are only used to manipulate deh_state. 1696 * Because of this, we'll use the ext2_ bit routines, 1697 * since they are little endian */ 1698 #ifdef ADDR_UNALIGNED_BITS 1699 1700 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1))) 1701 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3) 1702 1703 # define set_bit_unaligned(nr, addr) \ 1704 __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) 1705 # define clear_bit_unaligned(nr, addr) \ 1706 __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) 1707 # define test_bit_unaligned(nr, addr) \ 1708 test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) 1709 1710 #else 1711 1712 # define set_bit_unaligned(nr, addr) __test_and_set_bit_le(nr, addr) 1713 # define clear_bit_unaligned(nr, addr) __test_and_clear_bit_le(nr, addr) 1714 # define test_bit_unaligned(nr, addr) test_bit_le(nr, addr) 1715 1716 #endif 1717 1718 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1719 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1720 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1721 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1722 1723 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1724 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1725 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1726 1727 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid, 1728 __le32 par_dirid, __le32 par_objid); 1729 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid, 1730 __le32 par_dirid, __le32 par_objid); 1731 1732 /* array of the entry headers */ 1733 /* get item body */ 1734 #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) ) 1735 #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih))) 1736 1737 /* length of the directory entry in directory item. This define 1738 calculates length of i-th directory entry using directory entry 1739 locations from dir entry head. When it calculates length of 0-th 1740 directory entry, it uses length of whole item in place of entry 1741 location of the non-existent following entry in the calculation. 1742 See picture above.*/ 1743 /* 1744 #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \ 1745 ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh)))) 1746 */ 1747 static inline int entry_length(const struct buffer_head *bh, 1748 const struct item_head *ih, int pos_in_item) 1749 { 1750 struct reiserfs_de_head *deh; 1751 1752 deh = B_I_DEH(bh, ih) + pos_in_item; 1753 if (pos_in_item) 1754 return deh_location(deh - 1) - deh_location(deh); 1755 1756 return ih_item_len(ih) - deh_location(deh); 1757 } 1758 1759 /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */ 1760 #define I_ENTRY_COUNT(ih) (ih_entry_count((ih))) 1761 1762 /* name by bh, ih and entry_num */ 1763 #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num)))) 1764 1765 // two entries per block (at least) 1766 #define REISERFS_MAX_NAME(block_size) 255 1767 1768 /* this structure is used for operations on directory entries. It is 1769 not a disk structure. */ 1770 /* When reiserfs_find_entry or search_by_entry_key find directory 1771 entry, they return filled reiserfs_dir_entry structure */ 1772 struct reiserfs_dir_entry { 1773 struct buffer_head *de_bh; 1774 int de_item_num; 1775 struct item_head *de_ih; 1776 int de_entry_num; 1777 struct reiserfs_de_head *de_deh; 1778 int de_entrylen; 1779 int de_namelen; 1780 char *de_name; 1781 unsigned long *de_gen_number_bit_string; 1782 1783 __u32 de_dir_id; 1784 __u32 de_objectid; 1785 1786 struct cpu_key de_entry_key; 1787 }; 1788 1789 /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */ 1790 1791 /* pointer to file name, stored in entry */ 1792 #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh)) 1793 1794 /* length of name */ 1795 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \ 1796 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0)) 1797 1798 /* hash value occupies bits from 7 up to 30 */ 1799 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL) 1800 /* generation number occupies 7 bits starting from 0 up to 6 */ 1801 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL) 1802 #define MAX_GENERATION_NUMBER 127 1803 1804 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number)) 1805 1806 /* 1807 * Picture represents an internal node of the reiserfs tree 1808 * ______________________________________________________ 1809 * | | Array of | Array of | Free | 1810 * |block | keys | pointers | space | 1811 * | head | N | N+1 | | 1812 * |______|_______________|___________________|___________| 1813 */ 1814 1815 /***************************************************************************/ 1816 /* DISK CHILD */ 1817 /***************************************************************************/ 1818 /* Disk child pointer: The pointer from an internal node of the tree 1819 to a node that is on disk. */ 1820 struct disk_child { 1821 __le32 dc_block_number; /* Disk child's block number. */ 1822 __le16 dc_size; /* Disk child's used space. */ 1823 __le16 dc_reserved; 1824 }; 1825 1826 #define DC_SIZE (sizeof(struct disk_child)) 1827 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number)) 1828 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size)) 1829 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0) 1830 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0) 1831 1832 /* Get disk child by buffer header and position in the tree node. */ 1833 #define B_N_CHILD(bh, n_pos) ((struct disk_child *)\ 1834 ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos))) 1835 1836 /* Get disk child number by buffer header and position in the tree node. */ 1837 #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos))) 1838 #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \ 1839 (put_dc_block_number(B_N_CHILD(bh, n_pos), val)) 1840 1841 /* maximal value of field child_size in structure disk_child */ 1842 /* child size is the combined size of all items and their headers */ 1843 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE )) 1844 1845 /* amount of used space in buffer (not including block head) */ 1846 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur))) 1847 1848 /* max and min number of keys in internal node */ 1849 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) ) 1850 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2) 1851 1852 /***************************************************************************/ 1853 /* PATH STRUCTURES AND DEFINES */ 1854 /***************************************************************************/ 1855 1856 /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the 1857 key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it 1858 does not find them in the cache it reads them from disk. For each node search_by_key finds using 1859 reiserfs_bread it then uses bin_search to look through that node. bin_search will find the 1860 position of the block_number of the next node if it is looking through an internal node. If it 1861 is looking through a leaf node bin_search will find the position of the item which has key either 1862 equal to given key, or which is the maximal key less than the given key. */ 1863 1864 struct path_element { 1865 struct buffer_head *pe_buffer; /* Pointer to the buffer at the path in the tree. */ 1866 int pe_position; /* Position in the tree node which is placed in the */ 1867 /* buffer above. */ 1868 }; 1869 1870 #define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */ 1871 #define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */ 1872 #define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */ 1873 1874 #define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */ 1875 #define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */ 1876 1877 /* We need to keep track of who the ancestors of nodes are. When we 1878 perform a search we record which nodes were visited while 1879 descending the tree looking for the node we searched for. This list 1880 of nodes is called the path. This information is used while 1881 performing balancing. Note that this path information may become 1882 invalid, and this means we must check it when using it to see if it 1883 is still valid. You'll need to read search_by_key and the comments 1884 in it, especially about decrement_counters_in_path(), to understand 1885 this structure. 1886 1887 Paths make the code so much harder to work with and debug.... An 1888 enormous number of bugs are due to them, and trying to write or modify 1889 code that uses them just makes my head hurt. They are based on an 1890 excessive effort to avoid disturbing the precious VFS code.:-( The 1891 gods only know how we are going to SMP the code that uses them. 1892 znodes are the way! */ 1893 1894 #define PATH_READA 0x1 /* do read ahead */ 1895 #define PATH_READA_BACK 0x2 /* read backwards */ 1896 1897 struct treepath { 1898 int path_length; /* Length of the array above. */ 1899 int reada; 1900 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */ 1901 int pos_in_item; 1902 }; 1903 1904 #define pos_in_item(path) ((path)->pos_in_item) 1905 1906 #define INITIALIZE_PATH(var) \ 1907 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,} 1908 1909 /* Get path element by path and path position. */ 1910 #define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset)) 1911 1912 /* Get buffer header at the path by path and path position. */ 1913 #define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer) 1914 1915 /* Get position in the element at the path by path and path position. */ 1916 #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position) 1917 1918 #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length)) 1919 /* you know, to the person who didn't 1920 write this the macro name does not 1921 at first suggest what it does. 1922 Maybe POSITION_FROM_PATH_END? Or 1923 maybe we should just focus on 1924 dumping paths... -Hans */ 1925 #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length)) 1926 1927 #define PATH_PITEM_HEAD(path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)) 1928 1929 /* in do_balance leaf has h == 0 in contrast with path structure, 1930 where root has level == 0. That is why we need these defines */ 1931 #define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h)) /* tb->S[h] */ 1932 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */ 1933 #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h)) 1934 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */ 1935 1936 #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h)) 1937 1938 #define get_last_bh(path) PATH_PLAST_BUFFER(path) 1939 #define get_ih(path) PATH_PITEM_HEAD(path) 1940 #define get_item_pos(path) PATH_LAST_POSITION(path) 1941 #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path))) 1942 #define item_moved(ih,path) comp_items(ih, path) 1943 #define path_changed(ih,path) comp_items (ih, path) 1944 1945 /***************************************************************************/ 1946 /* MISC */ 1947 /***************************************************************************/ 1948 1949 /* Size of pointer to the unformatted node. */ 1950 #define UNFM_P_SIZE (sizeof(unp_t)) 1951 #define UNFM_P_SHIFT 2 1952 1953 // in in-core inode key is stored on le form 1954 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key)) 1955 1956 #define MAX_UL_INT 0xffffffff 1957 #define MAX_INT 0x7ffffff 1958 #define MAX_US_INT 0xffff 1959 1960 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset 1961 #define U32_MAX (~(__u32)0) 1962 1963 static inline loff_t max_reiserfs_offset(struct inode *inode) 1964 { 1965 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5) 1966 return (loff_t) U32_MAX; 1967 1968 return (loff_t) ((~(__u64) 0) >> 4); 1969 } 1970 1971 /*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/ 1972 #define MAX_KEY_OBJECTID MAX_UL_INT 1973 1974 #define MAX_B_NUM MAX_UL_INT 1975 #define MAX_FC_NUM MAX_US_INT 1976 1977 /* the purpose is to detect overflow of an unsigned short */ 1978 #define REISERFS_LINK_MAX (MAX_US_INT - 1000) 1979 1980 /* The following defines are used in reiserfs_insert_item and reiserfs_append_item */ 1981 #define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */ 1982 #define REISERFS_USER_MEM 1 /* reiserfs user memory mode */ 1983 1984 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter) 1985 #define get_generation(s) atomic_read (&fs_generation(s)) 1986 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen) 1987 #define __fs_changed(gen,s) (gen != get_generation (s)) 1988 #define fs_changed(gen,s) \ 1989 ({ \ 1990 reiserfs_cond_resched(s); \ 1991 __fs_changed(gen, s); \ 1992 }) 1993 1994 /***************************************************************************/ 1995 /* FIXATE NODES */ 1996 /***************************************************************************/ 1997 1998 #define VI_TYPE_LEFT_MERGEABLE 1 1999 #define VI_TYPE_RIGHT_MERGEABLE 2 2000 2001 /* To make any changes in the tree we always first find node, that 2002 contains item to be changed/deleted or place to insert a new 2003 item. We call this node S. To do balancing we need to decide what 2004 we will shift to left/right neighbor, or to a new node, where new 2005 item will be etc. To make this analysis simpler we build virtual 2006 node. Virtual node is an array of items, that will replace items of 2007 node S. (For instance if we are going to delete an item, virtual 2008 node does not contain it). Virtual node keeps information about 2009 item sizes and types, mergeability of first and last items, sizes 2010 of all entries in directory item. We use this array of items when 2011 calculating what we can shift to neighbors and how many nodes we 2012 have to have if we do not any shiftings, if we shift to left/right 2013 neighbor or to both. */ 2014 struct virtual_item { 2015 int vi_index; // index in the array of item operations 2016 unsigned short vi_type; // left/right mergeability 2017 unsigned short vi_item_len; /* length of item that it will have after balancing */ 2018 struct item_head *vi_ih; 2019 const char *vi_item; // body of item (old or new) 2020 const void *vi_new_data; // 0 always but paste mode 2021 void *vi_uarea; // item specific area 2022 }; 2023 2024 struct virtual_node { 2025 char *vn_free_ptr; /* this is a pointer to the free space in the buffer */ 2026 unsigned short vn_nr_item; /* number of items in virtual node */ 2027 short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */ 2028 short vn_mode; /* mode of balancing (paste, insert, delete, cut) */ 2029 short vn_affected_item_num; 2030 short vn_pos_in_item; 2031 struct item_head *vn_ins_ih; /* item header of inserted item, 0 for other modes */ 2032 const void *vn_data; 2033 struct virtual_item *vn_vi; /* array of items (including a new one, excluding item to be deleted) */ 2034 }; 2035 2036 /* used by directory items when creating virtual nodes */ 2037 struct direntry_uarea { 2038 int flags; 2039 __u16 entry_count; 2040 __u16 entry_sizes[1]; 2041 } __attribute__ ((__packed__)); 2042 2043 /***************************************************************************/ 2044 /* TREE BALANCE */ 2045 /***************************************************************************/ 2046 2047 /* This temporary structure is used in tree balance algorithms, and 2048 constructed as we go to the extent that its various parts are 2049 needed. It contains arrays of nodes that can potentially be 2050 involved in the balancing of node S, and parameters that define how 2051 each of the nodes must be balanced. Note that in these algorithms 2052 for balancing the worst case is to need to balance the current node 2053 S and the left and right neighbors and all of their parents plus 2054 create a new node. We implement S1 balancing for the leaf nodes 2055 and S0 balancing for the internal nodes (S1 and S0 are defined in 2056 our papers.)*/ 2057 2058 #define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */ 2059 2060 /* maximum number of FEB blocknrs on a single level */ 2061 #define MAX_AMOUNT_NEEDED 2 2062 2063 /* someday somebody will prefix every field in this struct with tb_ */ 2064 struct tree_balance { 2065 int tb_mode; 2066 int need_balance_dirty; 2067 struct super_block *tb_sb; 2068 struct reiserfs_transaction_handle *transaction_handle; 2069 struct treepath *tb_path; 2070 struct buffer_head *L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */ 2071 struct buffer_head *R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path */ 2072 struct buffer_head *FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */ 2073 struct buffer_head *FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */ 2074 struct buffer_head *CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */ 2075 struct buffer_head *CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */ 2076 2077 struct buffer_head *FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals 2078 cur_blknum. */ 2079 struct buffer_head *used[MAX_FEB_SIZE]; 2080 struct buffer_head *thrown[MAX_FEB_SIZE]; 2081 int lnum[MAX_HEIGHT]; /* array of number of items which must be 2082 shifted to the left in order to balance the 2083 current node; for leaves includes item that 2084 will be partially shifted; for internal 2085 nodes, it is the number of child pointers 2086 rather than items. It includes the new item 2087 being created. The code sometimes subtracts 2088 one to get the number of wholly shifted 2089 items for other purposes. */ 2090 int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */ 2091 int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and 2092 S[h] to its item number within the node CFL[h] */ 2093 int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */ 2094 int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from 2095 S[h]. A negative value means removing. */ 2096 int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after 2097 balancing on the level h of the tree. If 0 then S is 2098 being deleted, if 1 then S is remaining and no new nodes 2099 are being created, if 2 or 3 then 1 or 2 new nodes is 2100 being created */ 2101 2102 /* fields that are used only for balancing leaves of the tree */ 2103 int cur_blknum; /* number of empty blocks having been already allocated */ 2104 int s0num; /* number of items that fall into left most node when S[0] splits */ 2105 int s1num; /* number of items that fall into first new node when S[0] splits */ 2106 int s2num; /* number of items that fall into second new node when S[0] splits */ 2107 int lbytes; /* number of bytes which can flow to the left neighbor from the left */ 2108 /* most liquid item that cannot be shifted from S[0] entirely */ 2109 /* if -1 then nothing will be partially shifted */ 2110 int rbytes; /* number of bytes which will flow to the right neighbor from the right */ 2111 /* most liquid item that cannot be shifted from S[0] entirely */ 2112 /* if -1 then nothing will be partially shifted */ 2113 int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */ 2114 /* note: if S[0] splits into 3 nodes, then items do not need to be cut */ 2115 int s2bytes; 2116 struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */ 2117 char *vn_buf; /* kmalloced memory. Used to create 2118 virtual node and keep map of 2119 dirtied bitmap blocks */ 2120 int vn_buf_size; /* size of the vn_buf */ 2121 struct virtual_node *tb_vn; /* VN starts after bitmap of bitmap blocks */ 2122 2123 int fs_gen; /* saved value of `reiserfs_generation' counter 2124 see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */ 2125 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2126 struct in_core_key key; /* key pointer, to pass to block allocator or 2127 another low-level subsystem */ 2128 #endif 2129 }; 2130 2131 /* These are modes of balancing */ 2132 2133 /* When inserting an item. */ 2134 #define M_INSERT 'i' 2135 /* When inserting into (directories only) or appending onto an already 2136 existent item. */ 2137 #define M_PASTE 'p' 2138 /* When deleting an item. */ 2139 #define M_DELETE 'd' 2140 /* When truncating an item or removing an entry from a (directory) item. */ 2141 #define M_CUT 'c' 2142 2143 /* used when balancing on leaf level skipped (in reiserfsck) */ 2144 #define M_INTERNAL 'n' 2145 2146 /* When further balancing is not needed, then do_balance does not need 2147 to be called. */ 2148 #define M_SKIP_BALANCING 's' 2149 #define M_CONVERT 'v' 2150 2151 /* modes of leaf_move_items */ 2152 #define LEAF_FROM_S_TO_L 0 2153 #define LEAF_FROM_S_TO_R 1 2154 #define LEAF_FROM_R_TO_L 2 2155 #define LEAF_FROM_L_TO_R 3 2156 #define LEAF_FROM_S_TO_SNEW 4 2157 2158 #define FIRST_TO_LAST 0 2159 #define LAST_TO_FIRST 1 2160 2161 /* used in do_balance for passing parent of node information that has 2162 been gotten from tb struct */ 2163 struct buffer_info { 2164 struct tree_balance *tb; 2165 struct buffer_head *bi_bh; 2166 struct buffer_head *bi_parent; 2167 int bi_position; 2168 }; 2169 2170 static inline struct super_block *sb_from_tb(struct tree_balance *tb) 2171 { 2172 return tb ? tb->tb_sb : NULL; 2173 } 2174 2175 static inline struct super_block *sb_from_bi(struct buffer_info *bi) 2176 { 2177 return bi ? sb_from_tb(bi->tb) : NULL; 2178 } 2179 2180 /* there are 4 types of items: stat data, directory item, indirect, direct. 2181 +-------------------+------------+--------------+------------+ 2182 | | k_offset | k_uniqueness | mergeable? | 2183 +-------------------+------------+--------------+------------+ 2184 | stat data | 0 | 0 | no | 2185 +-------------------+------------+--------------+------------+ 2186 | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no | 2187 | non 1st directory | hash value | | yes | 2188 | item | | | | 2189 +-------------------+------------+--------------+------------+ 2190 | indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object 2191 +-------------------+------------+--------------+------------+ 2192 | direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object 2193 +-------------------+------------+--------------+------------+ 2194 */ 2195 2196 struct item_operations { 2197 int (*bytes_number) (struct item_head * ih, int block_size); 2198 void (*decrement_key) (struct cpu_key *); 2199 int (*is_left_mergeable) (struct reiserfs_key * ih, 2200 unsigned long bsize); 2201 void (*print_item) (struct item_head *, char *item); 2202 void (*check_item) (struct item_head *, char *item); 2203 2204 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, 2205 int is_affected, int insert_size); 2206 int (*check_left) (struct virtual_item * vi, int free, 2207 int start_skip, int end_skip); 2208 int (*check_right) (struct virtual_item * vi, int free); 2209 int (*part_size) (struct virtual_item * vi, int from, int to); 2210 int (*unit_num) (struct virtual_item * vi); 2211 void (*print_vi) (struct virtual_item * vi); 2212 }; 2213 2214 extern struct item_operations *item_ops[TYPE_ANY + 1]; 2215 2216 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize) 2217 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize) 2218 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item) 2219 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item) 2220 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size) 2221 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip) 2222 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free) 2223 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to) 2224 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi) 2225 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi) 2226 2227 #define COMP_SHORT_KEYS comp_short_keys 2228 2229 /* number of blocks pointed to by the indirect item */ 2230 #define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE) 2231 2232 /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */ 2233 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size)) 2234 2235 /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */ 2236 2237 /* get the item header */ 2238 #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) ) 2239 2240 /* get key */ 2241 #define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) ) 2242 2243 /* get the key */ 2244 #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) ) 2245 2246 /* get item body */ 2247 #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num)))) 2248 2249 /* get the stat data by the buffer header and the item order */ 2250 #define B_N_STAT_DATA(bh,nr) \ 2251 ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) ) 2252 2253 /* following defines use reiserfs buffer header and item header */ 2254 2255 /* get stat-data */ 2256 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) ) 2257 2258 // this is 3976 for size==4096 2259 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE) 2260 2261 /* indirect items consist of entries which contain blocknrs, pos 2262 indicates which entry, and B_I_POS_UNFM_POINTER resolves to the 2263 blocknr contained by the entry pos points to */ 2264 #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos))) 2265 #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0) 2266 2267 struct reiserfs_iget_args { 2268 __u32 objectid; 2269 __u32 dirid; 2270 }; 2271 2272 /***************************************************************************/ 2273 /* FUNCTION DECLARATIONS */ 2274 /***************************************************************************/ 2275 2276 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12) 2277 2278 #define journal_trans_half(blocksize) \ 2279 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32)) 2280 2281 /* journal.c see journal.c for all the comments here */ 2282 2283 /* first block written in a commit. */ 2284 struct reiserfs_journal_desc { 2285 __le32 j_trans_id; /* id of commit */ 2286 __le32 j_len; /* length of commit. len +1 is the commit block */ 2287 __le32 j_mount_id; /* mount id of this trans */ 2288 __le32 j_realblock[1]; /* real locations for each block */ 2289 }; 2290 2291 #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id) 2292 #define get_desc_trans_len(d) le32_to_cpu((d)->j_len) 2293 #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id) 2294 2295 #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0) 2296 #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0) 2297 #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0) 2298 2299 /* last block written in a commit */ 2300 struct reiserfs_journal_commit { 2301 __le32 j_trans_id; /* must match j_trans_id from the desc block */ 2302 __le32 j_len; /* ditto */ 2303 __le32 j_realblock[1]; /* real locations for each block */ 2304 }; 2305 2306 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id) 2307 #define get_commit_trans_len(c) le32_to_cpu((c)->j_len) 2308 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id) 2309 2310 #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0) 2311 #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0) 2312 2313 /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the 2314 ** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk, 2315 ** and this transaction does not need to be replayed. 2316 */ 2317 struct reiserfs_journal_header { 2318 __le32 j_last_flush_trans_id; /* id of last fully flushed transaction */ 2319 __le32 j_first_unflushed_offset; /* offset in the log of where to start replay after a crash */ 2320 __le32 j_mount_id; 2321 /* 12 */ struct journal_params jh_journal; 2322 }; 2323 2324 /* biggest tunable defines are right here */ 2325 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */ 2326 #define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */ 2327 #define JOURNAL_TRANS_MIN_DEFAULT 256 2328 #define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */ 2329 #define JOURNAL_MIN_RATIO 2 2330 #define JOURNAL_MAX_COMMIT_AGE 30 2331 #define JOURNAL_MAX_TRANS_AGE 30 2332 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9) 2333 #define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \ 2334 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \ 2335 REISERFS_QUOTA_TRANS_BLOCKS(sb))) 2336 2337 #ifdef CONFIG_QUOTA 2338 #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA)) 2339 /* We need to update data and inode (atime) */ 2340 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0) 2341 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */ 2342 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ 2343 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0) 2344 /* same as with INIT */ 2345 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ 2346 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0) 2347 #else 2348 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0 2349 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0 2350 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0 2351 #endif 2352 2353 /* both of these can be as low as 1, or as high as you want. The min is the 2354 ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated 2355 ** as needed, and released when transactions are committed. On release, if 2356 ** the current number of nodes is > max, the node is freed, otherwise, 2357 ** it is put on a free list for faster use later. 2358 */ 2359 #define REISERFS_MIN_BITMAP_NODES 10 2360 #define REISERFS_MAX_BITMAP_NODES 100 2361 2362 #define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */ 2363 #define JBH_HASH_MASK 8191 2364 2365 #define _jhashfn(sb,block) \ 2366 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \ 2367 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12)))) 2368 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK]) 2369 2370 // We need these to make journal.c code more readable 2371 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 2372 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 2373 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 2374 2375 enum reiserfs_bh_state_bits { 2376 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */ 2377 BH_JDirty_wait, 2378 BH_JNew, /* disk block was taken off free list before 2379 * being in a finished transaction, or 2380 * written to disk. Can be reused immed. */ 2381 BH_JPrepared, 2382 BH_JRestore_dirty, 2383 BH_JTest, // debugging only will go away 2384 }; 2385 2386 BUFFER_FNS(JDirty, journaled); 2387 TAS_BUFFER_FNS(JDirty, journaled); 2388 BUFFER_FNS(JDirty_wait, journal_dirty); 2389 TAS_BUFFER_FNS(JDirty_wait, journal_dirty); 2390 BUFFER_FNS(JNew, journal_new); 2391 TAS_BUFFER_FNS(JNew, journal_new); 2392 BUFFER_FNS(JPrepared, journal_prepared); 2393 TAS_BUFFER_FNS(JPrepared, journal_prepared); 2394 BUFFER_FNS(JRestore_dirty, journal_restore_dirty); 2395 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty); 2396 BUFFER_FNS(JTest, journal_test); 2397 TAS_BUFFER_FNS(JTest, journal_test); 2398 2399 /* 2400 ** transaction handle which is passed around for all journal calls 2401 */ 2402 struct reiserfs_transaction_handle { 2403 struct super_block *t_super; /* super for this FS when journal_begin was 2404 called. saves calls to reiserfs_get_super 2405 also used by nested transactions to make 2406 sure they are nesting on the right FS 2407 _must_ be first in the handle 2408 */ 2409 int t_refcount; 2410 int t_blocks_logged; /* number of blocks this writer has logged */ 2411 int t_blocks_allocated; /* number of blocks this writer allocated */ 2412 unsigned int t_trans_id; /* sanity check, equals the current trans id */ 2413 void *t_handle_save; /* save existing current->journal_info */ 2414 unsigned displace_new_blocks:1; /* if new block allocation occurres, that block 2415 should be displaced from others */ 2416 struct list_head t_list; 2417 }; 2418 2419 /* used to keep track of ordered and tail writes, attached to the buffer 2420 * head through b_journal_head. 2421 */ 2422 struct reiserfs_jh { 2423 struct reiserfs_journal_list *jl; 2424 struct buffer_head *bh; 2425 struct list_head list; 2426 }; 2427 2428 void reiserfs_free_jh(struct buffer_head *bh); 2429 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh); 2430 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh); 2431 int journal_mark_dirty(struct reiserfs_transaction_handle *, 2432 struct super_block *, struct buffer_head *bh); 2433 2434 static inline int reiserfs_file_data_log(struct inode *inode) 2435 { 2436 if (reiserfs_data_log(inode->i_sb) || 2437 (REISERFS_I(inode)->i_flags & i_data_log)) 2438 return 1; 2439 return 0; 2440 } 2441 2442 static inline int reiserfs_transaction_running(struct super_block *s) 2443 { 2444 struct reiserfs_transaction_handle *th = current->journal_info; 2445 if (th && th->t_super == s) 2446 return 1; 2447 if (th && th->t_super == NULL) 2448 BUG(); 2449 return 0; 2450 } 2451 2452 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th) 2453 { 2454 return th->t_blocks_allocated - th->t_blocks_logged; 2455 } 2456 2457 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct 2458 super_block 2459 *, 2460 int count); 2461 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *); 2462 void reiserfs_vfs_truncate_file(struct inode *inode); 2463 int reiserfs_commit_page(struct inode *inode, struct page *page, 2464 unsigned from, unsigned to); 2465 void reiserfs_flush_old_commits(struct super_block *); 2466 int reiserfs_commit_for_inode(struct inode *); 2467 int reiserfs_inode_needs_commit(struct inode *); 2468 void reiserfs_update_inode_transaction(struct inode *); 2469 void reiserfs_wait_on_write_block(struct super_block *s); 2470 void reiserfs_block_writes(struct reiserfs_transaction_handle *th); 2471 void reiserfs_allow_writes(struct super_block *s); 2472 void reiserfs_check_lock_depth(struct super_block *s, char *caller); 2473 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, 2474 int wait); 2475 void reiserfs_restore_prepared_buffer(struct super_block *, 2476 struct buffer_head *bh); 2477 int journal_init(struct super_block *, const char *j_dev_name, int old_format, 2478 unsigned int); 2479 int journal_release(struct reiserfs_transaction_handle *, struct super_block *); 2480 int journal_release_error(struct reiserfs_transaction_handle *, 2481 struct super_block *); 2482 int journal_end(struct reiserfs_transaction_handle *, struct super_block *, 2483 unsigned long); 2484 int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, 2485 unsigned long); 2486 int journal_mark_freed(struct reiserfs_transaction_handle *, 2487 struct super_block *, b_blocknr_t blocknr); 2488 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int); 2489 int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr, 2490 int bit_nr, int searchall, b_blocknr_t *next); 2491 int journal_begin(struct reiserfs_transaction_handle *, 2492 struct super_block *sb, unsigned long); 2493 int journal_join_abort(struct reiserfs_transaction_handle *, 2494 struct super_block *sb, unsigned long); 2495 void reiserfs_abort_journal(struct super_block *sb, int errno); 2496 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...); 2497 int reiserfs_allocate_list_bitmaps(struct super_block *s, 2498 struct reiserfs_list_bitmap *, unsigned int); 2499 2500 void reiserfs_schedule_old_flush(struct super_block *s); 2501 void add_save_link(struct reiserfs_transaction_handle *th, 2502 struct inode *inode, int truncate); 2503 int remove_save_link(struct inode *inode, int truncate); 2504 2505 /* objectid.c */ 2506 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th); 2507 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, 2508 __u32 objectid_to_release); 2509 int reiserfs_convert_objectid_map_v1(struct super_block *); 2510 2511 /* stree.c */ 2512 int B_IS_IN_TREE(const struct buffer_head *); 2513 extern void copy_item_head(struct item_head *to, 2514 const struct item_head *from); 2515 2516 // first key is in cpu form, second - le 2517 extern int comp_short_keys(const struct reiserfs_key *le_key, 2518 const struct cpu_key *cpu_key); 2519 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from); 2520 2521 // both are in le form 2522 extern int comp_le_keys(const struct reiserfs_key *, 2523 const struct reiserfs_key *); 2524 extern int comp_short_le_keys(const struct reiserfs_key *, 2525 const struct reiserfs_key *); 2526 2527 // 2528 // get key version from on disk key - kludge 2529 // 2530 static inline int le_key_version(const struct reiserfs_key *key) 2531 { 2532 int type; 2533 2534 type = offset_v2_k_type(&(key->u.k_offset_v2)); 2535 if (type != TYPE_DIRECT && type != TYPE_INDIRECT 2536 && type != TYPE_DIRENTRY) 2537 return KEY_FORMAT_3_5; 2538 2539 return KEY_FORMAT_3_6; 2540 2541 } 2542 2543 static inline void copy_key(struct reiserfs_key *to, 2544 const struct reiserfs_key *from) 2545 { 2546 memcpy(to, from, KEY_SIZE); 2547 } 2548 2549 int comp_items(const struct item_head *stored_ih, const struct treepath *path); 2550 const struct reiserfs_key *get_rkey(const struct treepath *chk_path, 2551 const struct super_block *sb); 2552 int search_by_key(struct super_block *, const struct cpu_key *, 2553 struct treepath *, int); 2554 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL) 2555 int search_for_position_by_key(struct super_block *sb, 2556 const struct cpu_key *cpu_key, 2557 struct treepath *search_path); 2558 extern void decrement_bcount(struct buffer_head *bh); 2559 void decrement_counters_in_path(struct treepath *search_path); 2560 void pathrelse(struct treepath *search_path); 2561 int reiserfs_check_path(struct treepath *p); 2562 void pathrelse_and_restore(struct super_block *s, struct treepath *search_path); 2563 2564 int reiserfs_insert_item(struct reiserfs_transaction_handle *th, 2565 struct treepath *path, 2566 const struct cpu_key *key, 2567 struct item_head *ih, 2568 struct inode *inode, const char *body); 2569 2570 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, 2571 struct treepath *path, 2572 const struct cpu_key *key, 2573 struct inode *inode, 2574 const char *body, int paste_size); 2575 2576 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, 2577 struct treepath *path, 2578 struct cpu_key *key, 2579 struct inode *inode, 2580 struct page *page, loff_t new_file_size); 2581 2582 int reiserfs_delete_item(struct reiserfs_transaction_handle *th, 2583 struct treepath *path, 2584 const struct cpu_key *key, 2585 struct inode *inode, struct buffer_head *un_bh); 2586 2587 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, 2588 struct inode *inode, struct reiserfs_key *key); 2589 int reiserfs_delete_object(struct reiserfs_transaction_handle *th, 2590 struct inode *inode); 2591 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, 2592 struct inode *inode, struct page *, 2593 int update_timestamps); 2594 2595 #define i_block_size(inode) ((inode)->i_sb->s_blocksize) 2596 #define file_size(inode) ((inode)->i_size) 2597 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1)) 2598 2599 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\ 2600 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 ) 2601 2602 void padd_item(char *item, int total_length, int length); 2603 2604 /* inode.c */ 2605 /* args for the create parameter of reiserfs_get_block */ 2606 #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */ 2607 #define GET_BLOCK_CREATE 1 /* add anything you need to find block */ 2608 #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */ 2609 #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */ 2610 #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */ 2611 #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */ 2612 2613 void reiserfs_read_locked_inode(struct inode *inode, 2614 struct reiserfs_iget_args *args); 2615 int reiserfs_find_actor(struct inode *inode, void *p); 2616 int reiserfs_init_locked_inode(struct inode *inode, void *p); 2617 void reiserfs_evict_inode(struct inode *inode); 2618 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc); 2619 int reiserfs_get_block(struct inode *inode, sector_t block, 2620 struct buffer_head *bh_result, int create); 2621 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 2622 int fh_len, int fh_type); 2623 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 2624 int fh_len, int fh_type); 2625 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, 2626 struct inode *parent); 2627 2628 int reiserfs_truncate_file(struct inode *, int update_timestamps); 2629 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset, 2630 int type, int key_length); 2631 void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 2632 int version, 2633 loff_t offset, int type, int length, int entry_count); 2634 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key); 2635 2636 struct reiserfs_security_handle; 2637 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 2638 struct inode *dir, umode_t mode, 2639 const char *symname, loff_t i_size, 2640 struct dentry *dentry, struct inode *inode, 2641 struct reiserfs_security_handle *security); 2642 2643 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 2644 struct inode *inode, loff_t size); 2645 2646 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th, 2647 struct inode *inode) 2648 { 2649 reiserfs_update_sd_size(th, inode, inode->i_size); 2650 } 2651 2652 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode); 2653 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs); 2654 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr); 2655 2656 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len); 2657 2658 /* namei.c */ 2659 void set_de_name_and_namelen(struct reiserfs_dir_entry *de); 2660 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key, 2661 struct treepath *path, struct reiserfs_dir_entry *de); 2662 struct dentry *reiserfs_get_parent(struct dentry *); 2663 2664 #ifdef CONFIG_REISERFS_PROC_INFO 2665 int reiserfs_proc_info_init(struct super_block *sb); 2666 int reiserfs_proc_info_done(struct super_block *sb); 2667 int reiserfs_proc_info_global_init(void); 2668 int reiserfs_proc_info_global_done(void); 2669 2670 #define PROC_EXP( e ) e 2671 2672 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data 2673 #define PROC_INFO_MAX( sb, field, value ) \ 2674 __PINFO( sb ).field = \ 2675 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value ) 2676 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) ) 2677 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) ) 2678 #define PROC_INFO_BH_STAT( sb, bh, level ) \ 2679 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \ 2680 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \ 2681 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) ) 2682 #else 2683 static inline int reiserfs_proc_info_init(struct super_block *sb) 2684 { 2685 return 0; 2686 } 2687 2688 static inline int reiserfs_proc_info_done(struct super_block *sb) 2689 { 2690 return 0; 2691 } 2692 2693 static inline int reiserfs_proc_info_global_init(void) 2694 { 2695 return 0; 2696 } 2697 2698 static inline int reiserfs_proc_info_global_done(void) 2699 { 2700 return 0; 2701 } 2702 2703 #define PROC_EXP( e ) 2704 #define VOID_V ( ( void ) 0 ) 2705 #define PROC_INFO_MAX( sb, field, value ) VOID_V 2706 #define PROC_INFO_INC( sb, field ) VOID_V 2707 #define PROC_INFO_ADD( sb, field, val ) VOID_V 2708 #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V 2709 #endif 2710 2711 /* dir.c */ 2712 extern const struct inode_operations reiserfs_dir_inode_operations; 2713 extern const struct inode_operations reiserfs_symlink_inode_operations; 2714 extern const struct inode_operations reiserfs_special_inode_operations; 2715 extern const struct file_operations reiserfs_dir_operations; 2716 int reiserfs_readdir_inode(struct inode *, struct dir_context *); 2717 2718 /* tail_conversion.c */ 2719 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *, 2720 struct treepath *, struct buffer_head *, loff_t); 2721 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *, 2722 struct page *, struct treepath *, const struct cpu_key *, 2723 loff_t, char *); 2724 void reiserfs_unmap_buffer(struct buffer_head *); 2725 2726 /* file.c */ 2727 extern const struct inode_operations reiserfs_file_inode_operations; 2728 extern const struct file_operations reiserfs_file_operations; 2729 extern const struct address_space_operations reiserfs_address_space_operations; 2730 2731 /* fix_nodes.c */ 2732 2733 int fix_nodes(int n_op_mode, struct tree_balance *tb, 2734 struct item_head *ins_ih, const void *); 2735 void unfix_nodes(struct tree_balance *); 2736 2737 /* prints.c */ 2738 void __reiserfs_panic(struct super_block *s, const char *id, 2739 const char *function, const char *fmt, ...) 2740 __attribute__ ((noreturn)); 2741 #define reiserfs_panic(s, id, fmt, args...) \ 2742 __reiserfs_panic(s, id, __func__, fmt, ##args) 2743 void __reiserfs_error(struct super_block *s, const char *id, 2744 const char *function, const char *fmt, ...); 2745 #define reiserfs_error(s, id, fmt, args...) \ 2746 __reiserfs_error(s, id, __func__, fmt, ##args) 2747 void reiserfs_info(struct super_block *s, const char *fmt, ...); 2748 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...); 2749 void print_indirect_item(struct buffer_head *bh, int item_num); 2750 void store_print_tb(struct tree_balance *tb); 2751 void print_cur_tb(char *mes); 2752 void print_de(struct reiserfs_dir_entry *de); 2753 void print_bi(struct buffer_info *bi, char *mes); 2754 #define PRINT_LEAF_ITEMS 1 /* print all items */ 2755 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */ 2756 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */ 2757 void print_block(struct buffer_head *bh, ...); 2758 void print_bmap(struct super_block *s, int silent); 2759 void print_bmap_block(int i, char *data, int size, int silent); 2760 /*void print_super_block (struct super_block * s, char * mes);*/ 2761 void print_objectid_map(struct super_block *s); 2762 void print_block_head(struct buffer_head *bh, char *mes); 2763 void check_leaf(struct buffer_head *bh); 2764 void check_internal(struct buffer_head *bh); 2765 void print_statistics(struct super_block *s); 2766 char *reiserfs_hashname(int code); 2767 2768 /* lbalance.c */ 2769 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num, 2770 int mov_bytes, struct buffer_head *Snew); 2771 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes); 2772 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes); 2773 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first, 2774 int del_num, int del_bytes); 2775 void leaf_insert_into_buf(struct buffer_info *bi, int before, 2776 struct item_head *inserted_item_ih, 2777 const char *inserted_item_body, int zeros_number); 2778 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num, 2779 int pos_in_item, int paste_size, const char *body, 2780 int zeros_number); 2781 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num, 2782 int pos_in_item, int cut_size); 2783 void leaf_paste_entries(struct buffer_info *bi, int item_num, int before, 2784 int new_entry_count, struct reiserfs_de_head *new_dehs, 2785 const char *records, int paste_size); 2786 /* ibalance.c */ 2787 int balance_internal(struct tree_balance *, int, int, struct item_head *, 2788 struct buffer_head **); 2789 2790 /* do_balance.c */ 2791 void do_balance_mark_leaf_dirty(struct tree_balance *tb, 2792 struct buffer_head *bh, int flag); 2793 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty 2794 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty 2795 2796 void do_balance(struct tree_balance *tb, struct item_head *ih, 2797 const char *body, int flag); 2798 void reiserfs_invalidate_buffer(struct tree_balance *tb, 2799 struct buffer_head *bh); 2800 2801 int get_left_neighbor_position(struct tree_balance *tb, int h); 2802 int get_right_neighbor_position(struct tree_balance *tb, int h); 2803 void replace_key(struct tree_balance *tb, struct buffer_head *, int, 2804 struct buffer_head *, int); 2805 void make_empty_node(struct buffer_info *); 2806 struct buffer_head *get_FEB(struct tree_balance *); 2807 2808 /* bitmap.c */ 2809 2810 /* structure contains hints for block allocator, and it is a container for 2811 * arguments, such as node, search path, transaction_handle, etc. */ 2812 struct __reiserfs_blocknr_hint { 2813 struct inode *inode; /* inode passed to allocator, if we allocate unf. nodes */ 2814 sector_t block; /* file offset, in blocks */ 2815 struct in_core_key key; 2816 struct treepath *path; /* search path, used by allocator to deternine search_start by 2817 * various ways */ 2818 struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and 2819 * bitmap blocks changes */ 2820 b_blocknr_t beg, end; 2821 b_blocknr_t search_start; /* a field used to transfer search start value (block number) 2822 * between different block allocator procedures 2823 * (determine_search_start() and others) */ 2824 int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed 2825 * function that do actual allocation */ 2826 2827 unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for 2828 * formatted/unformatted blocks with/without preallocation */ 2829 unsigned preallocate:1; 2830 }; 2831 2832 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t; 2833 2834 int reiserfs_parse_alloc_options(struct super_block *, char *); 2835 void reiserfs_init_alloc_options(struct super_block *s); 2836 2837 /* 2838 * given a directory, this will tell you what packing locality 2839 * to use for a new object underneat it. The locality is returned 2840 * in disk byte order (le). 2841 */ 2842 __le32 reiserfs_choose_packing(struct inode *dir); 2843 2844 int reiserfs_init_bitmap_cache(struct super_block *sb); 2845 void reiserfs_free_bitmap_cache(struct super_block *sb); 2846 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info); 2847 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap); 2848 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value); 2849 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *, 2850 b_blocknr_t, int for_unformatted); 2851 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int, 2852 int); 2853 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb, 2854 b_blocknr_t * new_blocknrs, 2855 int amount_needed) 2856 { 2857 reiserfs_blocknr_hint_t hint = { 2858 .th = tb->transaction_handle, 2859 .path = tb->tb_path, 2860 .inode = NULL, 2861 .key = tb->key, 2862 .block = 0, 2863 .formatted_node = 1 2864 }; 2865 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 2866 0); 2867 } 2868 2869 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle 2870 *th, struct inode *inode, 2871 b_blocknr_t * new_blocknrs, 2872 struct treepath *path, 2873 sector_t block) 2874 { 2875 reiserfs_blocknr_hint_t hint = { 2876 .th = th, 2877 .path = path, 2878 .inode = inode, 2879 .block = block, 2880 .formatted_node = 0, 2881 .preallocate = 0 2882 }; 2883 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); 2884 } 2885 2886 #ifdef REISERFS_PREALLOCATE 2887 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle 2888 *th, struct inode *inode, 2889 b_blocknr_t * new_blocknrs, 2890 struct treepath *path, 2891 sector_t block) 2892 { 2893 reiserfs_blocknr_hint_t hint = { 2894 .th = th, 2895 .path = path, 2896 .inode = inode, 2897 .block = block, 2898 .formatted_node = 0, 2899 .preallocate = 1 2900 }; 2901 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); 2902 } 2903 2904 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th, 2905 struct inode *inode); 2906 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th); 2907 #endif 2908 2909 /* hashes.c */ 2910 __u32 keyed_hash(const signed char *msg, int len); 2911 __u32 yura_hash(const signed char *msg, int len); 2912 __u32 r5_hash(const signed char *msg, int len); 2913 2914 #define reiserfs_set_le_bit __set_bit_le 2915 #define reiserfs_test_and_set_le_bit __test_and_set_bit_le 2916 #define reiserfs_clear_le_bit __clear_bit_le 2917 #define reiserfs_test_and_clear_le_bit __test_and_clear_bit_le 2918 #define reiserfs_test_le_bit test_bit_le 2919 #define reiserfs_find_next_zero_le_bit find_next_zero_bit_le 2920 2921 /* sometimes reiserfs_truncate may require to allocate few new blocks 2922 to perform indirect2direct conversion. People probably used to 2923 think, that truncate should work without problems on a filesystem 2924 without free disk space. They may complain that they can not 2925 truncate due to lack of free disk space. This spare space allows us 2926 to not worry about it. 500 is probably too much, but it should be 2927 absolutely safe */ 2928 #define SPARE_SPACE 500 2929 2930 /* prototypes from ioctl.c */ 2931 long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2932 long reiserfs_compat_ioctl(struct file *filp, 2933 unsigned int cmd, unsigned long arg); 2934 int reiserfs_unpack(struct inode *inode, struct file *filp); 2935